sparse.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. /*
  2. * sparse memory mappings.
  3. */
  4. #include <linux/mm.h>
  5. #include <linux/mmzone.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/highmem.h>
  8. #include <linux/module.h>
  9. #include <linux/spinlock.h>
  10. #include <linux/vmalloc.h>
  11. #include <asm/dma.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. /*
  15. * Permanent SPARSEMEM data:
  16. *
  17. * 1) mem_section - memory sections, mem_map's for valid memory
  18. */
  19. #ifdef CONFIG_SPARSEMEM_EXTREME
  20. struct mem_section *mem_section[NR_SECTION_ROOTS]
  21. ____cacheline_internodealigned_in_smp;
  22. #else
  23. struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  24. ____cacheline_internodealigned_in_smp;
  25. #endif
  26. EXPORT_SYMBOL(mem_section);
  27. #ifdef NODE_NOT_IN_PAGE_FLAGS
  28. /*
  29. * If we did not store the node number in the page then we have to
  30. * do a lookup in the section_to_node_table in order to find which
  31. * node the page belongs to.
  32. */
  33. #if MAX_NUMNODES <= 256
  34. static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  35. #else
  36. static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  37. #endif
  38. int page_to_nid(struct page *page)
  39. {
  40. return section_to_node_table[page_to_section(page)];
  41. }
  42. EXPORT_SYMBOL(page_to_nid);
  43. static void set_section_nid(unsigned long section_nr, int nid)
  44. {
  45. section_to_node_table[section_nr] = nid;
  46. }
  47. #else /* !NODE_NOT_IN_PAGE_FLAGS */
  48. static inline void set_section_nid(unsigned long section_nr, int nid)
  49. {
  50. }
  51. #endif
  52. #ifdef CONFIG_SPARSEMEM_EXTREME
  53. static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
  54. {
  55. struct mem_section *section = NULL;
  56. unsigned long array_size = SECTIONS_PER_ROOT *
  57. sizeof(struct mem_section);
  58. if (slab_is_available())
  59. section = kmalloc_node(array_size, GFP_KERNEL, nid);
  60. else
  61. section = alloc_bootmem_node(NODE_DATA(nid), array_size);
  62. if (section)
  63. memset(section, 0, array_size);
  64. return section;
  65. }
  66. static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  67. {
  68. static DEFINE_SPINLOCK(index_init_lock);
  69. unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  70. struct mem_section *section;
  71. int ret = 0;
  72. if (mem_section[root])
  73. return -EEXIST;
  74. section = sparse_index_alloc(nid);
  75. if (!section)
  76. return -ENOMEM;
  77. /*
  78. * This lock keeps two different sections from
  79. * reallocating for the same index
  80. */
  81. spin_lock(&index_init_lock);
  82. if (mem_section[root]) {
  83. ret = -EEXIST;
  84. goto out;
  85. }
  86. mem_section[root] = section;
  87. out:
  88. spin_unlock(&index_init_lock);
  89. return ret;
  90. }
  91. #else /* !SPARSEMEM_EXTREME */
  92. static inline int sparse_index_init(unsigned long section_nr, int nid)
  93. {
  94. return 0;
  95. }
  96. #endif
  97. /*
  98. * Although written for the SPARSEMEM_EXTREME case, this happens
  99. * to also work for the flat array case because
  100. * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
  101. */
  102. int __section_nr(struct mem_section* ms)
  103. {
  104. unsigned long root_nr;
  105. struct mem_section* root;
  106. for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
  107. root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
  108. if (!root)
  109. continue;
  110. if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
  111. break;
  112. }
  113. return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
  114. }
  115. /*
  116. * During early boot, before section_mem_map is used for an actual
  117. * mem_map, we use section_mem_map to store the section's NUMA
  118. * node. This keeps us from having to use another data structure. The
  119. * node information is cleared just before we store the real mem_map.
  120. */
  121. static inline unsigned long sparse_encode_early_nid(int nid)
  122. {
  123. return (nid << SECTION_NID_SHIFT);
  124. }
  125. static inline int sparse_early_nid(struct mem_section *section)
  126. {
  127. return (section->section_mem_map >> SECTION_NID_SHIFT);
  128. }
  129. /* Record a memory area against a node. */
  130. void __init memory_present(int nid, unsigned long start, unsigned long end)
  131. {
  132. unsigned long pfn;
  133. start &= PAGE_SECTION_MASK;
  134. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
  135. unsigned long section = pfn_to_section_nr(pfn);
  136. struct mem_section *ms;
  137. sparse_index_init(section, nid);
  138. set_section_nid(section, nid);
  139. ms = __nr_to_section(section);
  140. if (!ms->section_mem_map)
  141. ms->section_mem_map = sparse_encode_early_nid(nid) |
  142. SECTION_MARKED_PRESENT;
  143. }
  144. }
  145. /*
  146. * Only used by the i386 NUMA architecures, but relatively
  147. * generic code.
  148. */
  149. unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
  150. unsigned long end_pfn)
  151. {
  152. unsigned long pfn;
  153. unsigned long nr_pages = 0;
  154. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  155. if (nid != early_pfn_to_nid(pfn))
  156. continue;
  157. if (pfn_present(pfn))
  158. nr_pages += PAGES_PER_SECTION;
  159. }
  160. return nr_pages * sizeof(struct page);
  161. }
  162. /*
  163. * Subtle, we encode the real pfn into the mem_map such that
  164. * the identity pfn - section_mem_map will return the actual
  165. * physical page frame number.
  166. */
  167. static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
  168. {
  169. return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
  170. }
  171. /*
  172. * We need this if we ever free the mem_maps. While not implemented yet,
  173. * this function is included for parity with its sibling.
  174. */
  175. static __attribute((unused))
  176. struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
  177. {
  178. return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
  179. }
  180. static int __meminit sparse_init_one_section(struct mem_section *ms,
  181. unsigned long pnum, struct page *mem_map,
  182. unsigned long *pageblock_bitmap)
  183. {
  184. if (!present_section(ms))
  185. return -EINVAL;
  186. ms->section_mem_map &= ~SECTION_MAP_MASK;
  187. ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
  188. SECTION_HAS_MEM_MAP;
  189. ms->pageblock_flags = pageblock_bitmap;
  190. return 1;
  191. }
  192. static unsigned long usemap_size(void)
  193. {
  194. unsigned long size_bytes;
  195. size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
  196. size_bytes = roundup(size_bytes, sizeof(unsigned long));
  197. return size_bytes;
  198. }
  199. #ifdef CONFIG_MEMORY_HOTPLUG
  200. static unsigned long *__kmalloc_section_usemap(void)
  201. {
  202. return kmalloc(usemap_size(), GFP_KERNEL);
  203. }
  204. #endif /* CONFIG_MEMORY_HOTPLUG */
  205. static unsigned long *sparse_early_usemap_alloc(unsigned long pnum)
  206. {
  207. unsigned long *usemap;
  208. struct mem_section *ms = __nr_to_section(pnum);
  209. int nid = sparse_early_nid(ms);
  210. usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
  211. if (usemap)
  212. return usemap;
  213. /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
  214. nid = 0;
  215. printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
  216. return NULL;
  217. }
  218. #ifndef CONFIG_SPARSEMEM_VMEMMAP
  219. struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
  220. {
  221. struct page *map;
  222. map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
  223. if (map)
  224. return map;
  225. map = alloc_bootmem_node(NODE_DATA(nid),
  226. sizeof(struct page) * PAGES_PER_SECTION);
  227. return map;
  228. }
  229. #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
  230. struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
  231. {
  232. struct page *map;
  233. struct mem_section *ms = __nr_to_section(pnum);
  234. int nid = sparse_early_nid(ms);
  235. map = sparse_mem_map_populate(pnum, nid);
  236. if (map)
  237. return map;
  238. printk(KERN_ERR "%s: sparsemem memory map backing failed "
  239. "some memory will not be available.\n", __FUNCTION__);
  240. ms->section_mem_map = 0;
  241. return NULL;
  242. }
  243. /*
  244. * Allocate the accumulated non-linear sections, allocate a mem_map
  245. * for each and record the physical to section mapping.
  246. */
  247. void __init sparse_init(void)
  248. {
  249. unsigned long pnum;
  250. struct page *map;
  251. unsigned long *usemap;
  252. for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
  253. if (!present_section_nr(pnum))
  254. continue;
  255. map = sparse_early_mem_map_alloc(pnum);
  256. if (!map)
  257. continue;
  258. usemap = sparse_early_usemap_alloc(pnum);
  259. if (!usemap)
  260. continue;
  261. sparse_init_one_section(__nr_to_section(pnum), pnum, map,
  262. usemap);
  263. }
  264. }
  265. #ifdef CONFIG_MEMORY_HOTPLUG
  266. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  267. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
  268. unsigned long nr_pages)
  269. {
  270. /* This will make the necessary allocations eventually. */
  271. return sparse_mem_map_populate(pnum, nid);
  272. }
  273. static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
  274. {
  275. return; /* XXX: Not implemented yet */
  276. }
  277. #else
  278. static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
  279. {
  280. struct page *page, *ret;
  281. unsigned long memmap_size = sizeof(struct page) * nr_pages;
  282. page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
  283. if (page)
  284. goto got_map_page;
  285. ret = vmalloc(memmap_size);
  286. if (ret)
  287. goto got_map_ptr;
  288. return NULL;
  289. got_map_page:
  290. ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
  291. got_map_ptr:
  292. memset(ret, 0, memmap_size);
  293. return ret;
  294. }
  295. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
  296. unsigned long nr_pages)
  297. {
  298. return __kmalloc_section_memmap(nr_pages);
  299. }
  300. static int vaddr_in_vmalloc_area(void *addr)
  301. {
  302. if (addr >= (void *)VMALLOC_START &&
  303. addr < (void *)VMALLOC_END)
  304. return 1;
  305. return 0;
  306. }
  307. static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
  308. {
  309. if (vaddr_in_vmalloc_area(memmap))
  310. vfree(memmap);
  311. else
  312. free_pages((unsigned long)memmap,
  313. get_order(sizeof(struct page) * nr_pages));
  314. }
  315. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  316. /*
  317. * returns the number of sections whose mem_maps were properly
  318. * set. If this is <=0, then that means that the passed-in
  319. * map was not consumed and must be freed.
  320. */
  321. int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
  322. int nr_pages)
  323. {
  324. unsigned long section_nr = pfn_to_section_nr(start_pfn);
  325. struct pglist_data *pgdat = zone->zone_pgdat;
  326. struct mem_section *ms;
  327. struct page *memmap;
  328. unsigned long *usemap;
  329. unsigned long flags;
  330. int ret;
  331. /*
  332. * no locking for this, because it does its own
  333. * plus, it does a kmalloc
  334. */
  335. ret = sparse_index_init(section_nr, pgdat->node_id);
  336. if (ret < 0 && ret != -EEXIST)
  337. return ret;
  338. memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
  339. if (!memmap)
  340. return -ENOMEM;
  341. usemap = __kmalloc_section_usemap();
  342. if (!usemap) {
  343. __kfree_section_memmap(memmap, nr_pages);
  344. return -ENOMEM;
  345. }
  346. pgdat_resize_lock(pgdat, &flags);
  347. ms = __pfn_to_section(start_pfn);
  348. if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
  349. ret = -EEXIST;
  350. goto out;
  351. }
  352. ms->section_mem_map |= SECTION_MARKED_PRESENT;
  353. ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
  354. out:
  355. pgdat_resize_unlock(pgdat, &flags);
  356. if (ret <= 0) {
  357. kfree(usemap);
  358. __kfree_section_memmap(memmap, nr_pages);
  359. }
  360. return ret;
  361. }
  362. #endif