slub.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/memory.h>
  23. /*
  24. * Lock order:
  25. * 1. slab_lock(page)
  26. * 2. slab->list_lock
  27. *
  28. * The slab_lock protects operations on the object of a particular
  29. * slab and its metadata in the page struct. If the slab lock
  30. * has been taken then no allocations nor frees can be performed
  31. * on the objects in the slab nor can the slab be added or removed
  32. * from the partial or full lists since this would mean modifying
  33. * the page_struct of the slab.
  34. *
  35. * The list_lock protects the partial and full list on each node and
  36. * the partial slab counter. If taken then no new slabs may be added or
  37. * removed from the lists nor make the number of partial slabs be modified.
  38. * (Note that the total number of slabs is an atomic value that may be
  39. * modified without taking the list lock).
  40. *
  41. * The list_lock is a centralized lock and thus we avoid taking it as
  42. * much as possible. As long as SLUB does not have to handle partial
  43. * slabs, operations can continue without any centralized lock. F.e.
  44. * allocating a long series of objects that fill up slabs does not require
  45. * the list lock.
  46. *
  47. * The lock order is sometimes inverted when we are trying to get a slab
  48. * off a list. We take the list_lock and then look for a page on the list
  49. * to use. While we do that objects in the slabs may be freed. We can
  50. * only operate on the slab if we have also taken the slab_lock. So we use
  51. * a slab_trylock() on the slab. If trylock was successful then no frees
  52. * can occur anymore and we can use the slab for allocations etc. If the
  53. * slab_trylock() does not succeed then frees are in progress in the slab and
  54. * we must stay away from it for a while since we may cause a bouncing
  55. * cacheline if we try to acquire the lock. So go onto the next slab.
  56. * If all pages are busy then we may allocate a new slab instead of reusing
  57. * a partial slab. A new slab has noone operating on it and thus there is
  58. * no danger of cacheline contention.
  59. *
  60. * Interrupts are disabled during allocation and deallocation in order to
  61. * make the slab allocator safe to use in the context of an irq. In addition
  62. * interrupts are disabled to ensure that the processor does not change
  63. * while handling per_cpu slabs, due to kernel preemption.
  64. *
  65. * SLUB assigns one slab for allocation to each processor.
  66. * Allocations only occur from these slabs called cpu slabs.
  67. *
  68. * Slabs with free elements are kept on a partial list and during regular
  69. * operations no list for full slabs is used. If an object in a full slab is
  70. * freed then the slab will show up again on the partial lists.
  71. * We track full slabs for debugging purposes though because otherwise we
  72. * cannot scan all objects.
  73. *
  74. * Slabs are freed when they become empty. Teardown and setup is
  75. * minimal so we rely on the page allocators per cpu caches for
  76. * fast frees and allocs.
  77. *
  78. * Overloading of page flags that are otherwise used for LRU management.
  79. *
  80. * PageActive The slab is frozen and exempt from list processing.
  81. * This means that the slab is dedicated to a purpose
  82. * such as satisfying allocations for a specific
  83. * processor. Objects may be freed in the slab while
  84. * it is frozen but slab_free will then skip the usual
  85. * list operations. It is up to the processor holding
  86. * the slab to integrate the slab into the slab lists
  87. * when the slab is no longer needed.
  88. *
  89. * One use of this flag is to mark slabs that are
  90. * used for allocations. Then such a slab becomes a cpu
  91. * slab. The cpu slab may be equipped with an additional
  92. * freelist that allows lockless access to
  93. * free objects in addition to the regular freelist
  94. * that requires the slab lock.
  95. *
  96. * PageError Slab requires special handling due to debug
  97. * options set. This moves slab handling out of
  98. * the fast path and disables lockless freelists.
  99. */
  100. #define FROZEN (1 << PG_active)
  101. #ifdef CONFIG_SLUB_DEBUG
  102. #define SLABDEBUG (1 << PG_error)
  103. #else
  104. #define SLABDEBUG 0
  105. #endif
  106. static inline int SlabFrozen(struct page *page)
  107. {
  108. return page->flags & FROZEN;
  109. }
  110. static inline void SetSlabFrozen(struct page *page)
  111. {
  112. page->flags |= FROZEN;
  113. }
  114. static inline void ClearSlabFrozen(struct page *page)
  115. {
  116. page->flags &= ~FROZEN;
  117. }
  118. static inline int SlabDebug(struct page *page)
  119. {
  120. return page->flags & SLABDEBUG;
  121. }
  122. static inline void SetSlabDebug(struct page *page)
  123. {
  124. page->flags |= SLABDEBUG;
  125. }
  126. static inline void ClearSlabDebug(struct page *page)
  127. {
  128. page->flags &= ~SLABDEBUG;
  129. }
  130. /*
  131. * Issues still to be resolved:
  132. *
  133. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  134. *
  135. * - Variable sizing of the per node arrays
  136. */
  137. /* Enable to test recovery from slab corruption on boot */
  138. #undef SLUB_RESILIENCY_TEST
  139. #if PAGE_SHIFT <= 12
  140. /*
  141. * Small page size. Make sure that we do not fragment memory
  142. */
  143. #define DEFAULT_MAX_ORDER 1
  144. #define DEFAULT_MIN_OBJECTS 4
  145. #else
  146. /*
  147. * Large page machines are customarily able to handle larger
  148. * page orders.
  149. */
  150. #define DEFAULT_MAX_ORDER 2
  151. #define DEFAULT_MIN_OBJECTS 8
  152. #endif
  153. /*
  154. * Mininum number of partial slabs. These will be left on the partial
  155. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  156. */
  157. #define MIN_PARTIAL 5
  158. /*
  159. * Maximum number of desirable partial slabs.
  160. * The existence of more partial slabs makes kmem_cache_shrink
  161. * sort the partial list by the number of objects in the.
  162. */
  163. #define MAX_PARTIAL 10
  164. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_STORE_USER)
  166. /*
  167. * Set of flags that will prevent slab merging
  168. */
  169. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  170. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  171. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  172. SLAB_CACHE_DMA)
  173. #ifndef ARCH_KMALLOC_MINALIGN
  174. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  175. #endif
  176. #ifndef ARCH_SLAB_MINALIGN
  177. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  178. #endif
  179. /* Internal SLUB flags */
  180. #define __OBJECT_POISON 0x80000000 /* Poison object */
  181. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  182. /* Not all arches define cache_line_size */
  183. #ifndef cache_line_size
  184. #define cache_line_size() L1_CACHE_BYTES
  185. #endif
  186. static int kmem_size = sizeof(struct kmem_cache);
  187. #ifdef CONFIG_SMP
  188. static struct notifier_block slab_notifier;
  189. #endif
  190. static enum {
  191. DOWN, /* No slab functionality available */
  192. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  193. UP, /* Everything works but does not show up in sysfs */
  194. SYSFS /* Sysfs up */
  195. } slab_state = DOWN;
  196. /* A list of all slab caches on the system */
  197. static DECLARE_RWSEM(slub_lock);
  198. static LIST_HEAD(slab_caches);
  199. /*
  200. * Tracking user of a slab.
  201. */
  202. struct track {
  203. void *addr; /* Called from address */
  204. int cpu; /* Was running on cpu */
  205. int pid; /* Pid context */
  206. unsigned long when; /* When did the operation occur */
  207. };
  208. enum track_item { TRACK_ALLOC, TRACK_FREE };
  209. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  210. static int sysfs_slab_add(struct kmem_cache *);
  211. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  212. static void sysfs_slab_remove(struct kmem_cache *);
  213. #else
  214. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  215. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  216. { return 0; }
  217. static inline void sysfs_slab_remove(struct kmem_cache *s) {}
  218. #endif
  219. /********************************************************************
  220. * Core slab cache functions
  221. *******************************************************************/
  222. int slab_is_available(void)
  223. {
  224. return slab_state >= UP;
  225. }
  226. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  227. {
  228. #ifdef CONFIG_NUMA
  229. return s->node[node];
  230. #else
  231. return &s->local_node;
  232. #endif
  233. }
  234. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  235. {
  236. #ifdef CONFIG_SMP
  237. return s->cpu_slab[cpu];
  238. #else
  239. return &s->cpu_slab;
  240. #endif
  241. }
  242. static inline int check_valid_pointer(struct kmem_cache *s,
  243. struct page *page, const void *object)
  244. {
  245. void *base;
  246. if (!object)
  247. return 1;
  248. base = page_address(page);
  249. if (object < base || object >= base + s->objects * s->size ||
  250. (object - base) % s->size) {
  251. return 0;
  252. }
  253. return 1;
  254. }
  255. /*
  256. * Slow version of get and set free pointer.
  257. *
  258. * This version requires touching the cache lines of kmem_cache which
  259. * we avoid to do in the fast alloc free paths. There we obtain the offset
  260. * from the page struct.
  261. */
  262. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  263. {
  264. return *(void **)(object + s->offset);
  265. }
  266. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  267. {
  268. *(void **)(object + s->offset) = fp;
  269. }
  270. /* Loop over all objects in a slab */
  271. #define for_each_object(__p, __s, __addr) \
  272. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  273. __p += (__s)->size)
  274. /* Scan freelist */
  275. #define for_each_free_object(__p, __s, __free) \
  276. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  277. /* Determine object index from a given position */
  278. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  279. {
  280. return (p - addr) / s->size;
  281. }
  282. #ifdef CONFIG_SLUB_DEBUG
  283. /*
  284. * Debug settings:
  285. */
  286. #ifdef CONFIG_SLUB_DEBUG_ON
  287. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  288. #else
  289. static int slub_debug;
  290. #endif
  291. static char *slub_debug_slabs;
  292. /*
  293. * Object debugging
  294. */
  295. static void print_section(char *text, u8 *addr, unsigned int length)
  296. {
  297. int i, offset;
  298. int newline = 1;
  299. char ascii[17];
  300. ascii[16] = 0;
  301. for (i = 0; i < length; i++) {
  302. if (newline) {
  303. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  304. newline = 0;
  305. }
  306. printk(" %02x", addr[i]);
  307. offset = i % 16;
  308. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  309. if (offset == 15) {
  310. printk(" %s\n",ascii);
  311. newline = 1;
  312. }
  313. }
  314. if (!newline) {
  315. i %= 16;
  316. while (i < 16) {
  317. printk(" ");
  318. ascii[i] = ' ';
  319. i++;
  320. }
  321. printk(" %s\n", ascii);
  322. }
  323. }
  324. static struct track *get_track(struct kmem_cache *s, void *object,
  325. enum track_item alloc)
  326. {
  327. struct track *p;
  328. if (s->offset)
  329. p = object + s->offset + sizeof(void *);
  330. else
  331. p = object + s->inuse;
  332. return p + alloc;
  333. }
  334. static void set_track(struct kmem_cache *s, void *object,
  335. enum track_item alloc, void *addr)
  336. {
  337. struct track *p;
  338. if (s->offset)
  339. p = object + s->offset + sizeof(void *);
  340. else
  341. p = object + s->inuse;
  342. p += alloc;
  343. if (addr) {
  344. p->addr = addr;
  345. p->cpu = smp_processor_id();
  346. p->pid = current ? current->pid : -1;
  347. p->when = jiffies;
  348. } else
  349. memset(p, 0, sizeof(struct track));
  350. }
  351. static void init_tracking(struct kmem_cache *s, void *object)
  352. {
  353. if (!(s->flags & SLAB_STORE_USER))
  354. return;
  355. set_track(s, object, TRACK_FREE, NULL);
  356. set_track(s, object, TRACK_ALLOC, NULL);
  357. }
  358. static void print_track(const char *s, struct track *t)
  359. {
  360. if (!t->addr)
  361. return;
  362. printk(KERN_ERR "INFO: %s in ", s);
  363. __print_symbol("%s", (unsigned long)t->addr);
  364. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  365. }
  366. static void print_tracking(struct kmem_cache *s, void *object)
  367. {
  368. if (!(s->flags & SLAB_STORE_USER))
  369. return;
  370. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  371. print_track("Freed", get_track(s, object, TRACK_FREE));
  372. }
  373. static void print_page_info(struct page *page)
  374. {
  375. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  376. page, page->inuse, page->freelist, page->flags);
  377. }
  378. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  379. {
  380. va_list args;
  381. char buf[100];
  382. va_start(args, fmt);
  383. vsnprintf(buf, sizeof(buf), fmt, args);
  384. va_end(args);
  385. printk(KERN_ERR "========================================"
  386. "=====================================\n");
  387. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  388. printk(KERN_ERR "----------------------------------------"
  389. "-------------------------------------\n\n");
  390. }
  391. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  392. {
  393. va_list args;
  394. char buf[100];
  395. va_start(args, fmt);
  396. vsnprintf(buf, sizeof(buf), fmt, args);
  397. va_end(args);
  398. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  399. }
  400. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  401. {
  402. unsigned int off; /* Offset of last byte */
  403. u8 *addr = page_address(page);
  404. print_tracking(s, p);
  405. print_page_info(page);
  406. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  407. p, p - addr, get_freepointer(s, p));
  408. if (p > addr + 16)
  409. print_section("Bytes b4", p - 16, 16);
  410. print_section("Object", p, min(s->objsize, 128));
  411. if (s->flags & SLAB_RED_ZONE)
  412. print_section("Redzone", p + s->objsize,
  413. s->inuse - s->objsize);
  414. if (s->offset)
  415. off = s->offset + sizeof(void *);
  416. else
  417. off = s->inuse;
  418. if (s->flags & SLAB_STORE_USER)
  419. off += 2 * sizeof(struct track);
  420. if (off != s->size)
  421. /* Beginning of the filler is the free pointer */
  422. print_section("Padding", p + off, s->size - off);
  423. dump_stack();
  424. }
  425. static void object_err(struct kmem_cache *s, struct page *page,
  426. u8 *object, char *reason)
  427. {
  428. slab_bug(s, reason);
  429. print_trailer(s, page, object);
  430. }
  431. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  432. {
  433. va_list args;
  434. char buf[100];
  435. va_start(args, fmt);
  436. vsnprintf(buf, sizeof(buf), fmt, args);
  437. va_end(args);
  438. slab_bug(s, fmt);
  439. print_page_info(page);
  440. dump_stack();
  441. }
  442. static void init_object(struct kmem_cache *s, void *object, int active)
  443. {
  444. u8 *p = object;
  445. if (s->flags & __OBJECT_POISON) {
  446. memset(p, POISON_FREE, s->objsize - 1);
  447. p[s->objsize -1] = POISON_END;
  448. }
  449. if (s->flags & SLAB_RED_ZONE)
  450. memset(p + s->objsize,
  451. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  452. s->inuse - s->objsize);
  453. }
  454. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  455. {
  456. while (bytes) {
  457. if (*start != (u8)value)
  458. return start;
  459. start++;
  460. bytes--;
  461. }
  462. return NULL;
  463. }
  464. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  465. void *from, void *to)
  466. {
  467. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  468. memset(from, data, to - from);
  469. }
  470. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  471. u8 *object, char *what,
  472. u8* start, unsigned int value, unsigned int bytes)
  473. {
  474. u8 *fault;
  475. u8 *end;
  476. fault = check_bytes(start, value, bytes);
  477. if (!fault)
  478. return 1;
  479. end = start + bytes;
  480. while (end > fault && end[-1] == value)
  481. end--;
  482. slab_bug(s, "%s overwritten", what);
  483. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  484. fault, end - 1, fault[0], value);
  485. print_trailer(s, page, object);
  486. restore_bytes(s, what, value, fault, end);
  487. return 0;
  488. }
  489. /*
  490. * Object layout:
  491. *
  492. * object address
  493. * Bytes of the object to be managed.
  494. * If the freepointer may overlay the object then the free
  495. * pointer is the first word of the object.
  496. *
  497. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  498. * 0xa5 (POISON_END)
  499. *
  500. * object + s->objsize
  501. * Padding to reach word boundary. This is also used for Redzoning.
  502. * Padding is extended by another word if Redzoning is enabled and
  503. * objsize == inuse.
  504. *
  505. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  506. * 0xcc (RED_ACTIVE) for objects in use.
  507. *
  508. * object + s->inuse
  509. * Meta data starts here.
  510. *
  511. * A. Free pointer (if we cannot overwrite object on free)
  512. * B. Tracking data for SLAB_STORE_USER
  513. * C. Padding to reach required alignment boundary or at mininum
  514. * one word if debuggin is on to be able to detect writes
  515. * before the word boundary.
  516. *
  517. * Padding is done using 0x5a (POISON_INUSE)
  518. *
  519. * object + s->size
  520. * Nothing is used beyond s->size.
  521. *
  522. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  523. * ignored. And therefore no slab options that rely on these boundaries
  524. * may be used with merged slabcaches.
  525. */
  526. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  527. {
  528. unsigned long off = s->inuse; /* The end of info */
  529. if (s->offset)
  530. /* Freepointer is placed after the object. */
  531. off += sizeof(void *);
  532. if (s->flags & SLAB_STORE_USER)
  533. /* We also have user information there */
  534. off += 2 * sizeof(struct track);
  535. if (s->size == off)
  536. return 1;
  537. return check_bytes_and_report(s, page, p, "Object padding",
  538. p + off, POISON_INUSE, s->size - off);
  539. }
  540. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  541. {
  542. u8 *start;
  543. u8 *fault;
  544. u8 *end;
  545. int length;
  546. int remainder;
  547. if (!(s->flags & SLAB_POISON))
  548. return 1;
  549. start = page_address(page);
  550. end = start + (PAGE_SIZE << s->order);
  551. length = s->objects * s->size;
  552. remainder = end - (start + length);
  553. if (!remainder)
  554. return 1;
  555. fault = check_bytes(start + length, POISON_INUSE, remainder);
  556. if (!fault)
  557. return 1;
  558. while (end > fault && end[-1] == POISON_INUSE)
  559. end--;
  560. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  561. print_section("Padding", start, length);
  562. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  563. return 0;
  564. }
  565. static int check_object(struct kmem_cache *s, struct page *page,
  566. void *object, int active)
  567. {
  568. u8 *p = object;
  569. u8 *endobject = object + s->objsize;
  570. if (s->flags & SLAB_RED_ZONE) {
  571. unsigned int red =
  572. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  573. if (!check_bytes_and_report(s, page, object, "Redzone",
  574. endobject, red, s->inuse - s->objsize))
  575. return 0;
  576. } else {
  577. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
  578. check_bytes_and_report(s, page, p, "Alignment padding", endobject,
  579. POISON_INUSE, s->inuse - s->objsize);
  580. }
  581. if (s->flags & SLAB_POISON) {
  582. if (!active && (s->flags & __OBJECT_POISON) &&
  583. (!check_bytes_and_report(s, page, p, "Poison", p,
  584. POISON_FREE, s->objsize - 1) ||
  585. !check_bytes_and_report(s, page, p, "Poison",
  586. p + s->objsize -1, POISON_END, 1)))
  587. return 0;
  588. /*
  589. * check_pad_bytes cleans up on its own.
  590. */
  591. check_pad_bytes(s, page, p);
  592. }
  593. if (!s->offset && active)
  594. /*
  595. * Object and freepointer overlap. Cannot check
  596. * freepointer while object is allocated.
  597. */
  598. return 1;
  599. /* Check free pointer validity */
  600. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  601. object_err(s, page, p, "Freepointer corrupt");
  602. /*
  603. * No choice but to zap it and thus loose the remainder
  604. * of the free objects in this slab. May cause
  605. * another error because the object count is now wrong.
  606. */
  607. set_freepointer(s, p, NULL);
  608. return 0;
  609. }
  610. return 1;
  611. }
  612. static int check_slab(struct kmem_cache *s, struct page *page)
  613. {
  614. VM_BUG_ON(!irqs_disabled());
  615. if (!PageSlab(page)) {
  616. slab_err(s, page, "Not a valid slab page");
  617. return 0;
  618. }
  619. if (page->inuse > s->objects) {
  620. slab_err(s, page, "inuse %u > max %u",
  621. s->name, page->inuse, s->objects);
  622. return 0;
  623. }
  624. /* Slab_pad_check fixes things up after itself */
  625. slab_pad_check(s, page);
  626. return 1;
  627. }
  628. /*
  629. * Determine if a certain object on a page is on the freelist. Must hold the
  630. * slab lock to guarantee that the chains are in a consistent state.
  631. */
  632. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  633. {
  634. int nr = 0;
  635. void *fp = page->freelist;
  636. void *object = NULL;
  637. while (fp && nr <= s->objects) {
  638. if (fp == search)
  639. return 1;
  640. if (!check_valid_pointer(s, page, fp)) {
  641. if (object) {
  642. object_err(s, page, object,
  643. "Freechain corrupt");
  644. set_freepointer(s, object, NULL);
  645. break;
  646. } else {
  647. slab_err(s, page, "Freepointer corrupt");
  648. page->freelist = NULL;
  649. page->inuse = s->objects;
  650. slab_fix(s, "Freelist cleared");
  651. return 0;
  652. }
  653. break;
  654. }
  655. object = fp;
  656. fp = get_freepointer(s, object);
  657. nr++;
  658. }
  659. if (page->inuse != s->objects - nr) {
  660. slab_err(s, page, "Wrong object count. Counter is %d but "
  661. "counted were %d", page->inuse, s->objects - nr);
  662. page->inuse = s->objects - nr;
  663. slab_fix(s, "Object count adjusted.");
  664. }
  665. return search == NULL;
  666. }
  667. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  668. {
  669. if (s->flags & SLAB_TRACE) {
  670. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  671. s->name,
  672. alloc ? "alloc" : "free",
  673. object, page->inuse,
  674. page->freelist);
  675. if (!alloc)
  676. print_section("Object", (void *)object, s->objsize);
  677. dump_stack();
  678. }
  679. }
  680. /*
  681. * Tracking of fully allocated slabs for debugging purposes.
  682. */
  683. static void add_full(struct kmem_cache_node *n, struct page *page)
  684. {
  685. spin_lock(&n->list_lock);
  686. list_add(&page->lru, &n->full);
  687. spin_unlock(&n->list_lock);
  688. }
  689. static void remove_full(struct kmem_cache *s, struct page *page)
  690. {
  691. struct kmem_cache_node *n;
  692. if (!(s->flags & SLAB_STORE_USER))
  693. return;
  694. n = get_node(s, page_to_nid(page));
  695. spin_lock(&n->list_lock);
  696. list_del(&page->lru);
  697. spin_unlock(&n->list_lock);
  698. }
  699. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  700. void *object)
  701. {
  702. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  703. return;
  704. init_object(s, object, 0);
  705. init_tracking(s, object);
  706. }
  707. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  708. void *object, void *addr)
  709. {
  710. if (!check_slab(s, page))
  711. goto bad;
  712. if (object && !on_freelist(s, page, object)) {
  713. object_err(s, page, object, "Object already allocated");
  714. goto bad;
  715. }
  716. if (!check_valid_pointer(s, page, object)) {
  717. object_err(s, page, object, "Freelist Pointer check fails");
  718. goto bad;
  719. }
  720. if (object && !check_object(s, page, object, 0))
  721. goto bad;
  722. /* Success perform special debug activities for allocs */
  723. if (s->flags & SLAB_STORE_USER)
  724. set_track(s, object, TRACK_ALLOC, addr);
  725. trace(s, page, object, 1);
  726. init_object(s, object, 1);
  727. return 1;
  728. bad:
  729. if (PageSlab(page)) {
  730. /*
  731. * If this is a slab page then lets do the best we can
  732. * to avoid issues in the future. Marking all objects
  733. * as used avoids touching the remaining objects.
  734. */
  735. slab_fix(s, "Marking all objects used");
  736. page->inuse = s->objects;
  737. page->freelist = NULL;
  738. }
  739. return 0;
  740. }
  741. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  742. void *object, void *addr)
  743. {
  744. if (!check_slab(s, page))
  745. goto fail;
  746. if (!check_valid_pointer(s, page, object)) {
  747. slab_err(s, page, "Invalid object pointer 0x%p", object);
  748. goto fail;
  749. }
  750. if (on_freelist(s, page, object)) {
  751. object_err(s, page, object, "Object already free");
  752. goto fail;
  753. }
  754. if (!check_object(s, page, object, 1))
  755. return 0;
  756. if (unlikely(s != page->slab)) {
  757. if (!PageSlab(page))
  758. slab_err(s, page, "Attempt to free object(0x%p) "
  759. "outside of slab", object);
  760. else
  761. if (!page->slab) {
  762. printk(KERN_ERR
  763. "SLUB <none>: no slab for object 0x%p.\n",
  764. object);
  765. dump_stack();
  766. }
  767. else
  768. object_err(s, page, object,
  769. "page slab pointer corrupt.");
  770. goto fail;
  771. }
  772. /* Special debug activities for freeing objects */
  773. if (!SlabFrozen(page) && !page->freelist)
  774. remove_full(s, page);
  775. if (s->flags & SLAB_STORE_USER)
  776. set_track(s, object, TRACK_FREE, addr);
  777. trace(s, page, object, 0);
  778. init_object(s, object, 0);
  779. return 1;
  780. fail:
  781. slab_fix(s, "Object at 0x%p not freed", object);
  782. return 0;
  783. }
  784. static int __init setup_slub_debug(char *str)
  785. {
  786. slub_debug = DEBUG_DEFAULT_FLAGS;
  787. if (*str++ != '=' || !*str)
  788. /*
  789. * No options specified. Switch on full debugging.
  790. */
  791. goto out;
  792. if (*str == ',')
  793. /*
  794. * No options but restriction on slabs. This means full
  795. * debugging for slabs matching a pattern.
  796. */
  797. goto check_slabs;
  798. slub_debug = 0;
  799. if (*str == '-')
  800. /*
  801. * Switch off all debugging measures.
  802. */
  803. goto out;
  804. /*
  805. * Determine which debug features should be switched on
  806. */
  807. for ( ;*str && *str != ','; str++) {
  808. switch (tolower(*str)) {
  809. case 'f':
  810. slub_debug |= SLAB_DEBUG_FREE;
  811. break;
  812. case 'z':
  813. slub_debug |= SLAB_RED_ZONE;
  814. break;
  815. case 'p':
  816. slub_debug |= SLAB_POISON;
  817. break;
  818. case 'u':
  819. slub_debug |= SLAB_STORE_USER;
  820. break;
  821. case 't':
  822. slub_debug |= SLAB_TRACE;
  823. break;
  824. default:
  825. printk(KERN_ERR "slub_debug option '%c' "
  826. "unknown. skipped\n",*str);
  827. }
  828. }
  829. check_slabs:
  830. if (*str == ',')
  831. slub_debug_slabs = str + 1;
  832. out:
  833. return 1;
  834. }
  835. __setup("slub_debug", setup_slub_debug);
  836. static unsigned long kmem_cache_flags(unsigned long objsize,
  837. unsigned long flags, const char *name,
  838. void (*ctor)(struct kmem_cache *, void *))
  839. {
  840. /*
  841. * The page->offset field is only 16 bit wide. This is an offset
  842. * in units of words from the beginning of an object. If the slab
  843. * size is bigger then we cannot move the free pointer behind the
  844. * object anymore.
  845. *
  846. * On 32 bit platforms the limit is 256k. On 64bit platforms
  847. * the limit is 512k.
  848. *
  849. * Debugging or ctor may create a need to move the free
  850. * pointer. Fail if this happens.
  851. */
  852. if (objsize >= 65535 * sizeof(void *)) {
  853. BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
  854. SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
  855. BUG_ON(ctor);
  856. } else {
  857. /*
  858. * Enable debugging if selected on the kernel commandline.
  859. */
  860. if (slub_debug && (!slub_debug_slabs ||
  861. strncmp(slub_debug_slabs, name,
  862. strlen(slub_debug_slabs)) == 0))
  863. flags |= slub_debug;
  864. }
  865. return flags;
  866. }
  867. #else
  868. static inline void setup_object_debug(struct kmem_cache *s,
  869. struct page *page, void *object) {}
  870. static inline int alloc_debug_processing(struct kmem_cache *s,
  871. struct page *page, void *object, void *addr) { return 0; }
  872. static inline int free_debug_processing(struct kmem_cache *s,
  873. struct page *page, void *object, void *addr) { return 0; }
  874. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  875. { return 1; }
  876. static inline int check_object(struct kmem_cache *s, struct page *page,
  877. void *object, int active) { return 1; }
  878. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  879. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  880. unsigned long flags, const char *name,
  881. void (*ctor)(struct kmem_cache *, void *))
  882. {
  883. return flags;
  884. }
  885. #define slub_debug 0
  886. #endif
  887. /*
  888. * Slab allocation and freeing
  889. */
  890. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  891. {
  892. struct page * page;
  893. int pages = 1 << s->order;
  894. if (s->order)
  895. flags |= __GFP_COMP;
  896. if (s->flags & SLAB_CACHE_DMA)
  897. flags |= SLUB_DMA;
  898. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  899. flags |= __GFP_RECLAIMABLE;
  900. if (node == -1)
  901. page = alloc_pages(flags, s->order);
  902. else
  903. page = alloc_pages_node(node, flags, s->order);
  904. if (!page)
  905. return NULL;
  906. mod_zone_page_state(page_zone(page),
  907. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  908. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  909. pages);
  910. return page;
  911. }
  912. static void setup_object(struct kmem_cache *s, struct page *page,
  913. void *object)
  914. {
  915. setup_object_debug(s, page, object);
  916. if (unlikely(s->ctor))
  917. s->ctor(s, object);
  918. }
  919. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  920. {
  921. struct page *page;
  922. struct kmem_cache_node *n;
  923. void *start;
  924. void *last;
  925. void *p;
  926. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  927. page = allocate_slab(s,
  928. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  929. if (!page)
  930. goto out;
  931. n = get_node(s, page_to_nid(page));
  932. if (n)
  933. atomic_long_inc(&n->nr_slabs);
  934. page->slab = s;
  935. page->flags |= 1 << PG_slab;
  936. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  937. SLAB_STORE_USER | SLAB_TRACE))
  938. SetSlabDebug(page);
  939. start = page_address(page);
  940. if (unlikely(s->flags & SLAB_POISON))
  941. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  942. last = start;
  943. for_each_object(p, s, start) {
  944. setup_object(s, page, last);
  945. set_freepointer(s, last, p);
  946. last = p;
  947. }
  948. setup_object(s, page, last);
  949. set_freepointer(s, last, NULL);
  950. page->freelist = start;
  951. page->inuse = 0;
  952. out:
  953. return page;
  954. }
  955. static void __free_slab(struct kmem_cache *s, struct page *page)
  956. {
  957. int pages = 1 << s->order;
  958. if (unlikely(SlabDebug(page))) {
  959. void *p;
  960. slab_pad_check(s, page);
  961. for_each_object(p, s, page_address(page))
  962. check_object(s, page, p, 0);
  963. ClearSlabDebug(page);
  964. }
  965. mod_zone_page_state(page_zone(page),
  966. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  967. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  968. - pages);
  969. __free_pages(page, s->order);
  970. }
  971. static void rcu_free_slab(struct rcu_head *h)
  972. {
  973. struct page *page;
  974. page = container_of((struct list_head *)h, struct page, lru);
  975. __free_slab(page->slab, page);
  976. }
  977. static void free_slab(struct kmem_cache *s, struct page *page)
  978. {
  979. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  980. /*
  981. * RCU free overloads the RCU head over the LRU
  982. */
  983. struct rcu_head *head = (void *)&page->lru;
  984. call_rcu(head, rcu_free_slab);
  985. } else
  986. __free_slab(s, page);
  987. }
  988. static void discard_slab(struct kmem_cache *s, struct page *page)
  989. {
  990. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  991. atomic_long_dec(&n->nr_slabs);
  992. reset_page_mapcount(page);
  993. __ClearPageSlab(page);
  994. free_slab(s, page);
  995. }
  996. /*
  997. * Per slab locking using the pagelock
  998. */
  999. static __always_inline void slab_lock(struct page *page)
  1000. {
  1001. bit_spin_lock(PG_locked, &page->flags);
  1002. }
  1003. static __always_inline void slab_unlock(struct page *page)
  1004. {
  1005. bit_spin_unlock(PG_locked, &page->flags);
  1006. }
  1007. static __always_inline int slab_trylock(struct page *page)
  1008. {
  1009. int rc = 1;
  1010. rc = bit_spin_trylock(PG_locked, &page->flags);
  1011. return rc;
  1012. }
  1013. /*
  1014. * Management of partially allocated slabs
  1015. */
  1016. static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
  1017. {
  1018. spin_lock(&n->list_lock);
  1019. n->nr_partial++;
  1020. list_add_tail(&page->lru, &n->partial);
  1021. spin_unlock(&n->list_lock);
  1022. }
  1023. static void add_partial(struct kmem_cache_node *n, struct page *page)
  1024. {
  1025. spin_lock(&n->list_lock);
  1026. n->nr_partial++;
  1027. list_add(&page->lru, &n->partial);
  1028. spin_unlock(&n->list_lock);
  1029. }
  1030. static void remove_partial(struct kmem_cache *s,
  1031. struct page *page)
  1032. {
  1033. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1034. spin_lock(&n->list_lock);
  1035. list_del(&page->lru);
  1036. n->nr_partial--;
  1037. spin_unlock(&n->list_lock);
  1038. }
  1039. /*
  1040. * Lock slab and remove from the partial list.
  1041. *
  1042. * Must hold list_lock.
  1043. */
  1044. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1045. {
  1046. if (slab_trylock(page)) {
  1047. list_del(&page->lru);
  1048. n->nr_partial--;
  1049. SetSlabFrozen(page);
  1050. return 1;
  1051. }
  1052. return 0;
  1053. }
  1054. /*
  1055. * Try to allocate a partial slab from a specific node.
  1056. */
  1057. static struct page *get_partial_node(struct kmem_cache_node *n)
  1058. {
  1059. struct page *page;
  1060. /*
  1061. * Racy check. If we mistakenly see no partial slabs then we
  1062. * just allocate an empty slab. If we mistakenly try to get a
  1063. * partial slab and there is none available then get_partials()
  1064. * will return NULL.
  1065. */
  1066. if (!n || !n->nr_partial)
  1067. return NULL;
  1068. spin_lock(&n->list_lock);
  1069. list_for_each_entry(page, &n->partial, lru)
  1070. if (lock_and_freeze_slab(n, page))
  1071. goto out;
  1072. page = NULL;
  1073. out:
  1074. spin_unlock(&n->list_lock);
  1075. return page;
  1076. }
  1077. /*
  1078. * Get a page from somewhere. Search in increasing NUMA distances.
  1079. */
  1080. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1081. {
  1082. #ifdef CONFIG_NUMA
  1083. struct zonelist *zonelist;
  1084. struct zone **z;
  1085. struct page *page;
  1086. /*
  1087. * The defrag ratio allows a configuration of the tradeoffs between
  1088. * inter node defragmentation and node local allocations. A lower
  1089. * defrag_ratio increases the tendency to do local allocations
  1090. * instead of attempting to obtain partial slabs from other nodes.
  1091. *
  1092. * If the defrag_ratio is set to 0 then kmalloc() always
  1093. * returns node local objects. If the ratio is higher then kmalloc()
  1094. * may return off node objects because partial slabs are obtained
  1095. * from other nodes and filled up.
  1096. *
  1097. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1098. * defrag_ratio = 1000) then every (well almost) allocation will
  1099. * first attempt to defrag slab caches on other nodes. This means
  1100. * scanning over all nodes to look for partial slabs which may be
  1101. * expensive if we do it every time we are trying to find a slab
  1102. * with available objects.
  1103. */
  1104. if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
  1105. return NULL;
  1106. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  1107. ->node_zonelists[gfp_zone(flags)];
  1108. for (z = zonelist->zones; *z; z++) {
  1109. struct kmem_cache_node *n;
  1110. n = get_node(s, zone_to_nid(*z));
  1111. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1112. n->nr_partial > MIN_PARTIAL) {
  1113. page = get_partial_node(n);
  1114. if (page)
  1115. return page;
  1116. }
  1117. }
  1118. #endif
  1119. return NULL;
  1120. }
  1121. /*
  1122. * Get a partial page, lock it and return it.
  1123. */
  1124. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1125. {
  1126. struct page *page;
  1127. int searchnode = (node == -1) ? numa_node_id() : node;
  1128. page = get_partial_node(get_node(s, searchnode));
  1129. if (page || (flags & __GFP_THISNODE))
  1130. return page;
  1131. return get_any_partial(s, flags);
  1132. }
  1133. /*
  1134. * Move a page back to the lists.
  1135. *
  1136. * Must be called with the slab lock held.
  1137. *
  1138. * On exit the slab lock will have been dropped.
  1139. */
  1140. static void unfreeze_slab(struct kmem_cache *s, struct page *page)
  1141. {
  1142. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1143. ClearSlabFrozen(page);
  1144. if (page->inuse) {
  1145. if (page->freelist)
  1146. add_partial(n, page);
  1147. else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1148. add_full(n, page);
  1149. slab_unlock(page);
  1150. } else {
  1151. if (n->nr_partial < MIN_PARTIAL) {
  1152. /*
  1153. * Adding an empty slab to the partial slabs in order
  1154. * to avoid page allocator overhead. This slab needs
  1155. * to come after the other slabs with objects in
  1156. * order to fill them up. That way the size of the
  1157. * partial list stays small. kmem_cache_shrink can
  1158. * reclaim empty slabs from the partial list.
  1159. */
  1160. add_partial_tail(n, page);
  1161. slab_unlock(page);
  1162. } else {
  1163. slab_unlock(page);
  1164. discard_slab(s, page);
  1165. }
  1166. }
  1167. }
  1168. /*
  1169. * Remove the cpu slab
  1170. */
  1171. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1172. {
  1173. struct page *page = c->page;
  1174. /*
  1175. * Merge cpu freelist into freelist. Typically we get here
  1176. * because both freelists are empty. So this is unlikely
  1177. * to occur.
  1178. */
  1179. while (unlikely(c->freelist)) {
  1180. void **object;
  1181. /* Retrieve object from cpu_freelist */
  1182. object = c->freelist;
  1183. c->freelist = c->freelist[c->offset];
  1184. /* And put onto the regular freelist */
  1185. object[c->offset] = page->freelist;
  1186. page->freelist = object;
  1187. page->inuse--;
  1188. }
  1189. c->page = NULL;
  1190. unfreeze_slab(s, page);
  1191. }
  1192. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1193. {
  1194. slab_lock(c->page);
  1195. deactivate_slab(s, c);
  1196. }
  1197. /*
  1198. * Flush cpu slab.
  1199. * Called from IPI handler with interrupts disabled.
  1200. */
  1201. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1202. {
  1203. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1204. if (likely(c && c->page))
  1205. flush_slab(s, c);
  1206. }
  1207. static void flush_cpu_slab(void *d)
  1208. {
  1209. struct kmem_cache *s = d;
  1210. __flush_cpu_slab(s, smp_processor_id());
  1211. }
  1212. static void flush_all(struct kmem_cache *s)
  1213. {
  1214. #ifdef CONFIG_SMP
  1215. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1216. #else
  1217. unsigned long flags;
  1218. local_irq_save(flags);
  1219. flush_cpu_slab(s);
  1220. local_irq_restore(flags);
  1221. #endif
  1222. }
  1223. /*
  1224. * Check if the objects in a per cpu structure fit numa
  1225. * locality expectations.
  1226. */
  1227. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1228. {
  1229. #ifdef CONFIG_NUMA
  1230. if (node != -1 && c->node != node)
  1231. return 0;
  1232. #endif
  1233. return 1;
  1234. }
  1235. /*
  1236. * Slow path. The lockless freelist is empty or we need to perform
  1237. * debugging duties.
  1238. *
  1239. * Interrupts are disabled.
  1240. *
  1241. * Processing is still very fast if new objects have been freed to the
  1242. * regular freelist. In that case we simply take over the regular freelist
  1243. * as the lockless freelist and zap the regular freelist.
  1244. *
  1245. * If that is not working then we fall back to the partial lists. We take the
  1246. * first element of the freelist as the object to allocate now and move the
  1247. * rest of the freelist to the lockless freelist.
  1248. *
  1249. * And if we were unable to get a new slab from the partial slab lists then
  1250. * we need to allocate a new slab. This is slowest path since we may sleep.
  1251. */
  1252. static void *__slab_alloc(struct kmem_cache *s,
  1253. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1254. {
  1255. void **object;
  1256. struct page *new;
  1257. if (!c->page)
  1258. goto new_slab;
  1259. slab_lock(c->page);
  1260. if (unlikely(!node_match(c, node)))
  1261. goto another_slab;
  1262. load_freelist:
  1263. object = c->page->freelist;
  1264. if (unlikely(!object))
  1265. goto another_slab;
  1266. if (unlikely(SlabDebug(c->page)))
  1267. goto debug;
  1268. object = c->page->freelist;
  1269. c->freelist = object[c->offset];
  1270. c->page->inuse = s->objects;
  1271. c->page->freelist = NULL;
  1272. c->node = page_to_nid(c->page);
  1273. slab_unlock(c->page);
  1274. return object;
  1275. another_slab:
  1276. deactivate_slab(s, c);
  1277. new_slab:
  1278. new = get_partial(s, gfpflags, node);
  1279. if (new) {
  1280. c->page = new;
  1281. goto load_freelist;
  1282. }
  1283. if (gfpflags & __GFP_WAIT)
  1284. local_irq_enable();
  1285. new = new_slab(s, gfpflags, node);
  1286. if (gfpflags & __GFP_WAIT)
  1287. local_irq_disable();
  1288. if (new) {
  1289. c = get_cpu_slab(s, smp_processor_id());
  1290. if (c->page)
  1291. flush_slab(s, c);
  1292. slab_lock(new);
  1293. SetSlabFrozen(new);
  1294. c->page = new;
  1295. goto load_freelist;
  1296. }
  1297. return NULL;
  1298. debug:
  1299. object = c->page->freelist;
  1300. if (!alloc_debug_processing(s, c->page, object, addr))
  1301. goto another_slab;
  1302. c->page->inuse++;
  1303. c->page->freelist = object[c->offset];
  1304. c->node = -1;
  1305. slab_unlock(c->page);
  1306. return object;
  1307. }
  1308. /*
  1309. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1310. * have the fastpath folded into their functions. So no function call
  1311. * overhead for requests that can be satisfied on the fastpath.
  1312. *
  1313. * The fastpath works by first checking if the lockless freelist can be used.
  1314. * If not then __slab_alloc is called for slow processing.
  1315. *
  1316. * Otherwise we can simply pick the next object from the lockless free list.
  1317. */
  1318. static void __always_inline *slab_alloc(struct kmem_cache *s,
  1319. gfp_t gfpflags, int node, void *addr)
  1320. {
  1321. void **object;
  1322. unsigned long flags;
  1323. struct kmem_cache_cpu *c;
  1324. local_irq_save(flags);
  1325. c = get_cpu_slab(s, smp_processor_id());
  1326. if (unlikely(!c->freelist || !node_match(c, node)))
  1327. object = __slab_alloc(s, gfpflags, node, addr, c);
  1328. else {
  1329. object = c->freelist;
  1330. c->freelist = object[c->offset];
  1331. }
  1332. local_irq_restore(flags);
  1333. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1334. memset(object, 0, c->objsize);
  1335. return object;
  1336. }
  1337. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1338. {
  1339. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1340. }
  1341. EXPORT_SYMBOL(kmem_cache_alloc);
  1342. #ifdef CONFIG_NUMA
  1343. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1344. {
  1345. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1346. }
  1347. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1348. #endif
  1349. /*
  1350. * Slow patch handling. This may still be called frequently since objects
  1351. * have a longer lifetime than the cpu slabs in most processing loads.
  1352. *
  1353. * So we still attempt to reduce cache line usage. Just take the slab
  1354. * lock and free the item. If there is no additional partial page
  1355. * handling required then we can return immediately.
  1356. */
  1357. static void __slab_free(struct kmem_cache *s, struct page *page,
  1358. void *x, void *addr, unsigned int offset)
  1359. {
  1360. void *prior;
  1361. void **object = (void *)x;
  1362. slab_lock(page);
  1363. if (unlikely(SlabDebug(page)))
  1364. goto debug;
  1365. checks_ok:
  1366. prior = object[offset] = page->freelist;
  1367. page->freelist = object;
  1368. page->inuse--;
  1369. if (unlikely(SlabFrozen(page)))
  1370. goto out_unlock;
  1371. if (unlikely(!page->inuse))
  1372. goto slab_empty;
  1373. /*
  1374. * Objects left in the slab. If it
  1375. * was not on the partial list before
  1376. * then add it.
  1377. */
  1378. if (unlikely(!prior))
  1379. add_partial_tail(get_node(s, page_to_nid(page)), page);
  1380. out_unlock:
  1381. slab_unlock(page);
  1382. return;
  1383. slab_empty:
  1384. if (prior)
  1385. /*
  1386. * Slab still on the partial list.
  1387. */
  1388. remove_partial(s, page);
  1389. slab_unlock(page);
  1390. discard_slab(s, page);
  1391. return;
  1392. debug:
  1393. if (!free_debug_processing(s, page, x, addr))
  1394. goto out_unlock;
  1395. goto checks_ok;
  1396. }
  1397. /*
  1398. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1399. * can perform fastpath freeing without additional function calls.
  1400. *
  1401. * The fastpath is only possible if we are freeing to the current cpu slab
  1402. * of this processor. This typically the case if we have just allocated
  1403. * the item before.
  1404. *
  1405. * If fastpath is not possible then fall back to __slab_free where we deal
  1406. * with all sorts of special processing.
  1407. */
  1408. static void __always_inline slab_free(struct kmem_cache *s,
  1409. struct page *page, void *x, void *addr)
  1410. {
  1411. void **object = (void *)x;
  1412. unsigned long flags;
  1413. struct kmem_cache_cpu *c;
  1414. local_irq_save(flags);
  1415. debug_check_no_locks_freed(object, s->objsize);
  1416. c = get_cpu_slab(s, smp_processor_id());
  1417. if (likely(page == c->page && c->node >= 0)) {
  1418. object[c->offset] = c->freelist;
  1419. c->freelist = object;
  1420. } else
  1421. __slab_free(s, page, x, addr, c->offset);
  1422. local_irq_restore(flags);
  1423. }
  1424. void kmem_cache_free(struct kmem_cache *s, void *x)
  1425. {
  1426. struct page *page;
  1427. page = virt_to_head_page(x);
  1428. slab_free(s, page, x, __builtin_return_address(0));
  1429. }
  1430. EXPORT_SYMBOL(kmem_cache_free);
  1431. /* Figure out on which slab object the object resides */
  1432. static struct page *get_object_page(const void *x)
  1433. {
  1434. struct page *page = virt_to_head_page(x);
  1435. if (!PageSlab(page))
  1436. return NULL;
  1437. return page;
  1438. }
  1439. /*
  1440. * Object placement in a slab is made very easy because we always start at
  1441. * offset 0. If we tune the size of the object to the alignment then we can
  1442. * get the required alignment by putting one properly sized object after
  1443. * another.
  1444. *
  1445. * Notice that the allocation order determines the sizes of the per cpu
  1446. * caches. Each processor has always one slab available for allocations.
  1447. * Increasing the allocation order reduces the number of times that slabs
  1448. * must be moved on and off the partial lists and is therefore a factor in
  1449. * locking overhead.
  1450. */
  1451. /*
  1452. * Mininum / Maximum order of slab pages. This influences locking overhead
  1453. * and slab fragmentation. A higher order reduces the number of partial slabs
  1454. * and increases the number of allocations possible without having to
  1455. * take the list_lock.
  1456. */
  1457. static int slub_min_order;
  1458. static int slub_max_order = DEFAULT_MAX_ORDER;
  1459. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1460. /*
  1461. * Merge control. If this is set then no merging of slab caches will occur.
  1462. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1463. */
  1464. static int slub_nomerge;
  1465. /*
  1466. * Calculate the order of allocation given an slab object size.
  1467. *
  1468. * The order of allocation has significant impact on performance and other
  1469. * system components. Generally order 0 allocations should be preferred since
  1470. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1471. * be problematic to put into order 0 slabs because there may be too much
  1472. * unused space left. We go to a higher order if more than 1/8th of the slab
  1473. * would be wasted.
  1474. *
  1475. * In order to reach satisfactory performance we must ensure that a minimum
  1476. * number of objects is in one slab. Otherwise we may generate too much
  1477. * activity on the partial lists which requires taking the list_lock. This is
  1478. * less a concern for large slabs though which are rarely used.
  1479. *
  1480. * slub_max_order specifies the order where we begin to stop considering the
  1481. * number of objects in a slab as critical. If we reach slub_max_order then
  1482. * we try to keep the page order as low as possible. So we accept more waste
  1483. * of space in favor of a small page order.
  1484. *
  1485. * Higher order allocations also allow the placement of more objects in a
  1486. * slab and thereby reduce object handling overhead. If the user has
  1487. * requested a higher mininum order then we start with that one instead of
  1488. * the smallest order which will fit the object.
  1489. */
  1490. static inline int slab_order(int size, int min_objects,
  1491. int max_order, int fract_leftover)
  1492. {
  1493. int order;
  1494. int rem;
  1495. int min_order = slub_min_order;
  1496. for (order = max(min_order,
  1497. fls(min_objects * size - 1) - PAGE_SHIFT);
  1498. order <= max_order; order++) {
  1499. unsigned long slab_size = PAGE_SIZE << order;
  1500. if (slab_size < min_objects * size)
  1501. continue;
  1502. rem = slab_size % size;
  1503. if (rem <= slab_size / fract_leftover)
  1504. break;
  1505. }
  1506. return order;
  1507. }
  1508. static inline int calculate_order(int size)
  1509. {
  1510. int order;
  1511. int min_objects;
  1512. int fraction;
  1513. /*
  1514. * Attempt to find best configuration for a slab. This
  1515. * works by first attempting to generate a layout with
  1516. * the best configuration and backing off gradually.
  1517. *
  1518. * First we reduce the acceptable waste in a slab. Then
  1519. * we reduce the minimum objects required in a slab.
  1520. */
  1521. min_objects = slub_min_objects;
  1522. while (min_objects > 1) {
  1523. fraction = 8;
  1524. while (fraction >= 4) {
  1525. order = slab_order(size, min_objects,
  1526. slub_max_order, fraction);
  1527. if (order <= slub_max_order)
  1528. return order;
  1529. fraction /= 2;
  1530. }
  1531. min_objects /= 2;
  1532. }
  1533. /*
  1534. * We were unable to place multiple objects in a slab. Now
  1535. * lets see if we can place a single object there.
  1536. */
  1537. order = slab_order(size, 1, slub_max_order, 1);
  1538. if (order <= slub_max_order)
  1539. return order;
  1540. /*
  1541. * Doh this slab cannot be placed using slub_max_order.
  1542. */
  1543. order = slab_order(size, 1, MAX_ORDER, 1);
  1544. if (order <= MAX_ORDER)
  1545. return order;
  1546. return -ENOSYS;
  1547. }
  1548. /*
  1549. * Figure out what the alignment of the objects will be.
  1550. */
  1551. static unsigned long calculate_alignment(unsigned long flags,
  1552. unsigned long align, unsigned long size)
  1553. {
  1554. /*
  1555. * If the user wants hardware cache aligned objects then
  1556. * follow that suggestion if the object is sufficiently
  1557. * large.
  1558. *
  1559. * The hardware cache alignment cannot override the
  1560. * specified alignment though. If that is greater
  1561. * then use it.
  1562. */
  1563. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1564. size > cache_line_size() / 2)
  1565. return max_t(unsigned long, align, cache_line_size());
  1566. if (align < ARCH_SLAB_MINALIGN)
  1567. return ARCH_SLAB_MINALIGN;
  1568. return ALIGN(align, sizeof(void *));
  1569. }
  1570. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1571. struct kmem_cache_cpu *c)
  1572. {
  1573. c->page = NULL;
  1574. c->freelist = NULL;
  1575. c->node = 0;
  1576. c->offset = s->offset / sizeof(void *);
  1577. c->objsize = s->objsize;
  1578. }
  1579. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1580. {
  1581. n->nr_partial = 0;
  1582. atomic_long_set(&n->nr_slabs, 0);
  1583. spin_lock_init(&n->list_lock);
  1584. INIT_LIST_HEAD(&n->partial);
  1585. #ifdef CONFIG_SLUB_DEBUG
  1586. INIT_LIST_HEAD(&n->full);
  1587. #endif
  1588. }
  1589. #ifdef CONFIG_SMP
  1590. /*
  1591. * Per cpu array for per cpu structures.
  1592. *
  1593. * The per cpu array places all kmem_cache_cpu structures from one processor
  1594. * close together meaning that it becomes possible that multiple per cpu
  1595. * structures are contained in one cacheline. This may be particularly
  1596. * beneficial for the kmalloc caches.
  1597. *
  1598. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1599. * likely able to get per cpu structures for all caches from the array defined
  1600. * here. We must be able to cover all kmalloc caches during bootstrap.
  1601. *
  1602. * If the per cpu array is exhausted then fall back to kmalloc
  1603. * of individual cachelines. No sharing is possible then.
  1604. */
  1605. #define NR_KMEM_CACHE_CPU 100
  1606. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1607. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1608. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1609. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1610. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1611. int cpu, gfp_t flags)
  1612. {
  1613. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1614. if (c)
  1615. per_cpu(kmem_cache_cpu_free, cpu) =
  1616. (void *)c->freelist;
  1617. else {
  1618. /* Table overflow: So allocate ourselves */
  1619. c = kmalloc_node(
  1620. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1621. flags, cpu_to_node(cpu));
  1622. if (!c)
  1623. return NULL;
  1624. }
  1625. init_kmem_cache_cpu(s, c);
  1626. return c;
  1627. }
  1628. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1629. {
  1630. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1631. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1632. kfree(c);
  1633. return;
  1634. }
  1635. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1636. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1637. }
  1638. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1639. {
  1640. int cpu;
  1641. for_each_online_cpu(cpu) {
  1642. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1643. if (c) {
  1644. s->cpu_slab[cpu] = NULL;
  1645. free_kmem_cache_cpu(c, cpu);
  1646. }
  1647. }
  1648. }
  1649. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1650. {
  1651. int cpu;
  1652. for_each_online_cpu(cpu) {
  1653. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1654. if (c)
  1655. continue;
  1656. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1657. if (!c) {
  1658. free_kmem_cache_cpus(s);
  1659. return 0;
  1660. }
  1661. s->cpu_slab[cpu] = c;
  1662. }
  1663. return 1;
  1664. }
  1665. /*
  1666. * Initialize the per cpu array.
  1667. */
  1668. static void init_alloc_cpu_cpu(int cpu)
  1669. {
  1670. int i;
  1671. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1672. return;
  1673. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1674. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1675. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1676. }
  1677. static void __init init_alloc_cpu(void)
  1678. {
  1679. int cpu;
  1680. for_each_online_cpu(cpu)
  1681. init_alloc_cpu_cpu(cpu);
  1682. }
  1683. #else
  1684. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1685. static inline void init_alloc_cpu(void) {}
  1686. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1687. {
  1688. init_kmem_cache_cpu(s, &s->cpu_slab);
  1689. return 1;
  1690. }
  1691. #endif
  1692. #ifdef CONFIG_NUMA
  1693. /*
  1694. * No kmalloc_node yet so do it by hand. We know that this is the first
  1695. * slab on the node for this slabcache. There are no concurrent accesses
  1696. * possible.
  1697. *
  1698. * Note that this function only works on the kmalloc_node_cache
  1699. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1700. * memory on a fresh node that has no slab structures yet.
  1701. */
  1702. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1703. int node)
  1704. {
  1705. struct page *page;
  1706. struct kmem_cache_node *n;
  1707. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1708. page = new_slab(kmalloc_caches, gfpflags, node);
  1709. BUG_ON(!page);
  1710. if (page_to_nid(page) != node) {
  1711. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1712. "node %d\n", node);
  1713. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1714. "in order to be able to continue\n");
  1715. }
  1716. n = page->freelist;
  1717. BUG_ON(!n);
  1718. page->freelist = get_freepointer(kmalloc_caches, n);
  1719. page->inuse++;
  1720. kmalloc_caches->node[node] = n;
  1721. #ifdef CONFIG_SLUB_DEBUG
  1722. init_object(kmalloc_caches, n, 1);
  1723. init_tracking(kmalloc_caches, n);
  1724. #endif
  1725. init_kmem_cache_node(n);
  1726. atomic_long_inc(&n->nr_slabs);
  1727. add_partial(n, page);
  1728. return n;
  1729. }
  1730. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1731. {
  1732. int node;
  1733. for_each_node_state(node, N_NORMAL_MEMORY) {
  1734. struct kmem_cache_node *n = s->node[node];
  1735. if (n && n != &s->local_node)
  1736. kmem_cache_free(kmalloc_caches, n);
  1737. s->node[node] = NULL;
  1738. }
  1739. }
  1740. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1741. {
  1742. int node;
  1743. int local_node;
  1744. if (slab_state >= UP)
  1745. local_node = page_to_nid(virt_to_page(s));
  1746. else
  1747. local_node = 0;
  1748. for_each_node_state(node, N_NORMAL_MEMORY) {
  1749. struct kmem_cache_node *n;
  1750. if (local_node == node)
  1751. n = &s->local_node;
  1752. else {
  1753. if (slab_state == DOWN) {
  1754. n = early_kmem_cache_node_alloc(gfpflags,
  1755. node);
  1756. continue;
  1757. }
  1758. n = kmem_cache_alloc_node(kmalloc_caches,
  1759. gfpflags, node);
  1760. if (!n) {
  1761. free_kmem_cache_nodes(s);
  1762. return 0;
  1763. }
  1764. }
  1765. s->node[node] = n;
  1766. init_kmem_cache_node(n);
  1767. }
  1768. return 1;
  1769. }
  1770. #else
  1771. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1772. {
  1773. }
  1774. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1775. {
  1776. init_kmem_cache_node(&s->local_node);
  1777. return 1;
  1778. }
  1779. #endif
  1780. /*
  1781. * calculate_sizes() determines the order and the distribution of data within
  1782. * a slab object.
  1783. */
  1784. static int calculate_sizes(struct kmem_cache *s)
  1785. {
  1786. unsigned long flags = s->flags;
  1787. unsigned long size = s->objsize;
  1788. unsigned long align = s->align;
  1789. /*
  1790. * Determine if we can poison the object itself. If the user of
  1791. * the slab may touch the object after free or before allocation
  1792. * then we should never poison the object itself.
  1793. */
  1794. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1795. !s->ctor)
  1796. s->flags |= __OBJECT_POISON;
  1797. else
  1798. s->flags &= ~__OBJECT_POISON;
  1799. /*
  1800. * Round up object size to the next word boundary. We can only
  1801. * place the free pointer at word boundaries and this determines
  1802. * the possible location of the free pointer.
  1803. */
  1804. size = ALIGN(size, sizeof(void *));
  1805. #ifdef CONFIG_SLUB_DEBUG
  1806. /*
  1807. * If we are Redzoning then check if there is some space between the
  1808. * end of the object and the free pointer. If not then add an
  1809. * additional word to have some bytes to store Redzone information.
  1810. */
  1811. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1812. size += sizeof(void *);
  1813. #endif
  1814. /*
  1815. * With that we have determined the number of bytes in actual use
  1816. * by the object. This is the potential offset to the free pointer.
  1817. */
  1818. s->inuse = size;
  1819. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1820. s->ctor)) {
  1821. /*
  1822. * Relocate free pointer after the object if it is not
  1823. * permitted to overwrite the first word of the object on
  1824. * kmem_cache_free.
  1825. *
  1826. * This is the case if we do RCU, have a constructor or
  1827. * destructor or are poisoning the objects.
  1828. */
  1829. s->offset = size;
  1830. size += sizeof(void *);
  1831. }
  1832. #ifdef CONFIG_SLUB_DEBUG
  1833. if (flags & SLAB_STORE_USER)
  1834. /*
  1835. * Need to store information about allocs and frees after
  1836. * the object.
  1837. */
  1838. size += 2 * sizeof(struct track);
  1839. if (flags & SLAB_RED_ZONE)
  1840. /*
  1841. * Add some empty padding so that we can catch
  1842. * overwrites from earlier objects rather than let
  1843. * tracking information or the free pointer be
  1844. * corrupted if an user writes before the start
  1845. * of the object.
  1846. */
  1847. size += sizeof(void *);
  1848. #endif
  1849. /*
  1850. * Determine the alignment based on various parameters that the
  1851. * user specified and the dynamic determination of cache line size
  1852. * on bootup.
  1853. */
  1854. align = calculate_alignment(flags, align, s->objsize);
  1855. /*
  1856. * SLUB stores one object immediately after another beginning from
  1857. * offset 0. In order to align the objects we have to simply size
  1858. * each object to conform to the alignment.
  1859. */
  1860. size = ALIGN(size, align);
  1861. s->size = size;
  1862. s->order = calculate_order(size);
  1863. if (s->order < 0)
  1864. return 0;
  1865. /*
  1866. * Determine the number of objects per slab
  1867. */
  1868. s->objects = (PAGE_SIZE << s->order) / size;
  1869. return !!s->objects;
  1870. }
  1871. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1872. const char *name, size_t size,
  1873. size_t align, unsigned long flags,
  1874. void (*ctor)(struct kmem_cache *, void *))
  1875. {
  1876. memset(s, 0, kmem_size);
  1877. s->name = name;
  1878. s->ctor = ctor;
  1879. s->objsize = size;
  1880. s->align = align;
  1881. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1882. if (!calculate_sizes(s))
  1883. goto error;
  1884. s->refcount = 1;
  1885. #ifdef CONFIG_NUMA
  1886. s->defrag_ratio = 100;
  1887. #endif
  1888. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1889. goto error;
  1890. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1891. return 1;
  1892. free_kmem_cache_nodes(s);
  1893. error:
  1894. if (flags & SLAB_PANIC)
  1895. panic("Cannot create slab %s size=%lu realsize=%u "
  1896. "order=%u offset=%u flags=%lx\n",
  1897. s->name, (unsigned long)size, s->size, s->order,
  1898. s->offset, flags);
  1899. return 0;
  1900. }
  1901. /*
  1902. * Check if a given pointer is valid
  1903. */
  1904. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1905. {
  1906. struct page * page;
  1907. page = get_object_page(object);
  1908. if (!page || s != page->slab)
  1909. /* No slab or wrong slab */
  1910. return 0;
  1911. if (!check_valid_pointer(s, page, object))
  1912. return 0;
  1913. /*
  1914. * We could also check if the object is on the slabs freelist.
  1915. * But this would be too expensive and it seems that the main
  1916. * purpose of kmem_ptr_valid is to check if the object belongs
  1917. * to a certain slab.
  1918. */
  1919. return 1;
  1920. }
  1921. EXPORT_SYMBOL(kmem_ptr_validate);
  1922. /*
  1923. * Determine the size of a slab object
  1924. */
  1925. unsigned int kmem_cache_size(struct kmem_cache *s)
  1926. {
  1927. return s->objsize;
  1928. }
  1929. EXPORT_SYMBOL(kmem_cache_size);
  1930. const char *kmem_cache_name(struct kmem_cache *s)
  1931. {
  1932. return s->name;
  1933. }
  1934. EXPORT_SYMBOL(kmem_cache_name);
  1935. /*
  1936. * Attempt to free all slabs on a node. Return the number of slabs we
  1937. * were unable to free.
  1938. */
  1939. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1940. struct list_head *list)
  1941. {
  1942. int slabs_inuse = 0;
  1943. unsigned long flags;
  1944. struct page *page, *h;
  1945. spin_lock_irqsave(&n->list_lock, flags);
  1946. list_for_each_entry_safe(page, h, list, lru)
  1947. if (!page->inuse) {
  1948. list_del(&page->lru);
  1949. discard_slab(s, page);
  1950. } else
  1951. slabs_inuse++;
  1952. spin_unlock_irqrestore(&n->list_lock, flags);
  1953. return slabs_inuse;
  1954. }
  1955. /*
  1956. * Release all resources used by a slab cache.
  1957. */
  1958. static inline int kmem_cache_close(struct kmem_cache *s)
  1959. {
  1960. int node;
  1961. flush_all(s);
  1962. /* Attempt to free all objects */
  1963. free_kmem_cache_cpus(s);
  1964. for_each_node_state(node, N_NORMAL_MEMORY) {
  1965. struct kmem_cache_node *n = get_node(s, node);
  1966. n->nr_partial -= free_list(s, n, &n->partial);
  1967. if (atomic_long_read(&n->nr_slabs))
  1968. return 1;
  1969. }
  1970. free_kmem_cache_nodes(s);
  1971. return 0;
  1972. }
  1973. /*
  1974. * Close a cache and release the kmem_cache structure
  1975. * (must be used for caches created using kmem_cache_create)
  1976. */
  1977. void kmem_cache_destroy(struct kmem_cache *s)
  1978. {
  1979. down_write(&slub_lock);
  1980. s->refcount--;
  1981. if (!s->refcount) {
  1982. list_del(&s->list);
  1983. up_write(&slub_lock);
  1984. if (kmem_cache_close(s))
  1985. WARN_ON(1);
  1986. sysfs_slab_remove(s);
  1987. kfree(s);
  1988. } else
  1989. up_write(&slub_lock);
  1990. }
  1991. EXPORT_SYMBOL(kmem_cache_destroy);
  1992. /********************************************************************
  1993. * Kmalloc subsystem
  1994. *******************************************************************/
  1995. struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
  1996. EXPORT_SYMBOL(kmalloc_caches);
  1997. #ifdef CONFIG_ZONE_DMA
  1998. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
  1999. #endif
  2000. static int __init setup_slub_min_order(char *str)
  2001. {
  2002. get_option (&str, &slub_min_order);
  2003. return 1;
  2004. }
  2005. __setup("slub_min_order=", setup_slub_min_order);
  2006. static int __init setup_slub_max_order(char *str)
  2007. {
  2008. get_option (&str, &slub_max_order);
  2009. return 1;
  2010. }
  2011. __setup("slub_max_order=", setup_slub_max_order);
  2012. static int __init setup_slub_min_objects(char *str)
  2013. {
  2014. get_option (&str, &slub_min_objects);
  2015. return 1;
  2016. }
  2017. __setup("slub_min_objects=", setup_slub_min_objects);
  2018. static int __init setup_slub_nomerge(char *str)
  2019. {
  2020. slub_nomerge = 1;
  2021. return 1;
  2022. }
  2023. __setup("slub_nomerge", setup_slub_nomerge);
  2024. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2025. const char *name, int size, gfp_t gfp_flags)
  2026. {
  2027. unsigned int flags = 0;
  2028. if (gfp_flags & SLUB_DMA)
  2029. flags = SLAB_CACHE_DMA;
  2030. down_write(&slub_lock);
  2031. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2032. flags, NULL))
  2033. goto panic;
  2034. list_add(&s->list, &slab_caches);
  2035. up_write(&slub_lock);
  2036. if (sysfs_slab_add(s))
  2037. goto panic;
  2038. return s;
  2039. panic:
  2040. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2041. }
  2042. #ifdef CONFIG_ZONE_DMA
  2043. static void sysfs_add_func(struct work_struct *w)
  2044. {
  2045. struct kmem_cache *s;
  2046. down_write(&slub_lock);
  2047. list_for_each_entry(s, &slab_caches, list) {
  2048. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2049. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2050. sysfs_slab_add(s);
  2051. }
  2052. }
  2053. up_write(&slub_lock);
  2054. }
  2055. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2056. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2057. {
  2058. struct kmem_cache *s;
  2059. char *text;
  2060. size_t realsize;
  2061. s = kmalloc_caches_dma[index];
  2062. if (s)
  2063. return s;
  2064. /* Dynamically create dma cache */
  2065. if (flags & __GFP_WAIT)
  2066. down_write(&slub_lock);
  2067. else {
  2068. if (!down_write_trylock(&slub_lock))
  2069. goto out;
  2070. }
  2071. if (kmalloc_caches_dma[index])
  2072. goto unlock_out;
  2073. realsize = kmalloc_caches[index].objsize;
  2074. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
  2075. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2076. if (!s || !text || !kmem_cache_open(s, flags, text,
  2077. realsize, ARCH_KMALLOC_MINALIGN,
  2078. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2079. kfree(s);
  2080. kfree(text);
  2081. goto unlock_out;
  2082. }
  2083. list_add(&s->list, &slab_caches);
  2084. kmalloc_caches_dma[index] = s;
  2085. schedule_work(&sysfs_add_work);
  2086. unlock_out:
  2087. up_write(&slub_lock);
  2088. out:
  2089. return kmalloc_caches_dma[index];
  2090. }
  2091. #endif
  2092. /*
  2093. * Conversion table for small slabs sizes / 8 to the index in the
  2094. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2095. * of two cache sizes there. The size of larger slabs can be determined using
  2096. * fls.
  2097. */
  2098. static s8 size_index[24] = {
  2099. 3, /* 8 */
  2100. 4, /* 16 */
  2101. 5, /* 24 */
  2102. 5, /* 32 */
  2103. 6, /* 40 */
  2104. 6, /* 48 */
  2105. 6, /* 56 */
  2106. 6, /* 64 */
  2107. 1, /* 72 */
  2108. 1, /* 80 */
  2109. 1, /* 88 */
  2110. 1, /* 96 */
  2111. 7, /* 104 */
  2112. 7, /* 112 */
  2113. 7, /* 120 */
  2114. 7, /* 128 */
  2115. 2, /* 136 */
  2116. 2, /* 144 */
  2117. 2, /* 152 */
  2118. 2, /* 160 */
  2119. 2, /* 168 */
  2120. 2, /* 176 */
  2121. 2, /* 184 */
  2122. 2 /* 192 */
  2123. };
  2124. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2125. {
  2126. int index;
  2127. if (size <= 192) {
  2128. if (!size)
  2129. return ZERO_SIZE_PTR;
  2130. index = size_index[(size - 1) / 8];
  2131. } else
  2132. index = fls(size - 1);
  2133. #ifdef CONFIG_ZONE_DMA
  2134. if (unlikely((flags & SLUB_DMA)))
  2135. return dma_kmalloc_cache(index, flags);
  2136. #endif
  2137. return &kmalloc_caches[index];
  2138. }
  2139. void *__kmalloc(size_t size, gfp_t flags)
  2140. {
  2141. struct kmem_cache *s;
  2142. if (unlikely(size > PAGE_SIZE / 2))
  2143. return (void *)__get_free_pages(flags | __GFP_COMP,
  2144. get_order(size));
  2145. s = get_slab(size, flags);
  2146. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2147. return s;
  2148. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2149. }
  2150. EXPORT_SYMBOL(__kmalloc);
  2151. #ifdef CONFIG_NUMA
  2152. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2153. {
  2154. struct kmem_cache *s;
  2155. if (unlikely(size > PAGE_SIZE / 2))
  2156. return (void *)__get_free_pages(flags | __GFP_COMP,
  2157. get_order(size));
  2158. s = get_slab(size, flags);
  2159. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2160. return s;
  2161. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2162. }
  2163. EXPORT_SYMBOL(__kmalloc_node);
  2164. #endif
  2165. size_t ksize(const void *object)
  2166. {
  2167. struct page *page;
  2168. struct kmem_cache *s;
  2169. BUG_ON(!object);
  2170. if (unlikely(object == ZERO_SIZE_PTR))
  2171. return 0;
  2172. page = virt_to_head_page(object);
  2173. BUG_ON(!page);
  2174. if (unlikely(!PageSlab(page)))
  2175. return PAGE_SIZE << compound_order(page);
  2176. s = page->slab;
  2177. BUG_ON(!s);
  2178. /*
  2179. * Debugging requires use of the padding between object
  2180. * and whatever may come after it.
  2181. */
  2182. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2183. return s->objsize;
  2184. /*
  2185. * If we have the need to store the freelist pointer
  2186. * back there or track user information then we can
  2187. * only use the space before that information.
  2188. */
  2189. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2190. return s->inuse;
  2191. /*
  2192. * Else we can use all the padding etc for the allocation
  2193. */
  2194. return s->size;
  2195. }
  2196. EXPORT_SYMBOL(ksize);
  2197. void kfree(const void *x)
  2198. {
  2199. struct page *page;
  2200. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2201. return;
  2202. page = virt_to_head_page(x);
  2203. if (unlikely(!PageSlab(page))) {
  2204. put_page(page);
  2205. return;
  2206. }
  2207. slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
  2208. }
  2209. EXPORT_SYMBOL(kfree);
  2210. /*
  2211. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2212. * the remaining slabs by the number of items in use. The slabs with the
  2213. * most items in use come first. New allocations will then fill those up
  2214. * and thus they can be removed from the partial lists.
  2215. *
  2216. * The slabs with the least items are placed last. This results in them
  2217. * being allocated from last increasing the chance that the last objects
  2218. * are freed in them.
  2219. */
  2220. int kmem_cache_shrink(struct kmem_cache *s)
  2221. {
  2222. int node;
  2223. int i;
  2224. struct kmem_cache_node *n;
  2225. struct page *page;
  2226. struct page *t;
  2227. struct list_head *slabs_by_inuse =
  2228. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2229. unsigned long flags;
  2230. if (!slabs_by_inuse)
  2231. return -ENOMEM;
  2232. flush_all(s);
  2233. for_each_node_state(node, N_NORMAL_MEMORY) {
  2234. n = get_node(s, node);
  2235. if (!n->nr_partial)
  2236. continue;
  2237. for (i = 0; i < s->objects; i++)
  2238. INIT_LIST_HEAD(slabs_by_inuse + i);
  2239. spin_lock_irqsave(&n->list_lock, flags);
  2240. /*
  2241. * Build lists indexed by the items in use in each slab.
  2242. *
  2243. * Note that concurrent frees may occur while we hold the
  2244. * list_lock. page->inuse here is the upper limit.
  2245. */
  2246. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2247. if (!page->inuse && slab_trylock(page)) {
  2248. /*
  2249. * Must hold slab lock here because slab_free
  2250. * may have freed the last object and be
  2251. * waiting to release the slab.
  2252. */
  2253. list_del(&page->lru);
  2254. n->nr_partial--;
  2255. slab_unlock(page);
  2256. discard_slab(s, page);
  2257. } else {
  2258. list_move(&page->lru,
  2259. slabs_by_inuse + page->inuse);
  2260. }
  2261. }
  2262. /*
  2263. * Rebuild the partial list with the slabs filled up most
  2264. * first and the least used slabs at the end.
  2265. */
  2266. for (i = s->objects - 1; i >= 0; i--)
  2267. list_splice(slabs_by_inuse + i, n->partial.prev);
  2268. spin_unlock_irqrestore(&n->list_lock, flags);
  2269. }
  2270. kfree(slabs_by_inuse);
  2271. return 0;
  2272. }
  2273. EXPORT_SYMBOL(kmem_cache_shrink);
  2274. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2275. static int slab_mem_going_offline_callback(void *arg)
  2276. {
  2277. struct kmem_cache *s;
  2278. down_read(&slub_lock);
  2279. list_for_each_entry(s, &slab_caches, list)
  2280. kmem_cache_shrink(s);
  2281. up_read(&slub_lock);
  2282. return 0;
  2283. }
  2284. static void slab_mem_offline_callback(void *arg)
  2285. {
  2286. struct kmem_cache_node *n;
  2287. struct kmem_cache *s;
  2288. struct memory_notify *marg = arg;
  2289. int offline_node;
  2290. offline_node = marg->status_change_nid;
  2291. /*
  2292. * If the node still has available memory. we need kmem_cache_node
  2293. * for it yet.
  2294. */
  2295. if (offline_node < 0)
  2296. return;
  2297. down_read(&slub_lock);
  2298. list_for_each_entry(s, &slab_caches, list) {
  2299. n = get_node(s, offline_node);
  2300. if (n) {
  2301. /*
  2302. * if n->nr_slabs > 0, slabs still exist on the node
  2303. * that is going down. We were unable to free them,
  2304. * and offline_pages() function shoudn't call this
  2305. * callback. So, we must fail.
  2306. */
  2307. BUG_ON(atomic_long_read(&n->nr_slabs));
  2308. s->node[offline_node] = NULL;
  2309. kmem_cache_free(kmalloc_caches, n);
  2310. }
  2311. }
  2312. up_read(&slub_lock);
  2313. }
  2314. static int slab_mem_going_online_callback(void *arg)
  2315. {
  2316. struct kmem_cache_node *n;
  2317. struct kmem_cache *s;
  2318. struct memory_notify *marg = arg;
  2319. int nid = marg->status_change_nid;
  2320. int ret = 0;
  2321. /*
  2322. * If the node's memory is already available, then kmem_cache_node is
  2323. * already created. Nothing to do.
  2324. */
  2325. if (nid < 0)
  2326. return 0;
  2327. /*
  2328. * We are bringing a node online. No memory is availabe yet. We must
  2329. * allocate a kmem_cache_node structure in order to bring the node
  2330. * online.
  2331. */
  2332. down_read(&slub_lock);
  2333. list_for_each_entry(s, &slab_caches, list) {
  2334. /*
  2335. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2336. * since memory is not yet available from the node that
  2337. * is brought up.
  2338. */
  2339. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2340. if (!n) {
  2341. ret = -ENOMEM;
  2342. goto out;
  2343. }
  2344. init_kmem_cache_node(n);
  2345. s->node[nid] = n;
  2346. }
  2347. out:
  2348. up_read(&slub_lock);
  2349. return ret;
  2350. }
  2351. static int slab_memory_callback(struct notifier_block *self,
  2352. unsigned long action, void *arg)
  2353. {
  2354. int ret = 0;
  2355. switch (action) {
  2356. case MEM_GOING_ONLINE:
  2357. ret = slab_mem_going_online_callback(arg);
  2358. break;
  2359. case MEM_GOING_OFFLINE:
  2360. ret = slab_mem_going_offline_callback(arg);
  2361. break;
  2362. case MEM_OFFLINE:
  2363. case MEM_CANCEL_ONLINE:
  2364. slab_mem_offline_callback(arg);
  2365. break;
  2366. case MEM_ONLINE:
  2367. case MEM_CANCEL_OFFLINE:
  2368. break;
  2369. }
  2370. ret = notifier_from_errno(ret);
  2371. return ret;
  2372. }
  2373. #endif /* CONFIG_MEMORY_HOTPLUG */
  2374. /********************************************************************
  2375. * Basic setup of slabs
  2376. *******************************************************************/
  2377. void __init kmem_cache_init(void)
  2378. {
  2379. int i;
  2380. int caches = 0;
  2381. init_alloc_cpu();
  2382. #ifdef CONFIG_NUMA
  2383. /*
  2384. * Must first have the slab cache available for the allocations of the
  2385. * struct kmem_cache_node's. There is special bootstrap code in
  2386. * kmem_cache_open for slab_state == DOWN.
  2387. */
  2388. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2389. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2390. kmalloc_caches[0].refcount = -1;
  2391. caches++;
  2392. hotplug_memory_notifier(slab_memory_callback, 1);
  2393. #endif
  2394. /* Able to allocate the per node structures */
  2395. slab_state = PARTIAL;
  2396. /* Caches that are not of the two-to-the-power-of size */
  2397. if (KMALLOC_MIN_SIZE <= 64) {
  2398. create_kmalloc_cache(&kmalloc_caches[1],
  2399. "kmalloc-96", 96, GFP_KERNEL);
  2400. caches++;
  2401. }
  2402. if (KMALLOC_MIN_SIZE <= 128) {
  2403. create_kmalloc_cache(&kmalloc_caches[2],
  2404. "kmalloc-192", 192, GFP_KERNEL);
  2405. caches++;
  2406. }
  2407. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
  2408. create_kmalloc_cache(&kmalloc_caches[i],
  2409. "kmalloc", 1 << i, GFP_KERNEL);
  2410. caches++;
  2411. }
  2412. /*
  2413. * Patch up the size_index table if we have strange large alignment
  2414. * requirements for the kmalloc array. This is only the case for
  2415. * mips it seems. The standard arches will not generate any code here.
  2416. *
  2417. * Largest permitted alignment is 256 bytes due to the way we
  2418. * handle the index determination for the smaller caches.
  2419. *
  2420. * Make sure that nothing crazy happens if someone starts tinkering
  2421. * around with ARCH_KMALLOC_MINALIGN
  2422. */
  2423. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2424. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2425. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2426. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2427. slab_state = UP;
  2428. /* Provide the correct kmalloc names now that the caches are up */
  2429. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
  2430. kmalloc_caches[i]. name =
  2431. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2432. #ifdef CONFIG_SMP
  2433. register_cpu_notifier(&slab_notifier);
  2434. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2435. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2436. #else
  2437. kmem_size = sizeof(struct kmem_cache);
  2438. #endif
  2439. printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2440. " CPUs=%d, Nodes=%d\n",
  2441. caches, cache_line_size(),
  2442. slub_min_order, slub_max_order, slub_min_objects,
  2443. nr_cpu_ids, nr_node_ids);
  2444. }
  2445. /*
  2446. * Find a mergeable slab cache
  2447. */
  2448. static int slab_unmergeable(struct kmem_cache *s)
  2449. {
  2450. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2451. return 1;
  2452. if (s->ctor)
  2453. return 1;
  2454. /*
  2455. * We may have set a slab to be unmergeable during bootstrap.
  2456. */
  2457. if (s->refcount < 0)
  2458. return 1;
  2459. return 0;
  2460. }
  2461. static struct kmem_cache *find_mergeable(size_t size,
  2462. size_t align, unsigned long flags, const char *name,
  2463. void (*ctor)(struct kmem_cache *, void *))
  2464. {
  2465. struct kmem_cache *s;
  2466. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2467. return NULL;
  2468. if (ctor)
  2469. return NULL;
  2470. size = ALIGN(size, sizeof(void *));
  2471. align = calculate_alignment(flags, align, size);
  2472. size = ALIGN(size, align);
  2473. flags = kmem_cache_flags(size, flags, name, NULL);
  2474. list_for_each_entry(s, &slab_caches, list) {
  2475. if (slab_unmergeable(s))
  2476. continue;
  2477. if (size > s->size)
  2478. continue;
  2479. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2480. continue;
  2481. /*
  2482. * Check if alignment is compatible.
  2483. * Courtesy of Adrian Drzewiecki
  2484. */
  2485. if ((s->size & ~(align -1)) != s->size)
  2486. continue;
  2487. if (s->size - size >= sizeof(void *))
  2488. continue;
  2489. return s;
  2490. }
  2491. return NULL;
  2492. }
  2493. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2494. size_t align, unsigned long flags,
  2495. void (*ctor)(struct kmem_cache *, void *))
  2496. {
  2497. struct kmem_cache *s;
  2498. down_write(&slub_lock);
  2499. s = find_mergeable(size, align, flags, name, ctor);
  2500. if (s) {
  2501. int cpu;
  2502. s->refcount++;
  2503. /*
  2504. * Adjust the object sizes so that we clear
  2505. * the complete object on kzalloc.
  2506. */
  2507. s->objsize = max(s->objsize, (int)size);
  2508. /*
  2509. * And then we need to update the object size in the
  2510. * per cpu structures
  2511. */
  2512. for_each_online_cpu(cpu)
  2513. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2514. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2515. up_write(&slub_lock);
  2516. if (sysfs_slab_alias(s, name))
  2517. goto err;
  2518. return s;
  2519. }
  2520. s = kmalloc(kmem_size, GFP_KERNEL);
  2521. if (s) {
  2522. if (kmem_cache_open(s, GFP_KERNEL, name,
  2523. size, align, flags, ctor)) {
  2524. list_add(&s->list, &slab_caches);
  2525. up_write(&slub_lock);
  2526. if (sysfs_slab_add(s))
  2527. goto err;
  2528. return s;
  2529. }
  2530. kfree(s);
  2531. }
  2532. up_write(&slub_lock);
  2533. err:
  2534. if (flags & SLAB_PANIC)
  2535. panic("Cannot create slabcache %s\n", name);
  2536. else
  2537. s = NULL;
  2538. return s;
  2539. }
  2540. EXPORT_SYMBOL(kmem_cache_create);
  2541. #ifdef CONFIG_SMP
  2542. /*
  2543. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2544. * necessary.
  2545. */
  2546. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2547. unsigned long action, void *hcpu)
  2548. {
  2549. long cpu = (long)hcpu;
  2550. struct kmem_cache *s;
  2551. unsigned long flags;
  2552. switch (action) {
  2553. case CPU_UP_PREPARE:
  2554. case CPU_UP_PREPARE_FROZEN:
  2555. init_alloc_cpu_cpu(cpu);
  2556. down_read(&slub_lock);
  2557. list_for_each_entry(s, &slab_caches, list)
  2558. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2559. GFP_KERNEL);
  2560. up_read(&slub_lock);
  2561. break;
  2562. case CPU_UP_CANCELED:
  2563. case CPU_UP_CANCELED_FROZEN:
  2564. case CPU_DEAD:
  2565. case CPU_DEAD_FROZEN:
  2566. down_read(&slub_lock);
  2567. list_for_each_entry(s, &slab_caches, list) {
  2568. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2569. local_irq_save(flags);
  2570. __flush_cpu_slab(s, cpu);
  2571. local_irq_restore(flags);
  2572. free_kmem_cache_cpu(c, cpu);
  2573. s->cpu_slab[cpu] = NULL;
  2574. }
  2575. up_read(&slub_lock);
  2576. break;
  2577. default:
  2578. break;
  2579. }
  2580. return NOTIFY_OK;
  2581. }
  2582. static struct notifier_block __cpuinitdata slab_notifier =
  2583. { &slab_cpuup_callback, NULL, 0 };
  2584. #endif
  2585. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2586. {
  2587. struct kmem_cache *s;
  2588. if (unlikely(size > PAGE_SIZE / 2))
  2589. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2590. get_order(size));
  2591. s = get_slab(size, gfpflags);
  2592. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2593. return s;
  2594. return slab_alloc(s, gfpflags, -1, caller);
  2595. }
  2596. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2597. int node, void *caller)
  2598. {
  2599. struct kmem_cache *s;
  2600. if (unlikely(size > PAGE_SIZE / 2))
  2601. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2602. get_order(size));
  2603. s = get_slab(size, gfpflags);
  2604. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2605. return s;
  2606. return slab_alloc(s, gfpflags, node, caller);
  2607. }
  2608. static unsigned long count_partial(struct kmem_cache_node *n)
  2609. {
  2610. unsigned long flags;
  2611. unsigned long x = 0;
  2612. struct page *page;
  2613. spin_lock_irqsave(&n->list_lock, flags);
  2614. list_for_each_entry(page, &n->partial, lru)
  2615. x += page->inuse;
  2616. spin_unlock_irqrestore(&n->list_lock, flags);
  2617. return x;
  2618. }
  2619. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2620. static int validate_slab(struct kmem_cache *s, struct page *page,
  2621. unsigned long *map)
  2622. {
  2623. void *p;
  2624. void *addr = page_address(page);
  2625. if (!check_slab(s, page) ||
  2626. !on_freelist(s, page, NULL))
  2627. return 0;
  2628. /* Now we know that a valid freelist exists */
  2629. bitmap_zero(map, s->objects);
  2630. for_each_free_object(p, s, page->freelist) {
  2631. set_bit(slab_index(p, s, addr), map);
  2632. if (!check_object(s, page, p, 0))
  2633. return 0;
  2634. }
  2635. for_each_object(p, s, addr)
  2636. if (!test_bit(slab_index(p, s, addr), map))
  2637. if (!check_object(s, page, p, 1))
  2638. return 0;
  2639. return 1;
  2640. }
  2641. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2642. unsigned long *map)
  2643. {
  2644. if (slab_trylock(page)) {
  2645. validate_slab(s, page, map);
  2646. slab_unlock(page);
  2647. } else
  2648. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2649. s->name, page);
  2650. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2651. if (!SlabDebug(page))
  2652. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2653. "on slab 0x%p\n", s->name, page);
  2654. } else {
  2655. if (SlabDebug(page))
  2656. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2657. "slab 0x%p\n", s->name, page);
  2658. }
  2659. }
  2660. static int validate_slab_node(struct kmem_cache *s,
  2661. struct kmem_cache_node *n, unsigned long *map)
  2662. {
  2663. unsigned long count = 0;
  2664. struct page *page;
  2665. unsigned long flags;
  2666. spin_lock_irqsave(&n->list_lock, flags);
  2667. list_for_each_entry(page, &n->partial, lru) {
  2668. validate_slab_slab(s, page, map);
  2669. count++;
  2670. }
  2671. if (count != n->nr_partial)
  2672. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2673. "counter=%ld\n", s->name, count, n->nr_partial);
  2674. if (!(s->flags & SLAB_STORE_USER))
  2675. goto out;
  2676. list_for_each_entry(page, &n->full, lru) {
  2677. validate_slab_slab(s, page, map);
  2678. count++;
  2679. }
  2680. if (count != atomic_long_read(&n->nr_slabs))
  2681. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2682. "counter=%ld\n", s->name, count,
  2683. atomic_long_read(&n->nr_slabs));
  2684. out:
  2685. spin_unlock_irqrestore(&n->list_lock, flags);
  2686. return count;
  2687. }
  2688. static long validate_slab_cache(struct kmem_cache *s)
  2689. {
  2690. int node;
  2691. unsigned long count = 0;
  2692. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2693. sizeof(unsigned long), GFP_KERNEL);
  2694. if (!map)
  2695. return -ENOMEM;
  2696. flush_all(s);
  2697. for_each_node_state(node, N_NORMAL_MEMORY) {
  2698. struct kmem_cache_node *n = get_node(s, node);
  2699. count += validate_slab_node(s, n, map);
  2700. }
  2701. kfree(map);
  2702. return count;
  2703. }
  2704. #ifdef SLUB_RESILIENCY_TEST
  2705. static void resiliency_test(void)
  2706. {
  2707. u8 *p;
  2708. printk(KERN_ERR "SLUB resiliency testing\n");
  2709. printk(KERN_ERR "-----------------------\n");
  2710. printk(KERN_ERR "A. Corruption after allocation\n");
  2711. p = kzalloc(16, GFP_KERNEL);
  2712. p[16] = 0x12;
  2713. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2714. " 0x12->0x%p\n\n", p + 16);
  2715. validate_slab_cache(kmalloc_caches + 4);
  2716. /* Hmmm... The next two are dangerous */
  2717. p = kzalloc(32, GFP_KERNEL);
  2718. p[32 + sizeof(void *)] = 0x34;
  2719. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2720. " 0x34 -> -0x%p\n", p);
  2721. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2722. validate_slab_cache(kmalloc_caches + 5);
  2723. p = kzalloc(64, GFP_KERNEL);
  2724. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2725. *p = 0x56;
  2726. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2727. p);
  2728. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2729. validate_slab_cache(kmalloc_caches + 6);
  2730. printk(KERN_ERR "\nB. Corruption after free\n");
  2731. p = kzalloc(128, GFP_KERNEL);
  2732. kfree(p);
  2733. *p = 0x78;
  2734. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2735. validate_slab_cache(kmalloc_caches + 7);
  2736. p = kzalloc(256, GFP_KERNEL);
  2737. kfree(p);
  2738. p[50] = 0x9a;
  2739. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  2740. validate_slab_cache(kmalloc_caches + 8);
  2741. p = kzalloc(512, GFP_KERNEL);
  2742. kfree(p);
  2743. p[512] = 0xab;
  2744. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2745. validate_slab_cache(kmalloc_caches + 9);
  2746. }
  2747. #else
  2748. static void resiliency_test(void) {};
  2749. #endif
  2750. /*
  2751. * Generate lists of code addresses where slabcache objects are allocated
  2752. * and freed.
  2753. */
  2754. struct location {
  2755. unsigned long count;
  2756. void *addr;
  2757. long long sum_time;
  2758. long min_time;
  2759. long max_time;
  2760. long min_pid;
  2761. long max_pid;
  2762. cpumask_t cpus;
  2763. nodemask_t nodes;
  2764. };
  2765. struct loc_track {
  2766. unsigned long max;
  2767. unsigned long count;
  2768. struct location *loc;
  2769. };
  2770. static void free_loc_track(struct loc_track *t)
  2771. {
  2772. if (t->max)
  2773. free_pages((unsigned long)t->loc,
  2774. get_order(sizeof(struct location) * t->max));
  2775. }
  2776. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2777. {
  2778. struct location *l;
  2779. int order;
  2780. order = get_order(sizeof(struct location) * max);
  2781. l = (void *)__get_free_pages(flags, order);
  2782. if (!l)
  2783. return 0;
  2784. if (t->count) {
  2785. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2786. free_loc_track(t);
  2787. }
  2788. t->max = max;
  2789. t->loc = l;
  2790. return 1;
  2791. }
  2792. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2793. const struct track *track)
  2794. {
  2795. long start, end, pos;
  2796. struct location *l;
  2797. void *caddr;
  2798. unsigned long age = jiffies - track->when;
  2799. start = -1;
  2800. end = t->count;
  2801. for ( ; ; ) {
  2802. pos = start + (end - start + 1) / 2;
  2803. /*
  2804. * There is nothing at "end". If we end up there
  2805. * we need to add something to before end.
  2806. */
  2807. if (pos == end)
  2808. break;
  2809. caddr = t->loc[pos].addr;
  2810. if (track->addr == caddr) {
  2811. l = &t->loc[pos];
  2812. l->count++;
  2813. if (track->when) {
  2814. l->sum_time += age;
  2815. if (age < l->min_time)
  2816. l->min_time = age;
  2817. if (age > l->max_time)
  2818. l->max_time = age;
  2819. if (track->pid < l->min_pid)
  2820. l->min_pid = track->pid;
  2821. if (track->pid > l->max_pid)
  2822. l->max_pid = track->pid;
  2823. cpu_set(track->cpu, l->cpus);
  2824. }
  2825. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2826. return 1;
  2827. }
  2828. if (track->addr < caddr)
  2829. end = pos;
  2830. else
  2831. start = pos;
  2832. }
  2833. /*
  2834. * Not found. Insert new tracking element.
  2835. */
  2836. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2837. return 0;
  2838. l = t->loc + pos;
  2839. if (pos < t->count)
  2840. memmove(l + 1, l,
  2841. (t->count - pos) * sizeof(struct location));
  2842. t->count++;
  2843. l->count = 1;
  2844. l->addr = track->addr;
  2845. l->sum_time = age;
  2846. l->min_time = age;
  2847. l->max_time = age;
  2848. l->min_pid = track->pid;
  2849. l->max_pid = track->pid;
  2850. cpus_clear(l->cpus);
  2851. cpu_set(track->cpu, l->cpus);
  2852. nodes_clear(l->nodes);
  2853. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2854. return 1;
  2855. }
  2856. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2857. struct page *page, enum track_item alloc)
  2858. {
  2859. void *addr = page_address(page);
  2860. DECLARE_BITMAP(map, s->objects);
  2861. void *p;
  2862. bitmap_zero(map, s->objects);
  2863. for_each_free_object(p, s, page->freelist)
  2864. set_bit(slab_index(p, s, addr), map);
  2865. for_each_object(p, s, addr)
  2866. if (!test_bit(slab_index(p, s, addr), map))
  2867. add_location(t, s, get_track(s, p, alloc));
  2868. }
  2869. static int list_locations(struct kmem_cache *s, char *buf,
  2870. enum track_item alloc)
  2871. {
  2872. int n = 0;
  2873. unsigned long i;
  2874. struct loc_track t = { 0, 0, NULL };
  2875. int node;
  2876. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2877. GFP_TEMPORARY))
  2878. return sprintf(buf, "Out of memory\n");
  2879. /* Push back cpu slabs */
  2880. flush_all(s);
  2881. for_each_node_state(node, N_NORMAL_MEMORY) {
  2882. struct kmem_cache_node *n = get_node(s, node);
  2883. unsigned long flags;
  2884. struct page *page;
  2885. if (!atomic_long_read(&n->nr_slabs))
  2886. continue;
  2887. spin_lock_irqsave(&n->list_lock, flags);
  2888. list_for_each_entry(page, &n->partial, lru)
  2889. process_slab(&t, s, page, alloc);
  2890. list_for_each_entry(page, &n->full, lru)
  2891. process_slab(&t, s, page, alloc);
  2892. spin_unlock_irqrestore(&n->list_lock, flags);
  2893. }
  2894. for (i = 0; i < t.count; i++) {
  2895. struct location *l = &t.loc[i];
  2896. if (n > PAGE_SIZE - 100)
  2897. break;
  2898. n += sprintf(buf + n, "%7ld ", l->count);
  2899. if (l->addr)
  2900. n += sprint_symbol(buf + n, (unsigned long)l->addr);
  2901. else
  2902. n += sprintf(buf + n, "<not-available>");
  2903. if (l->sum_time != l->min_time) {
  2904. unsigned long remainder;
  2905. n += sprintf(buf + n, " age=%ld/%ld/%ld",
  2906. l->min_time,
  2907. div_long_long_rem(l->sum_time, l->count, &remainder),
  2908. l->max_time);
  2909. } else
  2910. n += sprintf(buf + n, " age=%ld",
  2911. l->min_time);
  2912. if (l->min_pid != l->max_pid)
  2913. n += sprintf(buf + n, " pid=%ld-%ld",
  2914. l->min_pid, l->max_pid);
  2915. else
  2916. n += sprintf(buf + n, " pid=%ld",
  2917. l->min_pid);
  2918. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2919. n < PAGE_SIZE - 60) {
  2920. n += sprintf(buf + n, " cpus=");
  2921. n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2922. l->cpus);
  2923. }
  2924. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2925. n < PAGE_SIZE - 60) {
  2926. n += sprintf(buf + n, " nodes=");
  2927. n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2928. l->nodes);
  2929. }
  2930. n += sprintf(buf + n, "\n");
  2931. }
  2932. free_loc_track(&t);
  2933. if (!t.count)
  2934. n += sprintf(buf, "No data\n");
  2935. return n;
  2936. }
  2937. enum slab_stat_type {
  2938. SL_FULL,
  2939. SL_PARTIAL,
  2940. SL_CPU,
  2941. SL_OBJECTS
  2942. };
  2943. #define SO_FULL (1 << SL_FULL)
  2944. #define SO_PARTIAL (1 << SL_PARTIAL)
  2945. #define SO_CPU (1 << SL_CPU)
  2946. #define SO_OBJECTS (1 << SL_OBJECTS)
  2947. static unsigned long slab_objects(struct kmem_cache *s,
  2948. char *buf, unsigned long flags)
  2949. {
  2950. unsigned long total = 0;
  2951. int cpu;
  2952. int node;
  2953. int x;
  2954. unsigned long *nodes;
  2955. unsigned long *per_cpu;
  2956. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  2957. per_cpu = nodes + nr_node_ids;
  2958. for_each_possible_cpu(cpu) {
  2959. struct page *page;
  2960. int node;
  2961. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2962. if (!c)
  2963. continue;
  2964. page = c->page;
  2965. node = c->node;
  2966. if (node < 0)
  2967. continue;
  2968. if (page) {
  2969. if (flags & SO_CPU) {
  2970. int x = 0;
  2971. if (flags & SO_OBJECTS)
  2972. x = page->inuse;
  2973. else
  2974. x = 1;
  2975. total += x;
  2976. nodes[node] += x;
  2977. }
  2978. per_cpu[node]++;
  2979. }
  2980. }
  2981. for_each_node_state(node, N_NORMAL_MEMORY) {
  2982. struct kmem_cache_node *n = get_node(s, node);
  2983. if (flags & SO_PARTIAL) {
  2984. if (flags & SO_OBJECTS)
  2985. x = count_partial(n);
  2986. else
  2987. x = n->nr_partial;
  2988. total += x;
  2989. nodes[node] += x;
  2990. }
  2991. if (flags & SO_FULL) {
  2992. int full_slabs = atomic_long_read(&n->nr_slabs)
  2993. - per_cpu[node]
  2994. - n->nr_partial;
  2995. if (flags & SO_OBJECTS)
  2996. x = full_slabs * s->objects;
  2997. else
  2998. x = full_slabs;
  2999. total += x;
  3000. nodes[node] += x;
  3001. }
  3002. }
  3003. x = sprintf(buf, "%lu", total);
  3004. #ifdef CONFIG_NUMA
  3005. for_each_node_state(node, N_NORMAL_MEMORY)
  3006. if (nodes[node])
  3007. x += sprintf(buf + x, " N%d=%lu",
  3008. node, nodes[node]);
  3009. #endif
  3010. kfree(nodes);
  3011. return x + sprintf(buf + x, "\n");
  3012. }
  3013. static int any_slab_objects(struct kmem_cache *s)
  3014. {
  3015. int node;
  3016. int cpu;
  3017. for_each_possible_cpu(cpu) {
  3018. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3019. if (c && c->page)
  3020. return 1;
  3021. }
  3022. for_each_online_node(node) {
  3023. struct kmem_cache_node *n = get_node(s, node);
  3024. if (!n)
  3025. continue;
  3026. if (n->nr_partial || atomic_long_read(&n->nr_slabs))
  3027. return 1;
  3028. }
  3029. return 0;
  3030. }
  3031. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3032. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3033. struct slab_attribute {
  3034. struct attribute attr;
  3035. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3036. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3037. };
  3038. #define SLAB_ATTR_RO(_name) \
  3039. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3040. #define SLAB_ATTR(_name) \
  3041. static struct slab_attribute _name##_attr = \
  3042. __ATTR(_name, 0644, _name##_show, _name##_store)
  3043. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3044. {
  3045. return sprintf(buf, "%d\n", s->size);
  3046. }
  3047. SLAB_ATTR_RO(slab_size);
  3048. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3049. {
  3050. return sprintf(buf, "%d\n", s->align);
  3051. }
  3052. SLAB_ATTR_RO(align);
  3053. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3054. {
  3055. return sprintf(buf, "%d\n", s->objsize);
  3056. }
  3057. SLAB_ATTR_RO(object_size);
  3058. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3059. {
  3060. return sprintf(buf, "%d\n", s->objects);
  3061. }
  3062. SLAB_ATTR_RO(objs_per_slab);
  3063. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3064. {
  3065. return sprintf(buf, "%d\n", s->order);
  3066. }
  3067. SLAB_ATTR_RO(order);
  3068. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3069. {
  3070. if (s->ctor) {
  3071. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3072. return n + sprintf(buf + n, "\n");
  3073. }
  3074. return 0;
  3075. }
  3076. SLAB_ATTR_RO(ctor);
  3077. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3078. {
  3079. return sprintf(buf, "%d\n", s->refcount - 1);
  3080. }
  3081. SLAB_ATTR_RO(aliases);
  3082. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3083. {
  3084. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  3085. }
  3086. SLAB_ATTR_RO(slabs);
  3087. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3088. {
  3089. return slab_objects(s, buf, SO_PARTIAL);
  3090. }
  3091. SLAB_ATTR_RO(partial);
  3092. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3093. {
  3094. return slab_objects(s, buf, SO_CPU);
  3095. }
  3096. SLAB_ATTR_RO(cpu_slabs);
  3097. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3098. {
  3099. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  3100. }
  3101. SLAB_ATTR_RO(objects);
  3102. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3103. {
  3104. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3105. }
  3106. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3107. const char *buf, size_t length)
  3108. {
  3109. s->flags &= ~SLAB_DEBUG_FREE;
  3110. if (buf[0] == '1')
  3111. s->flags |= SLAB_DEBUG_FREE;
  3112. return length;
  3113. }
  3114. SLAB_ATTR(sanity_checks);
  3115. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3116. {
  3117. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3118. }
  3119. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3120. size_t length)
  3121. {
  3122. s->flags &= ~SLAB_TRACE;
  3123. if (buf[0] == '1')
  3124. s->flags |= SLAB_TRACE;
  3125. return length;
  3126. }
  3127. SLAB_ATTR(trace);
  3128. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3129. {
  3130. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3131. }
  3132. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3133. const char *buf, size_t length)
  3134. {
  3135. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3136. if (buf[0] == '1')
  3137. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3138. return length;
  3139. }
  3140. SLAB_ATTR(reclaim_account);
  3141. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3142. {
  3143. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3144. }
  3145. SLAB_ATTR_RO(hwcache_align);
  3146. #ifdef CONFIG_ZONE_DMA
  3147. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3148. {
  3149. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3150. }
  3151. SLAB_ATTR_RO(cache_dma);
  3152. #endif
  3153. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3154. {
  3155. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3156. }
  3157. SLAB_ATTR_RO(destroy_by_rcu);
  3158. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3159. {
  3160. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3161. }
  3162. static ssize_t red_zone_store(struct kmem_cache *s,
  3163. const char *buf, size_t length)
  3164. {
  3165. if (any_slab_objects(s))
  3166. return -EBUSY;
  3167. s->flags &= ~SLAB_RED_ZONE;
  3168. if (buf[0] == '1')
  3169. s->flags |= SLAB_RED_ZONE;
  3170. calculate_sizes(s);
  3171. return length;
  3172. }
  3173. SLAB_ATTR(red_zone);
  3174. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3175. {
  3176. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3177. }
  3178. static ssize_t poison_store(struct kmem_cache *s,
  3179. const char *buf, size_t length)
  3180. {
  3181. if (any_slab_objects(s))
  3182. return -EBUSY;
  3183. s->flags &= ~SLAB_POISON;
  3184. if (buf[0] == '1')
  3185. s->flags |= SLAB_POISON;
  3186. calculate_sizes(s);
  3187. return length;
  3188. }
  3189. SLAB_ATTR(poison);
  3190. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3191. {
  3192. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3193. }
  3194. static ssize_t store_user_store(struct kmem_cache *s,
  3195. const char *buf, size_t length)
  3196. {
  3197. if (any_slab_objects(s))
  3198. return -EBUSY;
  3199. s->flags &= ~SLAB_STORE_USER;
  3200. if (buf[0] == '1')
  3201. s->flags |= SLAB_STORE_USER;
  3202. calculate_sizes(s);
  3203. return length;
  3204. }
  3205. SLAB_ATTR(store_user);
  3206. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3207. {
  3208. return 0;
  3209. }
  3210. static ssize_t validate_store(struct kmem_cache *s,
  3211. const char *buf, size_t length)
  3212. {
  3213. int ret = -EINVAL;
  3214. if (buf[0] == '1') {
  3215. ret = validate_slab_cache(s);
  3216. if (ret >= 0)
  3217. ret = length;
  3218. }
  3219. return ret;
  3220. }
  3221. SLAB_ATTR(validate);
  3222. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3223. {
  3224. return 0;
  3225. }
  3226. static ssize_t shrink_store(struct kmem_cache *s,
  3227. const char *buf, size_t length)
  3228. {
  3229. if (buf[0] == '1') {
  3230. int rc = kmem_cache_shrink(s);
  3231. if (rc)
  3232. return rc;
  3233. } else
  3234. return -EINVAL;
  3235. return length;
  3236. }
  3237. SLAB_ATTR(shrink);
  3238. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3239. {
  3240. if (!(s->flags & SLAB_STORE_USER))
  3241. return -ENOSYS;
  3242. return list_locations(s, buf, TRACK_ALLOC);
  3243. }
  3244. SLAB_ATTR_RO(alloc_calls);
  3245. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3246. {
  3247. if (!(s->flags & SLAB_STORE_USER))
  3248. return -ENOSYS;
  3249. return list_locations(s, buf, TRACK_FREE);
  3250. }
  3251. SLAB_ATTR_RO(free_calls);
  3252. #ifdef CONFIG_NUMA
  3253. static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
  3254. {
  3255. return sprintf(buf, "%d\n", s->defrag_ratio / 10);
  3256. }
  3257. static ssize_t defrag_ratio_store(struct kmem_cache *s,
  3258. const char *buf, size_t length)
  3259. {
  3260. int n = simple_strtoul(buf, NULL, 10);
  3261. if (n < 100)
  3262. s->defrag_ratio = n * 10;
  3263. return length;
  3264. }
  3265. SLAB_ATTR(defrag_ratio);
  3266. #endif
  3267. static struct attribute * slab_attrs[] = {
  3268. &slab_size_attr.attr,
  3269. &object_size_attr.attr,
  3270. &objs_per_slab_attr.attr,
  3271. &order_attr.attr,
  3272. &objects_attr.attr,
  3273. &slabs_attr.attr,
  3274. &partial_attr.attr,
  3275. &cpu_slabs_attr.attr,
  3276. &ctor_attr.attr,
  3277. &aliases_attr.attr,
  3278. &align_attr.attr,
  3279. &sanity_checks_attr.attr,
  3280. &trace_attr.attr,
  3281. &hwcache_align_attr.attr,
  3282. &reclaim_account_attr.attr,
  3283. &destroy_by_rcu_attr.attr,
  3284. &red_zone_attr.attr,
  3285. &poison_attr.attr,
  3286. &store_user_attr.attr,
  3287. &validate_attr.attr,
  3288. &shrink_attr.attr,
  3289. &alloc_calls_attr.attr,
  3290. &free_calls_attr.attr,
  3291. #ifdef CONFIG_ZONE_DMA
  3292. &cache_dma_attr.attr,
  3293. #endif
  3294. #ifdef CONFIG_NUMA
  3295. &defrag_ratio_attr.attr,
  3296. #endif
  3297. NULL
  3298. };
  3299. static struct attribute_group slab_attr_group = {
  3300. .attrs = slab_attrs,
  3301. };
  3302. static ssize_t slab_attr_show(struct kobject *kobj,
  3303. struct attribute *attr,
  3304. char *buf)
  3305. {
  3306. struct slab_attribute *attribute;
  3307. struct kmem_cache *s;
  3308. int err;
  3309. attribute = to_slab_attr(attr);
  3310. s = to_slab(kobj);
  3311. if (!attribute->show)
  3312. return -EIO;
  3313. err = attribute->show(s, buf);
  3314. return err;
  3315. }
  3316. static ssize_t slab_attr_store(struct kobject *kobj,
  3317. struct attribute *attr,
  3318. const char *buf, size_t len)
  3319. {
  3320. struct slab_attribute *attribute;
  3321. struct kmem_cache *s;
  3322. int err;
  3323. attribute = to_slab_attr(attr);
  3324. s = to_slab(kobj);
  3325. if (!attribute->store)
  3326. return -EIO;
  3327. err = attribute->store(s, buf, len);
  3328. return err;
  3329. }
  3330. static struct sysfs_ops slab_sysfs_ops = {
  3331. .show = slab_attr_show,
  3332. .store = slab_attr_store,
  3333. };
  3334. static struct kobj_type slab_ktype = {
  3335. .sysfs_ops = &slab_sysfs_ops,
  3336. };
  3337. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3338. {
  3339. struct kobj_type *ktype = get_ktype(kobj);
  3340. if (ktype == &slab_ktype)
  3341. return 1;
  3342. return 0;
  3343. }
  3344. static struct kset_uevent_ops slab_uevent_ops = {
  3345. .filter = uevent_filter,
  3346. };
  3347. static struct kset *slab_kset;
  3348. #define ID_STR_LENGTH 64
  3349. /* Create a unique string id for a slab cache:
  3350. * format
  3351. * :[flags-]size:[memory address of kmemcache]
  3352. */
  3353. static char *create_unique_id(struct kmem_cache *s)
  3354. {
  3355. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3356. char *p = name;
  3357. BUG_ON(!name);
  3358. *p++ = ':';
  3359. /*
  3360. * First flags affecting slabcache operations. We will only
  3361. * get here for aliasable slabs so we do not need to support
  3362. * too many flags. The flags here must cover all flags that
  3363. * are matched during merging to guarantee that the id is
  3364. * unique.
  3365. */
  3366. if (s->flags & SLAB_CACHE_DMA)
  3367. *p++ = 'd';
  3368. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3369. *p++ = 'a';
  3370. if (s->flags & SLAB_DEBUG_FREE)
  3371. *p++ = 'F';
  3372. if (p != name + 1)
  3373. *p++ = '-';
  3374. p += sprintf(p, "%07d", s->size);
  3375. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3376. return name;
  3377. }
  3378. static int sysfs_slab_add(struct kmem_cache *s)
  3379. {
  3380. int err;
  3381. const char *name;
  3382. int unmergeable;
  3383. if (slab_state < SYSFS)
  3384. /* Defer until later */
  3385. return 0;
  3386. unmergeable = slab_unmergeable(s);
  3387. if (unmergeable) {
  3388. /*
  3389. * Slabcache can never be merged so we can use the name proper.
  3390. * This is typically the case for debug situations. In that
  3391. * case we can catch duplicate names easily.
  3392. */
  3393. sysfs_remove_link(&slab_kset->kobj, s->name);
  3394. name = s->name;
  3395. } else {
  3396. /*
  3397. * Create a unique name for the slab as a target
  3398. * for the symlinks.
  3399. */
  3400. name = create_unique_id(s);
  3401. }
  3402. s->kobj.kset = slab_kset;
  3403. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3404. if (err) {
  3405. kobject_put(&s->kobj);
  3406. return err;
  3407. }
  3408. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3409. if (err)
  3410. return err;
  3411. kobject_uevent(&s->kobj, KOBJ_ADD);
  3412. if (!unmergeable) {
  3413. /* Setup first alias */
  3414. sysfs_slab_alias(s, s->name);
  3415. kfree(name);
  3416. }
  3417. return 0;
  3418. }
  3419. static void sysfs_slab_remove(struct kmem_cache *s)
  3420. {
  3421. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3422. kobject_del(&s->kobj);
  3423. }
  3424. /*
  3425. * Need to buffer aliases during bootup until sysfs becomes
  3426. * available lest we loose that information.
  3427. */
  3428. struct saved_alias {
  3429. struct kmem_cache *s;
  3430. const char *name;
  3431. struct saved_alias *next;
  3432. };
  3433. static struct saved_alias *alias_list;
  3434. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3435. {
  3436. struct saved_alias *al;
  3437. if (slab_state == SYSFS) {
  3438. /*
  3439. * If we have a leftover link then remove it.
  3440. */
  3441. sysfs_remove_link(&slab_kset->kobj, name);
  3442. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3443. }
  3444. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3445. if (!al)
  3446. return -ENOMEM;
  3447. al->s = s;
  3448. al->name = name;
  3449. al->next = alias_list;
  3450. alias_list = al;
  3451. return 0;
  3452. }
  3453. static int __init slab_sysfs_init(void)
  3454. {
  3455. struct kmem_cache *s;
  3456. int err;
  3457. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3458. if (!slab_kset) {
  3459. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3460. return -ENOSYS;
  3461. }
  3462. slab_state = SYSFS;
  3463. list_for_each_entry(s, &slab_caches, list) {
  3464. err = sysfs_slab_add(s);
  3465. if (err)
  3466. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3467. " to sysfs\n", s->name);
  3468. }
  3469. while (alias_list) {
  3470. struct saved_alias *al = alias_list;
  3471. alias_list = alias_list->next;
  3472. err = sysfs_slab_alias(al->s, al->name);
  3473. if (err)
  3474. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3475. " %s to sysfs\n", s->name);
  3476. kfree(al);
  3477. }
  3478. resiliency_test();
  3479. return 0;
  3480. }
  3481. __initcall(slab_sysfs_init);
  3482. #endif
  3483. /*
  3484. * The /proc/slabinfo ABI
  3485. */
  3486. #ifdef CONFIG_SLABINFO
  3487. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3488. size_t count, loff_t *ppos)
  3489. {
  3490. return -EINVAL;
  3491. }
  3492. static void print_slabinfo_header(struct seq_file *m)
  3493. {
  3494. seq_puts(m, "slabinfo - version: 2.1\n");
  3495. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3496. "<objperslab> <pagesperslab>");
  3497. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3498. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3499. seq_putc(m, '\n');
  3500. }
  3501. static void *s_start(struct seq_file *m, loff_t *pos)
  3502. {
  3503. loff_t n = *pos;
  3504. down_read(&slub_lock);
  3505. if (!n)
  3506. print_slabinfo_header(m);
  3507. return seq_list_start(&slab_caches, *pos);
  3508. }
  3509. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3510. {
  3511. return seq_list_next(p, &slab_caches, pos);
  3512. }
  3513. static void s_stop(struct seq_file *m, void *p)
  3514. {
  3515. up_read(&slub_lock);
  3516. }
  3517. static int s_show(struct seq_file *m, void *p)
  3518. {
  3519. unsigned long nr_partials = 0;
  3520. unsigned long nr_slabs = 0;
  3521. unsigned long nr_inuse = 0;
  3522. unsigned long nr_objs;
  3523. struct kmem_cache *s;
  3524. int node;
  3525. s = list_entry(p, struct kmem_cache, list);
  3526. for_each_online_node(node) {
  3527. struct kmem_cache_node *n = get_node(s, node);
  3528. if (!n)
  3529. continue;
  3530. nr_partials += n->nr_partial;
  3531. nr_slabs += atomic_long_read(&n->nr_slabs);
  3532. nr_inuse += count_partial(n);
  3533. }
  3534. nr_objs = nr_slabs * s->objects;
  3535. nr_inuse += (nr_slabs - nr_partials) * s->objects;
  3536. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3537. nr_objs, s->size, s->objects, (1 << s->order));
  3538. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3539. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3540. 0UL);
  3541. seq_putc(m, '\n');
  3542. return 0;
  3543. }
  3544. const struct seq_operations slabinfo_op = {
  3545. .start = s_start,
  3546. .next = s_next,
  3547. .stop = s_stop,
  3548. .show = s_show,
  3549. };
  3550. #endif /* CONFIG_SLABINFO */