page_alloc.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/oom.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/stop_machine.h>
  40. #include <linux/sort.h>
  41. #include <linux/pfn.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/fault-inject.h>
  44. #include <linux/page-isolation.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include "internal.h"
  48. /*
  49. * Array of node states.
  50. */
  51. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  52. [N_POSSIBLE] = NODE_MASK_ALL,
  53. [N_ONLINE] = { { [0] = 1UL } },
  54. #ifndef CONFIG_NUMA
  55. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  56. #ifdef CONFIG_HIGHMEM
  57. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  58. #endif
  59. [N_CPU] = { { [0] = 1UL } },
  60. #endif /* NUMA */
  61. };
  62. EXPORT_SYMBOL(node_states);
  63. unsigned long totalram_pages __read_mostly;
  64. unsigned long totalreserve_pages __read_mostly;
  65. long nr_swap_pages;
  66. int percpu_pagelist_fraction;
  67. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  68. int pageblock_order __read_mostly;
  69. #endif
  70. static void __free_pages_ok(struct page *page, unsigned int order);
  71. /*
  72. * results with 256, 32 in the lowmem_reserve sysctl:
  73. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  74. * 1G machine -> (16M dma, 784M normal, 224M high)
  75. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  76. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  77. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  78. *
  79. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  80. * don't need any ZONE_NORMAL reservation
  81. */
  82. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  83. #ifdef CONFIG_ZONE_DMA
  84. 256,
  85. #endif
  86. #ifdef CONFIG_ZONE_DMA32
  87. 256,
  88. #endif
  89. #ifdef CONFIG_HIGHMEM
  90. 32,
  91. #endif
  92. 32,
  93. };
  94. EXPORT_SYMBOL(totalram_pages);
  95. static char * const zone_names[MAX_NR_ZONES] = {
  96. #ifdef CONFIG_ZONE_DMA
  97. "DMA",
  98. #endif
  99. #ifdef CONFIG_ZONE_DMA32
  100. "DMA32",
  101. #endif
  102. "Normal",
  103. #ifdef CONFIG_HIGHMEM
  104. "HighMem",
  105. #endif
  106. "Movable",
  107. };
  108. int min_free_kbytes = 1024;
  109. unsigned long __meminitdata nr_kernel_pages;
  110. unsigned long __meminitdata nr_all_pages;
  111. static unsigned long __meminitdata dma_reserve;
  112. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  113. /*
  114. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  115. * ranges of memory (RAM) that may be registered with add_active_range().
  116. * Ranges passed to add_active_range() will be merged if possible
  117. * so the number of times add_active_range() can be called is
  118. * related to the number of nodes and the number of holes
  119. */
  120. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  121. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  122. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  123. #else
  124. #if MAX_NUMNODES >= 32
  125. /* If there can be many nodes, allow up to 50 holes per node */
  126. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  127. #else
  128. /* By default, allow up to 256 distinct regions */
  129. #define MAX_ACTIVE_REGIONS 256
  130. #endif
  131. #endif
  132. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  133. static int __meminitdata nr_nodemap_entries;
  134. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  135. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  136. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  137. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  138. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  139. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  140. unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. EXPORT_SYMBOL(nr_node_ids);
  150. #endif
  151. int page_group_by_mobility_disabled __read_mostly;
  152. static void set_pageblock_migratetype(struct page *page, int migratetype)
  153. {
  154. set_pageblock_flags_group(page, (unsigned long)migratetype,
  155. PB_migrate, PB_migrate_end);
  156. }
  157. #ifdef CONFIG_DEBUG_VM
  158. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  159. {
  160. int ret = 0;
  161. unsigned seq;
  162. unsigned long pfn = page_to_pfn(page);
  163. do {
  164. seq = zone_span_seqbegin(zone);
  165. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  166. ret = 1;
  167. else if (pfn < zone->zone_start_pfn)
  168. ret = 1;
  169. } while (zone_span_seqretry(zone, seq));
  170. return ret;
  171. }
  172. static int page_is_consistent(struct zone *zone, struct page *page)
  173. {
  174. if (!pfn_valid_within(page_to_pfn(page)))
  175. return 0;
  176. if (zone != page_zone(page))
  177. return 0;
  178. return 1;
  179. }
  180. /*
  181. * Temporary debugging check for pages not lying within a given zone.
  182. */
  183. static int bad_range(struct zone *zone, struct page *page)
  184. {
  185. if (page_outside_zone_boundaries(zone, page))
  186. return 1;
  187. if (!page_is_consistent(zone, page))
  188. return 1;
  189. return 0;
  190. }
  191. #else
  192. static inline int bad_range(struct zone *zone, struct page *page)
  193. {
  194. return 0;
  195. }
  196. #endif
  197. static void bad_page(struct page *page)
  198. {
  199. printk(KERN_EMERG "Bad page state in process '%s'\n"
  200. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  201. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  202. KERN_EMERG "Backtrace:\n",
  203. current->comm, page, (int)(2*sizeof(unsigned long)),
  204. (unsigned long)page->flags, page->mapping,
  205. page_mapcount(page), page_count(page));
  206. dump_stack();
  207. page->flags &= ~(1 << PG_lru |
  208. 1 << PG_private |
  209. 1 << PG_locked |
  210. 1 << PG_active |
  211. 1 << PG_dirty |
  212. 1 << PG_reclaim |
  213. 1 << PG_slab |
  214. 1 << PG_swapcache |
  215. 1 << PG_writeback |
  216. 1 << PG_buddy );
  217. set_page_count(page, 0);
  218. reset_page_mapcount(page);
  219. page->mapping = NULL;
  220. add_taint(TAINT_BAD_PAGE);
  221. }
  222. /*
  223. * Higher-order pages are called "compound pages". They are structured thusly:
  224. *
  225. * The first PAGE_SIZE page is called the "head page".
  226. *
  227. * The remaining PAGE_SIZE pages are called "tail pages".
  228. *
  229. * All pages have PG_compound set. All pages have their ->private pointing at
  230. * the head page (even the head page has this).
  231. *
  232. * The first tail page's ->lru.next holds the address of the compound page's
  233. * put_page() function. Its ->lru.prev holds the order of allocation.
  234. * This usage means that zero-order pages may not be compound.
  235. */
  236. static void free_compound_page(struct page *page)
  237. {
  238. __free_pages_ok(page, compound_order(page));
  239. }
  240. static void prep_compound_page(struct page *page, unsigned long order)
  241. {
  242. int i;
  243. int nr_pages = 1 << order;
  244. set_compound_page_dtor(page, free_compound_page);
  245. set_compound_order(page, order);
  246. __SetPageHead(page);
  247. for (i = 1; i < nr_pages; i++) {
  248. struct page *p = page + i;
  249. __SetPageTail(p);
  250. p->first_page = page;
  251. }
  252. }
  253. static void destroy_compound_page(struct page *page, unsigned long order)
  254. {
  255. int i;
  256. int nr_pages = 1 << order;
  257. if (unlikely(compound_order(page) != order))
  258. bad_page(page);
  259. if (unlikely(!PageHead(page)))
  260. bad_page(page);
  261. __ClearPageHead(page);
  262. for (i = 1; i < nr_pages; i++) {
  263. struct page *p = page + i;
  264. if (unlikely(!PageTail(p) |
  265. (p->first_page != page)))
  266. bad_page(page);
  267. __ClearPageTail(p);
  268. }
  269. }
  270. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  271. {
  272. int i;
  273. /*
  274. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  275. * and __GFP_HIGHMEM from hard or soft interrupt context.
  276. */
  277. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  278. for (i = 0; i < (1 << order); i++)
  279. clear_highpage(page + i);
  280. }
  281. static inline void set_page_order(struct page *page, int order)
  282. {
  283. set_page_private(page, order);
  284. __SetPageBuddy(page);
  285. }
  286. static inline void rmv_page_order(struct page *page)
  287. {
  288. __ClearPageBuddy(page);
  289. set_page_private(page, 0);
  290. }
  291. /*
  292. * Locate the struct page for both the matching buddy in our
  293. * pair (buddy1) and the combined O(n+1) page they form (page).
  294. *
  295. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  296. * the following equation:
  297. * B2 = B1 ^ (1 << O)
  298. * For example, if the starting buddy (buddy2) is #8 its order
  299. * 1 buddy is #10:
  300. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  301. *
  302. * 2) Any buddy B will have an order O+1 parent P which
  303. * satisfies the following equation:
  304. * P = B & ~(1 << O)
  305. *
  306. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  307. */
  308. static inline struct page *
  309. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  310. {
  311. unsigned long buddy_idx = page_idx ^ (1 << order);
  312. return page + (buddy_idx - page_idx);
  313. }
  314. static inline unsigned long
  315. __find_combined_index(unsigned long page_idx, unsigned int order)
  316. {
  317. return (page_idx & ~(1 << order));
  318. }
  319. /*
  320. * This function checks whether a page is free && is the buddy
  321. * we can do coalesce a page and its buddy if
  322. * (a) the buddy is not in a hole &&
  323. * (b) the buddy is in the buddy system &&
  324. * (c) a page and its buddy have the same order &&
  325. * (d) a page and its buddy are in the same zone.
  326. *
  327. * For recording whether a page is in the buddy system, we use PG_buddy.
  328. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  329. *
  330. * For recording page's order, we use page_private(page).
  331. */
  332. static inline int page_is_buddy(struct page *page, struct page *buddy,
  333. int order)
  334. {
  335. if (!pfn_valid_within(page_to_pfn(buddy)))
  336. return 0;
  337. if (page_zone_id(page) != page_zone_id(buddy))
  338. return 0;
  339. if (PageBuddy(buddy) && page_order(buddy) == order) {
  340. BUG_ON(page_count(buddy) != 0);
  341. return 1;
  342. }
  343. return 0;
  344. }
  345. /*
  346. * Freeing function for a buddy system allocator.
  347. *
  348. * The concept of a buddy system is to maintain direct-mapped table
  349. * (containing bit values) for memory blocks of various "orders".
  350. * The bottom level table contains the map for the smallest allocatable
  351. * units of memory (here, pages), and each level above it describes
  352. * pairs of units from the levels below, hence, "buddies".
  353. * At a high level, all that happens here is marking the table entry
  354. * at the bottom level available, and propagating the changes upward
  355. * as necessary, plus some accounting needed to play nicely with other
  356. * parts of the VM system.
  357. * At each level, we keep a list of pages, which are heads of continuous
  358. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  359. * order is recorded in page_private(page) field.
  360. * So when we are allocating or freeing one, we can derive the state of the
  361. * other. That is, if we allocate a small block, and both were
  362. * free, the remainder of the region must be split into blocks.
  363. * If a block is freed, and its buddy is also free, then this
  364. * triggers coalescing into a block of larger size.
  365. *
  366. * -- wli
  367. */
  368. static inline void __free_one_page(struct page *page,
  369. struct zone *zone, unsigned int order)
  370. {
  371. unsigned long page_idx;
  372. int order_size = 1 << order;
  373. int migratetype = get_pageblock_migratetype(page);
  374. if (unlikely(PageCompound(page)))
  375. destroy_compound_page(page, order);
  376. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  377. VM_BUG_ON(page_idx & (order_size - 1));
  378. VM_BUG_ON(bad_range(zone, page));
  379. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  380. while (order < MAX_ORDER-1) {
  381. unsigned long combined_idx;
  382. struct page *buddy;
  383. buddy = __page_find_buddy(page, page_idx, order);
  384. if (!page_is_buddy(page, buddy, order))
  385. break; /* Move the buddy up one level. */
  386. list_del(&buddy->lru);
  387. zone->free_area[order].nr_free--;
  388. rmv_page_order(buddy);
  389. combined_idx = __find_combined_index(page_idx, order);
  390. page = page + (combined_idx - page_idx);
  391. page_idx = combined_idx;
  392. order++;
  393. }
  394. set_page_order(page, order);
  395. list_add(&page->lru,
  396. &zone->free_area[order].free_list[migratetype]);
  397. zone->free_area[order].nr_free++;
  398. }
  399. static inline int free_pages_check(struct page *page)
  400. {
  401. if (unlikely(page_mapcount(page) |
  402. (page->mapping != NULL) |
  403. (page_count(page) != 0) |
  404. (page->flags & (
  405. 1 << PG_lru |
  406. 1 << PG_private |
  407. 1 << PG_locked |
  408. 1 << PG_active |
  409. 1 << PG_slab |
  410. 1 << PG_swapcache |
  411. 1 << PG_writeback |
  412. 1 << PG_reserved |
  413. 1 << PG_buddy ))))
  414. bad_page(page);
  415. if (PageDirty(page))
  416. __ClearPageDirty(page);
  417. /*
  418. * For now, we report if PG_reserved was found set, but do not
  419. * clear it, and do not free the page. But we shall soon need
  420. * to do more, for when the ZERO_PAGE count wraps negative.
  421. */
  422. return PageReserved(page);
  423. }
  424. /*
  425. * Frees a list of pages.
  426. * Assumes all pages on list are in same zone, and of same order.
  427. * count is the number of pages to free.
  428. *
  429. * If the zone was previously in an "all pages pinned" state then look to
  430. * see if this freeing clears that state.
  431. *
  432. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  433. * pinned" detection logic.
  434. */
  435. static void free_pages_bulk(struct zone *zone, int count,
  436. struct list_head *list, int order)
  437. {
  438. spin_lock(&zone->lock);
  439. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  440. zone->pages_scanned = 0;
  441. while (count--) {
  442. struct page *page;
  443. VM_BUG_ON(list_empty(list));
  444. page = list_entry(list->prev, struct page, lru);
  445. /* have to delete it as __free_one_page list manipulates */
  446. list_del(&page->lru);
  447. __free_one_page(page, zone, order);
  448. }
  449. spin_unlock(&zone->lock);
  450. }
  451. static void free_one_page(struct zone *zone, struct page *page, int order)
  452. {
  453. spin_lock(&zone->lock);
  454. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  455. zone->pages_scanned = 0;
  456. __free_one_page(page, zone, order);
  457. spin_unlock(&zone->lock);
  458. }
  459. static void __free_pages_ok(struct page *page, unsigned int order)
  460. {
  461. unsigned long flags;
  462. int i;
  463. int reserved = 0;
  464. for (i = 0 ; i < (1 << order) ; ++i)
  465. reserved += free_pages_check(page + i);
  466. if (reserved)
  467. return;
  468. if (!PageHighMem(page))
  469. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  470. arch_free_page(page, order);
  471. kernel_map_pages(page, 1 << order, 0);
  472. local_irq_save(flags);
  473. __count_vm_events(PGFREE, 1 << order);
  474. free_one_page(page_zone(page), page, order);
  475. local_irq_restore(flags);
  476. }
  477. /*
  478. * permit the bootmem allocator to evade page validation on high-order frees
  479. */
  480. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  481. {
  482. if (order == 0) {
  483. __ClearPageReserved(page);
  484. set_page_count(page, 0);
  485. set_page_refcounted(page);
  486. __free_page(page);
  487. } else {
  488. int loop;
  489. prefetchw(page);
  490. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  491. struct page *p = &page[loop];
  492. if (loop + 1 < BITS_PER_LONG)
  493. prefetchw(p + 1);
  494. __ClearPageReserved(p);
  495. set_page_count(p, 0);
  496. }
  497. set_page_refcounted(page);
  498. __free_pages(page, order);
  499. }
  500. }
  501. /*
  502. * The order of subdivision here is critical for the IO subsystem.
  503. * Please do not alter this order without good reasons and regression
  504. * testing. Specifically, as large blocks of memory are subdivided,
  505. * the order in which smaller blocks are delivered depends on the order
  506. * they're subdivided in this function. This is the primary factor
  507. * influencing the order in which pages are delivered to the IO
  508. * subsystem according to empirical testing, and this is also justified
  509. * by considering the behavior of a buddy system containing a single
  510. * large block of memory acted on by a series of small allocations.
  511. * This behavior is a critical factor in sglist merging's success.
  512. *
  513. * -- wli
  514. */
  515. static inline void expand(struct zone *zone, struct page *page,
  516. int low, int high, struct free_area *area,
  517. int migratetype)
  518. {
  519. unsigned long size = 1 << high;
  520. while (high > low) {
  521. area--;
  522. high--;
  523. size >>= 1;
  524. VM_BUG_ON(bad_range(zone, &page[size]));
  525. list_add(&page[size].lru, &area->free_list[migratetype]);
  526. area->nr_free++;
  527. set_page_order(&page[size], high);
  528. }
  529. }
  530. /*
  531. * This page is about to be returned from the page allocator
  532. */
  533. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  534. {
  535. if (unlikely(page_mapcount(page) |
  536. (page->mapping != NULL) |
  537. (page_count(page) != 0) |
  538. (page->flags & (
  539. 1 << PG_lru |
  540. 1 << PG_private |
  541. 1 << PG_locked |
  542. 1 << PG_active |
  543. 1 << PG_dirty |
  544. 1 << PG_slab |
  545. 1 << PG_swapcache |
  546. 1 << PG_writeback |
  547. 1 << PG_reserved |
  548. 1 << PG_buddy ))))
  549. bad_page(page);
  550. /*
  551. * For now, we report if PG_reserved was found set, but do not
  552. * clear it, and do not allocate the page: as a safety net.
  553. */
  554. if (PageReserved(page))
  555. return 1;
  556. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  557. 1 << PG_referenced | 1 << PG_arch_1 |
  558. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  559. set_page_private(page, 0);
  560. set_page_refcounted(page);
  561. arch_alloc_page(page, order);
  562. kernel_map_pages(page, 1 << order, 1);
  563. if (gfp_flags & __GFP_ZERO)
  564. prep_zero_page(page, order, gfp_flags);
  565. if (order && (gfp_flags & __GFP_COMP))
  566. prep_compound_page(page, order);
  567. return 0;
  568. }
  569. /*
  570. * Go through the free lists for the given migratetype and remove
  571. * the smallest available page from the freelists
  572. */
  573. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  574. int migratetype)
  575. {
  576. unsigned int current_order;
  577. struct free_area * area;
  578. struct page *page;
  579. /* Find a page of the appropriate size in the preferred list */
  580. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  581. area = &(zone->free_area[current_order]);
  582. if (list_empty(&area->free_list[migratetype]))
  583. continue;
  584. page = list_entry(area->free_list[migratetype].next,
  585. struct page, lru);
  586. list_del(&page->lru);
  587. rmv_page_order(page);
  588. area->nr_free--;
  589. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  590. expand(zone, page, order, current_order, area, migratetype);
  591. return page;
  592. }
  593. return NULL;
  594. }
  595. /*
  596. * This array describes the order lists are fallen back to when
  597. * the free lists for the desirable migrate type are depleted
  598. */
  599. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  600. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  601. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  602. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  603. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  604. };
  605. /*
  606. * Move the free pages in a range to the free lists of the requested type.
  607. * Note that start_page and end_pages are not aligned on a pageblock
  608. * boundary. If alignment is required, use move_freepages_block()
  609. */
  610. int move_freepages(struct zone *zone,
  611. struct page *start_page, struct page *end_page,
  612. int migratetype)
  613. {
  614. struct page *page;
  615. unsigned long order;
  616. int pages_moved = 0;
  617. #ifndef CONFIG_HOLES_IN_ZONE
  618. /*
  619. * page_zone is not safe to call in this context when
  620. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  621. * anyway as we check zone boundaries in move_freepages_block().
  622. * Remove at a later date when no bug reports exist related to
  623. * grouping pages by mobility
  624. */
  625. BUG_ON(page_zone(start_page) != page_zone(end_page));
  626. #endif
  627. for (page = start_page; page <= end_page;) {
  628. if (!pfn_valid_within(page_to_pfn(page))) {
  629. page++;
  630. continue;
  631. }
  632. if (!PageBuddy(page)) {
  633. page++;
  634. continue;
  635. }
  636. order = page_order(page);
  637. list_del(&page->lru);
  638. list_add(&page->lru,
  639. &zone->free_area[order].free_list[migratetype]);
  640. page += 1 << order;
  641. pages_moved += 1 << order;
  642. }
  643. return pages_moved;
  644. }
  645. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  646. {
  647. unsigned long start_pfn, end_pfn;
  648. struct page *start_page, *end_page;
  649. start_pfn = page_to_pfn(page);
  650. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  651. start_page = pfn_to_page(start_pfn);
  652. end_page = start_page + pageblock_nr_pages - 1;
  653. end_pfn = start_pfn + pageblock_nr_pages - 1;
  654. /* Do not cross zone boundaries */
  655. if (start_pfn < zone->zone_start_pfn)
  656. start_page = page;
  657. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  658. return 0;
  659. return move_freepages(zone, start_page, end_page, migratetype);
  660. }
  661. /* Remove an element from the buddy allocator from the fallback list */
  662. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  663. int start_migratetype)
  664. {
  665. struct free_area * area;
  666. int current_order;
  667. struct page *page;
  668. int migratetype, i;
  669. /* Find the largest possible block of pages in the other list */
  670. for (current_order = MAX_ORDER-1; current_order >= order;
  671. --current_order) {
  672. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  673. migratetype = fallbacks[start_migratetype][i];
  674. /* MIGRATE_RESERVE handled later if necessary */
  675. if (migratetype == MIGRATE_RESERVE)
  676. continue;
  677. area = &(zone->free_area[current_order]);
  678. if (list_empty(&area->free_list[migratetype]))
  679. continue;
  680. page = list_entry(area->free_list[migratetype].next,
  681. struct page, lru);
  682. area->nr_free--;
  683. /*
  684. * If breaking a large block of pages, move all free
  685. * pages to the preferred allocation list. If falling
  686. * back for a reclaimable kernel allocation, be more
  687. * agressive about taking ownership of free pages
  688. */
  689. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  690. start_migratetype == MIGRATE_RECLAIMABLE) {
  691. unsigned long pages;
  692. pages = move_freepages_block(zone, page,
  693. start_migratetype);
  694. /* Claim the whole block if over half of it is free */
  695. if (pages >= (1 << (pageblock_order-1)))
  696. set_pageblock_migratetype(page,
  697. start_migratetype);
  698. migratetype = start_migratetype;
  699. }
  700. /* Remove the page from the freelists */
  701. list_del(&page->lru);
  702. rmv_page_order(page);
  703. __mod_zone_page_state(zone, NR_FREE_PAGES,
  704. -(1UL << order));
  705. if (current_order == pageblock_order)
  706. set_pageblock_migratetype(page,
  707. start_migratetype);
  708. expand(zone, page, order, current_order, area, migratetype);
  709. return page;
  710. }
  711. }
  712. /* Use MIGRATE_RESERVE rather than fail an allocation */
  713. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  714. }
  715. /*
  716. * Do the hard work of removing an element from the buddy allocator.
  717. * Call me with the zone->lock already held.
  718. */
  719. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  720. int migratetype)
  721. {
  722. struct page *page;
  723. page = __rmqueue_smallest(zone, order, migratetype);
  724. if (unlikely(!page))
  725. page = __rmqueue_fallback(zone, order, migratetype);
  726. return page;
  727. }
  728. /*
  729. * Obtain a specified number of elements from the buddy allocator, all under
  730. * a single hold of the lock, for efficiency. Add them to the supplied list.
  731. * Returns the number of new pages which were placed at *list.
  732. */
  733. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  734. unsigned long count, struct list_head *list,
  735. int migratetype)
  736. {
  737. int i;
  738. spin_lock(&zone->lock);
  739. for (i = 0; i < count; ++i) {
  740. struct page *page = __rmqueue(zone, order, migratetype);
  741. if (unlikely(page == NULL))
  742. break;
  743. /*
  744. * Split buddy pages returned by expand() are received here
  745. * in physical page order. The page is added to the callers and
  746. * list and the list head then moves forward. From the callers
  747. * perspective, the linked list is ordered by page number in
  748. * some conditions. This is useful for IO devices that can
  749. * merge IO requests if the physical pages are ordered
  750. * properly.
  751. */
  752. list_add(&page->lru, list);
  753. set_page_private(page, migratetype);
  754. list = &page->lru;
  755. }
  756. spin_unlock(&zone->lock);
  757. return i;
  758. }
  759. #ifdef CONFIG_NUMA
  760. /*
  761. * Called from the vmstat counter updater to drain pagesets of this
  762. * currently executing processor on remote nodes after they have
  763. * expired.
  764. *
  765. * Note that this function must be called with the thread pinned to
  766. * a single processor.
  767. */
  768. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  769. {
  770. unsigned long flags;
  771. int to_drain;
  772. local_irq_save(flags);
  773. if (pcp->count >= pcp->batch)
  774. to_drain = pcp->batch;
  775. else
  776. to_drain = pcp->count;
  777. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  778. pcp->count -= to_drain;
  779. local_irq_restore(flags);
  780. }
  781. #endif
  782. static void __drain_pages(unsigned int cpu)
  783. {
  784. unsigned long flags;
  785. struct zone *zone;
  786. int i;
  787. for_each_zone(zone) {
  788. struct per_cpu_pageset *pset;
  789. if (!populated_zone(zone))
  790. continue;
  791. pset = zone_pcp(zone, cpu);
  792. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  793. struct per_cpu_pages *pcp;
  794. pcp = &pset->pcp[i];
  795. local_irq_save(flags);
  796. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  797. pcp->count = 0;
  798. local_irq_restore(flags);
  799. }
  800. }
  801. }
  802. #ifdef CONFIG_HIBERNATION
  803. void mark_free_pages(struct zone *zone)
  804. {
  805. unsigned long pfn, max_zone_pfn;
  806. unsigned long flags;
  807. int order, t;
  808. struct list_head *curr;
  809. if (!zone->spanned_pages)
  810. return;
  811. spin_lock_irqsave(&zone->lock, flags);
  812. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  813. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  814. if (pfn_valid(pfn)) {
  815. struct page *page = pfn_to_page(pfn);
  816. if (!swsusp_page_is_forbidden(page))
  817. swsusp_unset_page_free(page);
  818. }
  819. for_each_migratetype_order(order, t) {
  820. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  821. unsigned long i;
  822. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  823. for (i = 0; i < (1UL << order); i++)
  824. swsusp_set_page_free(pfn_to_page(pfn + i));
  825. }
  826. }
  827. spin_unlock_irqrestore(&zone->lock, flags);
  828. }
  829. #endif /* CONFIG_PM */
  830. /*
  831. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  832. */
  833. void drain_local_pages(void)
  834. {
  835. unsigned long flags;
  836. local_irq_save(flags);
  837. __drain_pages(smp_processor_id());
  838. local_irq_restore(flags);
  839. }
  840. void smp_drain_local_pages(void *arg)
  841. {
  842. drain_local_pages();
  843. }
  844. /*
  845. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  846. */
  847. void drain_all_local_pages(void)
  848. {
  849. unsigned long flags;
  850. local_irq_save(flags);
  851. __drain_pages(smp_processor_id());
  852. local_irq_restore(flags);
  853. smp_call_function(smp_drain_local_pages, NULL, 0, 1);
  854. }
  855. /*
  856. * Free a 0-order page
  857. */
  858. static void fastcall free_hot_cold_page(struct page *page, int cold)
  859. {
  860. struct zone *zone = page_zone(page);
  861. struct per_cpu_pages *pcp;
  862. unsigned long flags;
  863. if (PageAnon(page))
  864. page->mapping = NULL;
  865. if (free_pages_check(page))
  866. return;
  867. if (!PageHighMem(page))
  868. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  869. arch_free_page(page, 0);
  870. kernel_map_pages(page, 1, 0);
  871. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  872. local_irq_save(flags);
  873. __count_vm_event(PGFREE);
  874. list_add(&page->lru, &pcp->list);
  875. set_page_private(page, get_pageblock_migratetype(page));
  876. pcp->count++;
  877. if (pcp->count >= pcp->high) {
  878. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  879. pcp->count -= pcp->batch;
  880. }
  881. local_irq_restore(flags);
  882. put_cpu();
  883. }
  884. void fastcall free_hot_page(struct page *page)
  885. {
  886. free_hot_cold_page(page, 0);
  887. }
  888. void fastcall free_cold_page(struct page *page)
  889. {
  890. free_hot_cold_page(page, 1);
  891. }
  892. /*
  893. * split_page takes a non-compound higher-order page, and splits it into
  894. * n (1<<order) sub-pages: page[0..n]
  895. * Each sub-page must be freed individually.
  896. *
  897. * Note: this is probably too low level an operation for use in drivers.
  898. * Please consult with lkml before using this in your driver.
  899. */
  900. void split_page(struct page *page, unsigned int order)
  901. {
  902. int i;
  903. VM_BUG_ON(PageCompound(page));
  904. VM_BUG_ON(!page_count(page));
  905. for (i = 1; i < (1 << order); i++)
  906. set_page_refcounted(page + i);
  907. }
  908. /*
  909. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  910. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  911. * or two.
  912. */
  913. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  914. struct zone *zone, int order, gfp_t gfp_flags)
  915. {
  916. unsigned long flags;
  917. struct page *page;
  918. int cold = !!(gfp_flags & __GFP_COLD);
  919. int cpu;
  920. int migratetype = allocflags_to_migratetype(gfp_flags);
  921. again:
  922. cpu = get_cpu();
  923. if (likely(order == 0)) {
  924. struct per_cpu_pages *pcp;
  925. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  926. local_irq_save(flags);
  927. if (!pcp->count) {
  928. pcp->count = rmqueue_bulk(zone, 0,
  929. pcp->batch, &pcp->list, migratetype);
  930. if (unlikely(!pcp->count))
  931. goto failed;
  932. }
  933. /* Find a page of the appropriate migrate type */
  934. list_for_each_entry(page, &pcp->list, lru)
  935. if (page_private(page) == migratetype)
  936. break;
  937. /* Allocate more to the pcp list if necessary */
  938. if (unlikely(&page->lru == &pcp->list)) {
  939. pcp->count += rmqueue_bulk(zone, 0,
  940. pcp->batch, &pcp->list, migratetype);
  941. page = list_entry(pcp->list.next, struct page, lru);
  942. }
  943. list_del(&page->lru);
  944. pcp->count--;
  945. } else {
  946. spin_lock_irqsave(&zone->lock, flags);
  947. page = __rmqueue(zone, order, migratetype);
  948. spin_unlock(&zone->lock);
  949. if (!page)
  950. goto failed;
  951. }
  952. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  953. zone_statistics(zonelist, zone);
  954. local_irq_restore(flags);
  955. put_cpu();
  956. VM_BUG_ON(bad_range(zone, page));
  957. if (prep_new_page(page, order, gfp_flags))
  958. goto again;
  959. return page;
  960. failed:
  961. local_irq_restore(flags);
  962. put_cpu();
  963. return NULL;
  964. }
  965. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  966. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  967. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  968. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  969. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  970. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  971. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  972. #ifdef CONFIG_FAIL_PAGE_ALLOC
  973. static struct fail_page_alloc_attr {
  974. struct fault_attr attr;
  975. u32 ignore_gfp_highmem;
  976. u32 ignore_gfp_wait;
  977. u32 min_order;
  978. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  979. struct dentry *ignore_gfp_highmem_file;
  980. struct dentry *ignore_gfp_wait_file;
  981. struct dentry *min_order_file;
  982. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  983. } fail_page_alloc = {
  984. .attr = FAULT_ATTR_INITIALIZER,
  985. .ignore_gfp_wait = 1,
  986. .ignore_gfp_highmem = 1,
  987. .min_order = 1,
  988. };
  989. static int __init setup_fail_page_alloc(char *str)
  990. {
  991. return setup_fault_attr(&fail_page_alloc.attr, str);
  992. }
  993. __setup("fail_page_alloc=", setup_fail_page_alloc);
  994. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  995. {
  996. if (order < fail_page_alloc.min_order)
  997. return 0;
  998. if (gfp_mask & __GFP_NOFAIL)
  999. return 0;
  1000. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1001. return 0;
  1002. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1003. return 0;
  1004. return should_fail(&fail_page_alloc.attr, 1 << order);
  1005. }
  1006. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1007. static int __init fail_page_alloc_debugfs(void)
  1008. {
  1009. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1010. struct dentry *dir;
  1011. int err;
  1012. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1013. "fail_page_alloc");
  1014. if (err)
  1015. return err;
  1016. dir = fail_page_alloc.attr.dentries.dir;
  1017. fail_page_alloc.ignore_gfp_wait_file =
  1018. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1019. &fail_page_alloc.ignore_gfp_wait);
  1020. fail_page_alloc.ignore_gfp_highmem_file =
  1021. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1022. &fail_page_alloc.ignore_gfp_highmem);
  1023. fail_page_alloc.min_order_file =
  1024. debugfs_create_u32("min-order", mode, dir,
  1025. &fail_page_alloc.min_order);
  1026. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1027. !fail_page_alloc.ignore_gfp_highmem_file ||
  1028. !fail_page_alloc.min_order_file) {
  1029. err = -ENOMEM;
  1030. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1031. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1032. debugfs_remove(fail_page_alloc.min_order_file);
  1033. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1034. }
  1035. return err;
  1036. }
  1037. late_initcall(fail_page_alloc_debugfs);
  1038. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1039. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1040. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1041. {
  1042. return 0;
  1043. }
  1044. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1045. /*
  1046. * Return 1 if free pages are above 'mark'. This takes into account the order
  1047. * of the allocation.
  1048. */
  1049. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1050. int classzone_idx, int alloc_flags)
  1051. {
  1052. /* free_pages my go negative - that's OK */
  1053. long min = mark;
  1054. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1055. int o;
  1056. if (alloc_flags & ALLOC_HIGH)
  1057. min -= min / 2;
  1058. if (alloc_flags & ALLOC_HARDER)
  1059. min -= min / 4;
  1060. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1061. return 0;
  1062. for (o = 0; o < order; o++) {
  1063. /* At the next order, this order's pages become unavailable */
  1064. free_pages -= z->free_area[o].nr_free << o;
  1065. /* Require fewer higher order pages to be free */
  1066. min >>= 1;
  1067. if (free_pages <= min)
  1068. return 0;
  1069. }
  1070. return 1;
  1071. }
  1072. #ifdef CONFIG_NUMA
  1073. /*
  1074. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1075. * skip over zones that are not allowed by the cpuset, or that have
  1076. * been recently (in last second) found to be nearly full. See further
  1077. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1078. * that have to skip over a lot of full or unallowed zones.
  1079. *
  1080. * If the zonelist cache is present in the passed in zonelist, then
  1081. * returns a pointer to the allowed node mask (either the current
  1082. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1083. *
  1084. * If the zonelist cache is not available for this zonelist, does
  1085. * nothing and returns NULL.
  1086. *
  1087. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1088. * a second since last zap'd) then we zap it out (clear its bits.)
  1089. *
  1090. * We hold off even calling zlc_setup, until after we've checked the
  1091. * first zone in the zonelist, on the theory that most allocations will
  1092. * be satisfied from that first zone, so best to examine that zone as
  1093. * quickly as we can.
  1094. */
  1095. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1096. {
  1097. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1098. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1099. zlc = zonelist->zlcache_ptr;
  1100. if (!zlc)
  1101. return NULL;
  1102. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  1103. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1104. zlc->last_full_zap = jiffies;
  1105. }
  1106. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1107. &cpuset_current_mems_allowed :
  1108. &node_states[N_HIGH_MEMORY];
  1109. return allowednodes;
  1110. }
  1111. /*
  1112. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1113. * if it is worth looking at further for free memory:
  1114. * 1) Check that the zone isn't thought to be full (doesn't have its
  1115. * bit set in the zonelist_cache fullzones BITMAP).
  1116. * 2) Check that the zones node (obtained from the zonelist_cache
  1117. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1118. * Return true (non-zero) if zone is worth looking at further, or
  1119. * else return false (zero) if it is not.
  1120. *
  1121. * This check -ignores- the distinction between various watermarks,
  1122. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1123. * found to be full for any variation of these watermarks, it will
  1124. * be considered full for up to one second by all requests, unless
  1125. * we are so low on memory on all allowed nodes that we are forced
  1126. * into the second scan of the zonelist.
  1127. *
  1128. * In the second scan we ignore this zonelist cache and exactly
  1129. * apply the watermarks to all zones, even it is slower to do so.
  1130. * We are low on memory in the second scan, and should leave no stone
  1131. * unturned looking for a free page.
  1132. */
  1133. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1134. nodemask_t *allowednodes)
  1135. {
  1136. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1137. int i; /* index of *z in zonelist zones */
  1138. int n; /* node that zone *z is on */
  1139. zlc = zonelist->zlcache_ptr;
  1140. if (!zlc)
  1141. return 1;
  1142. i = z - zonelist->zones;
  1143. n = zlc->z_to_n[i];
  1144. /* This zone is worth trying if it is allowed but not full */
  1145. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1146. }
  1147. /*
  1148. * Given 'z' scanning a zonelist, set the corresponding bit in
  1149. * zlc->fullzones, so that subsequent attempts to allocate a page
  1150. * from that zone don't waste time re-examining it.
  1151. */
  1152. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1153. {
  1154. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1155. int i; /* index of *z in zonelist zones */
  1156. zlc = zonelist->zlcache_ptr;
  1157. if (!zlc)
  1158. return;
  1159. i = z - zonelist->zones;
  1160. set_bit(i, zlc->fullzones);
  1161. }
  1162. #else /* CONFIG_NUMA */
  1163. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1164. {
  1165. return NULL;
  1166. }
  1167. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1168. nodemask_t *allowednodes)
  1169. {
  1170. return 1;
  1171. }
  1172. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1173. {
  1174. }
  1175. #endif /* CONFIG_NUMA */
  1176. /*
  1177. * get_page_from_freelist goes through the zonelist trying to allocate
  1178. * a page.
  1179. */
  1180. static struct page *
  1181. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1182. struct zonelist *zonelist, int alloc_flags)
  1183. {
  1184. struct zone **z;
  1185. struct page *page = NULL;
  1186. int classzone_idx = zone_idx(zonelist->zones[0]);
  1187. struct zone *zone;
  1188. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1189. int zlc_active = 0; /* set if using zonelist_cache */
  1190. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1191. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1192. zonelist_scan:
  1193. /*
  1194. * Scan zonelist, looking for a zone with enough free.
  1195. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1196. */
  1197. z = zonelist->zones;
  1198. do {
  1199. /*
  1200. * In NUMA, this could be a policy zonelist which contains
  1201. * zones that may not be allowed by the current gfp_mask.
  1202. * Check the zone is allowed by the current flags
  1203. */
  1204. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1205. if (highest_zoneidx == -1)
  1206. highest_zoneidx = gfp_zone(gfp_mask);
  1207. if (zone_idx(*z) > highest_zoneidx)
  1208. continue;
  1209. }
  1210. if (NUMA_BUILD && zlc_active &&
  1211. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1212. continue;
  1213. zone = *z;
  1214. if ((alloc_flags & ALLOC_CPUSET) &&
  1215. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1216. goto try_next_zone;
  1217. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1218. unsigned long mark;
  1219. if (alloc_flags & ALLOC_WMARK_MIN)
  1220. mark = zone->pages_min;
  1221. else if (alloc_flags & ALLOC_WMARK_LOW)
  1222. mark = zone->pages_low;
  1223. else
  1224. mark = zone->pages_high;
  1225. if (!zone_watermark_ok(zone, order, mark,
  1226. classzone_idx, alloc_flags)) {
  1227. if (!zone_reclaim_mode ||
  1228. !zone_reclaim(zone, gfp_mask, order))
  1229. goto this_zone_full;
  1230. }
  1231. }
  1232. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1233. if (page)
  1234. break;
  1235. this_zone_full:
  1236. if (NUMA_BUILD)
  1237. zlc_mark_zone_full(zonelist, z);
  1238. try_next_zone:
  1239. if (NUMA_BUILD && !did_zlc_setup) {
  1240. /* we do zlc_setup after the first zone is tried */
  1241. allowednodes = zlc_setup(zonelist, alloc_flags);
  1242. zlc_active = 1;
  1243. did_zlc_setup = 1;
  1244. }
  1245. } while (*(++z) != NULL);
  1246. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1247. /* Disable zlc cache for second zonelist scan */
  1248. zlc_active = 0;
  1249. goto zonelist_scan;
  1250. }
  1251. return page;
  1252. }
  1253. /*
  1254. * This is the 'heart' of the zoned buddy allocator.
  1255. */
  1256. struct page * fastcall
  1257. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1258. struct zonelist *zonelist)
  1259. {
  1260. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1261. struct zone **z;
  1262. struct page *page;
  1263. struct reclaim_state reclaim_state;
  1264. struct task_struct *p = current;
  1265. int do_retry;
  1266. int alloc_flags;
  1267. int did_some_progress;
  1268. might_sleep_if(wait);
  1269. if (should_fail_alloc_page(gfp_mask, order))
  1270. return NULL;
  1271. restart:
  1272. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1273. if (unlikely(*z == NULL)) {
  1274. /*
  1275. * Happens if we have an empty zonelist as a result of
  1276. * GFP_THISNODE being used on a memoryless node
  1277. */
  1278. return NULL;
  1279. }
  1280. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1281. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1282. if (page)
  1283. goto got_pg;
  1284. /*
  1285. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1286. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1287. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1288. * using a larger set of nodes after it has established that the
  1289. * allowed per node queues are empty and that nodes are
  1290. * over allocated.
  1291. */
  1292. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1293. goto nopage;
  1294. for (z = zonelist->zones; *z; z++)
  1295. wakeup_kswapd(*z, order);
  1296. /*
  1297. * OK, we're below the kswapd watermark and have kicked background
  1298. * reclaim. Now things get more complex, so set up alloc_flags according
  1299. * to how we want to proceed.
  1300. *
  1301. * The caller may dip into page reserves a bit more if the caller
  1302. * cannot run direct reclaim, or if the caller has realtime scheduling
  1303. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1304. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1305. */
  1306. alloc_flags = ALLOC_WMARK_MIN;
  1307. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1308. alloc_flags |= ALLOC_HARDER;
  1309. if (gfp_mask & __GFP_HIGH)
  1310. alloc_flags |= ALLOC_HIGH;
  1311. if (wait)
  1312. alloc_flags |= ALLOC_CPUSET;
  1313. /*
  1314. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1315. * coming from realtime tasks go deeper into reserves.
  1316. *
  1317. * This is the last chance, in general, before the goto nopage.
  1318. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1319. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1320. */
  1321. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1322. if (page)
  1323. goto got_pg;
  1324. /* This allocation should allow future memory freeing. */
  1325. rebalance:
  1326. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1327. && !in_interrupt()) {
  1328. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1329. nofail_alloc:
  1330. /* go through the zonelist yet again, ignoring mins */
  1331. page = get_page_from_freelist(gfp_mask, order,
  1332. zonelist, ALLOC_NO_WATERMARKS);
  1333. if (page)
  1334. goto got_pg;
  1335. if (gfp_mask & __GFP_NOFAIL) {
  1336. congestion_wait(WRITE, HZ/50);
  1337. goto nofail_alloc;
  1338. }
  1339. }
  1340. goto nopage;
  1341. }
  1342. /* Atomic allocations - we can't balance anything */
  1343. if (!wait)
  1344. goto nopage;
  1345. cond_resched();
  1346. /* We now go into synchronous reclaim */
  1347. cpuset_memory_pressure_bump();
  1348. p->flags |= PF_MEMALLOC;
  1349. reclaim_state.reclaimed_slab = 0;
  1350. p->reclaim_state = &reclaim_state;
  1351. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1352. p->reclaim_state = NULL;
  1353. p->flags &= ~PF_MEMALLOC;
  1354. cond_resched();
  1355. if (order != 0)
  1356. drain_all_local_pages();
  1357. if (likely(did_some_progress)) {
  1358. page = get_page_from_freelist(gfp_mask, order,
  1359. zonelist, alloc_flags);
  1360. if (page)
  1361. goto got_pg;
  1362. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1363. if (!try_set_zone_oom(zonelist)) {
  1364. schedule_timeout_uninterruptible(1);
  1365. goto restart;
  1366. }
  1367. /*
  1368. * Go through the zonelist yet one more time, keep
  1369. * very high watermark here, this is only to catch
  1370. * a parallel oom killing, we must fail if we're still
  1371. * under heavy pressure.
  1372. */
  1373. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1374. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1375. if (page) {
  1376. clear_zonelist_oom(zonelist);
  1377. goto got_pg;
  1378. }
  1379. /* The OOM killer will not help higher order allocs so fail */
  1380. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1381. clear_zonelist_oom(zonelist);
  1382. goto nopage;
  1383. }
  1384. out_of_memory(zonelist, gfp_mask, order);
  1385. clear_zonelist_oom(zonelist);
  1386. goto restart;
  1387. }
  1388. /*
  1389. * Don't let big-order allocations loop unless the caller explicitly
  1390. * requests that. Wait for some write requests to complete then retry.
  1391. *
  1392. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1393. * <= 3, but that may not be true in other implementations.
  1394. */
  1395. do_retry = 0;
  1396. if (!(gfp_mask & __GFP_NORETRY)) {
  1397. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1398. (gfp_mask & __GFP_REPEAT))
  1399. do_retry = 1;
  1400. if (gfp_mask & __GFP_NOFAIL)
  1401. do_retry = 1;
  1402. }
  1403. if (do_retry) {
  1404. congestion_wait(WRITE, HZ/50);
  1405. goto rebalance;
  1406. }
  1407. nopage:
  1408. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1409. printk(KERN_WARNING "%s: page allocation failure."
  1410. " order:%d, mode:0x%x\n",
  1411. p->comm, order, gfp_mask);
  1412. dump_stack();
  1413. show_mem();
  1414. }
  1415. got_pg:
  1416. return page;
  1417. }
  1418. EXPORT_SYMBOL(__alloc_pages);
  1419. /*
  1420. * Common helper functions.
  1421. */
  1422. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1423. {
  1424. struct page * page;
  1425. page = alloc_pages(gfp_mask, order);
  1426. if (!page)
  1427. return 0;
  1428. return (unsigned long) page_address(page);
  1429. }
  1430. EXPORT_SYMBOL(__get_free_pages);
  1431. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1432. {
  1433. struct page * page;
  1434. /*
  1435. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1436. * a highmem page
  1437. */
  1438. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1439. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1440. if (page)
  1441. return (unsigned long) page_address(page);
  1442. return 0;
  1443. }
  1444. EXPORT_SYMBOL(get_zeroed_page);
  1445. void __pagevec_free(struct pagevec *pvec)
  1446. {
  1447. int i = pagevec_count(pvec);
  1448. while (--i >= 0)
  1449. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1450. }
  1451. fastcall void __free_pages(struct page *page, unsigned int order)
  1452. {
  1453. if (put_page_testzero(page)) {
  1454. if (order == 0)
  1455. free_hot_page(page);
  1456. else
  1457. __free_pages_ok(page, order);
  1458. }
  1459. }
  1460. EXPORT_SYMBOL(__free_pages);
  1461. fastcall void free_pages(unsigned long addr, unsigned int order)
  1462. {
  1463. if (addr != 0) {
  1464. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1465. __free_pages(virt_to_page((void *)addr), order);
  1466. }
  1467. }
  1468. EXPORT_SYMBOL(free_pages);
  1469. static unsigned int nr_free_zone_pages(int offset)
  1470. {
  1471. /* Just pick one node, since fallback list is circular */
  1472. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1473. unsigned int sum = 0;
  1474. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1475. struct zone **zonep = zonelist->zones;
  1476. struct zone *zone;
  1477. for (zone = *zonep++; zone; zone = *zonep++) {
  1478. unsigned long size = zone->present_pages;
  1479. unsigned long high = zone->pages_high;
  1480. if (size > high)
  1481. sum += size - high;
  1482. }
  1483. return sum;
  1484. }
  1485. /*
  1486. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1487. */
  1488. unsigned int nr_free_buffer_pages(void)
  1489. {
  1490. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1491. }
  1492. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1493. /*
  1494. * Amount of free RAM allocatable within all zones
  1495. */
  1496. unsigned int nr_free_pagecache_pages(void)
  1497. {
  1498. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1499. }
  1500. static inline void show_node(struct zone *zone)
  1501. {
  1502. if (NUMA_BUILD)
  1503. printk("Node %d ", zone_to_nid(zone));
  1504. }
  1505. void si_meminfo(struct sysinfo *val)
  1506. {
  1507. val->totalram = totalram_pages;
  1508. val->sharedram = 0;
  1509. val->freeram = global_page_state(NR_FREE_PAGES);
  1510. val->bufferram = nr_blockdev_pages();
  1511. val->totalhigh = totalhigh_pages;
  1512. val->freehigh = nr_free_highpages();
  1513. val->mem_unit = PAGE_SIZE;
  1514. }
  1515. EXPORT_SYMBOL(si_meminfo);
  1516. #ifdef CONFIG_NUMA
  1517. void si_meminfo_node(struct sysinfo *val, int nid)
  1518. {
  1519. pg_data_t *pgdat = NODE_DATA(nid);
  1520. val->totalram = pgdat->node_present_pages;
  1521. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1522. #ifdef CONFIG_HIGHMEM
  1523. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1524. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1525. NR_FREE_PAGES);
  1526. #else
  1527. val->totalhigh = 0;
  1528. val->freehigh = 0;
  1529. #endif
  1530. val->mem_unit = PAGE_SIZE;
  1531. }
  1532. #endif
  1533. #define K(x) ((x) << (PAGE_SHIFT-10))
  1534. /*
  1535. * Show free area list (used inside shift_scroll-lock stuff)
  1536. * We also calculate the percentage fragmentation. We do this by counting the
  1537. * memory on each free list with the exception of the first item on the list.
  1538. */
  1539. void show_free_areas(void)
  1540. {
  1541. int cpu;
  1542. struct zone *zone;
  1543. for_each_zone(zone) {
  1544. if (!populated_zone(zone))
  1545. continue;
  1546. show_node(zone);
  1547. printk("%s per-cpu:\n", zone->name);
  1548. for_each_online_cpu(cpu) {
  1549. struct per_cpu_pageset *pageset;
  1550. pageset = zone_pcp(zone, cpu);
  1551. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1552. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1553. cpu, pageset->pcp[0].high,
  1554. pageset->pcp[0].batch, pageset->pcp[0].count,
  1555. pageset->pcp[1].high, pageset->pcp[1].batch,
  1556. pageset->pcp[1].count);
  1557. }
  1558. }
  1559. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1560. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1561. global_page_state(NR_ACTIVE),
  1562. global_page_state(NR_INACTIVE),
  1563. global_page_state(NR_FILE_DIRTY),
  1564. global_page_state(NR_WRITEBACK),
  1565. global_page_state(NR_UNSTABLE_NFS),
  1566. global_page_state(NR_FREE_PAGES),
  1567. global_page_state(NR_SLAB_RECLAIMABLE) +
  1568. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1569. global_page_state(NR_FILE_MAPPED),
  1570. global_page_state(NR_PAGETABLE),
  1571. global_page_state(NR_BOUNCE));
  1572. for_each_zone(zone) {
  1573. int i;
  1574. if (!populated_zone(zone))
  1575. continue;
  1576. show_node(zone);
  1577. printk("%s"
  1578. " free:%lukB"
  1579. " min:%lukB"
  1580. " low:%lukB"
  1581. " high:%lukB"
  1582. " active:%lukB"
  1583. " inactive:%lukB"
  1584. " present:%lukB"
  1585. " pages_scanned:%lu"
  1586. " all_unreclaimable? %s"
  1587. "\n",
  1588. zone->name,
  1589. K(zone_page_state(zone, NR_FREE_PAGES)),
  1590. K(zone->pages_min),
  1591. K(zone->pages_low),
  1592. K(zone->pages_high),
  1593. K(zone_page_state(zone, NR_ACTIVE)),
  1594. K(zone_page_state(zone, NR_INACTIVE)),
  1595. K(zone->present_pages),
  1596. zone->pages_scanned,
  1597. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1598. );
  1599. printk("lowmem_reserve[]:");
  1600. for (i = 0; i < MAX_NR_ZONES; i++)
  1601. printk(" %lu", zone->lowmem_reserve[i]);
  1602. printk("\n");
  1603. }
  1604. for_each_zone(zone) {
  1605. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1606. if (!populated_zone(zone))
  1607. continue;
  1608. show_node(zone);
  1609. printk("%s: ", zone->name);
  1610. spin_lock_irqsave(&zone->lock, flags);
  1611. for (order = 0; order < MAX_ORDER; order++) {
  1612. nr[order] = zone->free_area[order].nr_free;
  1613. total += nr[order] << order;
  1614. }
  1615. spin_unlock_irqrestore(&zone->lock, flags);
  1616. for (order = 0; order < MAX_ORDER; order++)
  1617. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1618. printk("= %lukB\n", K(total));
  1619. }
  1620. show_swap_cache_info();
  1621. }
  1622. /*
  1623. * Builds allocation fallback zone lists.
  1624. *
  1625. * Add all populated zones of a node to the zonelist.
  1626. */
  1627. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1628. int nr_zones, enum zone_type zone_type)
  1629. {
  1630. struct zone *zone;
  1631. BUG_ON(zone_type >= MAX_NR_ZONES);
  1632. zone_type++;
  1633. do {
  1634. zone_type--;
  1635. zone = pgdat->node_zones + zone_type;
  1636. if (populated_zone(zone)) {
  1637. zonelist->zones[nr_zones++] = zone;
  1638. check_highest_zone(zone_type);
  1639. }
  1640. } while (zone_type);
  1641. return nr_zones;
  1642. }
  1643. /*
  1644. * zonelist_order:
  1645. * 0 = automatic detection of better ordering.
  1646. * 1 = order by ([node] distance, -zonetype)
  1647. * 2 = order by (-zonetype, [node] distance)
  1648. *
  1649. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1650. * the same zonelist. So only NUMA can configure this param.
  1651. */
  1652. #define ZONELIST_ORDER_DEFAULT 0
  1653. #define ZONELIST_ORDER_NODE 1
  1654. #define ZONELIST_ORDER_ZONE 2
  1655. /* zonelist order in the kernel.
  1656. * set_zonelist_order() will set this to NODE or ZONE.
  1657. */
  1658. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1659. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1660. #ifdef CONFIG_NUMA
  1661. /* The value user specified ....changed by config */
  1662. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1663. /* string for sysctl */
  1664. #define NUMA_ZONELIST_ORDER_LEN 16
  1665. char numa_zonelist_order[16] = "default";
  1666. /*
  1667. * interface for configure zonelist ordering.
  1668. * command line option "numa_zonelist_order"
  1669. * = "[dD]efault - default, automatic configuration.
  1670. * = "[nN]ode - order by node locality, then by zone within node
  1671. * = "[zZ]one - order by zone, then by locality within zone
  1672. */
  1673. static int __parse_numa_zonelist_order(char *s)
  1674. {
  1675. if (*s == 'd' || *s == 'D') {
  1676. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1677. } else if (*s == 'n' || *s == 'N') {
  1678. user_zonelist_order = ZONELIST_ORDER_NODE;
  1679. } else if (*s == 'z' || *s == 'Z') {
  1680. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1681. } else {
  1682. printk(KERN_WARNING
  1683. "Ignoring invalid numa_zonelist_order value: "
  1684. "%s\n", s);
  1685. return -EINVAL;
  1686. }
  1687. return 0;
  1688. }
  1689. static __init int setup_numa_zonelist_order(char *s)
  1690. {
  1691. if (s)
  1692. return __parse_numa_zonelist_order(s);
  1693. return 0;
  1694. }
  1695. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1696. /*
  1697. * sysctl handler for numa_zonelist_order
  1698. */
  1699. int numa_zonelist_order_handler(ctl_table *table, int write,
  1700. struct file *file, void __user *buffer, size_t *length,
  1701. loff_t *ppos)
  1702. {
  1703. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1704. int ret;
  1705. if (write)
  1706. strncpy(saved_string, (char*)table->data,
  1707. NUMA_ZONELIST_ORDER_LEN);
  1708. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1709. if (ret)
  1710. return ret;
  1711. if (write) {
  1712. int oldval = user_zonelist_order;
  1713. if (__parse_numa_zonelist_order((char*)table->data)) {
  1714. /*
  1715. * bogus value. restore saved string
  1716. */
  1717. strncpy((char*)table->data, saved_string,
  1718. NUMA_ZONELIST_ORDER_LEN);
  1719. user_zonelist_order = oldval;
  1720. } else if (oldval != user_zonelist_order)
  1721. build_all_zonelists();
  1722. }
  1723. return 0;
  1724. }
  1725. #define MAX_NODE_LOAD (num_online_nodes())
  1726. static int node_load[MAX_NUMNODES];
  1727. /**
  1728. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1729. * @node: node whose fallback list we're appending
  1730. * @used_node_mask: nodemask_t of already used nodes
  1731. *
  1732. * We use a number of factors to determine which is the next node that should
  1733. * appear on a given node's fallback list. The node should not have appeared
  1734. * already in @node's fallback list, and it should be the next closest node
  1735. * according to the distance array (which contains arbitrary distance values
  1736. * from each node to each node in the system), and should also prefer nodes
  1737. * with no CPUs, since presumably they'll have very little allocation pressure
  1738. * on them otherwise.
  1739. * It returns -1 if no node is found.
  1740. */
  1741. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1742. {
  1743. int n, val;
  1744. int min_val = INT_MAX;
  1745. int best_node = -1;
  1746. /* Use the local node if we haven't already */
  1747. if (!node_isset(node, *used_node_mask)) {
  1748. node_set(node, *used_node_mask);
  1749. return node;
  1750. }
  1751. for_each_node_state(n, N_HIGH_MEMORY) {
  1752. cpumask_t tmp;
  1753. /* Don't want a node to appear more than once */
  1754. if (node_isset(n, *used_node_mask))
  1755. continue;
  1756. /* Use the distance array to find the distance */
  1757. val = node_distance(node, n);
  1758. /* Penalize nodes under us ("prefer the next node") */
  1759. val += (n < node);
  1760. /* Give preference to headless and unused nodes */
  1761. tmp = node_to_cpumask(n);
  1762. if (!cpus_empty(tmp))
  1763. val += PENALTY_FOR_NODE_WITH_CPUS;
  1764. /* Slight preference for less loaded node */
  1765. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1766. val += node_load[n];
  1767. if (val < min_val) {
  1768. min_val = val;
  1769. best_node = n;
  1770. }
  1771. }
  1772. if (best_node >= 0)
  1773. node_set(best_node, *used_node_mask);
  1774. return best_node;
  1775. }
  1776. /*
  1777. * Build zonelists ordered by node and zones within node.
  1778. * This results in maximum locality--normal zone overflows into local
  1779. * DMA zone, if any--but risks exhausting DMA zone.
  1780. */
  1781. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1782. {
  1783. enum zone_type i;
  1784. int j;
  1785. struct zonelist *zonelist;
  1786. for (i = 0; i < MAX_NR_ZONES; i++) {
  1787. zonelist = pgdat->node_zonelists + i;
  1788. for (j = 0; zonelist->zones[j] != NULL; j++)
  1789. ;
  1790. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1791. zonelist->zones[j] = NULL;
  1792. }
  1793. }
  1794. /*
  1795. * Build gfp_thisnode zonelists
  1796. */
  1797. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1798. {
  1799. enum zone_type i;
  1800. int j;
  1801. struct zonelist *zonelist;
  1802. for (i = 0; i < MAX_NR_ZONES; i++) {
  1803. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1804. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1805. zonelist->zones[j] = NULL;
  1806. }
  1807. }
  1808. /*
  1809. * Build zonelists ordered by zone and nodes within zones.
  1810. * This results in conserving DMA zone[s] until all Normal memory is
  1811. * exhausted, but results in overflowing to remote node while memory
  1812. * may still exist in local DMA zone.
  1813. */
  1814. static int node_order[MAX_NUMNODES];
  1815. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1816. {
  1817. enum zone_type i;
  1818. int pos, j, node;
  1819. int zone_type; /* needs to be signed */
  1820. struct zone *z;
  1821. struct zonelist *zonelist;
  1822. for (i = 0; i < MAX_NR_ZONES; i++) {
  1823. zonelist = pgdat->node_zonelists + i;
  1824. pos = 0;
  1825. for (zone_type = i; zone_type >= 0; zone_type--) {
  1826. for (j = 0; j < nr_nodes; j++) {
  1827. node = node_order[j];
  1828. z = &NODE_DATA(node)->node_zones[zone_type];
  1829. if (populated_zone(z)) {
  1830. zonelist->zones[pos++] = z;
  1831. check_highest_zone(zone_type);
  1832. }
  1833. }
  1834. }
  1835. zonelist->zones[pos] = NULL;
  1836. }
  1837. }
  1838. static int default_zonelist_order(void)
  1839. {
  1840. int nid, zone_type;
  1841. unsigned long low_kmem_size,total_size;
  1842. struct zone *z;
  1843. int average_size;
  1844. /*
  1845. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1846. * If they are really small and used heavily, the system can fall
  1847. * into OOM very easily.
  1848. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1849. */
  1850. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1851. low_kmem_size = 0;
  1852. total_size = 0;
  1853. for_each_online_node(nid) {
  1854. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1855. z = &NODE_DATA(nid)->node_zones[zone_type];
  1856. if (populated_zone(z)) {
  1857. if (zone_type < ZONE_NORMAL)
  1858. low_kmem_size += z->present_pages;
  1859. total_size += z->present_pages;
  1860. }
  1861. }
  1862. }
  1863. if (!low_kmem_size || /* there are no DMA area. */
  1864. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1865. return ZONELIST_ORDER_NODE;
  1866. /*
  1867. * look into each node's config.
  1868. * If there is a node whose DMA/DMA32 memory is very big area on
  1869. * local memory, NODE_ORDER may be suitable.
  1870. */
  1871. average_size = total_size /
  1872. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1873. for_each_online_node(nid) {
  1874. low_kmem_size = 0;
  1875. total_size = 0;
  1876. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1877. z = &NODE_DATA(nid)->node_zones[zone_type];
  1878. if (populated_zone(z)) {
  1879. if (zone_type < ZONE_NORMAL)
  1880. low_kmem_size += z->present_pages;
  1881. total_size += z->present_pages;
  1882. }
  1883. }
  1884. if (low_kmem_size &&
  1885. total_size > average_size && /* ignore small node */
  1886. low_kmem_size > total_size * 70/100)
  1887. return ZONELIST_ORDER_NODE;
  1888. }
  1889. return ZONELIST_ORDER_ZONE;
  1890. }
  1891. static void set_zonelist_order(void)
  1892. {
  1893. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1894. current_zonelist_order = default_zonelist_order();
  1895. else
  1896. current_zonelist_order = user_zonelist_order;
  1897. }
  1898. static void build_zonelists(pg_data_t *pgdat)
  1899. {
  1900. int j, node, load;
  1901. enum zone_type i;
  1902. nodemask_t used_mask;
  1903. int local_node, prev_node;
  1904. struct zonelist *zonelist;
  1905. int order = current_zonelist_order;
  1906. /* initialize zonelists */
  1907. for (i = 0; i < MAX_ZONELISTS; i++) {
  1908. zonelist = pgdat->node_zonelists + i;
  1909. zonelist->zones[0] = NULL;
  1910. }
  1911. /* NUMA-aware ordering of nodes */
  1912. local_node = pgdat->node_id;
  1913. load = num_online_nodes();
  1914. prev_node = local_node;
  1915. nodes_clear(used_mask);
  1916. memset(node_load, 0, sizeof(node_load));
  1917. memset(node_order, 0, sizeof(node_order));
  1918. j = 0;
  1919. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1920. int distance = node_distance(local_node, node);
  1921. /*
  1922. * If another node is sufficiently far away then it is better
  1923. * to reclaim pages in a zone before going off node.
  1924. */
  1925. if (distance > RECLAIM_DISTANCE)
  1926. zone_reclaim_mode = 1;
  1927. /*
  1928. * We don't want to pressure a particular node.
  1929. * So adding penalty to the first node in same
  1930. * distance group to make it round-robin.
  1931. */
  1932. if (distance != node_distance(local_node, prev_node))
  1933. node_load[node] = load;
  1934. prev_node = node;
  1935. load--;
  1936. if (order == ZONELIST_ORDER_NODE)
  1937. build_zonelists_in_node_order(pgdat, node);
  1938. else
  1939. node_order[j++] = node; /* remember order */
  1940. }
  1941. if (order == ZONELIST_ORDER_ZONE) {
  1942. /* calculate node order -- i.e., DMA last! */
  1943. build_zonelists_in_zone_order(pgdat, j);
  1944. }
  1945. build_thisnode_zonelists(pgdat);
  1946. }
  1947. /* Construct the zonelist performance cache - see further mmzone.h */
  1948. static void build_zonelist_cache(pg_data_t *pgdat)
  1949. {
  1950. int i;
  1951. for (i = 0; i < MAX_NR_ZONES; i++) {
  1952. struct zonelist *zonelist;
  1953. struct zonelist_cache *zlc;
  1954. struct zone **z;
  1955. zonelist = pgdat->node_zonelists + i;
  1956. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1957. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1958. for (z = zonelist->zones; *z; z++)
  1959. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1960. }
  1961. }
  1962. #else /* CONFIG_NUMA */
  1963. static void set_zonelist_order(void)
  1964. {
  1965. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1966. }
  1967. static void build_zonelists(pg_data_t *pgdat)
  1968. {
  1969. int node, local_node;
  1970. enum zone_type i,j;
  1971. local_node = pgdat->node_id;
  1972. for (i = 0; i < MAX_NR_ZONES; i++) {
  1973. struct zonelist *zonelist;
  1974. zonelist = pgdat->node_zonelists + i;
  1975. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1976. /*
  1977. * Now we build the zonelist so that it contains the zones
  1978. * of all the other nodes.
  1979. * We don't want to pressure a particular node, so when
  1980. * building the zones for node N, we make sure that the
  1981. * zones coming right after the local ones are those from
  1982. * node N+1 (modulo N)
  1983. */
  1984. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1985. if (!node_online(node))
  1986. continue;
  1987. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1988. }
  1989. for (node = 0; node < local_node; node++) {
  1990. if (!node_online(node))
  1991. continue;
  1992. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1993. }
  1994. zonelist->zones[j] = NULL;
  1995. }
  1996. }
  1997. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1998. static void build_zonelist_cache(pg_data_t *pgdat)
  1999. {
  2000. int i;
  2001. for (i = 0; i < MAX_NR_ZONES; i++)
  2002. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  2003. }
  2004. #endif /* CONFIG_NUMA */
  2005. /* return values int ....just for stop_machine_run() */
  2006. static int __build_all_zonelists(void *dummy)
  2007. {
  2008. int nid;
  2009. for_each_online_node(nid) {
  2010. pg_data_t *pgdat = NODE_DATA(nid);
  2011. build_zonelists(pgdat);
  2012. build_zonelist_cache(pgdat);
  2013. }
  2014. return 0;
  2015. }
  2016. void build_all_zonelists(void)
  2017. {
  2018. set_zonelist_order();
  2019. if (system_state == SYSTEM_BOOTING) {
  2020. __build_all_zonelists(NULL);
  2021. cpuset_init_current_mems_allowed();
  2022. } else {
  2023. /* we have to stop all cpus to guarantee there is no user
  2024. of zonelist */
  2025. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2026. /* cpuset refresh routine should be here */
  2027. }
  2028. vm_total_pages = nr_free_pagecache_pages();
  2029. /*
  2030. * Disable grouping by mobility if the number of pages in the
  2031. * system is too low to allow the mechanism to work. It would be
  2032. * more accurate, but expensive to check per-zone. This check is
  2033. * made on memory-hotadd so a system can start with mobility
  2034. * disabled and enable it later
  2035. */
  2036. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2037. page_group_by_mobility_disabled = 1;
  2038. else
  2039. page_group_by_mobility_disabled = 0;
  2040. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2041. "Total pages: %ld\n",
  2042. num_online_nodes(),
  2043. zonelist_order_name[current_zonelist_order],
  2044. page_group_by_mobility_disabled ? "off" : "on",
  2045. vm_total_pages);
  2046. #ifdef CONFIG_NUMA
  2047. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2048. #endif
  2049. }
  2050. /*
  2051. * Helper functions to size the waitqueue hash table.
  2052. * Essentially these want to choose hash table sizes sufficiently
  2053. * large so that collisions trying to wait on pages are rare.
  2054. * But in fact, the number of active page waitqueues on typical
  2055. * systems is ridiculously low, less than 200. So this is even
  2056. * conservative, even though it seems large.
  2057. *
  2058. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2059. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2060. */
  2061. #define PAGES_PER_WAITQUEUE 256
  2062. #ifndef CONFIG_MEMORY_HOTPLUG
  2063. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2064. {
  2065. unsigned long size = 1;
  2066. pages /= PAGES_PER_WAITQUEUE;
  2067. while (size < pages)
  2068. size <<= 1;
  2069. /*
  2070. * Once we have dozens or even hundreds of threads sleeping
  2071. * on IO we've got bigger problems than wait queue collision.
  2072. * Limit the size of the wait table to a reasonable size.
  2073. */
  2074. size = min(size, 4096UL);
  2075. return max(size, 4UL);
  2076. }
  2077. #else
  2078. /*
  2079. * A zone's size might be changed by hot-add, so it is not possible to determine
  2080. * a suitable size for its wait_table. So we use the maximum size now.
  2081. *
  2082. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2083. *
  2084. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2085. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2086. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2087. *
  2088. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2089. * or more by the traditional way. (See above). It equals:
  2090. *
  2091. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2092. * ia64(16K page size) : = ( 8G + 4M)byte.
  2093. * powerpc (64K page size) : = (32G +16M)byte.
  2094. */
  2095. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2096. {
  2097. return 4096UL;
  2098. }
  2099. #endif
  2100. /*
  2101. * This is an integer logarithm so that shifts can be used later
  2102. * to extract the more random high bits from the multiplicative
  2103. * hash function before the remainder is taken.
  2104. */
  2105. static inline unsigned long wait_table_bits(unsigned long size)
  2106. {
  2107. return ffz(~size);
  2108. }
  2109. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2110. /*
  2111. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2112. * of blocks reserved is based on zone->pages_min. The memory within the
  2113. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2114. * higher will lead to a bigger reserve which will get freed as contiguous
  2115. * blocks as reclaim kicks in
  2116. */
  2117. static void setup_zone_migrate_reserve(struct zone *zone)
  2118. {
  2119. unsigned long start_pfn, pfn, end_pfn;
  2120. struct page *page;
  2121. unsigned long reserve, block_migratetype;
  2122. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2123. start_pfn = zone->zone_start_pfn;
  2124. end_pfn = start_pfn + zone->spanned_pages;
  2125. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2126. pageblock_order;
  2127. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2128. if (!pfn_valid(pfn))
  2129. continue;
  2130. page = pfn_to_page(pfn);
  2131. /* Blocks with reserved pages will never free, skip them. */
  2132. if (PageReserved(page))
  2133. continue;
  2134. block_migratetype = get_pageblock_migratetype(page);
  2135. /* If this block is reserved, account for it */
  2136. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2137. reserve--;
  2138. continue;
  2139. }
  2140. /* Suitable for reserving if this block is movable */
  2141. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2142. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2143. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2144. reserve--;
  2145. continue;
  2146. }
  2147. /*
  2148. * If the reserve is met and this is a previous reserved block,
  2149. * take it back
  2150. */
  2151. if (block_migratetype == MIGRATE_RESERVE) {
  2152. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2153. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2154. }
  2155. }
  2156. }
  2157. /*
  2158. * Initially all pages are reserved - free ones are freed
  2159. * up by free_all_bootmem() once the early boot process is
  2160. * done. Non-atomic initialization, single-pass.
  2161. */
  2162. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2163. unsigned long start_pfn, enum memmap_context context)
  2164. {
  2165. struct page *page;
  2166. unsigned long end_pfn = start_pfn + size;
  2167. unsigned long pfn;
  2168. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2169. /*
  2170. * There can be holes in boot-time mem_map[]s
  2171. * handed to this function. They do not
  2172. * exist on hotplugged memory.
  2173. */
  2174. if (context == MEMMAP_EARLY) {
  2175. if (!early_pfn_valid(pfn))
  2176. continue;
  2177. if (!early_pfn_in_nid(pfn, nid))
  2178. continue;
  2179. }
  2180. page = pfn_to_page(pfn);
  2181. set_page_links(page, zone, nid, pfn);
  2182. init_page_count(page);
  2183. reset_page_mapcount(page);
  2184. SetPageReserved(page);
  2185. /*
  2186. * Mark the block movable so that blocks are reserved for
  2187. * movable at startup. This will force kernel allocations
  2188. * to reserve their blocks rather than leaking throughout
  2189. * the address space during boot when many long-lived
  2190. * kernel allocations are made. Later some blocks near
  2191. * the start are marked MIGRATE_RESERVE by
  2192. * setup_zone_migrate_reserve()
  2193. */
  2194. if ((pfn & (pageblock_nr_pages-1)))
  2195. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2196. INIT_LIST_HEAD(&page->lru);
  2197. #ifdef WANT_PAGE_VIRTUAL
  2198. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2199. if (!is_highmem_idx(zone))
  2200. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2201. #endif
  2202. }
  2203. }
  2204. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  2205. struct zone *zone, unsigned long size)
  2206. {
  2207. int order, t;
  2208. for_each_migratetype_order(order, t) {
  2209. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2210. zone->free_area[order].nr_free = 0;
  2211. }
  2212. }
  2213. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2214. #define memmap_init(size, nid, zone, start_pfn) \
  2215. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2216. #endif
  2217. static int zone_batchsize(struct zone *zone)
  2218. {
  2219. int batch;
  2220. /*
  2221. * The per-cpu-pages pools are set to around 1000th of the
  2222. * size of the zone. But no more than 1/2 of a meg.
  2223. *
  2224. * OK, so we don't know how big the cache is. So guess.
  2225. */
  2226. batch = zone->present_pages / 1024;
  2227. if (batch * PAGE_SIZE > 512 * 1024)
  2228. batch = (512 * 1024) / PAGE_SIZE;
  2229. batch /= 4; /* We effectively *= 4 below */
  2230. if (batch < 1)
  2231. batch = 1;
  2232. /*
  2233. * Clamp the batch to a 2^n - 1 value. Having a power
  2234. * of 2 value was found to be more likely to have
  2235. * suboptimal cache aliasing properties in some cases.
  2236. *
  2237. * For example if 2 tasks are alternately allocating
  2238. * batches of pages, one task can end up with a lot
  2239. * of pages of one half of the possible page colors
  2240. * and the other with pages of the other colors.
  2241. */
  2242. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2243. return batch;
  2244. }
  2245. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2246. {
  2247. struct per_cpu_pages *pcp;
  2248. memset(p, 0, sizeof(*p));
  2249. pcp = &p->pcp[0]; /* hot */
  2250. pcp->count = 0;
  2251. pcp->high = 6 * batch;
  2252. pcp->batch = max(1UL, 1 * batch);
  2253. INIT_LIST_HEAD(&pcp->list);
  2254. pcp = &p->pcp[1]; /* cold*/
  2255. pcp->count = 0;
  2256. pcp->high = 2 * batch;
  2257. pcp->batch = max(1UL, batch/2);
  2258. INIT_LIST_HEAD(&pcp->list);
  2259. }
  2260. /*
  2261. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2262. * to the value high for the pageset p.
  2263. */
  2264. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2265. unsigned long high)
  2266. {
  2267. struct per_cpu_pages *pcp;
  2268. pcp = &p->pcp[0]; /* hot list */
  2269. pcp->high = high;
  2270. pcp->batch = max(1UL, high/4);
  2271. if ((high/4) > (PAGE_SHIFT * 8))
  2272. pcp->batch = PAGE_SHIFT * 8;
  2273. }
  2274. #ifdef CONFIG_NUMA
  2275. /*
  2276. * Boot pageset table. One per cpu which is going to be used for all
  2277. * zones and all nodes. The parameters will be set in such a way
  2278. * that an item put on a list will immediately be handed over to
  2279. * the buddy list. This is safe since pageset manipulation is done
  2280. * with interrupts disabled.
  2281. *
  2282. * Some NUMA counter updates may also be caught by the boot pagesets.
  2283. *
  2284. * The boot_pagesets must be kept even after bootup is complete for
  2285. * unused processors and/or zones. They do play a role for bootstrapping
  2286. * hotplugged processors.
  2287. *
  2288. * zoneinfo_show() and maybe other functions do
  2289. * not check if the processor is online before following the pageset pointer.
  2290. * Other parts of the kernel may not check if the zone is available.
  2291. */
  2292. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2293. /*
  2294. * Dynamically allocate memory for the
  2295. * per cpu pageset array in struct zone.
  2296. */
  2297. static int __cpuinit process_zones(int cpu)
  2298. {
  2299. struct zone *zone, *dzone;
  2300. int node = cpu_to_node(cpu);
  2301. node_set_state(node, N_CPU); /* this node has a cpu */
  2302. for_each_zone(zone) {
  2303. if (!populated_zone(zone))
  2304. continue;
  2305. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2306. GFP_KERNEL, node);
  2307. if (!zone_pcp(zone, cpu))
  2308. goto bad;
  2309. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2310. if (percpu_pagelist_fraction)
  2311. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2312. (zone->present_pages / percpu_pagelist_fraction));
  2313. }
  2314. return 0;
  2315. bad:
  2316. for_each_zone(dzone) {
  2317. if (!populated_zone(dzone))
  2318. continue;
  2319. if (dzone == zone)
  2320. break;
  2321. kfree(zone_pcp(dzone, cpu));
  2322. zone_pcp(dzone, cpu) = NULL;
  2323. }
  2324. return -ENOMEM;
  2325. }
  2326. static inline void free_zone_pagesets(int cpu)
  2327. {
  2328. struct zone *zone;
  2329. for_each_zone(zone) {
  2330. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2331. /* Free per_cpu_pageset if it is slab allocated */
  2332. if (pset != &boot_pageset[cpu])
  2333. kfree(pset);
  2334. zone_pcp(zone, cpu) = NULL;
  2335. }
  2336. }
  2337. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2338. unsigned long action,
  2339. void *hcpu)
  2340. {
  2341. int cpu = (long)hcpu;
  2342. int ret = NOTIFY_OK;
  2343. switch (action) {
  2344. case CPU_UP_PREPARE:
  2345. case CPU_UP_PREPARE_FROZEN:
  2346. if (process_zones(cpu))
  2347. ret = NOTIFY_BAD;
  2348. break;
  2349. case CPU_UP_CANCELED:
  2350. case CPU_UP_CANCELED_FROZEN:
  2351. case CPU_DEAD:
  2352. case CPU_DEAD_FROZEN:
  2353. free_zone_pagesets(cpu);
  2354. break;
  2355. default:
  2356. break;
  2357. }
  2358. return ret;
  2359. }
  2360. static struct notifier_block __cpuinitdata pageset_notifier =
  2361. { &pageset_cpuup_callback, NULL, 0 };
  2362. void __init setup_per_cpu_pageset(void)
  2363. {
  2364. int err;
  2365. /* Initialize per_cpu_pageset for cpu 0.
  2366. * A cpuup callback will do this for every cpu
  2367. * as it comes online
  2368. */
  2369. err = process_zones(smp_processor_id());
  2370. BUG_ON(err);
  2371. register_cpu_notifier(&pageset_notifier);
  2372. }
  2373. #endif
  2374. static noinline __init_refok
  2375. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2376. {
  2377. int i;
  2378. struct pglist_data *pgdat = zone->zone_pgdat;
  2379. size_t alloc_size;
  2380. /*
  2381. * The per-page waitqueue mechanism uses hashed waitqueues
  2382. * per zone.
  2383. */
  2384. zone->wait_table_hash_nr_entries =
  2385. wait_table_hash_nr_entries(zone_size_pages);
  2386. zone->wait_table_bits =
  2387. wait_table_bits(zone->wait_table_hash_nr_entries);
  2388. alloc_size = zone->wait_table_hash_nr_entries
  2389. * sizeof(wait_queue_head_t);
  2390. if (system_state == SYSTEM_BOOTING) {
  2391. zone->wait_table = (wait_queue_head_t *)
  2392. alloc_bootmem_node(pgdat, alloc_size);
  2393. } else {
  2394. /*
  2395. * This case means that a zone whose size was 0 gets new memory
  2396. * via memory hot-add.
  2397. * But it may be the case that a new node was hot-added. In
  2398. * this case vmalloc() will not be able to use this new node's
  2399. * memory - this wait_table must be initialized to use this new
  2400. * node itself as well.
  2401. * To use this new node's memory, further consideration will be
  2402. * necessary.
  2403. */
  2404. zone->wait_table = vmalloc(alloc_size);
  2405. }
  2406. if (!zone->wait_table)
  2407. return -ENOMEM;
  2408. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2409. init_waitqueue_head(zone->wait_table + i);
  2410. return 0;
  2411. }
  2412. static __meminit void zone_pcp_init(struct zone *zone)
  2413. {
  2414. int cpu;
  2415. unsigned long batch = zone_batchsize(zone);
  2416. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2417. #ifdef CONFIG_NUMA
  2418. /* Early boot. Slab allocator not functional yet */
  2419. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2420. setup_pageset(&boot_pageset[cpu],0);
  2421. #else
  2422. setup_pageset(zone_pcp(zone,cpu), batch);
  2423. #endif
  2424. }
  2425. if (zone->present_pages)
  2426. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2427. zone->name, zone->present_pages, batch);
  2428. }
  2429. __meminit int init_currently_empty_zone(struct zone *zone,
  2430. unsigned long zone_start_pfn,
  2431. unsigned long size,
  2432. enum memmap_context context)
  2433. {
  2434. struct pglist_data *pgdat = zone->zone_pgdat;
  2435. int ret;
  2436. ret = zone_wait_table_init(zone, size);
  2437. if (ret)
  2438. return ret;
  2439. pgdat->nr_zones = zone_idx(zone) + 1;
  2440. zone->zone_start_pfn = zone_start_pfn;
  2441. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2442. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2443. return 0;
  2444. }
  2445. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2446. /*
  2447. * Basic iterator support. Return the first range of PFNs for a node
  2448. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2449. */
  2450. static int __meminit first_active_region_index_in_nid(int nid)
  2451. {
  2452. int i;
  2453. for (i = 0; i < nr_nodemap_entries; i++)
  2454. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2455. return i;
  2456. return -1;
  2457. }
  2458. /*
  2459. * Basic iterator support. Return the next active range of PFNs for a node
  2460. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2461. */
  2462. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2463. {
  2464. for (index = index + 1; index < nr_nodemap_entries; index++)
  2465. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2466. return index;
  2467. return -1;
  2468. }
  2469. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2470. /*
  2471. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2472. * Architectures may implement their own version but if add_active_range()
  2473. * was used and there are no special requirements, this is a convenient
  2474. * alternative
  2475. */
  2476. int __meminit early_pfn_to_nid(unsigned long pfn)
  2477. {
  2478. int i;
  2479. for (i = 0; i < nr_nodemap_entries; i++) {
  2480. unsigned long start_pfn = early_node_map[i].start_pfn;
  2481. unsigned long end_pfn = early_node_map[i].end_pfn;
  2482. if (start_pfn <= pfn && pfn < end_pfn)
  2483. return early_node_map[i].nid;
  2484. }
  2485. return 0;
  2486. }
  2487. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2488. /* Basic iterator support to walk early_node_map[] */
  2489. #define for_each_active_range_index_in_nid(i, nid) \
  2490. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2491. i = next_active_region_index_in_nid(i, nid))
  2492. /**
  2493. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2494. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2495. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2496. *
  2497. * If an architecture guarantees that all ranges registered with
  2498. * add_active_ranges() contain no holes and may be freed, this
  2499. * this function may be used instead of calling free_bootmem() manually.
  2500. */
  2501. void __init free_bootmem_with_active_regions(int nid,
  2502. unsigned long max_low_pfn)
  2503. {
  2504. int i;
  2505. for_each_active_range_index_in_nid(i, nid) {
  2506. unsigned long size_pages = 0;
  2507. unsigned long end_pfn = early_node_map[i].end_pfn;
  2508. if (early_node_map[i].start_pfn >= max_low_pfn)
  2509. continue;
  2510. if (end_pfn > max_low_pfn)
  2511. end_pfn = max_low_pfn;
  2512. size_pages = end_pfn - early_node_map[i].start_pfn;
  2513. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2514. PFN_PHYS(early_node_map[i].start_pfn),
  2515. size_pages << PAGE_SHIFT);
  2516. }
  2517. }
  2518. /**
  2519. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2520. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2521. *
  2522. * If an architecture guarantees that all ranges registered with
  2523. * add_active_ranges() contain no holes and may be freed, this
  2524. * function may be used instead of calling memory_present() manually.
  2525. */
  2526. void __init sparse_memory_present_with_active_regions(int nid)
  2527. {
  2528. int i;
  2529. for_each_active_range_index_in_nid(i, nid)
  2530. memory_present(early_node_map[i].nid,
  2531. early_node_map[i].start_pfn,
  2532. early_node_map[i].end_pfn);
  2533. }
  2534. /**
  2535. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2536. * @nid: The nid of the node to push the boundary for
  2537. * @start_pfn: The start pfn of the node
  2538. * @end_pfn: The end pfn of the node
  2539. *
  2540. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2541. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2542. * be hotplugged even though no physical memory exists. This function allows
  2543. * an arch to push out the node boundaries so mem_map is allocated that can
  2544. * be used later.
  2545. */
  2546. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2547. void __init push_node_boundaries(unsigned int nid,
  2548. unsigned long start_pfn, unsigned long end_pfn)
  2549. {
  2550. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2551. nid, start_pfn, end_pfn);
  2552. /* Initialise the boundary for this node if necessary */
  2553. if (node_boundary_end_pfn[nid] == 0)
  2554. node_boundary_start_pfn[nid] = -1UL;
  2555. /* Update the boundaries */
  2556. if (node_boundary_start_pfn[nid] > start_pfn)
  2557. node_boundary_start_pfn[nid] = start_pfn;
  2558. if (node_boundary_end_pfn[nid] < end_pfn)
  2559. node_boundary_end_pfn[nid] = end_pfn;
  2560. }
  2561. /* If necessary, push the node boundary out for reserve hotadd */
  2562. static void __meminit account_node_boundary(unsigned int nid,
  2563. unsigned long *start_pfn, unsigned long *end_pfn)
  2564. {
  2565. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2566. nid, *start_pfn, *end_pfn);
  2567. /* Return if boundary information has not been provided */
  2568. if (node_boundary_end_pfn[nid] == 0)
  2569. return;
  2570. /* Check the boundaries and update if necessary */
  2571. if (node_boundary_start_pfn[nid] < *start_pfn)
  2572. *start_pfn = node_boundary_start_pfn[nid];
  2573. if (node_boundary_end_pfn[nid] > *end_pfn)
  2574. *end_pfn = node_boundary_end_pfn[nid];
  2575. }
  2576. #else
  2577. void __init push_node_boundaries(unsigned int nid,
  2578. unsigned long start_pfn, unsigned long end_pfn) {}
  2579. static void __meminit account_node_boundary(unsigned int nid,
  2580. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2581. #endif
  2582. /**
  2583. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2584. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2585. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2586. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2587. *
  2588. * It returns the start and end page frame of a node based on information
  2589. * provided by an arch calling add_active_range(). If called for a node
  2590. * with no available memory, a warning is printed and the start and end
  2591. * PFNs will be 0.
  2592. */
  2593. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2594. unsigned long *start_pfn, unsigned long *end_pfn)
  2595. {
  2596. int i;
  2597. *start_pfn = -1UL;
  2598. *end_pfn = 0;
  2599. for_each_active_range_index_in_nid(i, nid) {
  2600. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2601. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2602. }
  2603. if (*start_pfn == -1UL)
  2604. *start_pfn = 0;
  2605. /* Push the node boundaries out if requested */
  2606. account_node_boundary(nid, start_pfn, end_pfn);
  2607. }
  2608. /*
  2609. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2610. * assumption is made that zones within a node are ordered in monotonic
  2611. * increasing memory addresses so that the "highest" populated zone is used
  2612. */
  2613. void __init find_usable_zone_for_movable(void)
  2614. {
  2615. int zone_index;
  2616. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2617. if (zone_index == ZONE_MOVABLE)
  2618. continue;
  2619. if (arch_zone_highest_possible_pfn[zone_index] >
  2620. arch_zone_lowest_possible_pfn[zone_index])
  2621. break;
  2622. }
  2623. VM_BUG_ON(zone_index == -1);
  2624. movable_zone = zone_index;
  2625. }
  2626. /*
  2627. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2628. * because it is sized independant of architecture. Unlike the other zones,
  2629. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2630. * in each node depending on the size of each node and how evenly kernelcore
  2631. * is distributed. This helper function adjusts the zone ranges
  2632. * provided by the architecture for a given node by using the end of the
  2633. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2634. * zones within a node are in order of monotonic increases memory addresses
  2635. */
  2636. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2637. unsigned long zone_type,
  2638. unsigned long node_start_pfn,
  2639. unsigned long node_end_pfn,
  2640. unsigned long *zone_start_pfn,
  2641. unsigned long *zone_end_pfn)
  2642. {
  2643. /* Only adjust if ZONE_MOVABLE is on this node */
  2644. if (zone_movable_pfn[nid]) {
  2645. /* Size ZONE_MOVABLE */
  2646. if (zone_type == ZONE_MOVABLE) {
  2647. *zone_start_pfn = zone_movable_pfn[nid];
  2648. *zone_end_pfn = min(node_end_pfn,
  2649. arch_zone_highest_possible_pfn[movable_zone]);
  2650. /* Adjust for ZONE_MOVABLE starting within this range */
  2651. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2652. *zone_end_pfn > zone_movable_pfn[nid]) {
  2653. *zone_end_pfn = zone_movable_pfn[nid];
  2654. /* Check if this whole range is within ZONE_MOVABLE */
  2655. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2656. *zone_start_pfn = *zone_end_pfn;
  2657. }
  2658. }
  2659. /*
  2660. * Return the number of pages a zone spans in a node, including holes
  2661. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2662. */
  2663. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2664. unsigned long zone_type,
  2665. unsigned long *ignored)
  2666. {
  2667. unsigned long node_start_pfn, node_end_pfn;
  2668. unsigned long zone_start_pfn, zone_end_pfn;
  2669. /* Get the start and end of the node and zone */
  2670. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2671. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2672. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2673. adjust_zone_range_for_zone_movable(nid, zone_type,
  2674. node_start_pfn, node_end_pfn,
  2675. &zone_start_pfn, &zone_end_pfn);
  2676. /* Check that this node has pages within the zone's required range */
  2677. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2678. return 0;
  2679. /* Move the zone boundaries inside the node if necessary */
  2680. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2681. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2682. /* Return the spanned pages */
  2683. return zone_end_pfn - zone_start_pfn;
  2684. }
  2685. /*
  2686. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2687. * then all holes in the requested range will be accounted for.
  2688. */
  2689. unsigned long __meminit __absent_pages_in_range(int nid,
  2690. unsigned long range_start_pfn,
  2691. unsigned long range_end_pfn)
  2692. {
  2693. int i = 0;
  2694. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2695. unsigned long start_pfn;
  2696. /* Find the end_pfn of the first active range of pfns in the node */
  2697. i = first_active_region_index_in_nid(nid);
  2698. if (i == -1)
  2699. return 0;
  2700. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2701. /* Account for ranges before physical memory on this node */
  2702. if (early_node_map[i].start_pfn > range_start_pfn)
  2703. hole_pages = prev_end_pfn - range_start_pfn;
  2704. /* Find all holes for the zone within the node */
  2705. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2706. /* No need to continue if prev_end_pfn is outside the zone */
  2707. if (prev_end_pfn >= range_end_pfn)
  2708. break;
  2709. /* Make sure the end of the zone is not within the hole */
  2710. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2711. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2712. /* Update the hole size cound and move on */
  2713. if (start_pfn > range_start_pfn) {
  2714. BUG_ON(prev_end_pfn > start_pfn);
  2715. hole_pages += start_pfn - prev_end_pfn;
  2716. }
  2717. prev_end_pfn = early_node_map[i].end_pfn;
  2718. }
  2719. /* Account for ranges past physical memory on this node */
  2720. if (range_end_pfn > prev_end_pfn)
  2721. hole_pages += range_end_pfn -
  2722. max(range_start_pfn, prev_end_pfn);
  2723. return hole_pages;
  2724. }
  2725. /**
  2726. * absent_pages_in_range - Return number of page frames in holes within a range
  2727. * @start_pfn: The start PFN to start searching for holes
  2728. * @end_pfn: The end PFN to stop searching for holes
  2729. *
  2730. * It returns the number of pages frames in memory holes within a range.
  2731. */
  2732. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2733. unsigned long end_pfn)
  2734. {
  2735. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2736. }
  2737. /* Return the number of page frames in holes in a zone on a node */
  2738. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2739. unsigned long zone_type,
  2740. unsigned long *ignored)
  2741. {
  2742. unsigned long node_start_pfn, node_end_pfn;
  2743. unsigned long zone_start_pfn, zone_end_pfn;
  2744. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2745. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2746. node_start_pfn);
  2747. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2748. node_end_pfn);
  2749. adjust_zone_range_for_zone_movable(nid, zone_type,
  2750. node_start_pfn, node_end_pfn,
  2751. &zone_start_pfn, &zone_end_pfn);
  2752. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2753. }
  2754. #else
  2755. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2756. unsigned long zone_type,
  2757. unsigned long *zones_size)
  2758. {
  2759. return zones_size[zone_type];
  2760. }
  2761. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2762. unsigned long zone_type,
  2763. unsigned long *zholes_size)
  2764. {
  2765. if (!zholes_size)
  2766. return 0;
  2767. return zholes_size[zone_type];
  2768. }
  2769. #endif
  2770. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2771. unsigned long *zones_size, unsigned long *zholes_size)
  2772. {
  2773. unsigned long realtotalpages, totalpages = 0;
  2774. enum zone_type i;
  2775. for (i = 0; i < MAX_NR_ZONES; i++)
  2776. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2777. zones_size);
  2778. pgdat->node_spanned_pages = totalpages;
  2779. realtotalpages = totalpages;
  2780. for (i = 0; i < MAX_NR_ZONES; i++)
  2781. realtotalpages -=
  2782. zone_absent_pages_in_node(pgdat->node_id, i,
  2783. zholes_size);
  2784. pgdat->node_present_pages = realtotalpages;
  2785. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2786. realtotalpages);
  2787. }
  2788. #ifndef CONFIG_SPARSEMEM
  2789. /*
  2790. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2791. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2792. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2793. * round what is now in bits to nearest long in bits, then return it in
  2794. * bytes.
  2795. */
  2796. static unsigned long __init usemap_size(unsigned long zonesize)
  2797. {
  2798. unsigned long usemapsize;
  2799. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2800. usemapsize = usemapsize >> pageblock_order;
  2801. usemapsize *= NR_PAGEBLOCK_BITS;
  2802. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2803. return usemapsize / 8;
  2804. }
  2805. static void __init setup_usemap(struct pglist_data *pgdat,
  2806. struct zone *zone, unsigned long zonesize)
  2807. {
  2808. unsigned long usemapsize = usemap_size(zonesize);
  2809. zone->pageblock_flags = NULL;
  2810. if (usemapsize) {
  2811. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2812. memset(zone->pageblock_flags, 0, usemapsize);
  2813. }
  2814. }
  2815. #else
  2816. static void inline setup_usemap(struct pglist_data *pgdat,
  2817. struct zone *zone, unsigned long zonesize) {}
  2818. #endif /* CONFIG_SPARSEMEM */
  2819. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2820. /* Return a sensible default order for the pageblock size. */
  2821. static inline int pageblock_default_order(void)
  2822. {
  2823. if (HPAGE_SHIFT > PAGE_SHIFT)
  2824. return HUGETLB_PAGE_ORDER;
  2825. return MAX_ORDER-1;
  2826. }
  2827. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2828. static inline void __init set_pageblock_order(unsigned int order)
  2829. {
  2830. /* Check that pageblock_nr_pages has not already been setup */
  2831. if (pageblock_order)
  2832. return;
  2833. /*
  2834. * Assume the largest contiguous order of interest is a huge page.
  2835. * This value may be variable depending on boot parameters on IA64
  2836. */
  2837. pageblock_order = order;
  2838. }
  2839. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2840. /*
  2841. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2842. * and pageblock_default_order() are unused as pageblock_order is set
  2843. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2844. * pageblock_order based on the kernel config
  2845. */
  2846. static inline int pageblock_default_order(unsigned int order)
  2847. {
  2848. return MAX_ORDER-1;
  2849. }
  2850. #define set_pageblock_order(x) do {} while (0)
  2851. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2852. /*
  2853. * Set up the zone data structures:
  2854. * - mark all pages reserved
  2855. * - mark all memory queues empty
  2856. * - clear the memory bitmaps
  2857. */
  2858. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2859. unsigned long *zones_size, unsigned long *zholes_size)
  2860. {
  2861. enum zone_type j;
  2862. int nid = pgdat->node_id;
  2863. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2864. int ret;
  2865. pgdat_resize_init(pgdat);
  2866. pgdat->nr_zones = 0;
  2867. init_waitqueue_head(&pgdat->kswapd_wait);
  2868. pgdat->kswapd_max_order = 0;
  2869. for (j = 0; j < MAX_NR_ZONES; j++) {
  2870. struct zone *zone = pgdat->node_zones + j;
  2871. unsigned long size, realsize, memmap_pages;
  2872. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2873. realsize = size - zone_absent_pages_in_node(nid, j,
  2874. zholes_size);
  2875. /*
  2876. * Adjust realsize so that it accounts for how much memory
  2877. * is used by this zone for memmap. This affects the watermark
  2878. * and per-cpu initialisations
  2879. */
  2880. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2881. if (realsize >= memmap_pages) {
  2882. realsize -= memmap_pages;
  2883. printk(KERN_DEBUG
  2884. " %s zone: %lu pages used for memmap\n",
  2885. zone_names[j], memmap_pages);
  2886. } else
  2887. printk(KERN_WARNING
  2888. " %s zone: %lu pages exceeds realsize %lu\n",
  2889. zone_names[j], memmap_pages, realsize);
  2890. /* Account for reserved pages */
  2891. if (j == 0 && realsize > dma_reserve) {
  2892. realsize -= dma_reserve;
  2893. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2894. zone_names[0], dma_reserve);
  2895. }
  2896. if (!is_highmem_idx(j))
  2897. nr_kernel_pages += realsize;
  2898. nr_all_pages += realsize;
  2899. zone->spanned_pages = size;
  2900. zone->present_pages = realsize;
  2901. #ifdef CONFIG_NUMA
  2902. zone->node = nid;
  2903. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2904. / 100;
  2905. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2906. #endif
  2907. zone->name = zone_names[j];
  2908. spin_lock_init(&zone->lock);
  2909. spin_lock_init(&zone->lru_lock);
  2910. zone_seqlock_init(zone);
  2911. zone->zone_pgdat = pgdat;
  2912. zone->prev_priority = DEF_PRIORITY;
  2913. zone_pcp_init(zone);
  2914. INIT_LIST_HEAD(&zone->active_list);
  2915. INIT_LIST_HEAD(&zone->inactive_list);
  2916. zone->nr_scan_active = 0;
  2917. zone->nr_scan_inactive = 0;
  2918. zap_zone_vm_stats(zone);
  2919. zone->flags = 0;
  2920. if (!size)
  2921. continue;
  2922. set_pageblock_order(pageblock_default_order());
  2923. setup_usemap(pgdat, zone, size);
  2924. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2925. size, MEMMAP_EARLY);
  2926. BUG_ON(ret);
  2927. zone_start_pfn += size;
  2928. }
  2929. }
  2930. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2931. {
  2932. /* Skip empty nodes */
  2933. if (!pgdat->node_spanned_pages)
  2934. return;
  2935. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2936. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2937. if (!pgdat->node_mem_map) {
  2938. unsigned long size, start, end;
  2939. struct page *map;
  2940. /*
  2941. * The zone's endpoints aren't required to be MAX_ORDER
  2942. * aligned but the node_mem_map endpoints must be in order
  2943. * for the buddy allocator to function correctly.
  2944. */
  2945. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2946. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2947. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2948. size = (end - start) * sizeof(struct page);
  2949. map = alloc_remap(pgdat->node_id, size);
  2950. if (!map)
  2951. map = alloc_bootmem_node(pgdat, size);
  2952. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2953. }
  2954. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2955. /*
  2956. * With no DISCONTIG, the global mem_map is just set as node 0's
  2957. */
  2958. if (pgdat == NODE_DATA(0)) {
  2959. mem_map = NODE_DATA(0)->node_mem_map;
  2960. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2961. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2962. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2963. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2964. }
  2965. #endif
  2966. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2967. }
  2968. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2969. unsigned long *zones_size, unsigned long node_start_pfn,
  2970. unsigned long *zholes_size)
  2971. {
  2972. pgdat->node_id = nid;
  2973. pgdat->node_start_pfn = node_start_pfn;
  2974. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2975. alloc_node_mem_map(pgdat);
  2976. free_area_init_core(pgdat, zones_size, zholes_size);
  2977. }
  2978. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2979. #if MAX_NUMNODES > 1
  2980. /*
  2981. * Figure out the number of possible node ids.
  2982. */
  2983. static void __init setup_nr_node_ids(void)
  2984. {
  2985. unsigned int node;
  2986. unsigned int highest = 0;
  2987. for_each_node_mask(node, node_possible_map)
  2988. highest = node;
  2989. nr_node_ids = highest + 1;
  2990. }
  2991. #else
  2992. static inline void setup_nr_node_ids(void)
  2993. {
  2994. }
  2995. #endif
  2996. /**
  2997. * add_active_range - Register a range of PFNs backed by physical memory
  2998. * @nid: The node ID the range resides on
  2999. * @start_pfn: The start PFN of the available physical memory
  3000. * @end_pfn: The end PFN of the available physical memory
  3001. *
  3002. * These ranges are stored in an early_node_map[] and later used by
  3003. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3004. * range spans a memory hole, it is up to the architecture to ensure
  3005. * the memory is not freed by the bootmem allocator. If possible
  3006. * the range being registered will be merged with existing ranges.
  3007. */
  3008. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3009. unsigned long end_pfn)
  3010. {
  3011. int i;
  3012. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  3013. "%d entries of %d used\n",
  3014. nid, start_pfn, end_pfn,
  3015. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3016. /* Merge with existing active regions if possible */
  3017. for (i = 0; i < nr_nodemap_entries; i++) {
  3018. if (early_node_map[i].nid != nid)
  3019. continue;
  3020. /* Skip if an existing region covers this new one */
  3021. if (start_pfn >= early_node_map[i].start_pfn &&
  3022. end_pfn <= early_node_map[i].end_pfn)
  3023. return;
  3024. /* Merge forward if suitable */
  3025. if (start_pfn <= early_node_map[i].end_pfn &&
  3026. end_pfn > early_node_map[i].end_pfn) {
  3027. early_node_map[i].end_pfn = end_pfn;
  3028. return;
  3029. }
  3030. /* Merge backward if suitable */
  3031. if (start_pfn < early_node_map[i].end_pfn &&
  3032. end_pfn >= early_node_map[i].start_pfn) {
  3033. early_node_map[i].start_pfn = start_pfn;
  3034. return;
  3035. }
  3036. }
  3037. /* Check that early_node_map is large enough */
  3038. if (i >= MAX_ACTIVE_REGIONS) {
  3039. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3040. MAX_ACTIVE_REGIONS);
  3041. return;
  3042. }
  3043. early_node_map[i].nid = nid;
  3044. early_node_map[i].start_pfn = start_pfn;
  3045. early_node_map[i].end_pfn = end_pfn;
  3046. nr_nodemap_entries = i + 1;
  3047. }
  3048. /**
  3049. * shrink_active_range - Shrink an existing registered range of PFNs
  3050. * @nid: The node id the range is on that should be shrunk
  3051. * @old_end_pfn: The old end PFN of the range
  3052. * @new_end_pfn: The new PFN of the range
  3053. *
  3054. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3055. * The map is kept at the end physical page range that has already been
  3056. * registered with add_active_range(). This function allows an arch to shrink
  3057. * an existing registered range.
  3058. */
  3059. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3060. unsigned long new_end_pfn)
  3061. {
  3062. int i;
  3063. /* Find the old active region end and shrink */
  3064. for_each_active_range_index_in_nid(i, nid)
  3065. if (early_node_map[i].end_pfn == old_end_pfn) {
  3066. early_node_map[i].end_pfn = new_end_pfn;
  3067. break;
  3068. }
  3069. }
  3070. /**
  3071. * remove_all_active_ranges - Remove all currently registered regions
  3072. *
  3073. * During discovery, it may be found that a table like SRAT is invalid
  3074. * and an alternative discovery method must be used. This function removes
  3075. * all currently registered regions.
  3076. */
  3077. void __init remove_all_active_ranges(void)
  3078. {
  3079. memset(early_node_map, 0, sizeof(early_node_map));
  3080. nr_nodemap_entries = 0;
  3081. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3082. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3083. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3084. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3085. }
  3086. /* Compare two active node_active_regions */
  3087. static int __init cmp_node_active_region(const void *a, const void *b)
  3088. {
  3089. struct node_active_region *arange = (struct node_active_region *)a;
  3090. struct node_active_region *brange = (struct node_active_region *)b;
  3091. /* Done this way to avoid overflows */
  3092. if (arange->start_pfn > brange->start_pfn)
  3093. return 1;
  3094. if (arange->start_pfn < brange->start_pfn)
  3095. return -1;
  3096. return 0;
  3097. }
  3098. /* sort the node_map by start_pfn */
  3099. static void __init sort_node_map(void)
  3100. {
  3101. sort(early_node_map, (size_t)nr_nodemap_entries,
  3102. sizeof(struct node_active_region),
  3103. cmp_node_active_region, NULL);
  3104. }
  3105. /* Find the lowest pfn for a node */
  3106. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3107. {
  3108. int i;
  3109. unsigned long min_pfn = ULONG_MAX;
  3110. /* Assuming a sorted map, the first range found has the starting pfn */
  3111. for_each_active_range_index_in_nid(i, nid)
  3112. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3113. if (min_pfn == ULONG_MAX) {
  3114. printk(KERN_WARNING
  3115. "Could not find start_pfn for node %lu\n", nid);
  3116. return 0;
  3117. }
  3118. return min_pfn;
  3119. }
  3120. /**
  3121. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3122. *
  3123. * It returns the minimum PFN based on information provided via
  3124. * add_active_range().
  3125. */
  3126. unsigned long __init find_min_pfn_with_active_regions(void)
  3127. {
  3128. return find_min_pfn_for_node(MAX_NUMNODES);
  3129. }
  3130. /**
  3131. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3132. *
  3133. * It returns the maximum PFN based on information provided via
  3134. * add_active_range().
  3135. */
  3136. unsigned long __init find_max_pfn_with_active_regions(void)
  3137. {
  3138. int i;
  3139. unsigned long max_pfn = 0;
  3140. for (i = 0; i < nr_nodemap_entries; i++)
  3141. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3142. return max_pfn;
  3143. }
  3144. /*
  3145. * early_calculate_totalpages()
  3146. * Sum pages in active regions for movable zone.
  3147. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3148. */
  3149. static unsigned long __init early_calculate_totalpages(void)
  3150. {
  3151. int i;
  3152. unsigned long totalpages = 0;
  3153. for (i = 0; i < nr_nodemap_entries; i++) {
  3154. unsigned long pages = early_node_map[i].end_pfn -
  3155. early_node_map[i].start_pfn;
  3156. totalpages += pages;
  3157. if (pages)
  3158. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3159. }
  3160. return totalpages;
  3161. }
  3162. /*
  3163. * Find the PFN the Movable zone begins in each node. Kernel memory
  3164. * is spread evenly between nodes as long as the nodes have enough
  3165. * memory. When they don't, some nodes will have more kernelcore than
  3166. * others
  3167. */
  3168. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3169. {
  3170. int i, nid;
  3171. unsigned long usable_startpfn;
  3172. unsigned long kernelcore_node, kernelcore_remaining;
  3173. unsigned long totalpages = early_calculate_totalpages();
  3174. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3175. /*
  3176. * If movablecore was specified, calculate what size of
  3177. * kernelcore that corresponds so that memory usable for
  3178. * any allocation type is evenly spread. If both kernelcore
  3179. * and movablecore are specified, then the value of kernelcore
  3180. * will be used for required_kernelcore if it's greater than
  3181. * what movablecore would have allowed.
  3182. */
  3183. if (required_movablecore) {
  3184. unsigned long corepages;
  3185. /*
  3186. * Round-up so that ZONE_MOVABLE is at least as large as what
  3187. * was requested by the user
  3188. */
  3189. required_movablecore =
  3190. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3191. corepages = totalpages - required_movablecore;
  3192. required_kernelcore = max(required_kernelcore, corepages);
  3193. }
  3194. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3195. if (!required_kernelcore)
  3196. return;
  3197. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3198. find_usable_zone_for_movable();
  3199. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3200. restart:
  3201. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3202. kernelcore_node = required_kernelcore / usable_nodes;
  3203. for_each_node_state(nid, N_HIGH_MEMORY) {
  3204. /*
  3205. * Recalculate kernelcore_node if the division per node
  3206. * now exceeds what is necessary to satisfy the requested
  3207. * amount of memory for the kernel
  3208. */
  3209. if (required_kernelcore < kernelcore_node)
  3210. kernelcore_node = required_kernelcore / usable_nodes;
  3211. /*
  3212. * As the map is walked, we track how much memory is usable
  3213. * by the kernel using kernelcore_remaining. When it is
  3214. * 0, the rest of the node is usable by ZONE_MOVABLE
  3215. */
  3216. kernelcore_remaining = kernelcore_node;
  3217. /* Go through each range of PFNs within this node */
  3218. for_each_active_range_index_in_nid(i, nid) {
  3219. unsigned long start_pfn, end_pfn;
  3220. unsigned long size_pages;
  3221. start_pfn = max(early_node_map[i].start_pfn,
  3222. zone_movable_pfn[nid]);
  3223. end_pfn = early_node_map[i].end_pfn;
  3224. if (start_pfn >= end_pfn)
  3225. continue;
  3226. /* Account for what is only usable for kernelcore */
  3227. if (start_pfn < usable_startpfn) {
  3228. unsigned long kernel_pages;
  3229. kernel_pages = min(end_pfn, usable_startpfn)
  3230. - start_pfn;
  3231. kernelcore_remaining -= min(kernel_pages,
  3232. kernelcore_remaining);
  3233. required_kernelcore -= min(kernel_pages,
  3234. required_kernelcore);
  3235. /* Continue if range is now fully accounted */
  3236. if (end_pfn <= usable_startpfn) {
  3237. /*
  3238. * Push zone_movable_pfn to the end so
  3239. * that if we have to rebalance
  3240. * kernelcore across nodes, we will
  3241. * not double account here
  3242. */
  3243. zone_movable_pfn[nid] = end_pfn;
  3244. continue;
  3245. }
  3246. start_pfn = usable_startpfn;
  3247. }
  3248. /*
  3249. * The usable PFN range for ZONE_MOVABLE is from
  3250. * start_pfn->end_pfn. Calculate size_pages as the
  3251. * number of pages used as kernelcore
  3252. */
  3253. size_pages = end_pfn - start_pfn;
  3254. if (size_pages > kernelcore_remaining)
  3255. size_pages = kernelcore_remaining;
  3256. zone_movable_pfn[nid] = start_pfn + size_pages;
  3257. /*
  3258. * Some kernelcore has been met, update counts and
  3259. * break if the kernelcore for this node has been
  3260. * satisified
  3261. */
  3262. required_kernelcore -= min(required_kernelcore,
  3263. size_pages);
  3264. kernelcore_remaining -= size_pages;
  3265. if (!kernelcore_remaining)
  3266. break;
  3267. }
  3268. }
  3269. /*
  3270. * If there is still required_kernelcore, we do another pass with one
  3271. * less node in the count. This will push zone_movable_pfn[nid] further
  3272. * along on the nodes that still have memory until kernelcore is
  3273. * satisified
  3274. */
  3275. usable_nodes--;
  3276. if (usable_nodes && required_kernelcore > usable_nodes)
  3277. goto restart;
  3278. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3279. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3280. zone_movable_pfn[nid] =
  3281. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3282. }
  3283. /* Any regular memory on that node ? */
  3284. static void check_for_regular_memory(pg_data_t *pgdat)
  3285. {
  3286. #ifdef CONFIG_HIGHMEM
  3287. enum zone_type zone_type;
  3288. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3289. struct zone *zone = &pgdat->node_zones[zone_type];
  3290. if (zone->present_pages)
  3291. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3292. }
  3293. #endif
  3294. }
  3295. /**
  3296. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3297. * @max_zone_pfn: an array of max PFNs for each zone
  3298. *
  3299. * This will call free_area_init_node() for each active node in the system.
  3300. * Using the page ranges provided by add_active_range(), the size of each
  3301. * zone in each node and their holes is calculated. If the maximum PFN
  3302. * between two adjacent zones match, it is assumed that the zone is empty.
  3303. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3304. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3305. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3306. * at arch_max_dma_pfn.
  3307. */
  3308. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3309. {
  3310. unsigned long nid;
  3311. enum zone_type i;
  3312. /* Sort early_node_map as initialisation assumes it is sorted */
  3313. sort_node_map();
  3314. /* Record where the zone boundaries are */
  3315. memset(arch_zone_lowest_possible_pfn, 0,
  3316. sizeof(arch_zone_lowest_possible_pfn));
  3317. memset(arch_zone_highest_possible_pfn, 0,
  3318. sizeof(arch_zone_highest_possible_pfn));
  3319. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3320. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3321. for (i = 1; i < MAX_NR_ZONES; i++) {
  3322. if (i == ZONE_MOVABLE)
  3323. continue;
  3324. arch_zone_lowest_possible_pfn[i] =
  3325. arch_zone_highest_possible_pfn[i-1];
  3326. arch_zone_highest_possible_pfn[i] =
  3327. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3328. }
  3329. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3330. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3331. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3332. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3333. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3334. /* Print out the zone ranges */
  3335. printk("Zone PFN ranges:\n");
  3336. for (i = 0; i < MAX_NR_ZONES; i++) {
  3337. if (i == ZONE_MOVABLE)
  3338. continue;
  3339. printk(" %-8s %8lu -> %8lu\n",
  3340. zone_names[i],
  3341. arch_zone_lowest_possible_pfn[i],
  3342. arch_zone_highest_possible_pfn[i]);
  3343. }
  3344. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3345. printk("Movable zone start PFN for each node\n");
  3346. for (i = 0; i < MAX_NUMNODES; i++) {
  3347. if (zone_movable_pfn[i])
  3348. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3349. }
  3350. /* Print out the early_node_map[] */
  3351. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3352. for (i = 0; i < nr_nodemap_entries; i++)
  3353. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3354. early_node_map[i].start_pfn,
  3355. early_node_map[i].end_pfn);
  3356. /* Initialise every node */
  3357. setup_nr_node_ids();
  3358. for_each_online_node(nid) {
  3359. pg_data_t *pgdat = NODE_DATA(nid);
  3360. free_area_init_node(nid, pgdat, NULL,
  3361. find_min_pfn_for_node(nid), NULL);
  3362. /* Any memory on that node */
  3363. if (pgdat->node_present_pages)
  3364. node_set_state(nid, N_HIGH_MEMORY);
  3365. check_for_regular_memory(pgdat);
  3366. }
  3367. }
  3368. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3369. {
  3370. unsigned long long coremem;
  3371. if (!p)
  3372. return -EINVAL;
  3373. coremem = memparse(p, &p);
  3374. *core = coremem >> PAGE_SHIFT;
  3375. /* Paranoid check that UL is enough for the coremem value */
  3376. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3377. return 0;
  3378. }
  3379. /*
  3380. * kernelcore=size sets the amount of memory for use for allocations that
  3381. * cannot be reclaimed or migrated.
  3382. */
  3383. static int __init cmdline_parse_kernelcore(char *p)
  3384. {
  3385. return cmdline_parse_core(p, &required_kernelcore);
  3386. }
  3387. /*
  3388. * movablecore=size sets the amount of memory for use for allocations that
  3389. * can be reclaimed or migrated.
  3390. */
  3391. static int __init cmdline_parse_movablecore(char *p)
  3392. {
  3393. return cmdline_parse_core(p, &required_movablecore);
  3394. }
  3395. early_param("kernelcore", cmdline_parse_kernelcore);
  3396. early_param("movablecore", cmdline_parse_movablecore);
  3397. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3398. /**
  3399. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3400. * @new_dma_reserve: The number of pages to mark reserved
  3401. *
  3402. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3403. * In the DMA zone, a significant percentage may be consumed by kernel image
  3404. * and other unfreeable allocations which can skew the watermarks badly. This
  3405. * function may optionally be used to account for unfreeable pages in the
  3406. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3407. * smaller per-cpu batchsize.
  3408. */
  3409. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3410. {
  3411. dma_reserve = new_dma_reserve;
  3412. }
  3413. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3414. static bootmem_data_t contig_bootmem_data;
  3415. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3416. EXPORT_SYMBOL(contig_page_data);
  3417. #endif
  3418. void __init free_area_init(unsigned long *zones_size)
  3419. {
  3420. free_area_init_node(0, NODE_DATA(0), zones_size,
  3421. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3422. }
  3423. static int page_alloc_cpu_notify(struct notifier_block *self,
  3424. unsigned long action, void *hcpu)
  3425. {
  3426. int cpu = (unsigned long)hcpu;
  3427. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3428. local_irq_disable();
  3429. __drain_pages(cpu);
  3430. vm_events_fold_cpu(cpu);
  3431. local_irq_enable();
  3432. refresh_cpu_vm_stats(cpu);
  3433. }
  3434. return NOTIFY_OK;
  3435. }
  3436. void __init page_alloc_init(void)
  3437. {
  3438. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3439. }
  3440. /*
  3441. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3442. * or min_free_kbytes changes.
  3443. */
  3444. static void calculate_totalreserve_pages(void)
  3445. {
  3446. struct pglist_data *pgdat;
  3447. unsigned long reserve_pages = 0;
  3448. enum zone_type i, j;
  3449. for_each_online_pgdat(pgdat) {
  3450. for (i = 0; i < MAX_NR_ZONES; i++) {
  3451. struct zone *zone = pgdat->node_zones + i;
  3452. unsigned long max = 0;
  3453. /* Find valid and maximum lowmem_reserve in the zone */
  3454. for (j = i; j < MAX_NR_ZONES; j++) {
  3455. if (zone->lowmem_reserve[j] > max)
  3456. max = zone->lowmem_reserve[j];
  3457. }
  3458. /* we treat pages_high as reserved pages. */
  3459. max += zone->pages_high;
  3460. if (max > zone->present_pages)
  3461. max = zone->present_pages;
  3462. reserve_pages += max;
  3463. }
  3464. }
  3465. totalreserve_pages = reserve_pages;
  3466. }
  3467. /*
  3468. * setup_per_zone_lowmem_reserve - called whenever
  3469. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3470. * has a correct pages reserved value, so an adequate number of
  3471. * pages are left in the zone after a successful __alloc_pages().
  3472. */
  3473. static void setup_per_zone_lowmem_reserve(void)
  3474. {
  3475. struct pglist_data *pgdat;
  3476. enum zone_type j, idx;
  3477. for_each_online_pgdat(pgdat) {
  3478. for (j = 0; j < MAX_NR_ZONES; j++) {
  3479. struct zone *zone = pgdat->node_zones + j;
  3480. unsigned long present_pages = zone->present_pages;
  3481. zone->lowmem_reserve[j] = 0;
  3482. idx = j;
  3483. while (idx) {
  3484. struct zone *lower_zone;
  3485. idx--;
  3486. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3487. sysctl_lowmem_reserve_ratio[idx] = 1;
  3488. lower_zone = pgdat->node_zones + idx;
  3489. lower_zone->lowmem_reserve[j] = present_pages /
  3490. sysctl_lowmem_reserve_ratio[idx];
  3491. present_pages += lower_zone->present_pages;
  3492. }
  3493. }
  3494. }
  3495. /* update totalreserve_pages */
  3496. calculate_totalreserve_pages();
  3497. }
  3498. /**
  3499. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3500. *
  3501. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3502. * with respect to min_free_kbytes.
  3503. */
  3504. void setup_per_zone_pages_min(void)
  3505. {
  3506. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3507. unsigned long lowmem_pages = 0;
  3508. struct zone *zone;
  3509. unsigned long flags;
  3510. /* Calculate total number of !ZONE_HIGHMEM pages */
  3511. for_each_zone(zone) {
  3512. if (!is_highmem(zone))
  3513. lowmem_pages += zone->present_pages;
  3514. }
  3515. for_each_zone(zone) {
  3516. u64 tmp;
  3517. spin_lock_irqsave(&zone->lru_lock, flags);
  3518. tmp = (u64)pages_min * zone->present_pages;
  3519. do_div(tmp, lowmem_pages);
  3520. if (is_highmem(zone)) {
  3521. /*
  3522. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3523. * need highmem pages, so cap pages_min to a small
  3524. * value here.
  3525. *
  3526. * The (pages_high-pages_low) and (pages_low-pages_min)
  3527. * deltas controls asynch page reclaim, and so should
  3528. * not be capped for highmem.
  3529. */
  3530. int min_pages;
  3531. min_pages = zone->present_pages / 1024;
  3532. if (min_pages < SWAP_CLUSTER_MAX)
  3533. min_pages = SWAP_CLUSTER_MAX;
  3534. if (min_pages > 128)
  3535. min_pages = 128;
  3536. zone->pages_min = min_pages;
  3537. } else {
  3538. /*
  3539. * If it's a lowmem zone, reserve a number of pages
  3540. * proportionate to the zone's size.
  3541. */
  3542. zone->pages_min = tmp;
  3543. }
  3544. zone->pages_low = zone->pages_min + (tmp >> 2);
  3545. zone->pages_high = zone->pages_min + (tmp >> 1);
  3546. setup_zone_migrate_reserve(zone);
  3547. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3548. }
  3549. /* update totalreserve_pages */
  3550. calculate_totalreserve_pages();
  3551. }
  3552. /*
  3553. * Initialise min_free_kbytes.
  3554. *
  3555. * For small machines we want it small (128k min). For large machines
  3556. * we want it large (64MB max). But it is not linear, because network
  3557. * bandwidth does not increase linearly with machine size. We use
  3558. *
  3559. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3560. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3561. *
  3562. * which yields
  3563. *
  3564. * 16MB: 512k
  3565. * 32MB: 724k
  3566. * 64MB: 1024k
  3567. * 128MB: 1448k
  3568. * 256MB: 2048k
  3569. * 512MB: 2896k
  3570. * 1024MB: 4096k
  3571. * 2048MB: 5792k
  3572. * 4096MB: 8192k
  3573. * 8192MB: 11584k
  3574. * 16384MB: 16384k
  3575. */
  3576. static int __init init_per_zone_pages_min(void)
  3577. {
  3578. unsigned long lowmem_kbytes;
  3579. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3580. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3581. if (min_free_kbytes < 128)
  3582. min_free_kbytes = 128;
  3583. if (min_free_kbytes > 65536)
  3584. min_free_kbytes = 65536;
  3585. setup_per_zone_pages_min();
  3586. setup_per_zone_lowmem_reserve();
  3587. return 0;
  3588. }
  3589. module_init(init_per_zone_pages_min)
  3590. /*
  3591. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3592. * that we can call two helper functions whenever min_free_kbytes
  3593. * changes.
  3594. */
  3595. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3596. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3597. {
  3598. proc_dointvec(table, write, file, buffer, length, ppos);
  3599. if (write)
  3600. setup_per_zone_pages_min();
  3601. return 0;
  3602. }
  3603. #ifdef CONFIG_NUMA
  3604. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3605. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3606. {
  3607. struct zone *zone;
  3608. int rc;
  3609. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3610. if (rc)
  3611. return rc;
  3612. for_each_zone(zone)
  3613. zone->min_unmapped_pages = (zone->present_pages *
  3614. sysctl_min_unmapped_ratio) / 100;
  3615. return 0;
  3616. }
  3617. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3618. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3619. {
  3620. struct zone *zone;
  3621. int rc;
  3622. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3623. if (rc)
  3624. return rc;
  3625. for_each_zone(zone)
  3626. zone->min_slab_pages = (zone->present_pages *
  3627. sysctl_min_slab_ratio) / 100;
  3628. return 0;
  3629. }
  3630. #endif
  3631. /*
  3632. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3633. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3634. * whenever sysctl_lowmem_reserve_ratio changes.
  3635. *
  3636. * The reserve ratio obviously has absolutely no relation with the
  3637. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3638. * if in function of the boot time zone sizes.
  3639. */
  3640. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3641. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3642. {
  3643. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3644. setup_per_zone_lowmem_reserve();
  3645. return 0;
  3646. }
  3647. /*
  3648. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3649. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3650. * can have before it gets flushed back to buddy allocator.
  3651. */
  3652. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3653. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3654. {
  3655. struct zone *zone;
  3656. unsigned int cpu;
  3657. int ret;
  3658. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3659. if (!write || (ret == -EINVAL))
  3660. return ret;
  3661. for_each_zone(zone) {
  3662. for_each_online_cpu(cpu) {
  3663. unsigned long high;
  3664. high = zone->present_pages / percpu_pagelist_fraction;
  3665. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3666. }
  3667. }
  3668. return 0;
  3669. }
  3670. int hashdist = HASHDIST_DEFAULT;
  3671. #ifdef CONFIG_NUMA
  3672. static int __init set_hashdist(char *str)
  3673. {
  3674. if (!str)
  3675. return 0;
  3676. hashdist = simple_strtoul(str, &str, 0);
  3677. return 1;
  3678. }
  3679. __setup("hashdist=", set_hashdist);
  3680. #endif
  3681. /*
  3682. * allocate a large system hash table from bootmem
  3683. * - it is assumed that the hash table must contain an exact power-of-2
  3684. * quantity of entries
  3685. * - limit is the number of hash buckets, not the total allocation size
  3686. */
  3687. void *__init alloc_large_system_hash(const char *tablename,
  3688. unsigned long bucketsize,
  3689. unsigned long numentries,
  3690. int scale,
  3691. int flags,
  3692. unsigned int *_hash_shift,
  3693. unsigned int *_hash_mask,
  3694. unsigned long limit)
  3695. {
  3696. unsigned long long max = limit;
  3697. unsigned long log2qty, size;
  3698. void *table = NULL;
  3699. /* allow the kernel cmdline to have a say */
  3700. if (!numentries) {
  3701. /* round applicable memory size up to nearest megabyte */
  3702. numentries = nr_kernel_pages;
  3703. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3704. numentries >>= 20 - PAGE_SHIFT;
  3705. numentries <<= 20 - PAGE_SHIFT;
  3706. /* limit to 1 bucket per 2^scale bytes of low memory */
  3707. if (scale > PAGE_SHIFT)
  3708. numentries >>= (scale - PAGE_SHIFT);
  3709. else
  3710. numentries <<= (PAGE_SHIFT - scale);
  3711. /* Make sure we've got at least a 0-order allocation.. */
  3712. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3713. numentries = PAGE_SIZE / bucketsize;
  3714. }
  3715. numentries = roundup_pow_of_two(numentries);
  3716. /* limit allocation size to 1/16 total memory by default */
  3717. if (max == 0) {
  3718. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3719. do_div(max, bucketsize);
  3720. }
  3721. if (numentries > max)
  3722. numentries = max;
  3723. log2qty = ilog2(numentries);
  3724. do {
  3725. size = bucketsize << log2qty;
  3726. if (flags & HASH_EARLY)
  3727. table = alloc_bootmem(size);
  3728. else if (hashdist)
  3729. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3730. else {
  3731. unsigned long order;
  3732. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3733. ;
  3734. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3735. /*
  3736. * If bucketsize is not a power-of-two, we may free
  3737. * some pages at the end of hash table.
  3738. */
  3739. if (table) {
  3740. unsigned long alloc_end = (unsigned long)table +
  3741. (PAGE_SIZE << order);
  3742. unsigned long used = (unsigned long)table +
  3743. PAGE_ALIGN(size);
  3744. split_page(virt_to_page(table), order);
  3745. while (used < alloc_end) {
  3746. free_page(used);
  3747. used += PAGE_SIZE;
  3748. }
  3749. }
  3750. }
  3751. } while (!table && size > PAGE_SIZE && --log2qty);
  3752. if (!table)
  3753. panic("Failed to allocate %s hash table\n", tablename);
  3754. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3755. tablename,
  3756. (1U << log2qty),
  3757. ilog2(size) - PAGE_SHIFT,
  3758. size);
  3759. if (_hash_shift)
  3760. *_hash_shift = log2qty;
  3761. if (_hash_mask)
  3762. *_hash_mask = (1 << log2qty) - 1;
  3763. return table;
  3764. }
  3765. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3766. struct page *pfn_to_page(unsigned long pfn)
  3767. {
  3768. return __pfn_to_page(pfn);
  3769. }
  3770. unsigned long page_to_pfn(struct page *page)
  3771. {
  3772. return __page_to_pfn(page);
  3773. }
  3774. EXPORT_SYMBOL(pfn_to_page);
  3775. EXPORT_SYMBOL(page_to_pfn);
  3776. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3777. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3778. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3779. unsigned long pfn)
  3780. {
  3781. #ifdef CONFIG_SPARSEMEM
  3782. return __pfn_to_section(pfn)->pageblock_flags;
  3783. #else
  3784. return zone->pageblock_flags;
  3785. #endif /* CONFIG_SPARSEMEM */
  3786. }
  3787. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3788. {
  3789. #ifdef CONFIG_SPARSEMEM
  3790. pfn &= (PAGES_PER_SECTION-1);
  3791. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3792. #else
  3793. pfn = pfn - zone->zone_start_pfn;
  3794. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3795. #endif /* CONFIG_SPARSEMEM */
  3796. }
  3797. /**
  3798. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3799. * @page: The page within the block of interest
  3800. * @start_bitidx: The first bit of interest to retrieve
  3801. * @end_bitidx: The last bit of interest
  3802. * returns pageblock_bits flags
  3803. */
  3804. unsigned long get_pageblock_flags_group(struct page *page,
  3805. int start_bitidx, int end_bitidx)
  3806. {
  3807. struct zone *zone;
  3808. unsigned long *bitmap;
  3809. unsigned long pfn, bitidx;
  3810. unsigned long flags = 0;
  3811. unsigned long value = 1;
  3812. zone = page_zone(page);
  3813. pfn = page_to_pfn(page);
  3814. bitmap = get_pageblock_bitmap(zone, pfn);
  3815. bitidx = pfn_to_bitidx(zone, pfn);
  3816. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3817. if (test_bit(bitidx + start_bitidx, bitmap))
  3818. flags |= value;
  3819. return flags;
  3820. }
  3821. /**
  3822. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3823. * @page: The page within the block of interest
  3824. * @start_bitidx: The first bit of interest
  3825. * @end_bitidx: The last bit of interest
  3826. * @flags: The flags to set
  3827. */
  3828. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3829. int start_bitidx, int end_bitidx)
  3830. {
  3831. struct zone *zone;
  3832. unsigned long *bitmap;
  3833. unsigned long pfn, bitidx;
  3834. unsigned long value = 1;
  3835. zone = page_zone(page);
  3836. pfn = page_to_pfn(page);
  3837. bitmap = get_pageblock_bitmap(zone, pfn);
  3838. bitidx = pfn_to_bitidx(zone, pfn);
  3839. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3840. if (flags & value)
  3841. __set_bit(bitidx + start_bitidx, bitmap);
  3842. else
  3843. __clear_bit(bitidx + start_bitidx, bitmap);
  3844. }
  3845. /*
  3846. * This is designed as sub function...plz see page_isolation.c also.
  3847. * set/clear page block's type to be ISOLATE.
  3848. * page allocater never alloc memory from ISOLATE block.
  3849. */
  3850. int set_migratetype_isolate(struct page *page)
  3851. {
  3852. struct zone *zone;
  3853. unsigned long flags;
  3854. int ret = -EBUSY;
  3855. zone = page_zone(page);
  3856. spin_lock_irqsave(&zone->lock, flags);
  3857. /*
  3858. * In future, more migrate types will be able to be isolation target.
  3859. */
  3860. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3861. goto out;
  3862. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3863. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3864. ret = 0;
  3865. out:
  3866. spin_unlock_irqrestore(&zone->lock, flags);
  3867. if (!ret)
  3868. drain_all_local_pages();
  3869. return ret;
  3870. }
  3871. void unset_migratetype_isolate(struct page *page)
  3872. {
  3873. struct zone *zone;
  3874. unsigned long flags;
  3875. zone = page_zone(page);
  3876. spin_lock_irqsave(&zone->lock, flags);
  3877. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3878. goto out;
  3879. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3880. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3881. out:
  3882. spin_unlock_irqrestore(&zone->lock, flags);
  3883. }
  3884. #ifdef CONFIG_MEMORY_HOTREMOVE
  3885. /*
  3886. * All pages in the range must be isolated before calling this.
  3887. */
  3888. void
  3889. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3890. {
  3891. struct page *page;
  3892. struct zone *zone;
  3893. int order, i;
  3894. unsigned long pfn;
  3895. unsigned long flags;
  3896. /* find the first valid pfn */
  3897. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3898. if (pfn_valid(pfn))
  3899. break;
  3900. if (pfn == end_pfn)
  3901. return;
  3902. zone = page_zone(pfn_to_page(pfn));
  3903. spin_lock_irqsave(&zone->lock, flags);
  3904. pfn = start_pfn;
  3905. while (pfn < end_pfn) {
  3906. if (!pfn_valid(pfn)) {
  3907. pfn++;
  3908. continue;
  3909. }
  3910. page = pfn_to_page(pfn);
  3911. BUG_ON(page_count(page));
  3912. BUG_ON(!PageBuddy(page));
  3913. order = page_order(page);
  3914. #ifdef CONFIG_DEBUG_VM
  3915. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3916. pfn, 1 << order, end_pfn);
  3917. #endif
  3918. list_del(&page->lru);
  3919. rmv_page_order(page);
  3920. zone->free_area[order].nr_free--;
  3921. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3922. - (1UL << order));
  3923. for (i = 0; i < (1 << order); i++)
  3924. SetPageReserved((page+i));
  3925. pfn += (1 << order);
  3926. }
  3927. spin_unlock_irqrestore(&zone->lock, flags);
  3928. }
  3929. #endif