af_key.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. };
  45. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  46. {
  47. return (struct pfkey_sock *)sk;
  48. }
  49. static void pfkey_sock_destruct(struct sock *sk)
  50. {
  51. skb_queue_purge(&sk->sk_receive_queue);
  52. if (!sock_flag(sk, SOCK_DEAD)) {
  53. printk("Attempt to release alive pfkey socket: %p\n", sk);
  54. return;
  55. }
  56. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  57. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  58. atomic_dec(&pfkey_socks_nr);
  59. }
  60. static void pfkey_table_grab(void)
  61. {
  62. write_lock_bh(&pfkey_table_lock);
  63. if (atomic_read(&pfkey_table_users)) {
  64. DECLARE_WAITQUEUE(wait, current);
  65. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  66. for(;;) {
  67. set_current_state(TASK_UNINTERRUPTIBLE);
  68. if (atomic_read(&pfkey_table_users) == 0)
  69. break;
  70. write_unlock_bh(&pfkey_table_lock);
  71. schedule();
  72. write_lock_bh(&pfkey_table_lock);
  73. }
  74. __set_current_state(TASK_RUNNING);
  75. remove_wait_queue(&pfkey_table_wait, &wait);
  76. }
  77. }
  78. static __inline__ void pfkey_table_ungrab(void)
  79. {
  80. write_unlock_bh(&pfkey_table_lock);
  81. wake_up(&pfkey_table_wait);
  82. }
  83. static __inline__ void pfkey_lock_table(void)
  84. {
  85. /* read_lock() synchronizes us to pfkey_table_grab */
  86. read_lock(&pfkey_table_lock);
  87. atomic_inc(&pfkey_table_users);
  88. read_unlock(&pfkey_table_lock);
  89. }
  90. static __inline__ void pfkey_unlock_table(void)
  91. {
  92. if (atomic_dec_and_test(&pfkey_table_users))
  93. wake_up(&pfkey_table_wait);
  94. }
  95. static const struct proto_ops pfkey_ops;
  96. static void pfkey_insert(struct sock *sk)
  97. {
  98. pfkey_table_grab();
  99. sk_add_node(sk, &pfkey_table);
  100. pfkey_table_ungrab();
  101. }
  102. static void pfkey_remove(struct sock *sk)
  103. {
  104. pfkey_table_grab();
  105. sk_del_node_init(sk);
  106. pfkey_table_ungrab();
  107. }
  108. static struct proto key_proto = {
  109. .name = "KEY",
  110. .owner = THIS_MODULE,
  111. .obj_size = sizeof(struct pfkey_sock),
  112. };
  113. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  114. {
  115. struct sock *sk;
  116. int err;
  117. if (net != &init_net)
  118. return -EAFNOSUPPORT;
  119. if (!capable(CAP_NET_ADMIN))
  120. return -EPERM;
  121. if (sock->type != SOCK_RAW)
  122. return -ESOCKTNOSUPPORT;
  123. if (protocol != PF_KEY_V2)
  124. return -EPROTONOSUPPORT;
  125. err = -ENOMEM;
  126. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  127. if (sk == NULL)
  128. goto out;
  129. sock->ops = &pfkey_ops;
  130. sock_init_data(sock, sk);
  131. sk->sk_family = PF_KEY;
  132. sk->sk_destruct = pfkey_sock_destruct;
  133. atomic_inc(&pfkey_socks_nr);
  134. pfkey_insert(sk);
  135. return 0;
  136. out:
  137. return err;
  138. }
  139. static int pfkey_release(struct socket *sock)
  140. {
  141. struct sock *sk = sock->sk;
  142. if (!sk)
  143. return 0;
  144. pfkey_remove(sk);
  145. sock_orphan(sk);
  146. sock->sk = NULL;
  147. skb_queue_purge(&sk->sk_write_queue);
  148. sock_put(sk);
  149. return 0;
  150. }
  151. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  152. gfp_t allocation, struct sock *sk)
  153. {
  154. int err = -ENOBUFS;
  155. sock_hold(sk);
  156. if (*skb2 == NULL) {
  157. if (atomic_read(&skb->users) != 1) {
  158. *skb2 = skb_clone(skb, allocation);
  159. } else {
  160. *skb2 = skb;
  161. atomic_inc(&skb->users);
  162. }
  163. }
  164. if (*skb2 != NULL) {
  165. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  166. skb_orphan(*skb2);
  167. skb_set_owner_r(*skb2, sk);
  168. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  169. sk->sk_data_ready(sk, (*skb2)->len);
  170. *skb2 = NULL;
  171. err = 0;
  172. }
  173. }
  174. sock_put(sk);
  175. return err;
  176. }
  177. /* Send SKB to all pfkey sockets matching selected criteria. */
  178. #define BROADCAST_ALL 0
  179. #define BROADCAST_ONE 1
  180. #define BROADCAST_REGISTERED 2
  181. #define BROADCAST_PROMISC_ONLY 4
  182. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  183. int broadcast_flags, struct sock *one_sk)
  184. {
  185. struct sock *sk;
  186. struct hlist_node *node;
  187. struct sk_buff *skb2 = NULL;
  188. int err = -ESRCH;
  189. /* XXX Do we need something like netlink_overrun? I think
  190. * XXX PF_KEY socket apps will not mind current behavior.
  191. */
  192. if (!skb)
  193. return -ENOMEM;
  194. pfkey_lock_table();
  195. sk_for_each(sk, node, &pfkey_table) {
  196. struct pfkey_sock *pfk = pfkey_sk(sk);
  197. int err2;
  198. /* Yes, it means that if you are meant to receive this
  199. * pfkey message you receive it twice as promiscuous
  200. * socket.
  201. */
  202. if (pfk->promisc)
  203. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  204. /* the exact target will be processed later */
  205. if (sk == one_sk)
  206. continue;
  207. if (broadcast_flags != BROADCAST_ALL) {
  208. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  209. continue;
  210. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  211. !pfk->registered)
  212. continue;
  213. if (broadcast_flags & BROADCAST_ONE)
  214. continue;
  215. }
  216. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  217. /* Error is cleare after succecful sending to at least one
  218. * registered KM */
  219. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  220. err = err2;
  221. }
  222. pfkey_unlock_table();
  223. if (one_sk != NULL)
  224. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  225. if (skb2)
  226. kfree_skb(skb2);
  227. kfree_skb(skb);
  228. return err;
  229. }
  230. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  231. {
  232. *new = *orig;
  233. }
  234. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  235. {
  236. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  237. struct sadb_msg *hdr;
  238. if (!skb)
  239. return -ENOBUFS;
  240. /* Woe be to the platform trying to support PFKEY yet
  241. * having normal errnos outside the 1-255 range, inclusive.
  242. */
  243. err = -err;
  244. if (err == ERESTARTSYS ||
  245. err == ERESTARTNOHAND ||
  246. err == ERESTARTNOINTR)
  247. err = EINTR;
  248. if (err >= 512)
  249. err = EINVAL;
  250. BUG_ON(err <= 0 || err >= 256);
  251. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  252. pfkey_hdr_dup(hdr, orig);
  253. hdr->sadb_msg_errno = (uint8_t) err;
  254. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  255. sizeof(uint64_t));
  256. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  257. return 0;
  258. }
  259. static u8 sadb_ext_min_len[] = {
  260. [SADB_EXT_RESERVED] = (u8) 0,
  261. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  262. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  264. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  265. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  267. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  268. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  269. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  270. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  271. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  272. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  273. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  274. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  275. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  276. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  277. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  278. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  279. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  280. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  281. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  282. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  283. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  284. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  285. };
  286. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  287. static int verify_address_len(void *p)
  288. {
  289. struct sadb_address *sp = p;
  290. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  291. struct sockaddr_in *sin;
  292. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  293. struct sockaddr_in6 *sin6;
  294. #endif
  295. int len;
  296. switch (addr->sa_family) {
  297. case AF_INET:
  298. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  299. if (sp->sadb_address_len != len ||
  300. sp->sadb_address_prefixlen > 32)
  301. return -EINVAL;
  302. break;
  303. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  304. case AF_INET6:
  305. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  306. if (sp->sadb_address_len != len ||
  307. sp->sadb_address_prefixlen > 128)
  308. return -EINVAL;
  309. break;
  310. #endif
  311. default:
  312. /* It is user using kernel to keep track of security
  313. * associations for another protocol, such as
  314. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  315. * lengths.
  316. *
  317. * XXX Actually, association/policy database is not yet
  318. * XXX able to cope with arbitrary sockaddr families.
  319. * XXX When it can, remove this -EINVAL. -DaveM
  320. */
  321. return -EINVAL;
  322. break;
  323. }
  324. return 0;
  325. }
  326. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  327. {
  328. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  329. sec_ctx->sadb_x_ctx_len,
  330. sizeof(uint64_t));
  331. }
  332. static inline int verify_sec_ctx_len(void *p)
  333. {
  334. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  335. int len = sec_ctx->sadb_x_ctx_len;
  336. if (len > PAGE_SIZE)
  337. return -EINVAL;
  338. len = pfkey_sec_ctx_len(sec_ctx);
  339. if (sec_ctx->sadb_x_sec_len != len)
  340. return -EINVAL;
  341. return 0;
  342. }
  343. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  344. {
  345. struct xfrm_user_sec_ctx *uctx = NULL;
  346. int ctx_size = sec_ctx->sadb_x_ctx_len;
  347. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  348. if (!uctx)
  349. return NULL;
  350. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  351. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  352. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  353. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  354. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  355. memcpy(uctx + 1, sec_ctx + 1,
  356. uctx->ctx_len);
  357. return uctx;
  358. }
  359. static int present_and_same_family(struct sadb_address *src,
  360. struct sadb_address *dst)
  361. {
  362. struct sockaddr *s_addr, *d_addr;
  363. if (!src || !dst)
  364. return 0;
  365. s_addr = (struct sockaddr *)(src + 1);
  366. d_addr = (struct sockaddr *)(dst + 1);
  367. if (s_addr->sa_family != d_addr->sa_family)
  368. return 0;
  369. if (s_addr->sa_family != AF_INET
  370. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  371. && s_addr->sa_family != AF_INET6
  372. #endif
  373. )
  374. return 0;
  375. return 1;
  376. }
  377. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  378. {
  379. char *p = (char *) hdr;
  380. int len = skb->len;
  381. len -= sizeof(*hdr);
  382. p += sizeof(*hdr);
  383. while (len > 0) {
  384. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  385. uint16_t ext_type;
  386. int ext_len;
  387. ext_len = ehdr->sadb_ext_len;
  388. ext_len *= sizeof(uint64_t);
  389. ext_type = ehdr->sadb_ext_type;
  390. if (ext_len < sizeof(uint64_t) ||
  391. ext_len > len ||
  392. ext_type == SADB_EXT_RESERVED)
  393. return -EINVAL;
  394. if (ext_type <= SADB_EXT_MAX) {
  395. int min = (int) sadb_ext_min_len[ext_type];
  396. if (ext_len < min)
  397. return -EINVAL;
  398. if (ext_hdrs[ext_type-1] != NULL)
  399. return -EINVAL;
  400. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  401. ext_type == SADB_EXT_ADDRESS_DST ||
  402. ext_type == SADB_EXT_ADDRESS_PROXY ||
  403. ext_type == SADB_X_EXT_NAT_T_OA) {
  404. if (verify_address_len(p))
  405. return -EINVAL;
  406. }
  407. if (ext_type == SADB_X_EXT_SEC_CTX) {
  408. if (verify_sec_ctx_len(p))
  409. return -EINVAL;
  410. }
  411. ext_hdrs[ext_type-1] = p;
  412. }
  413. p += ext_len;
  414. len -= ext_len;
  415. }
  416. return 0;
  417. }
  418. static uint16_t
  419. pfkey_satype2proto(uint8_t satype)
  420. {
  421. switch (satype) {
  422. case SADB_SATYPE_UNSPEC:
  423. return IPSEC_PROTO_ANY;
  424. case SADB_SATYPE_AH:
  425. return IPPROTO_AH;
  426. case SADB_SATYPE_ESP:
  427. return IPPROTO_ESP;
  428. case SADB_X_SATYPE_IPCOMP:
  429. return IPPROTO_COMP;
  430. break;
  431. default:
  432. return 0;
  433. }
  434. /* NOTREACHED */
  435. }
  436. static uint8_t
  437. pfkey_proto2satype(uint16_t proto)
  438. {
  439. switch (proto) {
  440. case IPPROTO_AH:
  441. return SADB_SATYPE_AH;
  442. case IPPROTO_ESP:
  443. return SADB_SATYPE_ESP;
  444. case IPPROTO_COMP:
  445. return SADB_X_SATYPE_IPCOMP;
  446. break;
  447. default:
  448. return 0;
  449. }
  450. /* NOTREACHED */
  451. }
  452. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  453. * say specifically 'just raw sockets' as we encode them as 255.
  454. */
  455. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  456. {
  457. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  458. }
  459. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  460. {
  461. return (proto ? proto : IPSEC_PROTO_ANY);
  462. }
  463. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  464. xfrm_address_t *xaddr)
  465. {
  466. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  467. case AF_INET:
  468. xaddr->a4 =
  469. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  470. return AF_INET;
  471. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  472. case AF_INET6:
  473. memcpy(xaddr->a6,
  474. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  475. sizeof(struct in6_addr));
  476. return AF_INET6;
  477. #endif
  478. default:
  479. return 0;
  480. }
  481. /* NOTREACHED */
  482. }
  483. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  484. {
  485. struct sadb_sa *sa;
  486. struct sadb_address *addr;
  487. uint16_t proto;
  488. unsigned short family;
  489. xfrm_address_t *xaddr;
  490. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  491. if (sa == NULL)
  492. return NULL;
  493. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  494. if (proto == 0)
  495. return NULL;
  496. /* sadb_address_len should be checked by caller */
  497. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  498. if (addr == NULL)
  499. return NULL;
  500. family = ((struct sockaddr *)(addr + 1))->sa_family;
  501. switch (family) {
  502. case AF_INET:
  503. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  504. break;
  505. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  506. case AF_INET6:
  507. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  508. break;
  509. #endif
  510. default:
  511. xaddr = NULL;
  512. }
  513. if (!xaddr)
  514. return NULL;
  515. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  516. }
  517. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  518. static int
  519. pfkey_sockaddr_size(sa_family_t family)
  520. {
  521. switch (family) {
  522. case AF_INET:
  523. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  524. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  525. case AF_INET6:
  526. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  527. #endif
  528. default:
  529. return 0;
  530. }
  531. /* NOTREACHED */
  532. }
  533. static inline int pfkey_mode_from_xfrm(int mode)
  534. {
  535. switch(mode) {
  536. case XFRM_MODE_TRANSPORT:
  537. return IPSEC_MODE_TRANSPORT;
  538. case XFRM_MODE_TUNNEL:
  539. return IPSEC_MODE_TUNNEL;
  540. case XFRM_MODE_BEET:
  541. return IPSEC_MODE_BEET;
  542. default:
  543. return -1;
  544. }
  545. }
  546. static inline int pfkey_mode_to_xfrm(int mode)
  547. {
  548. switch(mode) {
  549. case IPSEC_MODE_ANY: /*XXX*/
  550. case IPSEC_MODE_TRANSPORT:
  551. return XFRM_MODE_TRANSPORT;
  552. case IPSEC_MODE_TUNNEL:
  553. return XFRM_MODE_TUNNEL;
  554. case IPSEC_MODE_BEET:
  555. return XFRM_MODE_BEET;
  556. default:
  557. return -1;
  558. }
  559. }
  560. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  561. int add_keys, int hsc)
  562. {
  563. struct sk_buff *skb;
  564. struct sadb_msg *hdr;
  565. struct sadb_sa *sa;
  566. struct sadb_lifetime *lifetime;
  567. struct sadb_address *addr;
  568. struct sadb_key *key;
  569. struct sadb_x_sa2 *sa2;
  570. struct sockaddr_in *sin;
  571. struct sadb_x_sec_ctx *sec_ctx;
  572. struct xfrm_sec_ctx *xfrm_ctx;
  573. int ctx_size = 0;
  574. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  575. struct sockaddr_in6 *sin6;
  576. #endif
  577. int size;
  578. int auth_key_size = 0;
  579. int encrypt_key_size = 0;
  580. int sockaddr_size;
  581. struct xfrm_encap_tmpl *natt = NULL;
  582. int mode;
  583. /* address family check */
  584. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  585. if (!sockaddr_size)
  586. return ERR_PTR(-EINVAL);
  587. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  588. key(AE), (identity(SD),) (sensitivity)> */
  589. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  590. sizeof(struct sadb_lifetime) +
  591. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  592. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  593. sizeof(struct sadb_address)*2 +
  594. sockaddr_size*2 +
  595. sizeof(struct sadb_x_sa2);
  596. if ((xfrm_ctx = x->security)) {
  597. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  598. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  599. }
  600. /* identity & sensitivity */
  601. if ((x->props.family == AF_INET &&
  602. x->sel.saddr.a4 != x->props.saddr.a4)
  603. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  604. || (x->props.family == AF_INET6 &&
  605. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  606. #endif
  607. )
  608. size += sizeof(struct sadb_address) + sockaddr_size;
  609. if (add_keys) {
  610. if (x->aalg && x->aalg->alg_key_len) {
  611. auth_key_size =
  612. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  613. size += sizeof(struct sadb_key) + auth_key_size;
  614. }
  615. if (x->ealg && x->ealg->alg_key_len) {
  616. encrypt_key_size =
  617. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  618. size += sizeof(struct sadb_key) + encrypt_key_size;
  619. }
  620. }
  621. if (x->encap)
  622. natt = x->encap;
  623. if (natt && natt->encap_type) {
  624. size += sizeof(struct sadb_x_nat_t_type);
  625. size += sizeof(struct sadb_x_nat_t_port);
  626. size += sizeof(struct sadb_x_nat_t_port);
  627. }
  628. skb = alloc_skb(size + 16, GFP_ATOMIC);
  629. if (skb == NULL)
  630. return ERR_PTR(-ENOBUFS);
  631. /* call should fill header later */
  632. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  633. memset(hdr, 0, size); /* XXX do we need this ? */
  634. hdr->sadb_msg_len = size / sizeof(uint64_t);
  635. /* sa */
  636. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  637. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  638. sa->sadb_sa_exttype = SADB_EXT_SA;
  639. sa->sadb_sa_spi = x->id.spi;
  640. sa->sadb_sa_replay = x->props.replay_window;
  641. switch (x->km.state) {
  642. case XFRM_STATE_VALID:
  643. sa->sadb_sa_state = x->km.dying ?
  644. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  645. break;
  646. case XFRM_STATE_ACQ:
  647. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  648. break;
  649. default:
  650. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  651. break;
  652. }
  653. sa->sadb_sa_auth = 0;
  654. if (x->aalg) {
  655. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  656. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  657. }
  658. sa->sadb_sa_encrypt = 0;
  659. BUG_ON(x->ealg && x->calg);
  660. if (x->ealg) {
  661. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  662. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  663. }
  664. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  665. if (x->calg) {
  666. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  667. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  668. }
  669. sa->sadb_sa_flags = 0;
  670. if (x->props.flags & XFRM_STATE_NOECN)
  671. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  672. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  673. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  674. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  675. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  676. /* hard time */
  677. if (hsc & 2) {
  678. lifetime = (struct sadb_lifetime *) skb_put(skb,
  679. sizeof(struct sadb_lifetime));
  680. lifetime->sadb_lifetime_len =
  681. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  682. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  683. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  684. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  685. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  686. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  687. }
  688. /* soft time */
  689. if (hsc & 1) {
  690. lifetime = (struct sadb_lifetime *) skb_put(skb,
  691. sizeof(struct sadb_lifetime));
  692. lifetime->sadb_lifetime_len =
  693. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  694. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  695. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  696. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  697. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  698. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  699. }
  700. /* current time */
  701. lifetime = (struct sadb_lifetime *) skb_put(skb,
  702. sizeof(struct sadb_lifetime));
  703. lifetime->sadb_lifetime_len =
  704. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  705. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  706. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  707. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  708. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  709. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  710. /* src address */
  711. addr = (struct sadb_address*) skb_put(skb,
  712. sizeof(struct sadb_address)+sockaddr_size);
  713. addr->sadb_address_len =
  714. (sizeof(struct sadb_address)+sockaddr_size)/
  715. sizeof(uint64_t);
  716. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  717. /* "if the ports are non-zero, then the sadb_address_proto field,
  718. normally zero, MUST be filled in with the transport
  719. protocol's number." - RFC2367 */
  720. addr->sadb_address_proto = 0;
  721. addr->sadb_address_reserved = 0;
  722. if (x->props.family == AF_INET) {
  723. addr->sadb_address_prefixlen = 32;
  724. sin = (struct sockaddr_in *) (addr + 1);
  725. sin->sin_family = AF_INET;
  726. sin->sin_addr.s_addr = x->props.saddr.a4;
  727. sin->sin_port = 0;
  728. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  729. }
  730. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  731. else if (x->props.family == AF_INET6) {
  732. addr->sadb_address_prefixlen = 128;
  733. sin6 = (struct sockaddr_in6 *) (addr + 1);
  734. sin6->sin6_family = AF_INET6;
  735. sin6->sin6_port = 0;
  736. sin6->sin6_flowinfo = 0;
  737. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  738. sizeof(struct in6_addr));
  739. sin6->sin6_scope_id = 0;
  740. }
  741. #endif
  742. else
  743. BUG();
  744. /* dst address */
  745. addr = (struct sadb_address*) skb_put(skb,
  746. sizeof(struct sadb_address)+sockaddr_size);
  747. addr->sadb_address_len =
  748. (sizeof(struct sadb_address)+sockaddr_size)/
  749. sizeof(uint64_t);
  750. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  751. addr->sadb_address_proto = 0;
  752. addr->sadb_address_prefixlen = 32; /* XXX */
  753. addr->sadb_address_reserved = 0;
  754. if (x->props.family == AF_INET) {
  755. sin = (struct sockaddr_in *) (addr + 1);
  756. sin->sin_family = AF_INET;
  757. sin->sin_addr.s_addr = x->id.daddr.a4;
  758. sin->sin_port = 0;
  759. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  760. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  761. addr = (struct sadb_address*) skb_put(skb,
  762. sizeof(struct sadb_address)+sockaddr_size);
  763. addr->sadb_address_len =
  764. (sizeof(struct sadb_address)+sockaddr_size)/
  765. sizeof(uint64_t);
  766. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  767. addr->sadb_address_proto =
  768. pfkey_proto_from_xfrm(x->sel.proto);
  769. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  770. addr->sadb_address_reserved = 0;
  771. sin = (struct sockaddr_in *) (addr + 1);
  772. sin->sin_family = AF_INET;
  773. sin->sin_addr.s_addr = x->sel.saddr.a4;
  774. sin->sin_port = x->sel.sport;
  775. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  776. }
  777. }
  778. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  779. else if (x->props.family == AF_INET6) {
  780. addr->sadb_address_prefixlen = 128;
  781. sin6 = (struct sockaddr_in6 *) (addr + 1);
  782. sin6->sin6_family = AF_INET6;
  783. sin6->sin6_port = 0;
  784. sin6->sin6_flowinfo = 0;
  785. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  786. sin6->sin6_scope_id = 0;
  787. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  788. sizeof(struct in6_addr))) {
  789. addr = (struct sadb_address *) skb_put(skb,
  790. sizeof(struct sadb_address)+sockaddr_size);
  791. addr->sadb_address_len =
  792. (sizeof(struct sadb_address)+sockaddr_size)/
  793. sizeof(uint64_t);
  794. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  795. addr->sadb_address_proto =
  796. pfkey_proto_from_xfrm(x->sel.proto);
  797. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  798. addr->sadb_address_reserved = 0;
  799. sin6 = (struct sockaddr_in6 *) (addr + 1);
  800. sin6->sin6_family = AF_INET6;
  801. sin6->sin6_port = x->sel.sport;
  802. sin6->sin6_flowinfo = 0;
  803. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  804. sizeof(struct in6_addr));
  805. sin6->sin6_scope_id = 0;
  806. }
  807. }
  808. #endif
  809. else
  810. BUG();
  811. /* auth key */
  812. if (add_keys && auth_key_size) {
  813. key = (struct sadb_key *) skb_put(skb,
  814. sizeof(struct sadb_key)+auth_key_size);
  815. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  816. sizeof(uint64_t);
  817. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  818. key->sadb_key_bits = x->aalg->alg_key_len;
  819. key->sadb_key_reserved = 0;
  820. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  821. }
  822. /* encrypt key */
  823. if (add_keys && encrypt_key_size) {
  824. key = (struct sadb_key *) skb_put(skb,
  825. sizeof(struct sadb_key)+encrypt_key_size);
  826. key->sadb_key_len = (sizeof(struct sadb_key) +
  827. encrypt_key_size) / sizeof(uint64_t);
  828. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  829. key->sadb_key_bits = x->ealg->alg_key_len;
  830. key->sadb_key_reserved = 0;
  831. memcpy(key + 1, x->ealg->alg_key,
  832. (x->ealg->alg_key_len+7)/8);
  833. }
  834. /* sa */
  835. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  836. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  837. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  838. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  839. kfree_skb(skb);
  840. return ERR_PTR(-EINVAL);
  841. }
  842. sa2->sadb_x_sa2_mode = mode;
  843. sa2->sadb_x_sa2_reserved1 = 0;
  844. sa2->sadb_x_sa2_reserved2 = 0;
  845. sa2->sadb_x_sa2_sequence = 0;
  846. sa2->sadb_x_sa2_reqid = x->props.reqid;
  847. if (natt && natt->encap_type) {
  848. struct sadb_x_nat_t_type *n_type;
  849. struct sadb_x_nat_t_port *n_port;
  850. /* type */
  851. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  852. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  853. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  854. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  855. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  857. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  858. /* source port */
  859. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  860. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  861. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  862. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  863. n_port->sadb_x_nat_t_port_reserved = 0;
  864. /* dest port */
  865. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  866. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  867. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  868. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  869. n_port->sadb_x_nat_t_port_reserved = 0;
  870. }
  871. /* security context */
  872. if (xfrm_ctx) {
  873. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  874. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  875. sec_ctx->sadb_x_sec_len =
  876. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  877. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  878. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  879. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  880. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  881. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  882. xfrm_ctx->ctx_len);
  883. }
  884. return skb;
  885. }
  886. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  887. {
  888. struct sk_buff *skb;
  889. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  890. return skb;
  891. }
  892. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  893. int hsc)
  894. {
  895. return __pfkey_xfrm_state2msg(x, 0, hsc);
  896. }
  897. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  898. void **ext_hdrs)
  899. {
  900. struct xfrm_state *x;
  901. struct sadb_lifetime *lifetime;
  902. struct sadb_sa *sa;
  903. struct sadb_key *key;
  904. struct sadb_x_sec_ctx *sec_ctx;
  905. uint16_t proto;
  906. int err;
  907. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  908. if (!sa ||
  909. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  910. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  911. return ERR_PTR(-EINVAL);
  912. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  913. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  914. return ERR_PTR(-EINVAL);
  915. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  916. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  917. return ERR_PTR(-EINVAL);
  918. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  919. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  920. return ERR_PTR(-EINVAL);
  921. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  922. if (proto == 0)
  923. return ERR_PTR(-EINVAL);
  924. /* default error is no buffer space */
  925. err = -ENOBUFS;
  926. /* RFC2367:
  927. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  928. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  929. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  930. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  931. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  932. not true.
  933. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  934. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  935. */
  936. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  937. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  938. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  939. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  940. return ERR_PTR(-EINVAL);
  941. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  942. if (key != NULL &&
  943. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  944. ((key->sadb_key_bits+7) / 8 == 0 ||
  945. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  946. return ERR_PTR(-EINVAL);
  947. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  948. if (key != NULL &&
  949. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  950. ((key->sadb_key_bits+7) / 8 == 0 ||
  951. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  952. return ERR_PTR(-EINVAL);
  953. x = xfrm_state_alloc();
  954. if (x == NULL)
  955. return ERR_PTR(-ENOBUFS);
  956. x->id.proto = proto;
  957. x->id.spi = sa->sadb_sa_spi;
  958. x->props.replay_window = sa->sadb_sa_replay;
  959. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  960. x->props.flags |= XFRM_STATE_NOECN;
  961. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  962. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  963. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  964. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  965. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  966. if (lifetime != NULL) {
  967. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  968. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  969. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  970. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  971. }
  972. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  973. if (lifetime != NULL) {
  974. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  975. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  976. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  977. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  978. }
  979. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  980. if (sec_ctx != NULL) {
  981. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  982. if (!uctx)
  983. goto out;
  984. err = security_xfrm_state_alloc(x, uctx);
  985. kfree(uctx);
  986. if (err)
  987. goto out;
  988. }
  989. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  990. if (sa->sadb_sa_auth) {
  991. int keysize = 0;
  992. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  993. if (!a) {
  994. err = -ENOSYS;
  995. goto out;
  996. }
  997. if (key)
  998. keysize = (key->sadb_key_bits + 7) / 8;
  999. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1000. if (!x->aalg)
  1001. goto out;
  1002. strcpy(x->aalg->alg_name, a->name);
  1003. x->aalg->alg_key_len = 0;
  1004. if (key) {
  1005. x->aalg->alg_key_len = key->sadb_key_bits;
  1006. memcpy(x->aalg->alg_key, key+1, keysize);
  1007. }
  1008. x->props.aalgo = sa->sadb_sa_auth;
  1009. /* x->algo.flags = sa->sadb_sa_flags; */
  1010. }
  1011. if (sa->sadb_sa_encrypt) {
  1012. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1013. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1014. if (!a) {
  1015. err = -ENOSYS;
  1016. goto out;
  1017. }
  1018. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1019. if (!x->calg)
  1020. goto out;
  1021. strcpy(x->calg->alg_name, a->name);
  1022. x->props.calgo = sa->sadb_sa_encrypt;
  1023. } else {
  1024. int keysize = 0;
  1025. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1026. if (!a) {
  1027. err = -ENOSYS;
  1028. goto out;
  1029. }
  1030. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1031. if (key)
  1032. keysize = (key->sadb_key_bits + 7) / 8;
  1033. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1034. if (!x->ealg)
  1035. goto out;
  1036. strcpy(x->ealg->alg_name, a->name);
  1037. x->ealg->alg_key_len = 0;
  1038. if (key) {
  1039. x->ealg->alg_key_len = key->sadb_key_bits;
  1040. memcpy(x->ealg->alg_key, key+1, keysize);
  1041. }
  1042. x->props.ealgo = sa->sadb_sa_encrypt;
  1043. }
  1044. }
  1045. /* x->algo.flags = sa->sadb_sa_flags; */
  1046. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1047. &x->props.saddr);
  1048. if (!x->props.family) {
  1049. err = -EAFNOSUPPORT;
  1050. goto out;
  1051. }
  1052. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1053. &x->id.daddr);
  1054. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1055. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1056. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1057. if (mode < 0) {
  1058. err = -EINVAL;
  1059. goto out;
  1060. }
  1061. x->props.mode = mode;
  1062. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1063. }
  1064. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1065. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1066. /* Nobody uses this, but we try. */
  1067. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1068. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1069. }
  1070. if (!x->sel.family)
  1071. x->sel.family = x->props.family;
  1072. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1073. struct sadb_x_nat_t_type* n_type;
  1074. struct xfrm_encap_tmpl *natt;
  1075. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1076. if (!x->encap)
  1077. goto out;
  1078. natt = x->encap;
  1079. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1080. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1081. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1082. struct sadb_x_nat_t_port* n_port =
  1083. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1084. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1085. }
  1086. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1087. struct sadb_x_nat_t_port* n_port =
  1088. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1089. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1090. }
  1091. }
  1092. err = xfrm_init_state(x);
  1093. if (err)
  1094. goto out;
  1095. x->km.seq = hdr->sadb_msg_seq;
  1096. return x;
  1097. out:
  1098. x->km.state = XFRM_STATE_DEAD;
  1099. xfrm_state_put(x);
  1100. return ERR_PTR(err);
  1101. }
  1102. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1103. {
  1104. return -EOPNOTSUPP;
  1105. }
  1106. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1107. {
  1108. struct sk_buff *resp_skb;
  1109. struct sadb_x_sa2 *sa2;
  1110. struct sadb_address *saddr, *daddr;
  1111. struct sadb_msg *out_hdr;
  1112. struct sadb_spirange *range;
  1113. struct xfrm_state *x = NULL;
  1114. int mode;
  1115. int err;
  1116. u32 min_spi, max_spi;
  1117. u32 reqid;
  1118. u8 proto;
  1119. unsigned short family;
  1120. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1121. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1122. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1123. return -EINVAL;
  1124. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1125. if (proto == 0)
  1126. return -EINVAL;
  1127. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1128. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1129. if (mode < 0)
  1130. return -EINVAL;
  1131. reqid = sa2->sadb_x_sa2_reqid;
  1132. } else {
  1133. mode = 0;
  1134. reqid = 0;
  1135. }
  1136. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1137. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1138. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1139. switch (family) {
  1140. case AF_INET:
  1141. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1142. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1143. break;
  1144. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1145. case AF_INET6:
  1146. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1147. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1148. break;
  1149. #endif
  1150. }
  1151. if (hdr->sadb_msg_seq) {
  1152. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1153. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1154. xfrm_state_put(x);
  1155. x = NULL;
  1156. }
  1157. }
  1158. if (!x)
  1159. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1160. if (x == NULL)
  1161. return -ENOENT;
  1162. min_spi = 0x100;
  1163. max_spi = 0x0fffffff;
  1164. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1165. if (range) {
  1166. min_spi = range->sadb_spirange_min;
  1167. max_spi = range->sadb_spirange_max;
  1168. }
  1169. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1170. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1171. if (IS_ERR(resp_skb)) {
  1172. xfrm_state_put(x);
  1173. return PTR_ERR(resp_skb);
  1174. }
  1175. out_hdr = (struct sadb_msg *) resp_skb->data;
  1176. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1177. out_hdr->sadb_msg_type = SADB_GETSPI;
  1178. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1179. out_hdr->sadb_msg_errno = 0;
  1180. out_hdr->sadb_msg_reserved = 0;
  1181. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1182. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1183. xfrm_state_put(x);
  1184. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1185. return 0;
  1186. }
  1187. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1188. {
  1189. struct xfrm_state *x;
  1190. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1191. return -EOPNOTSUPP;
  1192. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1193. return 0;
  1194. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1195. if (x == NULL)
  1196. return 0;
  1197. spin_lock_bh(&x->lock);
  1198. if (x->km.state == XFRM_STATE_ACQ) {
  1199. x->km.state = XFRM_STATE_ERROR;
  1200. wake_up(&km_waitq);
  1201. }
  1202. spin_unlock_bh(&x->lock);
  1203. xfrm_state_put(x);
  1204. return 0;
  1205. }
  1206. static inline int event2poltype(int event)
  1207. {
  1208. switch (event) {
  1209. case XFRM_MSG_DELPOLICY:
  1210. return SADB_X_SPDDELETE;
  1211. case XFRM_MSG_NEWPOLICY:
  1212. return SADB_X_SPDADD;
  1213. case XFRM_MSG_UPDPOLICY:
  1214. return SADB_X_SPDUPDATE;
  1215. case XFRM_MSG_POLEXPIRE:
  1216. // return SADB_X_SPDEXPIRE;
  1217. default:
  1218. printk("pfkey: Unknown policy event %d\n", event);
  1219. break;
  1220. }
  1221. return 0;
  1222. }
  1223. static inline int event2keytype(int event)
  1224. {
  1225. switch (event) {
  1226. case XFRM_MSG_DELSA:
  1227. return SADB_DELETE;
  1228. case XFRM_MSG_NEWSA:
  1229. return SADB_ADD;
  1230. case XFRM_MSG_UPDSA:
  1231. return SADB_UPDATE;
  1232. case XFRM_MSG_EXPIRE:
  1233. return SADB_EXPIRE;
  1234. default:
  1235. printk("pfkey: Unknown SA event %d\n", event);
  1236. break;
  1237. }
  1238. return 0;
  1239. }
  1240. /* ADD/UPD/DEL */
  1241. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1242. {
  1243. struct sk_buff *skb;
  1244. struct sadb_msg *hdr;
  1245. skb = pfkey_xfrm_state2msg(x);
  1246. if (IS_ERR(skb))
  1247. return PTR_ERR(skb);
  1248. hdr = (struct sadb_msg *) skb->data;
  1249. hdr->sadb_msg_version = PF_KEY_V2;
  1250. hdr->sadb_msg_type = event2keytype(c->event);
  1251. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1252. hdr->sadb_msg_errno = 0;
  1253. hdr->sadb_msg_reserved = 0;
  1254. hdr->sadb_msg_seq = c->seq;
  1255. hdr->sadb_msg_pid = c->pid;
  1256. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1257. return 0;
  1258. }
  1259. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1260. {
  1261. struct xfrm_state *x;
  1262. int err;
  1263. struct km_event c;
  1264. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1265. if (IS_ERR(x))
  1266. return PTR_ERR(x);
  1267. xfrm_state_hold(x);
  1268. if (hdr->sadb_msg_type == SADB_ADD)
  1269. err = xfrm_state_add(x);
  1270. else
  1271. err = xfrm_state_update(x);
  1272. xfrm_audit_state_add(x, err ? 0 : 1,
  1273. audit_get_loginuid(current->audit_context), 0);
  1274. if (err < 0) {
  1275. x->km.state = XFRM_STATE_DEAD;
  1276. __xfrm_state_put(x);
  1277. goto out;
  1278. }
  1279. if (hdr->sadb_msg_type == SADB_ADD)
  1280. c.event = XFRM_MSG_NEWSA;
  1281. else
  1282. c.event = XFRM_MSG_UPDSA;
  1283. c.seq = hdr->sadb_msg_seq;
  1284. c.pid = hdr->sadb_msg_pid;
  1285. km_state_notify(x, &c);
  1286. out:
  1287. xfrm_state_put(x);
  1288. return err;
  1289. }
  1290. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1291. {
  1292. struct xfrm_state *x;
  1293. struct km_event c;
  1294. int err;
  1295. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1296. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1297. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1298. return -EINVAL;
  1299. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1300. if (x == NULL)
  1301. return -ESRCH;
  1302. if ((err = security_xfrm_state_delete(x)))
  1303. goto out;
  1304. if (xfrm_state_kern(x)) {
  1305. err = -EPERM;
  1306. goto out;
  1307. }
  1308. err = xfrm_state_delete(x);
  1309. if (err < 0)
  1310. goto out;
  1311. c.seq = hdr->sadb_msg_seq;
  1312. c.pid = hdr->sadb_msg_pid;
  1313. c.event = XFRM_MSG_DELSA;
  1314. km_state_notify(x, &c);
  1315. out:
  1316. xfrm_audit_state_delete(x, err ? 0 : 1,
  1317. audit_get_loginuid(current->audit_context), 0);
  1318. xfrm_state_put(x);
  1319. return err;
  1320. }
  1321. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1322. {
  1323. __u8 proto;
  1324. struct sk_buff *out_skb;
  1325. struct sadb_msg *out_hdr;
  1326. struct xfrm_state *x;
  1327. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1328. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1329. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1330. return -EINVAL;
  1331. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1332. if (x == NULL)
  1333. return -ESRCH;
  1334. out_skb = pfkey_xfrm_state2msg(x);
  1335. proto = x->id.proto;
  1336. xfrm_state_put(x);
  1337. if (IS_ERR(out_skb))
  1338. return PTR_ERR(out_skb);
  1339. out_hdr = (struct sadb_msg *) out_skb->data;
  1340. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1341. out_hdr->sadb_msg_type = SADB_GET;
  1342. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1343. out_hdr->sadb_msg_errno = 0;
  1344. out_hdr->sadb_msg_reserved = 0;
  1345. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1346. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1347. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1348. return 0;
  1349. }
  1350. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1351. gfp_t allocation)
  1352. {
  1353. struct sk_buff *skb;
  1354. struct sadb_msg *hdr;
  1355. int len, auth_len, enc_len, i;
  1356. auth_len = xfrm_count_auth_supported();
  1357. if (auth_len) {
  1358. auth_len *= sizeof(struct sadb_alg);
  1359. auth_len += sizeof(struct sadb_supported);
  1360. }
  1361. enc_len = xfrm_count_enc_supported();
  1362. if (enc_len) {
  1363. enc_len *= sizeof(struct sadb_alg);
  1364. enc_len += sizeof(struct sadb_supported);
  1365. }
  1366. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1367. skb = alloc_skb(len + 16, allocation);
  1368. if (!skb)
  1369. goto out_put_algs;
  1370. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1371. pfkey_hdr_dup(hdr, orig);
  1372. hdr->sadb_msg_errno = 0;
  1373. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1374. if (auth_len) {
  1375. struct sadb_supported *sp;
  1376. struct sadb_alg *ap;
  1377. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1378. ap = (struct sadb_alg *) (sp + 1);
  1379. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1380. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1381. for (i = 0; ; i++) {
  1382. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1383. if (!aalg)
  1384. break;
  1385. if (aalg->available)
  1386. *ap++ = aalg->desc;
  1387. }
  1388. }
  1389. if (enc_len) {
  1390. struct sadb_supported *sp;
  1391. struct sadb_alg *ap;
  1392. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1393. ap = (struct sadb_alg *) (sp + 1);
  1394. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1395. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1396. for (i = 0; ; i++) {
  1397. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1398. if (!ealg)
  1399. break;
  1400. if (ealg->available)
  1401. *ap++ = ealg->desc;
  1402. }
  1403. }
  1404. out_put_algs:
  1405. return skb;
  1406. }
  1407. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1408. {
  1409. struct pfkey_sock *pfk = pfkey_sk(sk);
  1410. struct sk_buff *supp_skb;
  1411. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1412. return -EINVAL;
  1413. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1414. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1415. return -EEXIST;
  1416. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1417. }
  1418. xfrm_probe_algs();
  1419. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1420. if (!supp_skb) {
  1421. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1422. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1423. return -ENOBUFS;
  1424. }
  1425. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1426. return 0;
  1427. }
  1428. static int key_notify_sa_flush(struct km_event *c)
  1429. {
  1430. struct sk_buff *skb;
  1431. struct sadb_msg *hdr;
  1432. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1433. if (!skb)
  1434. return -ENOBUFS;
  1435. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1436. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1437. hdr->sadb_msg_type = SADB_FLUSH;
  1438. hdr->sadb_msg_seq = c->seq;
  1439. hdr->sadb_msg_pid = c->pid;
  1440. hdr->sadb_msg_version = PF_KEY_V2;
  1441. hdr->sadb_msg_errno = (uint8_t) 0;
  1442. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1443. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1444. return 0;
  1445. }
  1446. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1447. {
  1448. unsigned proto;
  1449. struct km_event c;
  1450. struct xfrm_audit audit_info;
  1451. int err;
  1452. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1453. if (proto == 0)
  1454. return -EINVAL;
  1455. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  1456. audit_info.secid = 0;
  1457. err = xfrm_state_flush(proto, &audit_info);
  1458. if (err)
  1459. return err;
  1460. c.data.proto = proto;
  1461. c.seq = hdr->sadb_msg_seq;
  1462. c.pid = hdr->sadb_msg_pid;
  1463. c.event = XFRM_MSG_FLUSHSA;
  1464. km_state_notify(NULL, &c);
  1465. return 0;
  1466. }
  1467. struct pfkey_dump_data
  1468. {
  1469. struct sk_buff *skb;
  1470. struct sadb_msg *hdr;
  1471. struct sock *sk;
  1472. };
  1473. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1474. {
  1475. struct pfkey_dump_data *data = ptr;
  1476. struct sk_buff *out_skb;
  1477. struct sadb_msg *out_hdr;
  1478. out_skb = pfkey_xfrm_state2msg(x);
  1479. if (IS_ERR(out_skb))
  1480. return PTR_ERR(out_skb);
  1481. out_hdr = (struct sadb_msg *) out_skb->data;
  1482. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1483. out_hdr->sadb_msg_type = SADB_DUMP;
  1484. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1485. out_hdr->sadb_msg_errno = 0;
  1486. out_hdr->sadb_msg_reserved = 0;
  1487. out_hdr->sadb_msg_seq = count;
  1488. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1489. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1490. return 0;
  1491. }
  1492. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1493. {
  1494. u8 proto;
  1495. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1496. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1497. if (proto == 0)
  1498. return -EINVAL;
  1499. return xfrm_state_walk(proto, dump_sa, &data);
  1500. }
  1501. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1502. {
  1503. struct pfkey_sock *pfk = pfkey_sk(sk);
  1504. int satype = hdr->sadb_msg_satype;
  1505. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1506. /* XXX we mangle packet... */
  1507. hdr->sadb_msg_errno = 0;
  1508. if (satype != 0 && satype != 1)
  1509. return -EINVAL;
  1510. pfk->promisc = satype;
  1511. }
  1512. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1513. return 0;
  1514. }
  1515. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1516. {
  1517. int i;
  1518. u32 reqid = *(u32*)ptr;
  1519. for (i=0; i<xp->xfrm_nr; i++) {
  1520. if (xp->xfrm_vec[i].reqid == reqid)
  1521. return -EEXIST;
  1522. }
  1523. return 0;
  1524. }
  1525. static u32 gen_reqid(void)
  1526. {
  1527. u32 start;
  1528. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1529. start = reqid;
  1530. do {
  1531. ++reqid;
  1532. if (reqid == 0)
  1533. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1534. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1535. (void*)&reqid) != -EEXIST)
  1536. return reqid;
  1537. } while (reqid != start);
  1538. return 0;
  1539. }
  1540. static int
  1541. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1542. {
  1543. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1544. struct sockaddr_in *sin;
  1545. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1546. struct sockaddr_in6 *sin6;
  1547. #endif
  1548. int mode;
  1549. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1550. return -ELOOP;
  1551. if (rq->sadb_x_ipsecrequest_mode == 0)
  1552. return -EINVAL;
  1553. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1554. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1555. return -EINVAL;
  1556. t->mode = mode;
  1557. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1558. t->optional = 1;
  1559. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1560. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1561. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1562. t->reqid = 0;
  1563. if (!t->reqid && !(t->reqid = gen_reqid()))
  1564. return -ENOBUFS;
  1565. }
  1566. /* addresses present only in tunnel mode */
  1567. if (t->mode == XFRM_MODE_TUNNEL) {
  1568. struct sockaddr *sa;
  1569. sa = (struct sockaddr *)(rq+1);
  1570. switch(sa->sa_family) {
  1571. case AF_INET:
  1572. sin = (struct sockaddr_in*)sa;
  1573. t->saddr.a4 = sin->sin_addr.s_addr;
  1574. sin++;
  1575. if (sin->sin_family != AF_INET)
  1576. return -EINVAL;
  1577. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1578. break;
  1579. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1580. case AF_INET6:
  1581. sin6 = (struct sockaddr_in6*)sa;
  1582. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1583. sin6++;
  1584. if (sin6->sin6_family != AF_INET6)
  1585. return -EINVAL;
  1586. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1587. break;
  1588. #endif
  1589. default:
  1590. return -EINVAL;
  1591. }
  1592. t->encap_family = sa->sa_family;
  1593. } else
  1594. t->encap_family = xp->family;
  1595. /* No way to set this via kame pfkey */
  1596. t->aalgos = t->ealgos = t->calgos = ~0;
  1597. xp->xfrm_nr++;
  1598. return 0;
  1599. }
  1600. static int
  1601. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1602. {
  1603. int err;
  1604. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1605. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1606. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1607. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1608. return err;
  1609. len -= rq->sadb_x_ipsecrequest_len;
  1610. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1611. }
  1612. return 0;
  1613. }
  1614. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1615. {
  1616. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1617. if (xfrm_ctx) {
  1618. int len = sizeof(struct sadb_x_sec_ctx);
  1619. len += xfrm_ctx->ctx_len;
  1620. return PFKEY_ALIGN8(len);
  1621. }
  1622. return 0;
  1623. }
  1624. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1625. {
  1626. struct xfrm_tmpl *t;
  1627. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1628. int socklen = 0;
  1629. int i;
  1630. for (i=0; i<xp->xfrm_nr; i++) {
  1631. t = xp->xfrm_vec + i;
  1632. socklen += (t->encap_family == AF_INET ?
  1633. sizeof(struct sockaddr_in) :
  1634. sizeof(struct sockaddr_in6));
  1635. }
  1636. return sizeof(struct sadb_msg) +
  1637. (sizeof(struct sadb_lifetime) * 3) +
  1638. (sizeof(struct sadb_address) * 2) +
  1639. (sockaddr_size * 2) +
  1640. sizeof(struct sadb_x_policy) +
  1641. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1642. (socklen * 2) +
  1643. pfkey_xfrm_policy2sec_ctx_size(xp);
  1644. }
  1645. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1646. {
  1647. struct sk_buff *skb;
  1648. int size;
  1649. size = pfkey_xfrm_policy2msg_size(xp);
  1650. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1651. if (skb == NULL)
  1652. return ERR_PTR(-ENOBUFS);
  1653. return skb;
  1654. }
  1655. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1656. {
  1657. struct sadb_msg *hdr;
  1658. struct sadb_address *addr;
  1659. struct sadb_lifetime *lifetime;
  1660. struct sadb_x_policy *pol;
  1661. struct sockaddr_in *sin;
  1662. struct sadb_x_sec_ctx *sec_ctx;
  1663. struct xfrm_sec_ctx *xfrm_ctx;
  1664. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1665. struct sockaddr_in6 *sin6;
  1666. #endif
  1667. int i;
  1668. int size;
  1669. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1670. int socklen = (xp->family == AF_INET ?
  1671. sizeof(struct sockaddr_in) :
  1672. sizeof(struct sockaddr_in6));
  1673. size = pfkey_xfrm_policy2msg_size(xp);
  1674. /* call should fill header later */
  1675. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1676. memset(hdr, 0, size); /* XXX do we need this ? */
  1677. /* src address */
  1678. addr = (struct sadb_address*) skb_put(skb,
  1679. sizeof(struct sadb_address)+sockaddr_size);
  1680. addr->sadb_address_len =
  1681. (sizeof(struct sadb_address)+sockaddr_size)/
  1682. sizeof(uint64_t);
  1683. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1684. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1685. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1686. addr->sadb_address_reserved = 0;
  1687. /* src address */
  1688. if (xp->family == AF_INET) {
  1689. sin = (struct sockaddr_in *) (addr + 1);
  1690. sin->sin_family = AF_INET;
  1691. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1692. sin->sin_port = xp->selector.sport;
  1693. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1694. }
  1695. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1696. else if (xp->family == AF_INET6) {
  1697. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1698. sin6->sin6_family = AF_INET6;
  1699. sin6->sin6_port = xp->selector.sport;
  1700. sin6->sin6_flowinfo = 0;
  1701. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1702. sizeof(struct in6_addr));
  1703. sin6->sin6_scope_id = 0;
  1704. }
  1705. #endif
  1706. else
  1707. BUG();
  1708. /* dst address */
  1709. addr = (struct sadb_address*) skb_put(skb,
  1710. sizeof(struct sadb_address)+sockaddr_size);
  1711. addr->sadb_address_len =
  1712. (sizeof(struct sadb_address)+sockaddr_size)/
  1713. sizeof(uint64_t);
  1714. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1715. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1716. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1717. addr->sadb_address_reserved = 0;
  1718. if (xp->family == AF_INET) {
  1719. sin = (struct sockaddr_in *) (addr + 1);
  1720. sin->sin_family = AF_INET;
  1721. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1722. sin->sin_port = xp->selector.dport;
  1723. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1724. }
  1725. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1726. else if (xp->family == AF_INET6) {
  1727. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1728. sin6->sin6_family = AF_INET6;
  1729. sin6->sin6_port = xp->selector.dport;
  1730. sin6->sin6_flowinfo = 0;
  1731. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1732. sizeof(struct in6_addr));
  1733. sin6->sin6_scope_id = 0;
  1734. }
  1735. #endif
  1736. else
  1737. BUG();
  1738. /* hard time */
  1739. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1740. sizeof(struct sadb_lifetime));
  1741. lifetime->sadb_lifetime_len =
  1742. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1743. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1744. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1745. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1746. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1747. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1748. /* soft time */
  1749. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1750. sizeof(struct sadb_lifetime));
  1751. lifetime->sadb_lifetime_len =
  1752. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1753. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1754. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1755. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1756. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1757. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1758. /* current time */
  1759. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1760. sizeof(struct sadb_lifetime));
  1761. lifetime->sadb_lifetime_len =
  1762. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1763. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1764. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1765. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1766. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1767. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1768. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1769. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1770. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1771. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1772. if (xp->action == XFRM_POLICY_ALLOW) {
  1773. if (xp->xfrm_nr)
  1774. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1775. else
  1776. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1777. }
  1778. pol->sadb_x_policy_dir = dir+1;
  1779. pol->sadb_x_policy_id = xp->index;
  1780. pol->sadb_x_policy_priority = xp->priority;
  1781. for (i=0; i<xp->xfrm_nr; i++) {
  1782. struct sadb_x_ipsecrequest *rq;
  1783. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1784. int req_size;
  1785. int mode;
  1786. req_size = sizeof(struct sadb_x_ipsecrequest);
  1787. if (t->mode == XFRM_MODE_TUNNEL)
  1788. req_size += ((t->encap_family == AF_INET ?
  1789. sizeof(struct sockaddr_in) :
  1790. sizeof(struct sockaddr_in6)) * 2);
  1791. else
  1792. size -= 2*socklen;
  1793. rq = (void*)skb_put(skb, req_size);
  1794. pol->sadb_x_policy_len += req_size/8;
  1795. memset(rq, 0, sizeof(*rq));
  1796. rq->sadb_x_ipsecrequest_len = req_size;
  1797. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1798. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1799. return -EINVAL;
  1800. rq->sadb_x_ipsecrequest_mode = mode;
  1801. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1802. if (t->reqid)
  1803. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1804. if (t->optional)
  1805. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1806. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1807. if (t->mode == XFRM_MODE_TUNNEL) {
  1808. switch (t->encap_family) {
  1809. case AF_INET:
  1810. sin = (void*)(rq+1);
  1811. sin->sin_family = AF_INET;
  1812. sin->sin_addr.s_addr = t->saddr.a4;
  1813. sin->sin_port = 0;
  1814. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1815. sin++;
  1816. sin->sin_family = AF_INET;
  1817. sin->sin_addr.s_addr = t->id.daddr.a4;
  1818. sin->sin_port = 0;
  1819. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1820. break;
  1821. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1822. case AF_INET6:
  1823. sin6 = (void*)(rq+1);
  1824. sin6->sin6_family = AF_INET6;
  1825. sin6->sin6_port = 0;
  1826. sin6->sin6_flowinfo = 0;
  1827. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1828. sizeof(struct in6_addr));
  1829. sin6->sin6_scope_id = 0;
  1830. sin6++;
  1831. sin6->sin6_family = AF_INET6;
  1832. sin6->sin6_port = 0;
  1833. sin6->sin6_flowinfo = 0;
  1834. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1835. sizeof(struct in6_addr));
  1836. sin6->sin6_scope_id = 0;
  1837. break;
  1838. #endif
  1839. default:
  1840. break;
  1841. }
  1842. }
  1843. }
  1844. /* security context */
  1845. if ((xfrm_ctx = xp->security)) {
  1846. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1847. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1848. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1849. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1850. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1851. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1852. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1853. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1854. xfrm_ctx->ctx_len);
  1855. }
  1856. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1857. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1858. return 0;
  1859. }
  1860. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1861. {
  1862. struct sk_buff *out_skb;
  1863. struct sadb_msg *out_hdr;
  1864. int err;
  1865. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1866. if (IS_ERR(out_skb)) {
  1867. err = PTR_ERR(out_skb);
  1868. goto out;
  1869. }
  1870. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1871. if (err < 0)
  1872. return err;
  1873. out_hdr = (struct sadb_msg *) out_skb->data;
  1874. out_hdr->sadb_msg_version = PF_KEY_V2;
  1875. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1876. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1877. else
  1878. out_hdr->sadb_msg_type = event2poltype(c->event);
  1879. out_hdr->sadb_msg_errno = 0;
  1880. out_hdr->sadb_msg_seq = c->seq;
  1881. out_hdr->sadb_msg_pid = c->pid;
  1882. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1883. out:
  1884. return 0;
  1885. }
  1886. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1887. {
  1888. int err = 0;
  1889. struct sadb_lifetime *lifetime;
  1890. struct sadb_address *sa;
  1891. struct sadb_x_policy *pol;
  1892. struct xfrm_policy *xp;
  1893. struct km_event c;
  1894. struct sadb_x_sec_ctx *sec_ctx;
  1895. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1896. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1897. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1898. return -EINVAL;
  1899. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1900. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1901. return -EINVAL;
  1902. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1903. return -EINVAL;
  1904. xp = xfrm_policy_alloc(GFP_KERNEL);
  1905. if (xp == NULL)
  1906. return -ENOBUFS;
  1907. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1908. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1909. xp->priority = pol->sadb_x_policy_priority;
  1910. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1911. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1912. if (!xp->family) {
  1913. err = -EINVAL;
  1914. goto out;
  1915. }
  1916. xp->selector.family = xp->family;
  1917. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1918. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1919. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1920. if (xp->selector.sport)
  1921. xp->selector.sport_mask = htons(0xffff);
  1922. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1923. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1924. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1925. /* Amusing, we set this twice. KAME apps appear to set same value
  1926. * in both addresses.
  1927. */
  1928. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1929. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1930. if (xp->selector.dport)
  1931. xp->selector.dport_mask = htons(0xffff);
  1932. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1933. if (sec_ctx != NULL) {
  1934. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1935. if (!uctx) {
  1936. err = -ENOBUFS;
  1937. goto out;
  1938. }
  1939. err = security_xfrm_policy_alloc(xp, uctx);
  1940. kfree(uctx);
  1941. if (err)
  1942. goto out;
  1943. }
  1944. xp->lft.soft_byte_limit = XFRM_INF;
  1945. xp->lft.hard_byte_limit = XFRM_INF;
  1946. xp->lft.soft_packet_limit = XFRM_INF;
  1947. xp->lft.hard_packet_limit = XFRM_INF;
  1948. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1949. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1950. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1951. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1952. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1953. }
  1954. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1955. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1956. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1957. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1958. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1959. }
  1960. xp->xfrm_nr = 0;
  1961. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1962. (err = parse_ipsecrequests(xp, pol)) < 0)
  1963. goto out;
  1964. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1965. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1966. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1967. audit_get_loginuid(current->audit_context), 0);
  1968. if (err)
  1969. goto out;
  1970. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1971. c.event = XFRM_MSG_UPDPOLICY;
  1972. else
  1973. c.event = XFRM_MSG_NEWPOLICY;
  1974. c.seq = hdr->sadb_msg_seq;
  1975. c.pid = hdr->sadb_msg_pid;
  1976. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1977. xfrm_pol_put(xp);
  1978. return 0;
  1979. out:
  1980. security_xfrm_policy_free(xp);
  1981. kfree(xp);
  1982. return err;
  1983. }
  1984. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1985. {
  1986. int err;
  1987. struct sadb_address *sa;
  1988. struct sadb_x_policy *pol;
  1989. struct xfrm_policy *xp, tmp;
  1990. struct xfrm_selector sel;
  1991. struct km_event c;
  1992. struct sadb_x_sec_ctx *sec_ctx;
  1993. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1994. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1995. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1996. return -EINVAL;
  1997. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1998. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1999. return -EINVAL;
  2000. memset(&sel, 0, sizeof(sel));
  2001. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2002. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2003. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2004. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2005. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2006. if (sel.sport)
  2007. sel.sport_mask = htons(0xffff);
  2008. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2009. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2010. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2011. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2012. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2013. if (sel.dport)
  2014. sel.dport_mask = htons(0xffff);
  2015. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2016. memset(&tmp, 0, sizeof(struct xfrm_policy));
  2017. if (sec_ctx != NULL) {
  2018. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2019. if (!uctx)
  2020. return -ENOMEM;
  2021. err = security_xfrm_policy_alloc(&tmp, uctx);
  2022. kfree(uctx);
  2023. if (err)
  2024. return err;
  2025. }
  2026. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  2027. &sel, tmp.security, 1, &err);
  2028. security_xfrm_policy_free(&tmp);
  2029. if (xp == NULL)
  2030. return -ENOENT;
  2031. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2032. audit_get_loginuid(current->audit_context), 0);
  2033. if (err)
  2034. goto out;
  2035. c.seq = hdr->sadb_msg_seq;
  2036. c.pid = hdr->sadb_msg_pid;
  2037. c.event = XFRM_MSG_DELPOLICY;
  2038. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2039. out:
  2040. xfrm_pol_put(xp);
  2041. return err;
  2042. }
  2043. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2044. {
  2045. int err;
  2046. struct sk_buff *out_skb;
  2047. struct sadb_msg *out_hdr;
  2048. err = 0;
  2049. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2050. if (IS_ERR(out_skb)) {
  2051. err = PTR_ERR(out_skb);
  2052. goto out;
  2053. }
  2054. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2055. if (err < 0)
  2056. goto out;
  2057. out_hdr = (struct sadb_msg *) out_skb->data;
  2058. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2059. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2060. out_hdr->sadb_msg_satype = 0;
  2061. out_hdr->sadb_msg_errno = 0;
  2062. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2063. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2064. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2065. err = 0;
  2066. out:
  2067. return err;
  2068. }
  2069. #ifdef CONFIG_NET_KEY_MIGRATE
  2070. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2071. {
  2072. switch (family) {
  2073. case AF_INET:
  2074. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2075. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2076. case AF_INET6:
  2077. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2078. #endif
  2079. default:
  2080. return 0;
  2081. }
  2082. /* NOTREACHED */
  2083. }
  2084. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2085. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2086. u16 *family)
  2087. {
  2088. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2089. if (rq->sadb_x_ipsecrequest_len <
  2090. pfkey_sockaddr_pair_size(sa->sa_family))
  2091. return -EINVAL;
  2092. switch (sa->sa_family) {
  2093. case AF_INET:
  2094. {
  2095. struct sockaddr_in *sin;
  2096. sin = (struct sockaddr_in *)sa;
  2097. if ((sin+1)->sin_family != AF_INET)
  2098. return -EINVAL;
  2099. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2100. sin++;
  2101. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2102. *family = AF_INET;
  2103. break;
  2104. }
  2105. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2106. case AF_INET6:
  2107. {
  2108. struct sockaddr_in6 *sin6;
  2109. sin6 = (struct sockaddr_in6 *)sa;
  2110. if ((sin6+1)->sin6_family != AF_INET6)
  2111. return -EINVAL;
  2112. memcpy(&saddr->a6, &sin6->sin6_addr,
  2113. sizeof(saddr->a6));
  2114. sin6++;
  2115. memcpy(&daddr->a6, &sin6->sin6_addr,
  2116. sizeof(daddr->a6));
  2117. *family = AF_INET6;
  2118. break;
  2119. }
  2120. #endif
  2121. default:
  2122. return -EINVAL;
  2123. }
  2124. return 0;
  2125. }
  2126. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2127. struct xfrm_migrate *m)
  2128. {
  2129. int err;
  2130. struct sadb_x_ipsecrequest *rq2;
  2131. int mode;
  2132. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2133. len < rq1->sadb_x_ipsecrequest_len)
  2134. return -EINVAL;
  2135. /* old endoints */
  2136. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2137. &m->old_family);
  2138. if (err)
  2139. return err;
  2140. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2141. len -= rq1->sadb_x_ipsecrequest_len;
  2142. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2143. len < rq2->sadb_x_ipsecrequest_len)
  2144. return -EINVAL;
  2145. /* new endpoints */
  2146. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2147. &m->new_family);
  2148. if (err)
  2149. return err;
  2150. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2151. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2152. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2153. return -EINVAL;
  2154. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2155. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2156. return -EINVAL;
  2157. m->mode = mode;
  2158. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2159. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2160. rq2->sadb_x_ipsecrequest_len));
  2161. }
  2162. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2163. struct sadb_msg *hdr, void **ext_hdrs)
  2164. {
  2165. int i, len, ret, err = -EINVAL;
  2166. u8 dir;
  2167. struct sadb_address *sa;
  2168. struct sadb_x_policy *pol;
  2169. struct sadb_x_ipsecrequest *rq;
  2170. struct xfrm_selector sel;
  2171. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2172. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2173. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2174. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2175. err = -EINVAL;
  2176. goto out;
  2177. }
  2178. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2179. if (!pol) {
  2180. err = -EINVAL;
  2181. goto out;
  2182. }
  2183. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2184. err = -EINVAL;
  2185. goto out;
  2186. }
  2187. dir = pol->sadb_x_policy_dir - 1;
  2188. memset(&sel, 0, sizeof(sel));
  2189. /* set source address info of selector */
  2190. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2191. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2192. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2193. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2194. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2195. if (sel.sport)
  2196. sel.sport_mask = htons(0xffff);
  2197. /* set destination address info of selector */
  2198. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2199. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2200. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2201. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2202. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2203. if (sel.dport)
  2204. sel.dport_mask = htons(0xffff);
  2205. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2206. /* extract ipsecrequests */
  2207. i = 0;
  2208. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2209. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2210. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2211. if (ret < 0) {
  2212. err = ret;
  2213. goto out;
  2214. } else {
  2215. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2216. len -= ret;
  2217. i++;
  2218. }
  2219. }
  2220. if (!i || len > 0) {
  2221. err = -EINVAL;
  2222. goto out;
  2223. }
  2224. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2225. out:
  2226. return err;
  2227. }
  2228. #else
  2229. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2230. struct sadb_msg *hdr, void **ext_hdrs)
  2231. {
  2232. return -ENOPROTOOPT;
  2233. }
  2234. #endif
  2235. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2236. {
  2237. unsigned int dir;
  2238. int err = 0, delete;
  2239. struct sadb_x_policy *pol;
  2240. struct xfrm_policy *xp;
  2241. struct km_event c;
  2242. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2243. return -EINVAL;
  2244. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2245. if (dir >= XFRM_POLICY_MAX)
  2246. return -EINVAL;
  2247. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2248. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2249. delete, &err);
  2250. if (xp == NULL)
  2251. return -ENOENT;
  2252. if (delete) {
  2253. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2254. audit_get_loginuid(current->audit_context), 0);
  2255. if (err)
  2256. goto out;
  2257. c.seq = hdr->sadb_msg_seq;
  2258. c.pid = hdr->sadb_msg_pid;
  2259. c.data.byid = 1;
  2260. c.event = XFRM_MSG_DELPOLICY;
  2261. km_policy_notify(xp, dir, &c);
  2262. } else {
  2263. err = key_pol_get_resp(sk, xp, hdr, dir);
  2264. }
  2265. out:
  2266. xfrm_pol_put(xp);
  2267. return err;
  2268. }
  2269. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2270. {
  2271. struct pfkey_dump_data *data = ptr;
  2272. struct sk_buff *out_skb;
  2273. struct sadb_msg *out_hdr;
  2274. int err;
  2275. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2276. if (IS_ERR(out_skb))
  2277. return PTR_ERR(out_skb);
  2278. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2279. if (err < 0)
  2280. return err;
  2281. out_hdr = (struct sadb_msg *) out_skb->data;
  2282. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2283. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2284. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2285. out_hdr->sadb_msg_errno = 0;
  2286. out_hdr->sadb_msg_seq = count;
  2287. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2288. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2289. return 0;
  2290. }
  2291. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2292. {
  2293. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2294. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2295. }
  2296. static int key_notify_policy_flush(struct km_event *c)
  2297. {
  2298. struct sk_buff *skb_out;
  2299. struct sadb_msg *hdr;
  2300. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2301. if (!skb_out)
  2302. return -ENOBUFS;
  2303. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2304. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2305. hdr->sadb_msg_seq = c->seq;
  2306. hdr->sadb_msg_pid = c->pid;
  2307. hdr->sadb_msg_version = PF_KEY_V2;
  2308. hdr->sadb_msg_errno = (uint8_t) 0;
  2309. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2310. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2311. return 0;
  2312. }
  2313. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2314. {
  2315. struct km_event c;
  2316. struct xfrm_audit audit_info;
  2317. int err;
  2318. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  2319. audit_info.secid = 0;
  2320. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2321. if (err)
  2322. return err;
  2323. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2324. c.event = XFRM_MSG_FLUSHPOLICY;
  2325. c.pid = hdr->sadb_msg_pid;
  2326. c.seq = hdr->sadb_msg_seq;
  2327. km_policy_notify(NULL, 0, &c);
  2328. return 0;
  2329. }
  2330. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2331. struct sadb_msg *hdr, void **ext_hdrs);
  2332. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2333. [SADB_RESERVED] = pfkey_reserved,
  2334. [SADB_GETSPI] = pfkey_getspi,
  2335. [SADB_UPDATE] = pfkey_add,
  2336. [SADB_ADD] = pfkey_add,
  2337. [SADB_DELETE] = pfkey_delete,
  2338. [SADB_GET] = pfkey_get,
  2339. [SADB_ACQUIRE] = pfkey_acquire,
  2340. [SADB_REGISTER] = pfkey_register,
  2341. [SADB_EXPIRE] = NULL,
  2342. [SADB_FLUSH] = pfkey_flush,
  2343. [SADB_DUMP] = pfkey_dump,
  2344. [SADB_X_PROMISC] = pfkey_promisc,
  2345. [SADB_X_PCHANGE] = NULL,
  2346. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2347. [SADB_X_SPDADD] = pfkey_spdadd,
  2348. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2349. [SADB_X_SPDGET] = pfkey_spdget,
  2350. [SADB_X_SPDACQUIRE] = NULL,
  2351. [SADB_X_SPDDUMP] = pfkey_spddump,
  2352. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2353. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2354. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2355. [SADB_X_MIGRATE] = pfkey_migrate,
  2356. };
  2357. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2358. {
  2359. void *ext_hdrs[SADB_EXT_MAX];
  2360. int err;
  2361. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2362. BROADCAST_PROMISC_ONLY, NULL);
  2363. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2364. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2365. if (!err) {
  2366. err = -EOPNOTSUPP;
  2367. if (pfkey_funcs[hdr->sadb_msg_type])
  2368. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2369. }
  2370. return err;
  2371. }
  2372. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2373. {
  2374. struct sadb_msg *hdr = NULL;
  2375. if (skb->len < sizeof(*hdr)) {
  2376. *errp = -EMSGSIZE;
  2377. } else {
  2378. hdr = (struct sadb_msg *) skb->data;
  2379. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2380. hdr->sadb_msg_reserved != 0 ||
  2381. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2382. hdr->sadb_msg_type > SADB_MAX)) {
  2383. hdr = NULL;
  2384. *errp = -EINVAL;
  2385. } else if (hdr->sadb_msg_len != (skb->len /
  2386. sizeof(uint64_t)) ||
  2387. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2388. sizeof(uint64_t))) {
  2389. hdr = NULL;
  2390. *errp = -EMSGSIZE;
  2391. } else {
  2392. *errp = 0;
  2393. }
  2394. }
  2395. return hdr;
  2396. }
  2397. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2398. {
  2399. unsigned int id = d->desc.sadb_alg_id;
  2400. if (id >= sizeof(t->aalgos) * 8)
  2401. return 0;
  2402. return (t->aalgos >> id) & 1;
  2403. }
  2404. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2405. {
  2406. unsigned int id = d->desc.sadb_alg_id;
  2407. if (id >= sizeof(t->ealgos) * 8)
  2408. return 0;
  2409. return (t->ealgos >> id) & 1;
  2410. }
  2411. static int count_ah_combs(struct xfrm_tmpl *t)
  2412. {
  2413. int i, sz = 0;
  2414. for (i = 0; ; i++) {
  2415. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2416. if (!aalg)
  2417. break;
  2418. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2419. sz += sizeof(struct sadb_comb);
  2420. }
  2421. return sz + sizeof(struct sadb_prop);
  2422. }
  2423. static int count_esp_combs(struct xfrm_tmpl *t)
  2424. {
  2425. int i, k, sz = 0;
  2426. for (i = 0; ; i++) {
  2427. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2428. if (!ealg)
  2429. break;
  2430. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2431. continue;
  2432. for (k = 1; ; k++) {
  2433. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2434. if (!aalg)
  2435. break;
  2436. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2437. sz += sizeof(struct sadb_comb);
  2438. }
  2439. }
  2440. return sz + sizeof(struct sadb_prop);
  2441. }
  2442. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2443. {
  2444. struct sadb_prop *p;
  2445. int i;
  2446. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2447. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2448. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2449. p->sadb_prop_replay = 32;
  2450. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2451. for (i = 0; ; i++) {
  2452. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2453. if (!aalg)
  2454. break;
  2455. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2456. struct sadb_comb *c;
  2457. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2458. memset(c, 0, sizeof(*c));
  2459. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2460. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2461. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2462. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2463. c->sadb_comb_hard_addtime = 24*60*60;
  2464. c->sadb_comb_soft_addtime = 20*60*60;
  2465. c->sadb_comb_hard_usetime = 8*60*60;
  2466. c->sadb_comb_soft_usetime = 7*60*60;
  2467. }
  2468. }
  2469. }
  2470. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2471. {
  2472. struct sadb_prop *p;
  2473. int i, k;
  2474. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2475. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2476. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2477. p->sadb_prop_replay = 32;
  2478. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2479. for (i=0; ; i++) {
  2480. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2481. if (!ealg)
  2482. break;
  2483. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2484. continue;
  2485. for (k = 1; ; k++) {
  2486. struct sadb_comb *c;
  2487. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2488. if (!aalg)
  2489. break;
  2490. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2491. continue;
  2492. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2493. memset(c, 0, sizeof(*c));
  2494. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2495. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2496. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2497. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2498. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2499. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2500. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2501. c->sadb_comb_hard_addtime = 24*60*60;
  2502. c->sadb_comb_soft_addtime = 20*60*60;
  2503. c->sadb_comb_hard_usetime = 8*60*60;
  2504. c->sadb_comb_soft_usetime = 7*60*60;
  2505. }
  2506. }
  2507. }
  2508. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2509. {
  2510. return 0;
  2511. }
  2512. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2513. {
  2514. struct sk_buff *out_skb;
  2515. struct sadb_msg *out_hdr;
  2516. int hard;
  2517. int hsc;
  2518. hard = c->data.hard;
  2519. if (hard)
  2520. hsc = 2;
  2521. else
  2522. hsc = 1;
  2523. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2524. if (IS_ERR(out_skb))
  2525. return PTR_ERR(out_skb);
  2526. out_hdr = (struct sadb_msg *) out_skb->data;
  2527. out_hdr->sadb_msg_version = PF_KEY_V2;
  2528. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2529. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2530. out_hdr->sadb_msg_errno = 0;
  2531. out_hdr->sadb_msg_reserved = 0;
  2532. out_hdr->sadb_msg_seq = 0;
  2533. out_hdr->sadb_msg_pid = 0;
  2534. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2535. return 0;
  2536. }
  2537. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2538. {
  2539. switch (c->event) {
  2540. case XFRM_MSG_EXPIRE:
  2541. return key_notify_sa_expire(x, c);
  2542. case XFRM_MSG_DELSA:
  2543. case XFRM_MSG_NEWSA:
  2544. case XFRM_MSG_UPDSA:
  2545. return key_notify_sa(x, c);
  2546. case XFRM_MSG_FLUSHSA:
  2547. return key_notify_sa_flush(c);
  2548. case XFRM_MSG_NEWAE: /* not yet supported */
  2549. break;
  2550. default:
  2551. printk("pfkey: Unknown SA event %d\n", c->event);
  2552. break;
  2553. }
  2554. return 0;
  2555. }
  2556. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2557. {
  2558. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2559. return 0;
  2560. switch (c->event) {
  2561. case XFRM_MSG_POLEXPIRE:
  2562. return key_notify_policy_expire(xp, c);
  2563. case XFRM_MSG_DELPOLICY:
  2564. case XFRM_MSG_NEWPOLICY:
  2565. case XFRM_MSG_UPDPOLICY:
  2566. return key_notify_policy(xp, dir, c);
  2567. case XFRM_MSG_FLUSHPOLICY:
  2568. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2569. break;
  2570. return key_notify_policy_flush(c);
  2571. default:
  2572. printk("pfkey: Unknown policy event %d\n", c->event);
  2573. break;
  2574. }
  2575. return 0;
  2576. }
  2577. static u32 get_acqseq(void)
  2578. {
  2579. u32 res;
  2580. static u32 acqseq;
  2581. static DEFINE_SPINLOCK(acqseq_lock);
  2582. spin_lock_bh(&acqseq_lock);
  2583. res = (++acqseq ? : ++acqseq);
  2584. spin_unlock_bh(&acqseq_lock);
  2585. return res;
  2586. }
  2587. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2588. {
  2589. struct sk_buff *skb;
  2590. struct sadb_msg *hdr;
  2591. struct sadb_address *addr;
  2592. struct sadb_x_policy *pol;
  2593. struct sockaddr_in *sin;
  2594. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2595. struct sockaddr_in6 *sin6;
  2596. #endif
  2597. int sockaddr_size;
  2598. int size;
  2599. struct sadb_x_sec_ctx *sec_ctx;
  2600. struct xfrm_sec_ctx *xfrm_ctx;
  2601. int ctx_size = 0;
  2602. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2603. if (!sockaddr_size)
  2604. return -EINVAL;
  2605. size = sizeof(struct sadb_msg) +
  2606. (sizeof(struct sadb_address) * 2) +
  2607. (sockaddr_size * 2) +
  2608. sizeof(struct sadb_x_policy);
  2609. if (x->id.proto == IPPROTO_AH)
  2610. size += count_ah_combs(t);
  2611. else if (x->id.proto == IPPROTO_ESP)
  2612. size += count_esp_combs(t);
  2613. if ((xfrm_ctx = x->security)) {
  2614. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2615. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2616. }
  2617. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2618. if (skb == NULL)
  2619. return -ENOMEM;
  2620. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2621. hdr->sadb_msg_version = PF_KEY_V2;
  2622. hdr->sadb_msg_type = SADB_ACQUIRE;
  2623. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2624. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2625. hdr->sadb_msg_errno = 0;
  2626. hdr->sadb_msg_reserved = 0;
  2627. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2628. hdr->sadb_msg_pid = 0;
  2629. /* src address */
  2630. addr = (struct sadb_address*) skb_put(skb,
  2631. sizeof(struct sadb_address)+sockaddr_size);
  2632. addr->sadb_address_len =
  2633. (sizeof(struct sadb_address)+sockaddr_size)/
  2634. sizeof(uint64_t);
  2635. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2636. addr->sadb_address_proto = 0;
  2637. addr->sadb_address_reserved = 0;
  2638. if (x->props.family == AF_INET) {
  2639. addr->sadb_address_prefixlen = 32;
  2640. sin = (struct sockaddr_in *) (addr + 1);
  2641. sin->sin_family = AF_INET;
  2642. sin->sin_addr.s_addr = x->props.saddr.a4;
  2643. sin->sin_port = 0;
  2644. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2645. }
  2646. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2647. else if (x->props.family == AF_INET6) {
  2648. addr->sadb_address_prefixlen = 128;
  2649. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2650. sin6->sin6_family = AF_INET6;
  2651. sin6->sin6_port = 0;
  2652. sin6->sin6_flowinfo = 0;
  2653. memcpy(&sin6->sin6_addr,
  2654. x->props.saddr.a6, sizeof(struct in6_addr));
  2655. sin6->sin6_scope_id = 0;
  2656. }
  2657. #endif
  2658. else
  2659. BUG();
  2660. /* dst address */
  2661. addr = (struct sadb_address*) skb_put(skb,
  2662. sizeof(struct sadb_address)+sockaddr_size);
  2663. addr->sadb_address_len =
  2664. (sizeof(struct sadb_address)+sockaddr_size)/
  2665. sizeof(uint64_t);
  2666. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2667. addr->sadb_address_proto = 0;
  2668. addr->sadb_address_reserved = 0;
  2669. if (x->props.family == AF_INET) {
  2670. addr->sadb_address_prefixlen = 32;
  2671. sin = (struct sockaddr_in *) (addr + 1);
  2672. sin->sin_family = AF_INET;
  2673. sin->sin_addr.s_addr = x->id.daddr.a4;
  2674. sin->sin_port = 0;
  2675. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2676. }
  2677. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2678. else if (x->props.family == AF_INET6) {
  2679. addr->sadb_address_prefixlen = 128;
  2680. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2681. sin6->sin6_family = AF_INET6;
  2682. sin6->sin6_port = 0;
  2683. sin6->sin6_flowinfo = 0;
  2684. memcpy(&sin6->sin6_addr,
  2685. x->id.daddr.a6, sizeof(struct in6_addr));
  2686. sin6->sin6_scope_id = 0;
  2687. }
  2688. #endif
  2689. else
  2690. BUG();
  2691. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2692. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2693. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2694. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2695. pol->sadb_x_policy_dir = dir+1;
  2696. pol->sadb_x_policy_id = xp->index;
  2697. /* Set sadb_comb's. */
  2698. if (x->id.proto == IPPROTO_AH)
  2699. dump_ah_combs(skb, t);
  2700. else if (x->id.proto == IPPROTO_ESP)
  2701. dump_esp_combs(skb, t);
  2702. /* security context */
  2703. if (xfrm_ctx) {
  2704. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2705. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2706. sec_ctx->sadb_x_sec_len =
  2707. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2708. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2709. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2710. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2711. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2712. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2713. xfrm_ctx->ctx_len);
  2714. }
  2715. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2716. }
  2717. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2718. u8 *data, int len, int *dir)
  2719. {
  2720. struct xfrm_policy *xp;
  2721. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2722. struct sadb_x_sec_ctx *sec_ctx;
  2723. switch (sk->sk_family) {
  2724. case AF_INET:
  2725. if (opt != IP_IPSEC_POLICY) {
  2726. *dir = -EOPNOTSUPP;
  2727. return NULL;
  2728. }
  2729. break;
  2730. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2731. case AF_INET6:
  2732. if (opt != IPV6_IPSEC_POLICY) {
  2733. *dir = -EOPNOTSUPP;
  2734. return NULL;
  2735. }
  2736. break;
  2737. #endif
  2738. default:
  2739. *dir = -EINVAL;
  2740. return NULL;
  2741. }
  2742. *dir = -EINVAL;
  2743. if (len < sizeof(struct sadb_x_policy) ||
  2744. pol->sadb_x_policy_len*8 > len ||
  2745. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2746. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2747. return NULL;
  2748. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2749. if (xp == NULL) {
  2750. *dir = -ENOBUFS;
  2751. return NULL;
  2752. }
  2753. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2754. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2755. xp->lft.soft_byte_limit = XFRM_INF;
  2756. xp->lft.hard_byte_limit = XFRM_INF;
  2757. xp->lft.soft_packet_limit = XFRM_INF;
  2758. xp->lft.hard_packet_limit = XFRM_INF;
  2759. xp->family = sk->sk_family;
  2760. xp->xfrm_nr = 0;
  2761. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2762. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2763. goto out;
  2764. /* security context too */
  2765. if (len >= (pol->sadb_x_policy_len*8 +
  2766. sizeof(struct sadb_x_sec_ctx))) {
  2767. char *p = (char *)pol;
  2768. struct xfrm_user_sec_ctx *uctx;
  2769. p += pol->sadb_x_policy_len*8;
  2770. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2771. if (len < pol->sadb_x_policy_len*8 +
  2772. sec_ctx->sadb_x_sec_len) {
  2773. *dir = -EINVAL;
  2774. goto out;
  2775. }
  2776. if ((*dir = verify_sec_ctx_len(p)))
  2777. goto out;
  2778. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2779. *dir = security_xfrm_policy_alloc(xp, uctx);
  2780. kfree(uctx);
  2781. if (*dir)
  2782. goto out;
  2783. }
  2784. *dir = pol->sadb_x_policy_dir-1;
  2785. return xp;
  2786. out:
  2787. security_xfrm_policy_free(xp);
  2788. kfree(xp);
  2789. return NULL;
  2790. }
  2791. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2792. {
  2793. struct sk_buff *skb;
  2794. struct sadb_msg *hdr;
  2795. struct sadb_sa *sa;
  2796. struct sadb_address *addr;
  2797. struct sadb_x_nat_t_port *n_port;
  2798. struct sockaddr_in *sin;
  2799. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2800. struct sockaddr_in6 *sin6;
  2801. #endif
  2802. int sockaddr_size;
  2803. int size;
  2804. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2805. struct xfrm_encap_tmpl *natt = NULL;
  2806. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2807. if (!sockaddr_size)
  2808. return -EINVAL;
  2809. if (!satype)
  2810. return -EINVAL;
  2811. if (!x->encap)
  2812. return -EINVAL;
  2813. natt = x->encap;
  2814. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2815. *
  2816. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2817. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2818. */
  2819. size = sizeof(struct sadb_msg) +
  2820. sizeof(struct sadb_sa) +
  2821. (sizeof(struct sadb_address) * 2) +
  2822. (sockaddr_size * 2) +
  2823. (sizeof(struct sadb_x_nat_t_port) * 2);
  2824. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2825. if (skb == NULL)
  2826. return -ENOMEM;
  2827. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2828. hdr->sadb_msg_version = PF_KEY_V2;
  2829. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2830. hdr->sadb_msg_satype = satype;
  2831. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2832. hdr->sadb_msg_errno = 0;
  2833. hdr->sadb_msg_reserved = 0;
  2834. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2835. hdr->sadb_msg_pid = 0;
  2836. /* SA */
  2837. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2838. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2839. sa->sadb_sa_exttype = SADB_EXT_SA;
  2840. sa->sadb_sa_spi = x->id.spi;
  2841. sa->sadb_sa_replay = 0;
  2842. sa->sadb_sa_state = 0;
  2843. sa->sadb_sa_auth = 0;
  2844. sa->sadb_sa_encrypt = 0;
  2845. sa->sadb_sa_flags = 0;
  2846. /* ADDRESS_SRC (old addr) */
  2847. addr = (struct sadb_address*)
  2848. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2849. addr->sadb_address_len =
  2850. (sizeof(struct sadb_address)+sockaddr_size)/
  2851. sizeof(uint64_t);
  2852. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2853. addr->sadb_address_proto = 0;
  2854. addr->sadb_address_reserved = 0;
  2855. if (x->props.family == AF_INET) {
  2856. addr->sadb_address_prefixlen = 32;
  2857. sin = (struct sockaddr_in *) (addr + 1);
  2858. sin->sin_family = AF_INET;
  2859. sin->sin_addr.s_addr = x->props.saddr.a4;
  2860. sin->sin_port = 0;
  2861. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2862. }
  2863. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2864. else if (x->props.family == AF_INET6) {
  2865. addr->sadb_address_prefixlen = 128;
  2866. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2867. sin6->sin6_family = AF_INET6;
  2868. sin6->sin6_port = 0;
  2869. sin6->sin6_flowinfo = 0;
  2870. memcpy(&sin6->sin6_addr,
  2871. x->props.saddr.a6, sizeof(struct in6_addr));
  2872. sin6->sin6_scope_id = 0;
  2873. }
  2874. #endif
  2875. else
  2876. BUG();
  2877. /* NAT_T_SPORT (old port) */
  2878. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2879. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2880. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2881. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2882. n_port->sadb_x_nat_t_port_reserved = 0;
  2883. /* ADDRESS_DST (new addr) */
  2884. addr = (struct sadb_address*)
  2885. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2886. addr->sadb_address_len =
  2887. (sizeof(struct sadb_address)+sockaddr_size)/
  2888. sizeof(uint64_t);
  2889. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2890. addr->sadb_address_proto = 0;
  2891. addr->sadb_address_reserved = 0;
  2892. if (x->props.family == AF_INET) {
  2893. addr->sadb_address_prefixlen = 32;
  2894. sin = (struct sockaddr_in *) (addr + 1);
  2895. sin->sin_family = AF_INET;
  2896. sin->sin_addr.s_addr = ipaddr->a4;
  2897. sin->sin_port = 0;
  2898. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2899. }
  2900. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2901. else if (x->props.family == AF_INET6) {
  2902. addr->sadb_address_prefixlen = 128;
  2903. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2904. sin6->sin6_family = AF_INET6;
  2905. sin6->sin6_port = 0;
  2906. sin6->sin6_flowinfo = 0;
  2907. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2908. sin6->sin6_scope_id = 0;
  2909. }
  2910. #endif
  2911. else
  2912. BUG();
  2913. /* NAT_T_DPORT (new port) */
  2914. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2915. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2916. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2917. n_port->sadb_x_nat_t_port_port = sport;
  2918. n_port->sadb_x_nat_t_port_reserved = 0;
  2919. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2920. }
  2921. #ifdef CONFIG_NET_KEY_MIGRATE
  2922. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2923. struct xfrm_selector *sel)
  2924. {
  2925. struct sadb_address *addr;
  2926. struct sockaddr_in *sin;
  2927. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2928. struct sockaddr_in6 *sin6;
  2929. #endif
  2930. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2931. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2932. addr->sadb_address_exttype = type;
  2933. addr->sadb_address_proto = sel->proto;
  2934. addr->sadb_address_reserved = 0;
  2935. switch (type) {
  2936. case SADB_EXT_ADDRESS_SRC:
  2937. if (sel->family == AF_INET) {
  2938. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2939. sin = (struct sockaddr_in *)(addr + 1);
  2940. sin->sin_family = AF_INET;
  2941. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  2942. sizeof(sin->sin_addr.s_addr));
  2943. sin->sin_port = 0;
  2944. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2945. }
  2946. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2947. else if (sel->family == AF_INET6) {
  2948. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2949. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2950. sin6->sin6_family = AF_INET6;
  2951. sin6->sin6_port = 0;
  2952. sin6->sin6_flowinfo = 0;
  2953. sin6->sin6_scope_id = 0;
  2954. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  2955. sizeof(sin6->sin6_addr.s6_addr));
  2956. }
  2957. #endif
  2958. break;
  2959. case SADB_EXT_ADDRESS_DST:
  2960. if (sel->family == AF_INET) {
  2961. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2962. sin = (struct sockaddr_in *)(addr + 1);
  2963. sin->sin_family = AF_INET;
  2964. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  2965. sizeof(sin->sin_addr.s_addr));
  2966. sin->sin_port = 0;
  2967. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2968. }
  2969. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2970. else if (sel->family == AF_INET6) {
  2971. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2972. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2973. sin6->sin6_family = AF_INET6;
  2974. sin6->sin6_port = 0;
  2975. sin6->sin6_flowinfo = 0;
  2976. sin6->sin6_scope_id = 0;
  2977. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  2978. sizeof(sin6->sin6_addr.s6_addr));
  2979. }
  2980. #endif
  2981. break;
  2982. default:
  2983. return -EINVAL;
  2984. }
  2985. return 0;
  2986. }
  2987. static int set_ipsecrequest(struct sk_buff *skb,
  2988. uint8_t proto, uint8_t mode, int level,
  2989. uint32_t reqid, uint8_t family,
  2990. xfrm_address_t *src, xfrm_address_t *dst)
  2991. {
  2992. struct sadb_x_ipsecrequest *rq;
  2993. struct sockaddr_in *sin;
  2994. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2995. struct sockaddr_in6 *sin6;
  2996. #endif
  2997. int size_req;
  2998. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2999. pfkey_sockaddr_pair_size(family);
  3000. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  3001. memset(rq, 0, size_req);
  3002. rq->sadb_x_ipsecrequest_len = size_req;
  3003. rq->sadb_x_ipsecrequest_proto = proto;
  3004. rq->sadb_x_ipsecrequest_mode = mode;
  3005. rq->sadb_x_ipsecrequest_level = level;
  3006. rq->sadb_x_ipsecrequest_reqid = reqid;
  3007. switch (family) {
  3008. case AF_INET:
  3009. sin = (struct sockaddr_in *)(rq + 1);
  3010. sin->sin_family = AF_INET;
  3011. memcpy(&sin->sin_addr.s_addr, src,
  3012. sizeof(sin->sin_addr.s_addr));
  3013. sin++;
  3014. sin->sin_family = AF_INET;
  3015. memcpy(&sin->sin_addr.s_addr, dst,
  3016. sizeof(sin->sin_addr.s_addr));
  3017. break;
  3018. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3019. case AF_INET6:
  3020. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3021. sin6->sin6_family = AF_INET6;
  3022. sin6->sin6_port = 0;
  3023. sin6->sin6_flowinfo = 0;
  3024. sin6->sin6_scope_id = 0;
  3025. memcpy(&sin6->sin6_addr.s6_addr, src,
  3026. sizeof(sin6->sin6_addr.s6_addr));
  3027. sin6++;
  3028. sin6->sin6_family = AF_INET6;
  3029. sin6->sin6_port = 0;
  3030. sin6->sin6_flowinfo = 0;
  3031. sin6->sin6_scope_id = 0;
  3032. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3033. sizeof(sin6->sin6_addr.s6_addr));
  3034. break;
  3035. #endif
  3036. default:
  3037. return -EINVAL;
  3038. }
  3039. return 0;
  3040. }
  3041. #endif
  3042. #ifdef CONFIG_NET_KEY_MIGRATE
  3043. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3044. struct xfrm_migrate *m, int num_bundles)
  3045. {
  3046. int i;
  3047. int sasize_sel;
  3048. int size = 0;
  3049. int size_pol = 0;
  3050. struct sk_buff *skb;
  3051. struct sadb_msg *hdr;
  3052. struct sadb_x_policy *pol;
  3053. struct xfrm_migrate *mp;
  3054. if (type != XFRM_POLICY_TYPE_MAIN)
  3055. return 0;
  3056. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3057. return -EINVAL;
  3058. /* selector */
  3059. sasize_sel = pfkey_sockaddr_size(sel->family);
  3060. if (!sasize_sel)
  3061. return -EINVAL;
  3062. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3063. /* policy info */
  3064. size_pol += sizeof(struct sadb_x_policy);
  3065. /* ipsecrequests */
  3066. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3067. /* old locator pair */
  3068. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3069. pfkey_sockaddr_pair_size(mp->old_family);
  3070. /* new locator pair */
  3071. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3072. pfkey_sockaddr_pair_size(mp->new_family);
  3073. }
  3074. size += sizeof(struct sadb_msg) + size_pol;
  3075. /* alloc buffer */
  3076. skb = alloc_skb(size, GFP_ATOMIC);
  3077. if (skb == NULL)
  3078. return -ENOMEM;
  3079. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3080. hdr->sadb_msg_version = PF_KEY_V2;
  3081. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3082. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3083. hdr->sadb_msg_len = size / 8;
  3084. hdr->sadb_msg_errno = 0;
  3085. hdr->sadb_msg_reserved = 0;
  3086. hdr->sadb_msg_seq = 0;
  3087. hdr->sadb_msg_pid = 0;
  3088. /* selector src */
  3089. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3090. /* selector dst */
  3091. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3092. /* policy information */
  3093. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3094. pol->sadb_x_policy_len = size_pol / 8;
  3095. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3096. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3097. pol->sadb_x_policy_dir = dir + 1;
  3098. pol->sadb_x_policy_id = 0;
  3099. pol->sadb_x_policy_priority = 0;
  3100. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3101. /* old ipsecrequest */
  3102. int mode = pfkey_mode_from_xfrm(mp->mode);
  3103. if (mode < 0)
  3104. goto err;
  3105. if (set_ipsecrequest(skb, mp->proto, mode,
  3106. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3107. mp->reqid, mp->old_family,
  3108. &mp->old_saddr, &mp->old_daddr) < 0)
  3109. goto err;
  3110. /* new ipsecrequest */
  3111. if (set_ipsecrequest(skb, mp->proto, mode,
  3112. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3113. mp->reqid, mp->new_family,
  3114. &mp->new_saddr, &mp->new_daddr) < 0)
  3115. goto err;
  3116. }
  3117. /* broadcast migrate message to sockets */
  3118. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3119. return 0;
  3120. err:
  3121. kfree_skb(skb);
  3122. return -EINVAL;
  3123. }
  3124. #else
  3125. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3126. struct xfrm_migrate *m, int num_bundles)
  3127. {
  3128. return -ENOPROTOOPT;
  3129. }
  3130. #endif
  3131. static int pfkey_sendmsg(struct kiocb *kiocb,
  3132. struct socket *sock, struct msghdr *msg, size_t len)
  3133. {
  3134. struct sock *sk = sock->sk;
  3135. struct sk_buff *skb = NULL;
  3136. struct sadb_msg *hdr = NULL;
  3137. int err;
  3138. err = -EOPNOTSUPP;
  3139. if (msg->msg_flags & MSG_OOB)
  3140. goto out;
  3141. err = -EMSGSIZE;
  3142. if ((unsigned)len > sk->sk_sndbuf - 32)
  3143. goto out;
  3144. err = -ENOBUFS;
  3145. skb = alloc_skb(len, GFP_KERNEL);
  3146. if (skb == NULL)
  3147. goto out;
  3148. err = -EFAULT;
  3149. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3150. goto out;
  3151. hdr = pfkey_get_base_msg(skb, &err);
  3152. if (!hdr)
  3153. goto out;
  3154. mutex_lock(&xfrm_cfg_mutex);
  3155. err = pfkey_process(sk, skb, hdr);
  3156. mutex_unlock(&xfrm_cfg_mutex);
  3157. out:
  3158. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3159. err = 0;
  3160. if (skb)
  3161. kfree_skb(skb);
  3162. return err ? : len;
  3163. }
  3164. static int pfkey_recvmsg(struct kiocb *kiocb,
  3165. struct socket *sock, struct msghdr *msg, size_t len,
  3166. int flags)
  3167. {
  3168. struct sock *sk = sock->sk;
  3169. struct sk_buff *skb;
  3170. int copied, err;
  3171. err = -EINVAL;
  3172. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3173. goto out;
  3174. msg->msg_namelen = 0;
  3175. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3176. if (skb == NULL)
  3177. goto out;
  3178. copied = skb->len;
  3179. if (copied > len) {
  3180. msg->msg_flags |= MSG_TRUNC;
  3181. copied = len;
  3182. }
  3183. skb_reset_transport_header(skb);
  3184. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3185. if (err)
  3186. goto out_free;
  3187. sock_recv_timestamp(msg, sk, skb);
  3188. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3189. out_free:
  3190. skb_free_datagram(sk, skb);
  3191. out:
  3192. return err;
  3193. }
  3194. static const struct proto_ops pfkey_ops = {
  3195. .family = PF_KEY,
  3196. .owner = THIS_MODULE,
  3197. /* Operations that make no sense on pfkey sockets. */
  3198. .bind = sock_no_bind,
  3199. .connect = sock_no_connect,
  3200. .socketpair = sock_no_socketpair,
  3201. .accept = sock_no_accept,
  3202. .getname = sock_no_getname,
  3203. .ioctl = sock_no_ioctl,
  3204. .listen = sock_no_listen,
  3205. .shutdown = sock_no_shutdown,
  3206. .setsockopt = sock_no_setsockopt,
  3207. .getsockopt = sock_no_getsockopt,
  3208. .mmap = sock_no_mmap,
  3209. .sendpage = sock_no_sendpage,
  3210. /* Now the operations that really occur. */
  3211. .release = pfkey_release,
  3212. .poll = datagram_poll,
  3213. .sendmsg = pfkey_sendmsg,
  3214. .recvmsg = pfkey_recvmsg,
  3215. };
  3216. static struct net_proto_family pfkey_family_ops = {
  3217. .family = PF_KEY,
  3218. .create = pfkey_create,
  3219. .owner = THIS_MODULE,
  3220. };
  3221. #ifdef CONFIG_PROC_FS
  3222. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  3223. int length, int *eof, void *data)
  3224. {
  3225. off_t pos = 0;
  3226. off_t begin = 0;
  3227. int len = 0;
  3228. struct sock *s;
  3229. struct hlist_node *node;
  3230. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  3231. read_lock(&pfkey_table_lock);
  3232. sk_for_each(s, node, &pfkey_table) {
  3233. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  3234. s,
  3235. atomic_read(&s->sk_refcnt),
  3236. atomic_read(&s->sk_rmem_alloc),
  3237. atomic_read(&s->sk_wmem_alloc),
  3238. sock_i_uid(s),
  3239. sock_i_ino(s)
  3240. );
  3241. buffer[len++] = '\n';
  3242. pos = begin + len;
  3243. if (pos < offset) {
  3244. len = 0;
  3245. begin = pos;
  3246. }
  3247. if(pos > offset + length)
  3248. goto done;
  3249. }
  3250. *eof = 1;
  3251. done:
  3252. read_unlock(&pfkey_table_lock);
  3253. *start = buffer + (offset - begin);
  3254. len -= (offset - begin);
  3255. if (len > length)
  3256. len = length;
  3257. if (len < 0)
  3258. len = 0;
  3259. return len;
  3260. }
  3261. #endif
  3262. static struct xfrm_mgr pfkeyv2_mgr =
  3263. {
  3264. .id = "pfkeyv2",
  3265. .notify = pfkey_send_notify,
  3266. .acquire = pfkey_send_acquire,
  3267. .compile_policy = pfkey_compile_policy,
  3268. .new_mapping = pfkey_send_new_mapping,
  3269. .notify_policy = pfkey_send_policy_notify,
  3270. .migrate = pfkey_send_migrate,
  3271. };
  3272. static void __exit ipsec_pfkey_exit(void)
  3273. {
  3274. xfrm_unregister_km(&pfkeyv2_mgr);
  3275. remove_proc_entry("pfkey", init_net.proc_net);
  3276. sock_unregister(PF_KEY);
  3277. proto_unregister(&key_proto);
  3278. }
  3279. static int __init ipsec_pfkey_init(void)
  3280. {
  3281. int err = proto_register(&key_proto, 0);
  3282. if (err != 0)
  3283. goto out;
  3284. err = sock_register(&pfkey_family_ops);
  3285. if (err != 0)
  3286. goto out_unregister_key_proto;
  3287. #ifdef CONFIG_PROC_FS
  3288. err = -ENOMEM;
  3289. if (create_proc_read_entry("pfkey", 0, init_net.proc_net, pfkey_read_proc, NULL) == NULL)
  3290. goto out_sock_unregister;
  3291. #endif
  3292. err = xfrm_register_km(&pfkeyv2_mgr);
  3293. if (err != 0)
  3294. goto out_remove_proc_entry;
  3295. out:
  3296. return err;
  3297. out_remove_proc_entry:
  3298. #ifdef CONFIG_PROC_FS
  3299. remove_proc_entry("net/pfkey", NULL);
  3300. out_sock_unregister:
  3301. #endif
  3302. sock_unregister(PF_KEY);
  3303. out_unregister_key_proto:
  3304. proto_unregister(&key_proto);
  3305. goto out;
  3306. }
  3307. module_init(ipsec_pfkey_init);
  3308. module_exit(ipsec_pfkey_exit);
  3309. MODULE_LICENSE("GPL");
  3310. MODULE_ALIAS_NETPROTO(PF_KEY);