rmap.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. * zone->lock (within radix tree node alloc)
  39. */
  40. #include <linux/mm.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/swap.h>
  43. #include <linux/swapops.h>
  44. #include <linux/slab.h>
  45. #include <linux/init.h>
  46. #include <linux/rmap.h>
  47. #include <linux/rcupdate.h>
  48. #include <linux/module.h>
  49. #include <linux/kallsyms.h>
  50. #include <asm/tlbflush.h>
  51. struct kmem_cache *anon_vma_cachep;
  52. /* This must be called under the mmap_sem. */
  53. int anon_vma_prepare(struct vm_area_struct *vma)
  54. {
  55. struct anon_vma *anon_vma = vma->anon_vma;
  56. might_sleep();
  57. if (unlikely(!anon_vma)) {
  58. struct mm_struct *mm = vma->vm_mm;
  59. struct anon_vma *allocated, *locked;
  60. anon_vma = find_mergeable_anon_vma(vma);
  61. if (anon_vma) {
  62. allocated = NULL;
  63. locked = anon_vma;
  64. spin_lock(&locked->lock);
  65. } else {
  66. anon_vma = anon_vma_alloc();
  67. if (unlikely(!anon_vma))
  68. return -ENOMEM;
  69. allocated = anon_vma;
  70. locked = NULL;
  71. }
  72. /* page_table_lock to protect against threads */
  73. spin_lock(&mm->page_table_lock);
  74. if (likely(!vma->anon_vma)) {
  75. vma->anon_vma = anon_vma;
  76. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  77. allocated = NULL;
  78. }
  79. spin_unlock(&mm->page_table_lock);
  80. if (locked)
  81. spin_unlock(&locked->lock);
  82. if (unlikely(allocated))
  83. anon_vma_free(allocated);
  84. }
  85. return 0;
  86. }
  87. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  88. {
  89. BUG_ON(vma->anon_vma != next->anon_vma);
  90. list_del(&next->anon_vma_node);
  91. }
  92. void __anon_vma_link(struct vm_area_struct *vma)
  93. {
  94. struct anon_vma *anon_vma = vma->anon_vma;
  95. if (anon_vma)
  96. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  97. }
  98. void anon_vma_link(struct vm_area_struct *vma)
  99. {
  100. struct anon_vma *anon_vma = vma->anon_vma;
  101. if (anon_vma) {
  102. spin_lock(&anon_vma->lock);
  103. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  104. spin_unlock(&anon_vma->lock);
  105. }
  106. }
  107. void anon_vma_unlink(struct vm_area_struct *vma)
  108. {
  109. struct anon_vma *anon_vma = vma->anon_vma;
  110. int empty;
  111. if (!anon_vma)
  112. return;
  113. spin_lock(&anon_vma->lock);
  114. list_del(&vma->anon_vma_node);
  115. /* We must garbage collect the anon_vma if it's empty */
  116. empty = list_empty(&anon_vma->head);
  117. spin_unlock(&anon_vma->lock);
  118. if (empty)
  119. anon_vma_free(anon_vma);
  120. }
  121. static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
  122. {
  123. struct anon_vma *anon_vma = data;
  124. spin_lock_init(&anon_vma->lock);
  125. INIT_LIST_HEAD(&anon_vma->head);
  126. }
  127. void __init anon_vma_init(void)
  128. {
  129. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  130. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  131. }
  132. /*
  133. * Getting a lock on a stable anon_vma from a page off the LRU is
  134. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  135. */
  136. static struct anon_vma *page_lock_anon_vma(struct page *page)
  137. {
  138. struct anon_vma *anon_vma;
  139. unsigned long anon_mapping;
  140. rcu_read_lock();
  141. anon_mapping = (unsigned long) page->mapping;
  142. if (!(anon_mapping & PAGE_MAPPING_ANON))
  143. goto out;
  144. if (!page_mapped(page))
  145. goto out;
  146. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  147. spin_lock(&anon_vma->lock);
  148. return anon_vma;
  149. out:
  150. rcu_read_unlock();
  151. return NULL;
  152. }
  153. static void page_unlock_anon_vma(struct anon_vma *anon_vma)
  154. {
  155. spin_unlock(&anon_vma->lock);
  156. rcu_read_unlock();
  157. }
  158. /*
  159. * At what user virtual address is page expected in @vma?
  160. * Returns virtual address or -EFAULT if page's index/offset is not
  161. * within the range mapped the @vma.
  162. */
  163. static inline unsigned long
  164. vma_address(struct page *page, struct vm_area_struct *vma)
  165. {
  166. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  167. unsigned long address;
  168. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  169. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  170. /* page should be within @vma mapping range */
  171. return -EFAULT;
  172. }
  173. return address;
  174. }
  175. /*
  176. * At what user virtual address is page expected in vma? checking that the
  177. * page matches the vma: currently only used on anon pages, by unuse_vma;
  178. */
  179. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  180. {
  181. if (PageAnon(page)) {
  182. if ((void *)vma->anon_vma !=
  183. (void *)page->mapping - PAGE_MAPPING_ANON)
  184. return -EFAULT;
  185. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  186. if (!vma->vm_file ||
  187. vma->vm_file->f_mapping != page->mapping)
  188. return -EFAULT;
  189. } else
  190. return -EFAULT;
  191. return vma_address(page, vma);
  192. }
  193. /*
  194. * Check that @page is mapped at @address into @mm.
  195. *
  196. * On success returns with pte mapped and locked.
  197. */
  198. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  199. unsigned long address, spinlock_t **ptlp)
  200. {
  201. pgd_t *pgd;
  202. pud_t *pud;
  203. pmd_t *pmd;
  204. pte_t *pte;
  205. spinlock_t *ptl;
  206. pgd = pgd_offset(mm, address);
  207. if (!pgd_present(*pgd))
  208. return NULL;
  209. pud = pud_offset(pgd, address);
  210. if (!pud_present(*pud))
  211. return NULL;
  212. pmd = pmd_offset(pud, address);
  213. if (!pmd_present(*pmd))
  214. return NULL;
  215. pte = pte_offset_map(pmd, address);
  216. /* Make a quick check before getting the lock */
  217. if (!pte_present(*pte)) {
  218. pte_unmap(pte);
  219. return NULL;
  220. }
  221. ptl = pte_lockptr(mm, pmd);
  222. spin_lock(ptl);
  223. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  224. *ptlp = ptl;
  225. return pte;
  226. }
  227. pte_unmap_unlock(pte, ptl);
  228. return NULL;
  229. }
  230. /*
  231. * Subfunctions of page_referenced: page_referenced_one called
  232. * repeatedly from either page_referenced_anon or page_referenced_file.
  233. */
  234. static int page_referenced_one(struct page *page,
  235. struct vm_area_struct *vma, unsigned int *mapcount)
  236. {
  237. struct mm_struct *mm = vma->vm_mm;
  238. unsigned long address;
  239. pte_t *pte;
  240. spinlock_t *ptl;
  241. int referenced = 0;
  242. address = vma_address(page, vma);
  243. if (address == -EFAULT)
  244. goto out;
  245. pte = page_check_address(page, mm, address, &ptl);
  246. if (!pte)
  247. goto out;
  248. if (ptep_clear_flush_young(vma, address, pte))
  249. referenced++;
  250. /* Pretend the page is referenced if the task has the
  251. swap token and is in the middle of a page fault. */
  252. if (mm != current->mm && has_swap_token(mm) &&
  253. rwsem_is_locked(&mm->mmap_sem))
  254. referenced++;
  255. (*mapcount)--;
  256. pte_unmap_unlock(pte, ptl);
  257. out:
  258. return referenced;
  259. }
  260. static int page_referenced_anon(struct page *page)
  261. {
  262. unsigned int mapcount;
  263. struct anon_vma *anon_vma;
  264. struct vm_area_struct *vma;
  265. int referenced = 0;
  266. anon_vma = page_lock_anon_vma(page);
  267. if (!anon_vma)
  268. return referenced;
  269. mapcount = page_mapcount(page);
  270. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  271. referenced += page_referenced_one(page, vma, &mapcount);
  272. if (!mapcount)
  273. break;
  274. }
  275. page_unlock_anon_vma(anon_vma);
  276. return referenced;
  277. }
  278. /**
  279. * page_referenced_file - referenced check for object-based rmap
  280. * @page: the page we're checking references on.
  281. *
  282. * For an object-based mapped page, find all the places it is mapped and
  283. * check/clear the referenced flag. This is done by following the page->mapping
  284. * pointer, then walking the chain of vmas it holds. It returns the number
  285. * of references it found.
  286. *
  287. * This function is only called from page_referenced for object-based pages.
  288. */
  289. static int page_referenced_file(struct page *page)
  290. {
  291. unsigned int mapcount;
  292. struct address_space *mapping = page->mapping;
  293. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  294. struct vm_area_struct *vma;
  295. struct prio_tree_iter iter;
  296. int referenced = 0;
  297. /*
  298. * The caller's checks on page->mapping and !PageAnon have made
  299. * sure that this is a file page: the check for page->mapping
  300. * excludes the case just before it gets set on an anon page.
  301. */
  302. BUG_ON(PageAnon(page));
  303. /*
  304. * The page lock not only makes sure that page->mapping cannot
  305. * suddenly be NULLified by truncation, it makes sure that the
  306. * structure at mapping cannot be freed and reused yet,
  307. * so we can safely take mapping->i_mmap_lock.
  308. */
  309. BUG_ON(!PageLocked(page));
  310. spin_lock(&mapping->i_mmap_lock);
  311. /*
  312. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  313. * is more likely to be accurate if we note it after spinning.
  314. */
  315. mapcount = page_mapcount(page);
  316. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  317. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  318. == (VM_LOCKED|VM_MAYSHARE)) {
  319. referenced++;
  320. break;
  321. }
  322. referenced += page_referenced_one(page, vma, &mapcount);
  323. if (!mapcount)
  324. break;
  325. }
  326. spin_unlock(&mapping->i_mmap_lock);
  327. return referenced;
  328. }
  329. /**
  330. * page_referenced - test if the page was referenced
  331. * @page: the page to test
  332. * @is_locked: caller holds lock on the page
  333. *
  334. * Quick test_and_clear_referenced for all mappings to a page,
  335. * returns the number of ptes which referenced the page.
  336. */
  337. int page_referenced(struct page *page, int is_locked)
  338. {
  339. int referenced = 0;
  340. if (page_test_and_clear_young(page))
  341. referenced++;
  342. if (TestClearPageReferenced(page))
  343. referenced++;
  344. if (page_mapped(page) && page->mapping) {
  345. if (PageAnon(page))
  346. referenced += page_referenced_anon(page);
  347. else if (is_locked)
  348. referenced += page_referenced_file(page);
  349. else if (TestSetPageLocked(page))
  350. referenced++;
  351. else {
  352. if (page->mapping)
  353. referenced += page_referenced_file(page);
  354. unlock_page(page);
  355. }
  356. }
  357. return referenced;
  358. }
  359. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
  360. {
  361. struct mm_struct *mm = vma->vm_mm;
  362. unsigned long address;
  363. pte_t *pte;
  364. spinlock_t *ptl;
  365. int ret = 0;
  366. address = vma_address(page, vma);
  367. if (address == -EFAULT)
  368. goto out;
  369. pte = page_check_address(page, mm, address, &ptl);
  370. if (!pte)
  371. goto out;
  372. if (pte_dirty(*pte) || pte_write(*pte)) {
  373. pte_t entry;
  374. flush_cache_page(vma, address, pte_pfn(*pte));
  375. entry = ptep_clear_flush(vma, address, pte);
  376. entry = pte_wrprotect(entry);
  377. entry = pte_mkclean(entry);
  378. set_pte_at(mm, address, pte, entry);
  379. ret = 1;
  380. }
  381. pte_unmap_unlock(pte, ptl);
  382. out:
  383. return ret;
  384. }
  385. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  386. {
  387. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  388. struct vm_area_struct *vma;
  389. struct prio_tree_iter iter;
  390. int ret = 0;
  391. BUG_ON(PageAnon(page));
  392. spin_lock(&mapping->i_mmap_lock);
  393. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  394. if (vma->vm_flags & VM_SHARED)
  395. ret += page_mkclean_one(page, vma);
  396. }
  397. spin_unlock(&mapping->i_mmap_lock);
  398. return ret;
  399. }
  400. int page_mkclean(struct page *page)
  401. {
  402. int ret = 0;
  403. BUG_ON(!PageLocked(page));
  404. if (page_mapped(page)) {
  405. struct address_space *mapping = page_mapping(page);
  406. if (mapping) {
  407. ret = page_mkclean_file(mapping, page);
  408. if (page_test_dirty(page)) {
  409. page_clear_dirty(page);
  410. ret = 1;
  411. }
  412. }
  413. }
  414. return ret;
  415. }
  416. EXPORT_SYMBOL_GPL(page_mkclean);
  417. /**
  418. * page_set_anon_rmap - setup new anonymous rmap
  419. * @page: the page to add the mapping to
  420. * @vma: the vm area in which the mapping is added
  421. * @address: the user virtual address mapped
  422. */
  423. static void __page_set_anon_rmap(struct page *page,
  424. struct vm_area_struct *vma, unsigned long address)
  425. {
  426. struct anon_vma *anon_vma = vma->anon_vma;
  427. BUG_ON(!anon_vma);
  428. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  429. page->mapping = (struct address_space *) anon_vma;
  430. page->index = linear_page_index(vma, address);
  431. /*
  432. * nr_mapped state can be updated without turning off
  433. * interrupts because it is not modified via interrupt.
  434. */
  435. __inc_zone_page_state(page, NR_ANON_PAGES);
  436. }
  437. /**
  438. * page_set_anon_rmap - sanity check anonymous rmap addition
  439. * @page: the page to add the mapping to
  440. * @vma: the vm area in which the mapping is added
  441. * @address: the user virtual address mapped
  442. */
  443. static void __page_check_anon_rmap(struct page *page,
  444. struct vm_area_struct *vma, unsigned long address)
  445. {
  446. #ifdef CONFIG_DEBUG_VM
  447. /*
  448. * The page's anon-rmap details (mapping and index) are guaranteed to
  449. * be set up correctly at this point.
  450. *
  451. * We have exclusion against page_add_anon_rmap because the caller
  452. * always holds the page locked, except if called from page_dup_rmap,
  453. * in which case the page is already known to be setup.
  454. *
  455. * We have exclusion against page_add_new_anon_rmap because those pages
  456. * are initially only visible via the pagetables, and the pte is locked
  457. * over the call to page_add_new_anon_rmap.
  458. */
  459. struct anon_vma *anon_vma = vma->anon_vma;
  460. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  461. BUG_ON(page->mapping != (struct address_space *)anon_vma);
  462. BUG_ON(page->index != linear_page_index(vma, address));
  463. #endif
  464. }
  465. /**
  466. * page_add_anon_rmap - add pte mapping to an anonymous page
  467. * @page: the page to add the mapping to
  468. * @vma: the vm area in which the mapping is added
  469. * @address: the user virtual address mapped
  470. *
  471. * The caller needs to hold the pte lock and the page must be locked.
  472. */
  473. void page_add_anon_rmap(struct page *page,
  474. struct vm_area_struct *vma, unsigned long address)
  475. {
  476. VM_BUG_ON(!PageLocked(page));
  477. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  478. if (atomic_inc_and_test(&page->_mapcount))
  479. __page_set_anon_rmap(page, vma, address);
  480. else
  481. __page_check_anon_rmap(page, vma, address);
  482. }
  483. /*
  484. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  485. * @page: the page to add the mapping to
  486. * @vma: the vm area in which the mapping is added
  487. * @address: the user virtual address mapped
  488. *
  489. * Same as page_add_anon_rmap but must only be called on *new* pages.
  490. * This means the inc-and-test can be bypassed.
  491. * Page does not have to be locked.
  492. */
  493. void page_add_new_anon_rmap(struct page *page,
  494. struct vm_area_struct *vma, unsigned long address)
  495. {
  496. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  497. atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
  498. __page_set_anon_rmap(page, vma, address);
  499. }
  500. /**
  501. * page_add_file_rmap - add pte mapping to a file page
  502. * @page: the page to add the mapping to
  503. *
  504. * The caller needs to hold the pte lock.
  505. */
  506. void page_add_file_rmap(struct page *page)
  507. {
  508. if (atomic_inc_and_test(&page->_mapcount))
  509. __inc_zone_page_state(page, NR_FILE_MAPPED);
  510. }
  511. #ifdef CONFIG_DEBUG_VM
  512. /**
  513. * page_dup_rmap - duplicate pte mapping to a page
  514. * @page: the page to add the mapping to
  515. *
  516. * For copy_page_range only: minimal extract from page_add_file_rmap /
  517. * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
  518. * quicker.
  519. *
  520. * The caller needs to hold the pte lock.
  521. */
  522. void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
  523. {
  524. BUG_ON(page_mapcount(page) == 0);
  525. if (PageAnon(page))
  526. __page_check_anon_rmap(page, vma, address);
  527. atomic_inc(&page->_mapcount);
  528. }
  529. #endif
  530. /**
  531. * page_remove_rmap - take down pte mapping from a page
  532. * @page: page to remove mapping from
  533. *
  534. * The caller needs to hold the pte lock.
  535. */
  536. void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
  537. {
  538. if (atomic_add_negative(-1, &page->_mapcount)) {
  539. if (unlikely(page_mapcount(page) < 0)) {
  540. printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
  541. printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
  542. printk (KERN_EMERG " page->flags = %lx\n", page->flags);
  543. printk (KERN_EMERG " page->count = %x\n", page_count(page));
  544. printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
  545. print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
  546. if (vma->vm_ops) {
  547. print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
  548. print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
  549. }
  550. if (vma->vm_file && vma->vm_file->f_op)
  551. print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
  552. BUG();
  553. }
  554. /*
  555. * It would be tidy to reset the PageAnon mapping here,
  556. * but that might overwrite a racing page_add_anon_rmap
  557. * which increments mapcount after us but sets mapping
  558. * before us: so leave the reset to free_hot_cold_page,
  559. * and remember that it's only reliable while mapped.
  560. * Leaving it set also helps swapoff to reinstate ptes
  561. * faster for those pages still in swapcache.
  562. */
  563. if (page_test_dirty(page)) {
  564. page_clear_dirty(page);
  565. set_page_dirty(page);
  566. }
  567. __dec_zone_page_state(page,
  568. PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
  569. }
  570. }
  571. /*
  572. * Subfunctions of try_to_unmap: try_to_unmap_one called
  573. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  574. */
  575. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  576. int migration)
  577. {
  578. struct mm_struct *mm = vma->vm_mm;
  579. unsigned long address;
  580. pte_t *pte;
  581. pte_t pteval;
  582. spinlock_t *ptl;
  583. int ret = SWAP_AGAIN;
  584. address = vma_address(page, vma);
  585. if (address == -EFAULT)
  586. goto out;
  587. pte = page_check_address(page, mm, address, &ptl);
  588. if (!pte)
  589. goto out;
  590. /*
  591. * If the page is mlock()d, we cannot swap it out.
  592. * If it's recently referenced (perhaps page_referenced
  593. * skipped over this mm) then we should reactivate it.
  594. */
  595. if (!migration && ((vma->vm_flags & VM_LOCKED) ||
  596. (ptep_clear_flush_young(vma, address, pte)))) {
  597. ret = SWAP_FAIL;
  598. goto out_unmap;
  599. }
  600. /* Nuke the page table entry. */
  601. flush_cache_page(vma, address, page_to_pfn(page));
  602. pteval = ptep_clear_flush(vma, address, pte);
  603. /* Move the dirty bit to the physical page now the pte is gone. */
  604. if (pte_dirty(pteval))
  605. set_page_dirty(page);
  606. /* Update high watermark before we lower rss */
  607. update_hiwater_rss(mm);
  608. if (PageAnon(page)) {
  609. swp_entry_t entry = { .val = page_private(page) };
  610. if (PageSwapCache(page)) {
  611. /*
  612. * Store the swap location in the pte.
  613. * See handle_pte_fault() ...
  614. */
  615. swap_duplicate(entry);
  616. if (list_empty(&mm->mmlist)) {
  617. spin_lock(&mmlist_lock);
  618. if (list_empty(&mm->mmlist))
  619. list_add(&mm->mmlist, &init_mm.mmlist);
  620. spin_unlock(&mmlist_lock);
  621. }
  622. dec_mm_counter(mm, anon_rss);
  623. #ifdef CONFIG_MIGRATION
  624. } else {
  625. /*
  626. * Store the pfn of the page in a special migration
  627. * pte. do_swap_page() will wait until the migration
  628. * pte is removed and then restart fault handling.
  629. */
  630. BUG_ON(!migration);
  631. entry = make_migration_entry(page, pte_write(pteval));
  632. #endif
  633. }
  634. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  635. BUG_ON(pte_file(*pte));
  636. } else
  637. #ifdef CONFIG_MIGRATION
  638. if (migration) {
  639. /* Establish migration entry for a file page */
  640. swp_entry_t entry;
  641. entry = make_migration_entry(page, pte_write(pteval));
  642. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  643. } else
  644. #endif
  645. dec_mm_counter(mm, file_rss);
  646. page_remove_rmap(page, vma);
  647. page_cache_release(page);
  648. out_unmap:
  649. pte_unmap_unlock(pte, ptl);
  650. out:
  651. return ret;
  652. }
  653. /*
  654. * objrmap doesn't work for nonlinear VMAs because the assumption that
  655. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  656. * Consequently, given a particular page and its ->index, we cannot locate the
  657. * ptes which are mapping that page without an exhaustive linear search.
  658. *
  659. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  660. * maps the file to which the target page belongs. The ->vm_private_data field
  661. * holds the current cursor into that scan. Successive searches will circulate
  662. * around the vma's virtual address space.
  663. *
  664. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  665. * more scanning pressure is placed against them as well. Eventually pages
  666. * will become fully unmapped and are eligible for eviction.
  667. *
  668. * For very sparsely populated VMAs this is a little inefficient - chances are
  669. * there there won't be many ptes located within the scan cluster. In this case
  670. * maybe we could scan further - to the end of the pte page, perhaps.
  671. */
  672. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  673. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  674. static void try_to_unmap_cluster(unsigned long cursor,
  675. unsigned int *mapcount, struct vm_area_struct *vma)
  676. {
  677. struct mm_struct *mm = vma->vm_mm;
  678. pgd_t *pgd;
  679. pud_t *pud;
  680. pmd_t *pmd;
  681. pte_t *pte;
  682. pte_t pteval;
  683. spinlock_t *ptl;
  684. struct page *page;
  685. unsigned long address;
  686. unsigned long end;
  687. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  688. end = address + CLUSTER_SIZE;
  689. if (address < vma->vm_start)
  690. address = vma->vm_start;
  691. if (end > vma->vm_end)
  692. end = vma->vm_end;
  693. pgd = pgd_offset(mm, address);
  694. if (!pgd_present(*pgd))
  695. return;
  696. pud = pud_offset(pgd, address);
  697. if (!pud_present(*pud))
  698. return;
  699. pmd = pmd_offset(pud, address);
  700. if (!pmd_present(*pmd))
  701. return;
  702. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  703. /* Update high watermark before we lower rss */
  704. update_hiwater_rss(mm);
  705. for (; address < end; pte++, address += PAGE_SIZE) {
  706. if (!pte_present(*pte))
  707. continue;
  708. page = vm_normal_page(vma, address, *pte);
  709. BUG_ON(!page || PageAnon(page));
  710. if (ptep_clear_flush_young(vma, address, pte))
  711. continue;
  712. /* Nuke the page table entry. */
  713. flush_cache_page(vma, address, pte_pfn(*pte));
  714. pteval = ptep_clear_flush(vma, address, pte);
  715. /* If nonlinear, store the file page offset in the pte. */
  716. if (page->index != linear_page_index(vma, address))
  717. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  718. /* Move the dirty bit to the physical page now the pte is gone. */
  719. if (pte_dirty(pteval))
  720. set_page_dirty(page);
  721. page_remove_rmap(page, vma);
  722. page_cache_release(page);
  723. dec_mm_counter(mm, file_rss);
  724. (*mapcount)--;
  725. }
  726. pte_unmap_unlock(pte - 1, ptl);
  727. }
  728. static int try_to_unmap_anon(struct page *page, int migration)
  729. {
  730. struct anon_vma *anon_vma;
  731. struct vm_area_struct *vma;
  732. int ret = SWAP_AGAIN;
  733. anon_vma = page_lock_anon_vma(page);
  734. if (!anon_vma)
  735. return ret;
  736. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  737. ret = try_to_unmap_one(page, vma, migration);
  738. if (ret == SWAP_FAIL || !page_mapped(page))
  739. break;
  740. }
  741. page_unlock_anon_vma(anon_vma);
  742. return ret;
  743. }
  744. /**
  745. * try_to_unmap_file - unmap file page using the object-based rmap method
  746. * @page: the page to unmap
  747. *
  748. * Find all the mappings of a page using the mapping pointer and the vma chains
  749. * contained in the address_space struct it points to.
  750. *
  751. * This function is only called from try_to_unmap for object-based pages.
  752. */
  753. static int try_to_unmap_file(struct page *page, int migration)
  754. {
  755. struct address_space *mapping = page->mapping;
  756. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  757. struct vm_area_struct *vma;
  758. struct prio_tree_iter iter;
  759. int ret = SWAP_AGAIN;
  760. unsigned long cursor;
  761. unsigned long max_nl_cursor = 0;
  762. unsigned long max_nl_size = 0;
  763. unsigned int mapcount;
  764. spin_lock(&mapping->i_mmap_lock);
  765. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  766. ret = try_to_unmap_one(page, vma, migration);
  767. if (ret == SWAP_FAIL || !page_mapped(page))
  768. goto out;
  769. }
  770. if (list_empty(&mapping->i_mmap_nonlinear))
  771. goto out;
  772. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  773. shared.vm_set.list) {
  774. if ((vma->vm_flags & VM_LOCKED) && !migration)
  775. continue;
  776. cursor = (unsigned long) vma->vm_private_data;
  777. if (cursor > max_nl_cursor)
  778. max_nl_cursor = cursor;
  779. cursor = vma->vm_end - vma->vm_start;
  780. if (cursor > max_nl_size)
  781. max_nl_size = cursor;
  782. }
  783. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  784. ret = SWAP_FAIL;
  785. goto out;
  786. }
  787. /*
  788. * We don't try to search for this page in the nonlinear vmas,
  789. * and page_referenced wouldn't have found it anyway. Instead
  790. * just walk the nonlinear vmas trying to age and unmap some.
  791. * The mapcount of the page we came in with is irrelevant,
  792. * but even so use it as a guide to how hard we should try?
  793. */
  794. mapcount = page_mapcount(page);
  795. if (!mapcount)
  796. goto out;
  797. cond_resched_lock(&mapping->i_mmap_lock);
  798. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  799. if (max_nl_cursor == 0)
  800. max_nl_cursor = CLUSTER_SIZE;
  801. do {
  802. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  803. shared.vm_set.list) {
  804. if ((vma->vm_flags & VM_LOCKED) && !migration)
  805. continue;
  806. cursor = (unsigned long) vma->vm_private_data;
  807. while ( cursor < max_nl_cursor &&
  808. cursor < vma->vm_end - vma->vm_start) {
  809. try_to_unmap_cluster(cursor, &mapcount, vma);
  810. cursor += CLUSTER_SIZE;
  811. vma->vm_private_data = (void *) cursor;
  812. if ((int)mapcount <= 0)
  813. goto out;
  814. }
  815. vma->vm_private_data = (void *) max_nl_cursor;
  816. }
  817. cond_resched_lock(&mapping->i_mmap_lock);
  818. max_nl_cursor += CLUSTER_SIZE;
  819. } while (max_nl_cursor <= max_nl_size);
  820. /*
  821. * Don't loop forever (perhaps all the remaining pages are
  822. * in locked vmas). Reset cursor on all unreserved nonlinear
  823. * vmas, now forgetting on which ones it had fallen behind.
  824. */
  825. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  826. vma->vm_private_data = NULL;
  827. out:
  828. spin_unlock(&mapping->i_mmap_lock);
  829. return ret;
  830. }
  831. /**
  832. * try_to_unmap - try to remove all page table mappings to a page
  833. * @page: the page to get unmapped
  834. *
  835. * Tries to remove all the page table entries which are mapping this
  836. * page, used in the pageout path. Caller must hold the page lock.
  837. * Return values are:
  838. *
  839. * SWAP_SUCCESS - we succeeded in removing all mappings
  840. * SWAP_AGAIN - we missed a mapping, try again later
  841. * SWAP_FAIL - the page is unswappable
  842. */
  843. int try_to_unmap(struct page *page, int migration)
  844. {
  845. int ret;
  846. BUG_ON(!PageLocked(page));
  847. if (PageAnon(page))
  848. ret = try_to_unmap_anon(page, migration);
  849. else
  850. ret = try_to_unmap_file(page, migration);
  851. if (!page_mapped(page))
  852. ret = SWAP_SUCCESS;
  853. return ret;
  854. }