flow.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /* flow.c: Generic flow cache.
  2. *
  3. * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
  4. * Copyright (C) 2003 David S. Miller (davem@redhat.com)
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/list.h>
  9. #include <linux/jhash.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/mm.h>
  12. #include <linux/random.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/smp.h>
  16. #include <linux/completion.h>
  17. #include <linux/percpu.h>
  18. #include <linux/bitops.h>
  19. #include <linux/notifier.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpumask.h>
  22. #include <linux/mutex.h>
  23. #include <net/flow.h>
  24. #include <asm/atomic.h>
  25. #include <asm/semaphore.h>
  26. #include <linux/security.h>
  27. struct flow_cache_entry {
  28. struct flow_cache_entry *next;
  29. u16 family;
  30. u8 dir;
  31. struct flowi key;
  32. u32 genid;
  33. void *object;
  34. atomic_t *object_ref;
  35. };
  36. atomic_t flow_cache_genid = ATOMIC_INIT(0);
  37. static u32 flow_hash_shift;
  38. #define flow_hash_size (1 << flow_hash_shift)
  39. static DEFINE_PER_CPU(struct flow_cache_entry **, flow_tables) = { NULL };
  40. #define flow_table(cpu) (per_cpu(flow_tables, cpu))
  41. static struct kmem_cache *flow_cachep __read_mostly;
  42. static int flow_lwm, flow_hwm;
  43. struct flow_percpu_info {
  44. int hash_rnd_recalc;
  45. u32 hash_rnd;
  46. int count;
  47. } ____cacheline_aligned;
  48. static DEFINE_PER_CPU(struct flow_percpu_info, flow_hash_info) = { 0 };
  49. #define flow_hash_rnd_recalc(cpu) \
  50. (per_cpu(flow_hash_info, cpu).hash_rnd_recalc)
  51. #define flow_hash_rnd(cpu) \
  52. (per_cpu(flow_hash_info, cpu).hash_rnd)
  53. #define flow_count(cpu) \
  54. (per_cpu(flow_hash_info, cpu).count)
  55. static struct timer_list flow_hash_rnd_timer;
  56. #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
  57. struct flow_flush_info {
  58. atomic_t cpuleft;
  59. struct completion completion;
  60. };
  61. static DEFINE_PER_CPU(struct tasklet_struct, flow_flush_tasklets) = { NULL };
  62. #define flow_flush_tasklet(cpu) (&per_cpu(flow_flush_tasklets, cpu))
  63. static void flow_cache_new_hashrnd(unsigned long arg)
  64. {
  65. int i;
  66. for_each_possible_cpu(i)
  67. flow_hash_rnd_recalc(i) = 1;
  68. flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  69. add_timer(&flow_hash_rnd_timer);
  70. }
  71. static void flow_entry_kill(int cpu, struct flow_cache_entry *fle)
  72. {
  73. if (fle->object)
  74. atomic_dec(fle->object_ref);
  75. kmem_cache_free(flow_cachep, fle);
  76. flow_count(cpu)--;
  77. }
  78. static void __flow_cache_shrink(int cpu, int shrink_to)
  79. {
  80. struct flow_cache_entry *fle, **flp;
  81. int i;
  82. for (i = 0; i < flow_hash_size; i++) {
  83. int k = 0;
  84. flp = &flow_table(cpu)[i];
  85. while ((fle = *flp) != NULL && k < shrink_to) {
  86. k++;
  87. flp = &fle->next;
  88. }
  89. while ((fle = *flp) != NULL) {
  90. *flp = fle->next;
  91. flow_entry_kill(cpu, fle);
  92. }
  93. }
  94. }
  95. static void flow_cache_shrink(int cpu)
  96. {
  97. int shrink_to = flow_lwm / flow_hash_size;
  98. __flow_cache_shrink(cpu, shrink_to);
  99. }
  100. static void flow_new_hash_rnd(int cpu)
  101. {
  102. get_random_bytes(&flow_hash_rnd(cpu), sizeof(u32));
  103. flow_hash_rnd_recalc(cpu) = 0;
  104. __flow_cache_shrink(cpu, 0);
  105. }
  106. static u32 flow_hash_code(struct flowi *key, int cpu)
  107. {
  108. u32 *k = (u32 *) key;
  109. return (jhash2(k, (sizeof(*key) / sizeof(u32)), flow_hash_rnd(cpu)) &
  110. (flow_hash_size - 1));
  111. }
  112. #if (BITS_PER_LONG == 64)
  113. typedef u64 flow_compare_t;
  114. #else
  115. typedef u32 flow_compare_t;
  116. #endif
  117. /* I hear what you're saying, use memcmp. But memcmp cannot make
  118. * important assumptions that we can here, such as alignment and
  119. * constant size.
  120. */
  121. static int flow_key_compare(struct flowi *key1, struct flowi *key2)
  122. {
  123. flow_compare_t *k1, *k1_lim, *k2;
  124. const int n_elem = sizeof(struct flowi) / sizeof(flow_compare_t);
  125. BUILD_BUG_ON(sizeof(struct flowi) % sizeof(flow_compare_t));
  126. k1 = (flow_compare_t *) key1;
  127. k1_lim = k1 + n_elem;
  128. k2 = (flow_compare_t *) key2;
  129. do {
  130. if (*k1++ != *k2++)
  131. return 1;
  132. } while (k1 < k1_lim);
  133. return 0;
  134. }
  135. void *flow_cache_lookup(struct flowi *key, u16 family, u8 dir,
  136. flow_resolve_t resolver)
  137. {
  138. struct flow_cache_entry *fle, **head;
  139. unsigned int hash;
  140. int cpu;
  141. local_bh_disable();
  142. cpu = smp_processor_id();
  143. fle = NULL;
  144. /* Packet really early in init? Making flow_cache_init a
  145. * pre-smp initcall would solve this. --RR */
  146. if (!flow_table(cpu))
  147. goto nocache;
  148. if (flow_hash_rnd_recalc(cpu))
  149. flow_new_hash_rnd(cpu);
  150. hash = flow_hash_code(key, cpu);
  151. head = &flow_table(cpu)[hash];
  152. for (fle = *head; fle; fle = fle->next) {
  153. if (fle->family == family &&
  154. fle->dir == dir &&
  155. flow_key_compare(key, &fle->key) == 0) {
  156. if (fle->genid == atomic_read(&flow_cache_genid)) {
  157. void *ret = fle->object;
  158. if (ret)
  159. atomic_inc(fle->object_ref);
  160. local_bh_enable();
  161. return ret;
  162. }
  163. break;
  164. }
  165. }
  166. if (!fle) {
  167. if (flow_count(cpu) > flow_hwm)
  168. flow_cache_shrink(cpu);
  169. fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
  170. if (fle) {
  171. fle->next = *head;
  172. *head = fle;
  173. fle->family = family;
  174. fle->dir = dir;
  175. memcpy(&fle->key, key, sizeof(*key));
  176. fle->object = NULL;
  177. flow_count(cpu)++;
  178. }
  179. }
  180. nocache:
  181. {
  182. int err;
  183. void *obj;
  184. atomic_t *obj_ref;
  185. err = resolver(key, family, dir, &obj, &obj_ref);
  186. if (fle && !err) {
  187. fle->genid = atomic_read(&flow_cache_genid);
  188. if (fle->object)
  189. atomic_dec(fle->object_ref);
  190. fle->object = obj;
  191. fle->object_ref = obj_ref;
  192. if (obj)
  193. atomic_inc(fle->object_ref);
  194. }
  195. local_bh_enable();
  196. if (err)
  197. obj = ERR_PTR(err);
  198. return obj;
  199. }
  200. }
  201. static void flow_cache_flush_tasklet(unsigned long data)
  202. {
  203. struct flow_flush_info *info = (void *)data;
  204. int i;
  205. int cpu;
  206. cpu = smp_processor_id();
  207. for (i = 0; i < flow_hash_size; i++) {
  208. struct flow_cache_entry *fle;
  209. fle = flow_table(cpu)[i];
  210. for (; fle; fle = fle->next) {
  211. unsigned genid = atomic_read(&flow_cache_genid);
  212. if (!fle->object || fle->genid == genid)
  213. continue;
  214. fle->object = NULL;
  215. atomic_dec(fle->object_ref);
  216. }
  217. }
  218. if (atomic_dec_and_test(&info->cpuleft))
  219. complete(&info->completion);
  220. }
  221. static void flow_cache_flush_per_cpu(void *) __attribute__((__unused__));
  222. static void flow_cache_flush_per_cpu(void *data)
  223. {
  224. struct flow_flush_info *info = data;
  225. int cpu;
  226. struct tasklet_struct *tasklet;
  227. cpu = smp_processor_id();
  228. tasklet = flow_flush_tasklet(cpu);
  229. tasklet->data = (unsigned long)info;
  230. tasklet_schedule(tasklet);
  231. }
  232. void flow_cache_flush(void)
  233. {
  234. struct flow_flush_info info;
  235. static DEFINE_MUTEX(flow_flush_sem);
  236. /* Don't want cpus going down or up during this. */
  237. get_online_cpus();
  238. mutex_lock(&flow_flush_sem);
  239. atomic_set(&info.cpuleft, num_online_cpus());
  240. init_completion(&info.completion);
  241. local_bh_disable();
  242. smp_call_function(flow_cache_flush_per_cpu, &info, 1, 0);
  243. flow_cache_flush_tasklet((unsigned long)&info);
  244. local_bh_enable();
  245. wait_for_completion(&info.completion);
  246. mutex_unlock(&flow_flush_sem);
  247. put_online_cpus();
  248. }
  249. static void __devinit flow_cache_cpu_prepare(int cpu)
  250. {
  251. struct tasklet_struct *tasklet;
  252. unsigned long order;
  253. for (order = 0;
  254. (PAGE_SIZE << order) <
  255. (sizeof(struct flow_cache_entry *)*flow_hash_size);
  256. order++)
  257. /* NOTHING */;
  258. flow_table(cpu) = (struct flow_cache_entry **)
  259. __get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
  260. if (!flow_table(cpu))
  261. panic("NET: failed to allocate flow cache order %lu\n", order);
  262. flow_hash_rnd_recalc(cpu) = 1;
  263. flow_count(cpu) = 0;
  264. tasklet = flow_flush_tasklet(cpu);
  265. tasklet_init(tasklet, flow_cache_flush_tasklet, 0);
  266. }
  267. static int flow_cache_cpu(struct notifier_block *nfb,
  268. unsigned long action,
  269. void *hcpu)
  270. {
  271. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
  272. __flow_cache_shrink((unsigned long)hcpu, 0);
  273. return NOTIFY_OK;
  274. }
  275. static int __init flow_cache_init(void)
  276. {
  277. int i;
  278. flow_cachep = kmem_cache_create("flow_cache",
  279. sizeof(struct flow_cache_entry),
  280. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  281. NULL);
  282. flow_hash_shift = 10;
  283. flow_lwm = 2 * flow_hash_size;
  284. flow_hwm = 4 * flow_hash_size;
  285. init_timer(&flow_hash_rnd_timer);
  286. flow_hash_rnd_timer.function = flow_cache_new_hashrnd;
  287. flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  288. add_timer(&flow_hash_rnd_timer);
  289. for_each_possible_cpu(i)
  290. flow_cache_cpu_prepare(i);
  291. hotcpu_notifier(flow_cache_cpu, 0);
  292. return 0;
  293. }
  294. module_init(flow_cache_init);
  295. EXPORT_SYMBOL(flow_cache_genid);
  296. EXPORT_SYMBOL(flow_cache_lookup);