af_iucv.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234
  1. /*
  2. * linux/net/iucv/af_iucv.c
  3. *
  4. * IUCV protocol stack for Linux on zSeries
  5. *
  6. * Copyright 2006 IBM Corporation
  7. *
  8. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  9. */
  10. #include <linux/module.h>
  11. #include <linux/types.h>
  12. #include <linux/list.h>
  13. #include <linux/errno.h>
  14. #include <linux/kernel.h>
  15. #include <linux/sched.h>
  16. #include <linux/slab.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/init.h>
  19. #include <linux/poll.h>
  20. #include <net/sock.h>
  21. #include <asm/ebcdic.h>
  22. #include <asm/cpcmd.h>
  23. #include <linux/kmod.h>
  24. #include <net/iucv/iucv.h>
  25. #include <net/iucv/af_iucv.h>
  26. #define CONFIG_IUCV_SOCK_DEBUG 1
  27. #define IPRMDATA 0x80
  28. #define VERSION "1.0"
  29. static char iucv_userid[80];
  30. static struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static void iucv_sock_kill(struct sock *sk);
  37. static void iucv_sock_close(struct sock *sk);
  38. /* Call Back functions */
  39. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  40. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  41. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  42. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  43. u8 ipuser[16]);
  44. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  45. static struct iucv_sock_list iucv_sk_list = {
  46. .lock = RW_LOCK_UNLOCKED,
  47. .autobind_name = ATOMIC_INIT(0)
  48. };
  49. static struct iucv_handler af_iucv_handler = {
  50. .path_pending = iucv_callback_connreq,
  51. .path_complete = iucv_callback_connack,
  52. .path_severed = iucv_callback_connrej,
  53. .message_pending = iucv_callback_rx,
  54. .message_complete = iucv_callback_txdone
  55. };
  56. static inline void high_nmcpy(unsigned char *dst, char *src)
  57. {
  58. memcpy(dst, src, 8);
  59. }
  60. static inline void low_nmcpy(unsigned char *dst, char *src)
  61. {
  62. memcpy(&dst[8], src, 8);
  63. }
  64. /* Timers */
  65. static void iucv_sock_timeout(unsigned long arg)
  66. {
  67. struct sock *sk = (struct sock *)arg;
  68. bh_lock_sock(sk);
  69. sk->sk_err = ETIMEDOUT;
  70. sk->sk_state_change(sk);
  71. bh_unlock_sock(sk);
  72. iucv_sock_kill(sk);
  73. sock_put(sk);
  74. }
  75. static void iucv_sock_clear_timer(struct sock *sk)
  76. {
  77. sk_stop_timer(sk, &sk->sk_timer);
  78. }
  79. static void iucv_sock_init_timer(struct sock *sk)
  80. {
  81. init_timer(&sk->sk_timer);
  82. sk->sk_timer.function = iucv_sock_timeout;
  83. sk->sk_timer.data = (unsigned long)sk;
  84. }
  85. static struct sock *__iucv_get_sock_by_name(char *nm)
  86. {
  87. struct sock *sk;
  88. struct hlist_node *node;
  89. sk_for_each(sk, node, &iucv_sk_list.head)
  90. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  91. return sk;
  92. return NULL;
  93. }
  94. static void iucv_sock_destruct(struct sock *sk)
  95. {
  96. skb_queue_purge(&sk->sk_receive_queue);
  97. skb_queue_purge(&sk->sk_write_queue);
  98. }
  99. /* Cleanup Listen */
  100. static void iucv_sock_cleanup_listen(struct sock *parent)
  101. {
  102. struct sock *sk;
  103. /* Close non-accepted connections */
  104. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  105. iucv_sock_close(sk);
  106. iucv_sock_kill(sk);
  107. }
  108. parent->sk_state = IUCV_CLOSED;
  109. sock_set_flag(parent, SOCK_ZAPPED);
  110. }
  111. /* Kill socket */
  112. static void iucv_sock_kill(struct sock *sk)
  113. {
  114. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  115. return;
  116. iucv_sock_unlink(&iucv_sk_list, sk);
  117. sock_set_flag(sk, SOCK_DEAD);
  118. sock_put(sk);
  119. }
  120. /* Close an IUCV socket */
  121. static void iucv_sock_close(struct sock *sk)
  122. {
  123. unsigned char user_data[16];
  124. struct iucv_sock *iucv = iucv_sk(sk);
  125. int err;
  126. unsigned long timeo;
  127. iucv_sock_clear_timer(sk);
  128. lock_sock(sk);
  129. switch (sk->sk_state) {
  130. case IUCV_LISTEN:
  131. iucv_sock_cleanup_listen(sk);
  132. break;
  133. case IUCV_CONNECTED:
  134. case IUCV_DISCONN:
  135. err = 0;
  136. sk->sk_state = IUCV_CLOSING;
  137. sk->sk_state_change(sk);
  138. if (!skb_queue_empty(&iucv->send_skb_q)) {
  139. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  140. timeo = sk->sk_lingertime;
  141. else
  142. timeo = IUCV_DISCONN_TIMEOUT;
  143. err = iucv_sock_wait_state(sk, IUCV_CLOSED, 0, timeo);
  144. }
  145. sk->sk_state = IUCV_CLOSED;
  146. sk->sk_state_change(sk);
  147. if (iucv->path) {
  148. low_nmcpy(user_data, iucv->src_name);
  149. high_nmcpy(user_data, iucv->dst_name);
  150. ASCEBC(user_data, sizeof(user_data));
  151. err = iucv_path_sever(iucv->path, user_data);
  152. iucv_path_free(iucv->path);
  153. iucv->path = NULL;
  154. }
  155. sk->sk_err = ECONNRESET;
  156. sk->sk_state_change(sk);
  157. skb_queue_purge(&iucv->send_skb_q);
  158. skb_queue_purge(&iucv->backlog_skb_q);
  159. sock_set_flag(sk, SOCK_ZAPPED);
  160. break;
  161. default:
  162. sock_set_flag(sk, SOCK_ZAPPED);
  163. break;
  164. }
  165. release_sock(sk);
  166. iucv_sock_kill(sk);
  167. }
  168. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  169. {
  170. if (parent)
  171. sk->sk_type = parent->sk_type;
  172. }
  173. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  174. {
  175. struct sock *sk;
  176. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  177. if (!sk)
  178. return NULL;
  179. sock_init_data(sock, sk);
  180. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  181. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  182. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  183. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  184. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  185. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  186. iucv_sk(sk)->send_tag = 0;
  187. sk->sk_destruct = iucv_sock_destruct;
  188. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  189. sk->sk_allocation = GFP_DMA;
  190. sock_reset_flag(sk, SOCK_ZAPPED);
  191. sk->sk_protocol = proto;
  192. sk->sk_state = IUCV_OPEN;
  193. iucv_sock_init_timer(sk);
  194. iucv_sock_link(&iucv_sk_list, sk);
  195. return sk;
  196. }
  197. /* Create an IUCV socket */
  198. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol)
  199. {
  200. struct sock *sk;
  201. if (sock->type != SOCK_STREAM)
  202. return -ESOCKTNOSUPPORT;
  203. sock->state = SS_UNCONNECTED;
  204. sock->ops = &iucv_sock_ops;
  205. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  206. if (!sk)
  207. return -ENOMEM;
  208. iucv_sock_init(sk, NULL);
  209. return 0;
  210. }
  211. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  212. {
  213. write_lock_bh(&l->lock);
  214. sk_add_node(sk, &l->head);
  215. write_unlock_bh(&l->lock);
  216. }
  217. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  218. {
  219. write_lock_bh(&l->lock);
  220. sk_del_node_init(sk);
  221. write_unlock_bh(&l->lock);
  222. }
  223. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  224. {
  225. unsigned long flags;
  226. struct iucv_sock *par = iucv_sk(parent);
  227. sock_hold(sk);
  228. spin_lock_irqsave(&par->accept_q_lock, flags);
  229. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  230. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  231. iucv_sk(sk)->parent = parent;
  232. parent->sk_ack_backlog++;
  233. }
  234. void iucv_accept_unlink(struct sock *sk)
  235. {
  236. unsigned long flags;
  237. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  238. spin_lock_irqsave(&par->accept_q_lock, flags);
  239. list_del_init(&iucv_sk(sk)->accept_q);
  240. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  241. iucv_sk(sk)->parent->sk_ack_backlog--;
  242. iucv_sk(sk)->parent = NULL;
  243. sock_put(sk);
  244. }
  245. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  246. {
  247. struct iucv_sock *isk, *n;
  248. struct sock *sk;
  249. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  250. sk = (struct sock *) isk;
  251. lock_sock(sk);
  252. if (sk->sk_state == IUCV_CLOSED) {
  253. iucv_accept_unlink(sk);
  254. release_sock(sk);
  255. continue;
  256. }
  257. if (sk->sk_state == IUCV_CONNECTED ||
  258. sk->sk_state == IUCV_SEVERED ||
  259. !newsock) {
  260. iucv_accept_unlink(sk);
  261. if (newsock)
  262. sock_graft(sk, newsock);
  263. if (sk->sk_state == IUCV_SEVERED)
  264. sk->sk_state = IUCV_DISCONN;
  265. release_sock(sk);
  266. return sk;
  267. }
  268. release_sock(sk);
  269. }
  270. return NULL;
  271. }
  272. int iucv_sock_wait_state(struct sock *sk, int state, int state2,
  273. unsigned long timeo)
  274. {
  275. DECLARE_WAITQUEUE(wait, current);
  276. int err = 0;
  277. add_wait_queue(sk->sk_sleep, &wait);
  278. while (sk->sk_state != state && sk->sk_state != state2) {
  279. set_current_state(TASK_INTERRUPTIBLE);
  280. if (!timeo) {
  281. err = -EAGAIN;
  282. break;
  283. }
  284. if (signal_pending(current)) {
  285. err = sock_intr_errno(timeo);
  286. break;
  287. }
  288. release_sock(sk);
  289. timeo = schedule_timeout(timeo);
  290. lock_sock(sk);
  291. err = sock_error(sk);
  292. if (err)
  293. break;
  294. }
  295. set_current_state(TASK_RUNNING);
  296. remove_wait_queue(sk->sk_sleep, &wait);
  297. return err;
  298. }
  299. /* Bind an unbound socket */
  300. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  301. int addr_len)
  302. {
  303. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  304. struct sock *sk = sock->sk;
  305. struct iucv_sock *iucv;
  306. int err;
  307. /* Verify the input sockaddr */
  308. if (!addr || addr->sa_family != AF_IUCV)
  309. return -EINVAL;
  310. lock_sock(sk);
  311. if (sk->sk_state != IUCV_OPEN) {
  312. err = -EBADFD;
  313. goto done;
  314. }
  315. write_lock_bh(&iucv_sk_list.lock);
  316. iucv = iucv_sk(sk);
  317. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  318. err = -EADDRINUSE;
  319. goto done_unlock;
  320. }
  321. if (iucv->path) {
  322. err = 0;
  323. goto done_unlock;
  324. }
  325. /* Bind the socket */
  326. memcpy(iucv->src_name, sa->siucv_name, 8);
  327. /* Copy the user id */
  328. memcpy(iucv->src_user_id, iucv_userid, 8);
  329. sk->sk_state = IUCV_BOUND;
  330. err = 0;
  331. done_unlock:
  332. /* Release the socket list lock */
  333. write_unlock_bh(&iucv_sk_list.lock);
  334. done:
  335. release_sock(sk);
  336. return err;
  337. }
  338. /* Automatically bind an unbound socket */
  339. static int iucv_sock_autobind(struct sock *sk)
  340. {
  341. struct iucv_sock *iucv = iucv_sk(sk);
  342. char query_buffer[80];
  343. char name[12];
  344. int err = 0;
  345. /* Set the userid and name */
  346. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  347. if (unlikely(err))
  348. return -EPROTO;
  349. memcpy(iucv->src_user_id, query_buffer, 8);
  350. write_lock_bh(&iucv_sk_list.lock);
  351. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  352. while (__iucv_get_sock_by_name(name)) {
  353. sprintf(name, "%08x",
  354. atomic_inc_return(&iucv_sk_list.autobind_name));
  355. }
  356. write_unlock_bh(&iucv_sk_list.lock);
  357. memcpy(&iucv->src_name, name, 8);
  358. return err;
  359. }
  360. /* Connect an unconnected socket */
  361. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  362. int alen, int flags)
  363. {
  364. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  365. struct sock *sk = sock->sk;
  366. struct iucv_sock *iucv;
  367. unsigned char user_data[16];
  368. int err;
  369. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  370. return -EINVAL;
  371. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  372. return -EBADFD;
  373. if (sk->sk_type != SOCK_STREAM)
  374. return -EINVAL;
  375. iucv = iucv_sk(sk);
  376. if (sk->sk_state == IUCV_OPEN) {
  377. err = iucv_sock_autobind(sk);
  378. if (unlikely(err))
  379. return err;
  380. }
  381. lock_sock(sk);
  382. /* Set the destination information */
  383. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  384. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  385. high_nmcpy(user_data, sa->siucv_name);
  386. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  387. ASCEBC(user_data, sizeof(user_data));
  388. iucv = iucv_sk(sk);
  389. /* Create path. */
  390. iucv->path = iucv_path_alloc(IUCV_QUEUELEN_DEFAULT,
  391. IPRMDATA, GFP_KERNEL);
  392. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  393. sa->siucv_user_id, NULL, user_data, sk);
  394. if (err) {
  395. iucv_path_free(iucv->path);
  396. iucv->path = NULL;
  397. err = -ECONNREFUSED;
  398. goto done;
  399. }
  400. if (sk->sk_state != IUCV_CONNECTED) {
  401. err = iucv_sock_wait_state(sk, IUCV_CONNECTED, IUCV_DISCONN,
  402. sock_sndtimeo(sk, flags & O_NONBLOCK));
  403. }
  404. if (sk->sk_state == IUCV_DISCONN) {
  405. release_sock(sk);
  406. return -ECONNREFUSED;
  407. }
  408. done:
  409. release_sock(sk);
  410. return err;
  411. }
  412. /* Move a socket into listening state. */
  413. static int iucv_sock_listen(struct socket *sock, int backlog)
  414. {
  415. struct sock *sk = sock->sk;
  416. int err;
  417. lock_sock(sk);
  418. err = -EINVAL;
  419. if (sk->sk_state != IUCV_BOUND || sock->type != SOCK_STREAM)
  420. goto done;
  421. sk->sk_max_ack_backlog = backlog;
  422. sk->sk_ack_backlog = 0;
  423. sk->sk_state = IUCV_LISTEN;
  424. err = 0;
  425. done:
  426. release_sock(sk);
  427. return err;
  428. }
  429. /* Accept a pending connection */
  430. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  431. int flags)
  432. {
  433. DECLARE_WAITQUEUE(wait, current);
  434. struct sock *sk = sock->sk, *nsk;
  435. long timeo;
  436. int err = 0;
  437. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  438. if (sk->sk_state != IUCV_LISTEN) {
  439. err = -EBADFD;
  440. goto done;
  441. }
  442. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  443. /* Wait for an incoming connection */
  444. add_wait_queue_exclusive(sk->sk_sleep, &wait);
  445. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  446. set_current_state(TASK_INTERRUPTIBLE);
  447. if (!timeo) {
  448. err = -EAGAIN;
  449. break;
  450. }
  451. release_sock(sk);
  452. timeo = schedule_timeout(timeo);
  453. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  454. if (sk->sk_state != IUCV_LISTEN) {
  455. err = -EBADFD;
  456. break;
  457. }
  458. if (signal_pending(current)) {
  459. err = sock_intr_errno(timeo);
  460. break;
  461. }
  462. }
  463. set_current_state(TASK_RUNNING);
  464. remove_wait_queue(sk->sk_sleep, &wait);
  465. if (err)
  466. goto done;
  467. newsock->state = SS_CONNECTED;
  468. done:
  469. release_sock(sk);
  470. return err;
  471. }
  472. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  473. int *len, int peer)
  474. {
  475. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  476. struct sock *sk = sock->sk;
  477. addr->sa_family = AF_IUCV;
  478. *len = sizeof(struct sockaddr_iucv);
  479. if (peer) {
  480. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  481. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  482. } else {
  483. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  484. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  485. }
  486. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  487. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  488. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  489. return 0;
  490. }
  491. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  492. struct msghdr *msg, size_t len)
  493. {
  494. struct sock *sk = sock->sk;
  495. struct iucv_sock *iucv = iucv_sk(sk);
  496. struct sk_buff *skb;
  497. struct iucv_message txmsg;
  498. int err;
  499. err = sock_error(sk);
  500. if (err)
  501. return err;
  502. if (msg->msg_flags & MSG_OOB)
  503. return -EOPNOTSUPP;
  504. lock_sock(sk);
  505. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  506. err = -EPIPE;
  507. goto out;
  508. }
  509. if (sk->sk_state == IUCV_CONNECTED) {
  510. if (!(skb = sock_alloc_send_skb(sk, len,
  511. msg->msg_flags & MSG_DONTWAIT,
  512. &err)))
  513. goto out;
  514. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  515. err = -EFAULT;
  516. goto fail;
  517. }
  518. txmsg.class = 0;
  519. txmsg.tag = iucv->send_tag++;
  520. memcpy(skb->cb, &txmsg.tag, 4);
  521. skb_queue_tail(&iucv->send_skb_q, skb);
  522. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  523. (void *) skb->data, skb->len);
  524. if (err) {
  525. if (err == 3)
  526. printk(KERN_ERR "AF_IUCV msg limit exceeded\n");
  527. skb_unlink(skb, &iucv->send_skb_q);
  528. err = -EPIPE;
  529. goto fail;
  530. }
  531. } else {
  532. err = -ENOTCONN;
  533. goto out;
  534. }
  535. release_sock(sk);
  536. return len;
  537. fail:
  538. kfree_skb(skb);
  539. out:
  540. release_sock(sk);
  541. return err;
  542. }
  543. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  544. {
  545. int dataleft, size, copied = 0;
  546. struct sk_buff *nskb;
  547. dataleft = len;
  548. while (dataleft) {
  549. if (dataleft >= sk->sk_rcvbuf / 4)
  550. size = sk->sk_rcvbuf / 4;
  551. else
  552. size = dataleft;
  553. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  554. if (!nskb)
  555. return -ENOMEM;
  556. memcpy(nskb->data, skb->data + copied, size);
  557. copied += size;
  558. dataleft -= size;
  559. skb_reset_transport_header(nskb);
  560. skb_reset_network_header(nskb);
  561. nskb->len = size;
  562. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  563. }
  564. return 0;
  565. }
  566. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  567. struct iucv_path *path,
  568. struct iucv_message *msg)
  569. {
  570. int rc;
  571. if (msg->flags & IPRMDATA) {
  572. skb->data = NULL;
  573. skb->len = 0;
  574. } else {
  575. rc = iucv_message_receive(path, msg, 0, skb->data,
  576. msg->length, NULL);
  577. if (rc) {
  578. kfree_skb(skb);
  579. return;
  580. }
  581. if (skb->truesize >= sk->sk_rcvbuf / 4) {
  582. rc = iucv_fragment_skb(sk, skb, msg->length);
  583. kfree_skb(skb);
  584. skb = NULL;
  585. if (rc) {
  586. iucv_path_sever(path, NULL);
  587. return;
  588. }
  589. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  590. } else {
  591. skb_reset_transport_header(skb);
  592. skb_reset_network_header(skb);
  593. skb->len = msg->length;
  594. }
  595. }
  596. if (sock_queue_rcv_skb(sk, skb))
  597. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  598. }
  599. static void iucv_process_message_q(struct sock *sk)
  600. {
  601. struct iucv_sock *iucv = iucv_sk(sk);
  602. struct sk_buff *skb;
  603. struct sock_msg_q *p, *n;
  604. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  605. skb = alloc_skb(p->msg.length, GFP_ATOMIC | GFP_DMA);
  606. if (!skb)
  607. break;
  608. iucv_process_message(sk, skb, p->path, &p->msg);
  609. list_del(&p->list);
  610. kfree(p);
  611. if (!skb_queue_empty(&iucv->backlog_skb_q))
  612. break;
  613. }
  614. }
  615. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  616. struct msghdr *msg, size_t len, int flags)
  617. {
  618. int noblock = flags & MSG_DONTWAIT;
  619. struct sock *sk = sock->sk;
  620. struct iucv_sock *iucv = iucv_sk(sk);
  621. int target, copied = 0;
  622. struct sk_buff *skb, *rskb, *cskb;
  623. int err = 0;
  624. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  625. skb_queue_empty(&iucv->backlog_skb_q) &&
  626. skb_queue_empty(&sk->sk_receive_queue) &&
  627. list_empty(&iucv->message_q.list))
  628. return 0;
  629. if (flags & (MSG_OOB))
  630. return -EOPNOTSUPP;
  631. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  632. skb = skb_recv_datagram(sk, flags, noblock, &err);
  633. if (!skb) {
  634. if (sk->sk_shutdown & RCV_SHUTDOWN)
  635. return 0;
  636. return err;
  637. }
  638. copied = min_t(unsigned int, skb->len, len);
  639. cskb = skb;
  640. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  641. skb_queue_head(&sk->sk_receive_queue, skb);
  642. if (copied == 0)
  643. return -EFAULT;
  644. goto done;
  645. }
  646. len -= copied;
  647. /* Mark read part of skb as used */
  648. if (!(flags & MSG_PEEK)) {
  649. skb_pull(skb, copied);
  650. if (skb->len) {
  651. skb_queue_head(&sk->sk_receive_queue, skb);
  652. goto done;
  653. }
  654. kfree_skb(skb);
  655. /* Queue backlog skbs */
  656. rskb = skb_dequeue(&iucv->backlog_skb_q);
  657. while (rskb) {
  658. if (sock_queue_rcv_skb(sk, rskb)) {
  659. skb_queue_head(&iucv->backlog_skb_q,
  660. rskb);
  661. break;
  662. } else {
  663. rskb = skb_dequeue(&iucv->backlog_skb_q);
  664. }
  665. }
  666. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  667. spin_lock_bh(&iucv->message_q.lock);
  668. if (!list_empty(&iucv->message_q.list))
  669. iucv_process_message_q(sk);
  670. spin_unlock_bh(&iucv->message_q.lock);
  671. }
  672. } else
  673. skb_queue_head(&sk->sk_receive_queue, skb);
  674. done:
  675. return err ? : copied;
  676. }
  677. static inline unsigned int iucv_accept_poll(struct sock *parent)
  678. {
  679. struct iucv_sock *isk, *n;
  680. struct sock *sk;
  681. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  682. sk = (struct sock *) isk;
  683. if (sk->sk_state == IUCV_CONNECTED)
  684. return POLLIN | POLLRDNORM;
  685. }
  686. return 0;
  687. }
  688. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  689. poll_table *wait)
  690. {
  691. struct sock *sk = sock->sk;
  692. unsigned int mask = 0;
  693. poll_wait(file, sk->sk_sleep, wait);
  694. if (sk->sk_state == IUCV_LISTEN)
  695. return iucv_accept_poll(sk);
  696. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  697. mask |= POLLERR;
  698. if (sk->sk_shutdown & RCV_SHUTDOWN)
  699. mask |= POLLRDHUP;
  700. if (sk->sk_shutdown == SHUTDOWN_MASK)
  701. mask |= POLLHUP;
  702. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  703. (sk->sk_shutdown & RCV_SHUTDOWN))
  704. mask |= POLLIN | POLLRDNORM;
  705. if (sk->sk_state == IUCV_CLOSED)
  706. mask |= POLLHUP;
  707. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  708. mask |= POLLIN;
  709. if (sock_writeable(sk))
  710. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  711. else
  712. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  713. return mask;
  714. }
  715. static int iucv_sock_shutdown(struct socket *sock, int how)
  716. {
  717. struct sock *sk = sock->sk;
  718. struct iucv_sock *iucv = iucv_sk(sk);
  719. struct iucv_message txmsg;
  720. int err = 0;
  721. u8 prmmsg[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  722. how++;
  723. if ((how & ~SHUTDOWN_MASK) || !how)
  724. return -EINVAL;
  725. lock_sock(sk);
  726. switch (sk->sk_state) {
  727. case IUCV_CLOSED:
  728. err = -ENOTCONN;
  729. goto fail;
  730. default:
  731. sk->sk_shutdown |= how;
  732. break;
  733. }
  734. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  735. txmsg.class = 0;
  736. txmsg.tag = 0;
  737. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  738. (void *) prmmsg, 8);
  739. if (err) {
  740. switch (err) {
  741. case 1:
  742. err = -ENOTCONN;
  743. break;
  744. case 2:
  745. err = -ECONNRESET;
  746. break;
  747. default:
  748. err = -ENOTCONN;
  749. break;
  750. }
  751. }
  752. }
  753. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  754. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  755. if (err)
  756. err = -ENOTCONN;
  757. skb_queue_purge(&sk->sk_receive_queue);
  758. }
  759. /* Wake up anyone sleeping in poll */
  760. sk->sk_state_change(sk);
  761. fail:
  762. release_sock(sk);
  763. return err;
  764. }
  765. static int iucv_sock_release(struct socket *sock)
  766. {
  767. struct sock *sk = sock->sk;
  768. int err = 0;
  769. if (!sk)
  770. return 0;
  771. iucv_sock_close(sk);
  772. /* Unregister with IUCV base support */
  773. if (iucv_sk(sk)->path) {
  774. iucv_path_sever(iucv_sk(sk)->path, NULL);
  775. iucv_path_free(iucv_sk(sk)->path);
  776. iucv_sk(sk)->path = NULL;
  777. }
  778. sock_orphan(sk);
  779. iucv_sock_kill(sk);
  780. return err;
  781. }
  782. /* Callback wrappers - called from iucv base support */
  783. static int iucv_callback_connreq(struct iucv_path *path,
  784. u8 ipvmid[8], u8 ipuser[16])
  785. {
  786. unsigned char user_data[16];
  787. unsigned char nuser_data[16];
  788. unsigned char src_name[8];
  789. struct hlist_node *node;
  790. struct sock *sk, *nsk;
  791. struct iucv_sock *iucv, *niucv;
  792. int err;
  793. memcpy(src_name, ipuser, 8);
  794. EBCASC(src_name, 8);
  795. /* Find out if this path belongs to af_iucv. */
  796. read_lock(&iucv_sk_list.lock);
  797. iucv = NULL;
  798. sk = NULL;
  799. sk_for_each(sk, node, &iucv_sk_list.head)
  800. if (sk->sk_state == IUCV_LISTEN &&
  801. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  802. /*
  803. * Found a listening socket with
  804. * src_name == ipuser[0-7].
  805. */
  806. iucv = iucv_sk(sk);
  807. break;
  808. }
  809. read_unlock(&iucv_sk_list.lock);
  810. if (!iucv)
  811. /* No socket found, not one of our paths. */
  812. return -EINVAL;
  813. bh_lock_sock(sk);
  814. /* Check if parent socket is listening */
  815. low_nmcpy(user_data, iucv->src_name);
  816. high_nmcpy(user_data, iucv->dst_name);
  817. ASCEBC(user_data, sizeof(user_data));
  818. if (sk->sk_state != IUCV_LISTEN) {
  819. err = iucv_path_sever(path, user_data);
  820. goto fail;
  821. }
  822. /* Check for backlog size */
  823. if (sk_acceptq_is_full(sk)) {
  824. err = iucv_path_sever(path, user_data);
  825. goto fail;
  826. }
  827. /* Create the new socket */
  828. nsk = iucv_sock_alloc(NULL, SOCK_STREAM, GFP_ATOMIC);
  829. if (!nsk) {
  830. err = iucv_path_sever(path, user_data);
  831. goto fail;
  832. }
  833. niucv = iucv_sk(nsk);
  834. iucv_sock_init(nsk, sk);
  835. /* Set the new iucv_sock */
  836. memcpy(niucv->dst_name, ipuser + 8, 8);
  837. EBCASC(niucv->dst_name, 8);
  838. memcpy(niucv->dst_user_id, ipvmid, 8);
  839. memcpy(niucv->src_name, iucv->src_name, 8);
  840. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  841. niucv->path = path;
  842. /* Call iucv_accept */
  843. high_nmcpy(nuser_data, ipuser + 8);
  844. memcpy(nuser_data + 8, niucv->src_name, 8);
  845. ASCEBC(nuser_data + 8, 8);
  846. path->msglim = IUCV_QUEUELEN_DEFAULT;
  847. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  848. if (err) {
  849. err = iucv_path_sever(path, user_data);
  850. goto fail;
  851. }
  852. iucv_accept_enqueue(sk, nsk);
  853. /* Wake up accept */
  854. nsk->sk_state = IUCV_CONNECTED;
  855. sk->sk_data_ready(sk, 1);
  856. err = 0;
  857. fail:
  858. bh_unlock_sock(sk);
  859. return 0;
  860. }
  861. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  862. {
  863. struct sock *sk = path->private;
  864. sk->sk_state = IUCV_CONNECTED;
  865. sk->sk_state_change(sk);
  866. }
  867. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  868. {
  869. struct sock *sk = path->private;
  870. struct iucv_sock *iucv = iucv_sk(sk);
  871. struct sk_buff *skb;
  872. struct sock_msg_q *save_msg;
  873. int len;
  874. if (sk->sk_shutdown & RCV_SHUTDOWN)
  875. return;
  876. if (!list_empty(&iucv->message_q.list) ||
  877. !skb_queue_empty(&iucv->backlog_skb_q))
  878. goto save_message;
  879. len = atomic_read(&sk->sk_rmem_alloc);
  880. len += msg->length + sizeof(struct sk_buff);
  881. if (len > sk->sk_rcvbuf)
  882. goto save_message;
  883. skb = alloc_skb(msg->length, GFP_ATOMIC | GFP_DMA);
  884. if (!skb)
  885. goto save_message;
  886. spin_lock(&iucv->message_q.lock);
  887. iucv_process_message(sk, skb, path, msg);
  888. spin_unlock(&iucv->message_q.lock);
  889. return;
  890. save_message:
  891. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  892. save_msg->path = path;
  893. save_msg->msg = *msg;
  894. spin_lock(&iucv->message_q.lock);
  895. list_add_tail(&save_msg->list, &iucv->message_q.list);
  896. spin_unlock(&iucv->message_q.lock);
  897. }
  898. static void iucv_callback_txdone(struct iucv_path *path,
  899. struct iucv_message *msg)
  900. {
  901. struct sock *sk = path->private;
  902. struct sk_buff *this;
  903. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  904. struct sk_buff *list_skb = list->next;
  905. unsigned long flags;
  906. if (list_skb) {
  907. spin_lock_irqsave(&list->lock, flags);
  908. do {
  909. this = list_skb;
  910. list_skb = list_skb->next;
  911. } while (memcmp(&msg->tag, this->cb, 4) && list_skb);
  912. spin_unlock_irqrestore(&list->lock, flags);
  913. skb_unlink(this, &iucv_sk(sk)->send_skb_q);
  914. kfree_skb(this);
  915. }
  916. if (sk->sk_state == IUCV_CLOSING) {
  917. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  918. sk->sk_state = IUCV_CLOSED;
  919. sk->sk_state_change(sk);
  920. }
  921. }
  922. }
  923. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  924. {
  925. struct sock *sk = path->private;
  926. if (!list_empty(&iucv_sk(sk)->accept_q))
  927. sk->sk_state = IUCV_SEVERED;
  928. else
  929. sk->sk_state = IUCV_DISCONN;
  930. sk->sk_state_change(sk);
  931. }
  932. static struct proto_ops iucv_sock_ops = {
  933. .family = PF_IUCV,
  934. .owner = THIS_MODULE,
  935. .release = iucv_sock_release,
  936. .bind = iucv_sock_bind,
  937. .connect = iucv_sock_connect,
  938. .listen = iucv_sock_listen,
  939. .accept = iucv_sock_accept,
  940. .getname = iucv_sock_getname,
  941. .sendmsg = iucv_sock_sendmsg,
  942. .recvmsg = iucv_sock_recvmsg,
  943. .poll = iucv_sock_poll,
  944. .ioctl = sock_no_ioctl,
  945. .mmap = sock_no_mmap,
  946. .socketpair = sock_no_socketpair,
  947. .shutdown = iucv_sock_shutdown,
  948. .setsockopt = sock_no_setsockopt,
  949. .getsockopt = sock_no_getsockopt
  950. };
  951. static struct net_proto_family iucv_sock_family_ops = {
  952. .family = AF_IUCV,
  953. .owner = THIS_MODULE,
  954. .create = iucv_sock_create,
  955. };
  956. static int __init afiucv_init(void)
  957. {
  958. int err;
  959. if (!MACHINE_IS_VM) {
  960. printk(KERN_ERR "AF_IUCV connection needs VM as base\n");
  961. err = -EPROTONOSUPPORT;
  962. goto out;
  963. }
  964. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  965. if (unlikely(err)) {
  966. printk(KERN_ERR "AF_IUCV needs the VM userid\n");
  967. err = -EPROTONOSUPPORT;
  968. goto out;
  969. }
  970. err = iucv_register(&af_iucv_handler, 0);
  971. if (err)
  972. goto out;
  973. err = proto_register(&iucv_proto, 0);
  974. if (err)
  975. goto out_iucv;
  976. err = sock_register(&iucv_sock_family_ops);
  977. if (err)
  978. goto out_proto;
  979. printk(KERN_INFO "AF_IUCV lowlevel driver initialized\n");
  980. return 0;
  981. out_proto:
  982. proto_unregister(&iucv_proto);
  983. out_iucv:
  984. iucv_unregister(&af_iucv_handler, 0);
  985. out:
  986. return err;
  987. }
  988. static void __exit afiucv_exit(void)
  989. {
  990. sock_unregister(PF_IUCV);
  991. proto_unregister(&iucv_proto);
  992. iucv_unregister(&af_iucv_handler, 0);
  993. printk(KERN_INFO "AF_IUCV lowlevel driver unloaded\n");
  994. }
  995. module_init(afiucv_init);
  996. module_exit(afiucv_exit);
  997. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  998. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  999. MODULE_VERSION(VERSION);
  1000. MODULE_LICENSE("GPL");
  1001. MODULE_ALIAS_NETPROTO(PF_IUCV);