pid.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/bootmem.h>
  33. #include <linux/hash.h>
  34. #include <linux/pid_namespace.h>
  35. #include <linux/init_task.h>
  36. #include <linux/syscalls.h>
  37. #define pid_hashfn(nr, ns) \
  38. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  39. static struct hlist_head *pid_hash;
  40. static int pidhash_shift;
  41. struct pid init_struct_pid = INIT_STRUCT_PID;
  42. static struct kmem_cache *pid_ns_cachep;
  43. int pid_max = PID_MAX_DEFAULT;
  44. #define RESERVED_PIDS 300
  45. int pid_max_min = RESERVED_PIDS + 1;
  46. int pid_max_max = PID_MAX_LIMIT;
  47. #define BITS_PER_PAGE (PAGE_SIZE*8)
  48. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = {
  64. .refcount = ATOMIC_INIT(2),
  65. },
  66. .pidmap = {
  67. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  68. },
  69. .last_pid = 0,
  70. .level = 0,
  71. .child_reaper = &init_task,
  72. };
  73. EXPORT_SYMBOL_GPL(init_pid_ns);
  74. int is_container_init(struct task_struct *tsk)
  75. {
  76. int ret = 0;
  77. struct pid *pid;
  78. rcu_read_lock();
  79. pid = task_pid(tsk);
  80. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  81. ret = 1;
  82. rcu_read_unlock();
  83. return ret;
  84. }
  85. EXPORT_SYMBOL(is_container_init);
  86. /*
  87. * Note: disable interrupts while the pidmap_lock is held as an
  88. * interrupt might come in and do read_lock(&tasklist_lock).
  89. *
  90. * If we don't disable interrupts there is a nasty deadlock between
  91. * detach_pid()->free_pid() and another cpu that does
  92. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  93. * read_lock(&tasklist_lock);
  94. *
  95. * After we clean up the tasklist_lock and know there are no
  96. * irq handlers that take it we can leave the interrupts enabled.
  97. * For now it is easier to be safe than to prove it can't happen.
  98. */
  99. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  100. static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
  101. {
  102. struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
  103. int offset = pid & BITS_PER_PAGE_MASK;
  104. clear_bit(offset, map->page);
  105. atomic_inc(&map->nr_free);
  106. }
  107. static int alloc_pidmap(struct pid_namespace *pid_ns)
  108. {
  109. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  110. struct pidmap *map;
  111. pid = last + 1;
  112. if (pid >= pid_max)
  113. pid = RESERVED_PIDS;
  114. offset = pid & BITS_PER_PAGE_MASK;
  115. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  116. max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
  117. for (i = 0; i <= max_scan; ++i) {
  118. if (unlikely(!map->page)) {
  119. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  120. /*
  121. * Free the page if someone raced with us
  122. * installing it:
  123. */
  124. spin_lock_irq(&pidmap_lock);
  125. if (map->page)
  126. kfree(page);
  127. else
  128. map->page = page;
  129. spin_unlock_irq(&pidmap_lock);
  130. if (unlikely(!map->page))
  131. break;
  132. }
  133. if (likely(atomic_read(&map->nr_free))) {
  134. do {
  135. if (!test_and_set_bit(offset, map->page)) {
  136. atomic_dec(&map->nr_free);
  137. pid_ns->last_pid = pid;
  138. return pid;
  139. }
  140. offset = find_next_offset(map, offset);
  141. pid = mk_pid(pid_ns, map, offset);
  142. /*
  143. * find_next_offset() found a bit, the pid from it
  144. * is in-bounds, and if we fell back to the last
  145. * bitmap block and the final block was the same
  146. * as the starting point, pid is before last_pid.
  147. */
  148. } while (offset < BITS_PER_PAGE && pid < pid_max &&
  149. (i != max_scan || pid < last ||
  150. !((last+1) & BITS_PER_PAGE_MASK)));
  151. }
  152. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  153. ++map;
  154. offset = 0;
  155. } else {
  156. map = &pid_ns->pidmap[0];
  157. offset = RESERVED_PIDS;
  158. if (unlikely(last == offset))
  159. break;
  160. }
  161. pid = mk_pid(pid_ns, map, offset);
  162. }
  163. return -1;
  164. }
  165. static int next_pidmap(struct pid_namespace *pid_ns, int last)
  166. {
  167. int offset;
  168. struct pidmap *map, *end;
  169. offset = (last + 1) & BITS_PER_PAGE_MASK;
  170. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  171. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  172. for (; map < end; map++, offset = 0) {
  173. if (unlikely(!map->page))
  174. continue;
  175. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  176. if (offset < BITS_PER_PAGE)
  177. return mk_pid(pid_ns, map, offset);
  178. }
  179. return -1;
  180. }
  181. fastcall void put_pid(struct pid *pid)
  182. {
  183. struct pid_namespace *ns;
  184. if (!pid)
  185. return;
  186. ns = pid->numbers[pid->level].ns;
  187. if ((atomic_read(&pid->count) == 1) ||
  188. atomic_dec_and_test(&pid->count)) {
  189. kmem_cache_free(ns->pid_cachep, pid);
  190. put_pid_ns(ns);
  191. }
  192. }
  193. EXPORT_SYMBOL_GPL(put_pid);
  194. static void delayed_put_pid(struct rcu_head *rhp)
  195. {
  196. struct pid *pid = container_of(rhp, struct pid, rcu);
  197. put_pid(pid);
  198. }
  199. fastcall void free_pid(struct pid *pid)
  200. {
  201. /* We can be called with write_lock_irq(&tasklist_lock) held */
  202. int i;
  203. unsigned long flags;
  204. spin_lock_irqsave(&pidmap_lock, flags);
  205. for (i = 0; i <= pid->level; i++)
  206. hlist_del_rcu(&pid->numbers[i].pid_chain);
  207. spin_unlock_irqrestore(&pidmap_lock, flags);
  208. for (i = 0; i <= pid->level; i++)
  209. free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
  210. call_rcu(&pid->rcu, delayed_put_pid);
  211. }
  212. struct pid *alloc_pid(struct pid_namespace *ns)
  213. {
  214. struct pid *pid;
  215. enum pid_type type;
  216. int i, nr;
  217. struct pid_namespace *tmp;
  218. struct upid *upid;
  219. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  220. if (!pid)
  221. goto out;
  222. tmp = ns;
  223. for (i = ns->level; i >= 0; i--) {
  224. nr = alloc_pidmap(tmp);
  225. if (nr < 0)
  226. goto out_free;
  227. pid->numbers[i].nr = nr;
  228. pid->numbers[i].ns = tmp;
  229. tmp = tmp->parent;
  230. }
  231. get_pid_ns(ns);
  232. pid->level = ns->level;
  233. atomic_set(&pid->count, 1);
  234. for (type = 0; type < PIDTYPE_MAX; ++type)
  235. INIT_HLIST_HEAD(&pid->tasks[type]);
  236. spin_lock_irq(&pidmap_lock);
  237. for (i = ns->level; i >= 0; i--) {
  238. upid = &pid->numbers[i];
  239. hlist_add_head_rcu(&upid->pid_chain,
  240. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  241. }
  242. spin_unlock_irq(&pidmap_lock);
  243. out:
  244. return pid;
  245. out_free:
  246. for (i++; i <= ns->level; i++)
  247. free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
  248. kmem_cache_free(ns->pid_cachep, pid);
  249. pid = NULL;
  250. goto out;
  251. }
  252. struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
  253. {
  254. struct hlist_node *elem;
  255. struct upid *pnr;
  256. hlist_for_each_entry_rcu(pnr, elem,
  257. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  258. if (pnr->nr == nr && pnr->ns == ns)
  259. return container_of(pnr, struct pid,
  260. numbers[ns->level]);
  261. return NULL;
  262. }
  263. EXPORT_SYMBOL_GPL(find_pid_ns);
  264. struct pid *find_vpid(int nr)
  265. {
  266. return find_pid_ns(nr, current->nsproxy->pid_ns);
  267. }
  268. EXPORT_SYMBOL_GPL(find_vpid);
  269. struct pid *find_pid(int nr)
  270. {
  271. return find_pid_ns(nr, &init_pid_ns);
  272. }
  273. EXPORT_SYMBOL_GPL(find_pid);
  274. /*
  275. * attach_pid() must be called with the tasklist_lock write-held.
  276. */
  277. int fastcall attach_pid(struct task_struct *task, enum pid_type type,
  278. struct pid *pid)
  279. {
  280. struct pid_link *link;
  281. link = &task->pids[type];
  282. link->pid = pid;
  283. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  284. return 0;
  285. }
  286. void fastcall detach_pid(struct task_struct *task, enum pid_type type)
  287. {
  288. struct pid_link *link;
  289. struct pid *pid;
  290. int tmp;
  291. link = &task->pids[type];
  292. pid = link->pid;
  293. hlist_del_rcu(&link->node);
  294. link->pid = NULL;
  295. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  296. if (!hlist_empty(&pid->tasks[tmp]))
  297. return;
  298. free_pid(pid);
  299. }
  300. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  301. void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
  302. enum pid_type type)
  303. {
  304. new->pids[type].pid = old->pids[type].pid;
  305. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  306. old->pids[type].pid = NULL;
  307. }
  308. struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
  309. {
  310. struct task_struct *result = NULL;
  311. if (pid) {
  312. struct hlist_node *first;
  313. first = rcu_dereference(pid->tasks[type].first);
  314. if (first)
  315. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  316. }
  317. return result;
  318. }
  319. /*
  320. * Must be called under rcu_read_lock() or with tasklist_lock read-held.
  321. */
  322. struct task_struct *find_task_by_pid_type_ns(int type, int nr,
  323. struct pid_namespace *ns)
  324. {
  325. return pid_task(find_pid_ns(nr, ns), type);
  326. }
  327. EXPORT_SYMBOL(find_task_by_pid_type_ns);
  328. struct task_struct *find_task_by_pid(pid_t nr)
  329. {
  330. return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
  331. }
  332. EXPORT_SYMBOL(find_task_by_pid);
  333. struct task_struct *find_task_by_vpid(pid_t vnr)
  334. {
  335. return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
  336. current->nsproxy->pid_ns);
  337. }
  338. EXPORT_SYMBOL(find_task_by_vpid);
  339. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  340. {
  341. return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
  342. }
  343. EXPORT_SYMBOL(find_task_by_pid_ns);
  344. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  345. {
  346. struct pid *pid;
  347. rcu_read_lock();
  348. pid = get_pid(task->pids[type].pid);
  349. rcu_read_unlock();
  350. return pid;
  351. }
  352. struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
  353. {
  354. struct task_struct *result;
  355. rcu_read_lock();
  356. result = pid_task(pid, type);
  357. if (result)
  358. get_task_struct(result);
  359. rcu_read_unlock();
  360. return result;
  361. }
  362. struct pid *find_get_pid(pid_t nr)
  363. {
  364. struct pid *pid;
  365. rcu_read_lock();
  366. pid = get_pid(find_vpid(nr));
  367. rcu_read_unlock();
  368. return pid;
  369. }
  370. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  371. {
  372. struct upid *upid;
  373. pid_t nr = 0;
  374. if (pid && ns->level <= pid->level) {
  375. upid = &pid->numbers[ns->level];
  376. if (upid->ns == ns)
  377. nr = upid->nr;
  378. }
  379. return nr;
  380. }
  381. pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  382. {
  383. return pid_nr_ns(task_pid(tsk), ns);
  384. }
  385. EXPORT_SYMBOL(task_pid_nr_ns);
  386. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  387. {
  388. return pid_nr_ns(task_tgid(tsk), ns);
  389. }
  390. EXPORT_SYMBOL(task_tgid_nr_ns);
  391. pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  392. {
  393. return pid_nr_ns(task_pgrp(tsk), ns);
  394. }
  395. EXPORT_SYMBOL(task_pgrp_nr_ns);
  396. pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  397. {
  398. return pid_nr_ns(task_session(tsk), ns);
  399. }
  400. EXPORT_SYMBOL(task_session_nr_ns);
  401. /*
  402. * Used by proc to find the first pid that is greater then or equal to nr.
  403. *
  404. * If there is a pid at nr this function is exactly the same as find_pid.
  405. */
  406. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  407. {
  408. struct pid *pid;
  409. do {
  410. pid = find_pid_ns(nr, ns);
  411. if (pid)
  412. break;
  413. nr = next_pidmap(ns, nr);
  414. } while (nr > 0);
  415. return pid;
  416. }
  417. EXPORT_SYMBOL_GPL(find_get_pid);
  418. struct pid_cache {
  419. int nr_ids;
  420. char name[16];
  421. struct kmem_cache *cachep;
  422. struct list_head list;
  423. };
  424. static LIST_HEAD(pid_caches_lh);
  425. static DEFINE_MUTEX(pid_caches_mutex);
  426. /*
  427. * creates the kmem cache to allocate pids from.
  428. * @nr_ids: the number of numerical ids this pid will have to carry
  429. */
  430. static struct kmem_cache *create_pid_cachep(int nr_ids)
  431. {
  432. struct pid_cache *pcache;
  433. struct kmem_cache *cachep;
  434. mutex_lock(&pid_caches_mutex);
  435. list_for_each_entry (pcache, &pid_caches_lh, list)
  436. if (pcache->nr_ids == nr_ids)
  437. goto out;
  438. pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
  439. if (pcache == NULL)
  440. goto err_alloc;
  441. snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
  442. cachep = kmem_cache_create(pcache->name,
  443. sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
  444. 0, SLAB_HWCACHE_ALIGN, NULL);
  445. if (cachep == NULL)
  446. goto err_cachep;
  447. pcache->nr_ids = nr_ids;
  448. pcache->cachep = cachep;
  449. list_add(&pcache->list, &pid_caches_lh);
  450. out:
  451. mutex_unlock(&pid_caches_mutex);
  452. return pcache->cachep;
  453. err_cachep:
  454. kfree(pcache);
  455. err_alloc:
  456. mutex_unlock(&pid_caches_mutex);
  457. return NULL;
  458. }
  459. #ifdef CONFIG_PID_NS
  460. static struct pid_namespace *create_pid_namespace(int level)
  461. {
  462. struct pid_namespace *ns;
  463. int i;
  464. ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
  465. if (ns == NULL)
  466. goto out;
  467. ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  468. if (!ns->pidmap[0].page)
  469. goto out_free;
  470. ns->pid_cachep = create_pid_cachep(level + 1);
  471. if (ns->pid_cachep == NULL)
  472. goto out_free_map;
  473. kref_init(&ns->kref);
  474. ns->last_pid = 0;
  475. ns->child_reaper = NULL;
  476. ns->level = level;
  477. set_bit(0, ns->pidmap[0].page);
  478. atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
  479. for (i = 1; i < PIDMAP_ENTRIES; i++) {
  480. ns->pidmap[i].page = 0;
  481. atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
  482. }
  483. return ns;
  484. out_free_map:
  485. kfree(ns->pidmap[0].page);
  486. out_free:
  487. kmem_cache_free(pid_ns_cachep, ns);
  488. out:
  489. return ERR_PTR(-ENOMEM);
  490. }
  491. static void destroy_pid_namespace(struct pid_namespace *ns)
  492. {
  493. int i;
  494. for (i = 0; i < PIDMAP_ENTRIES; i++)
  495. kfree(ns->pidmap[i].page);
  496. kmem_cache_free(pid_ns_cachep, ns);
  497. }
  498. struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
  499. {
  500. struct pid_namespace *new_ns;
  501. BUG_ON(!old_ns);
  502. new_ns = get_pid_ns(old_ns);
  503. if (!(flags & CLONE_NEWPID))
  504. goto out;
  505. new_ns = ERR_PTR(-EINVAL);
  506. if (flags & CLONE_THREAD)
  507. goto out_put;
  508. new_ns = create_pid_namespace(old_ns->level + 1);
  509. if (!IS_ERR(new_ns))
  510. new_ns->parent = get_pid_ns(old_ns);
  511. out_put:
  512. put_pid_ns(old_ns);
  513. out:
  514. return new_ns;
  515. }
  516. void free_pid_ns(struct kref *kref)
  517. {
  518. struct pid_namespace *ns, *parent;
  519. ns = container_of(kref, struct pid_namespace, kref);
  520. parent = ns->parent;
  521. destroy_pid_namespace(ns);
  522. if (parent != NULL)
  523. put_pid_ns(parent);
  524. }
  525. #endif /* CONFIG_PID_NS */
  526. void zap_pid_ns_processes(struct pid_namespace *pid_ns)
  527. {
  528. int nr;
  529. int rc;
  530. /*
  531. * The last thread in the cgroup-init thread group is terminating.
  532. * Find remaining pid_ts in the namespace, signal and wait for them
  533. * to exit.
  534. *
  535. * Note: This signals each threads in the namespace - even those that
  536. * belong to the same thread group, To avoid this, we would have
  537. * to walk the entire tasklist looking a processes in this
  538. * namespace, but that could be unnecessarily expensive if the
  539. * pid namespace has just a few processes. Or we need to
  540. * maintain a tasklist for each pid namespace.
  541. *
  542. */
  543. read_lock(&tasklist_lock);
  544. nr = next_pidmap(pid_ns, 1);
  545. while (nr > 0) {
  546. kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
  547. nr = next_pidmap(pid_ns, nr);
  548. }
  549. read_unlock(&tasklist_lock);
  550. do {
  551. clear_thread_flag(TIF_SIGPENDING);
  552. rc = sys_wait4(-1, NULL, __WALL, NULL);
  553. } while (rc != -ECHILD);
  554. /* Child reaper for the pid namespace is going away */
  555. pid_ns->child_reaper = NULL;
  556. return;
  557. }
  558. /*
  559. * The pid hash table is scaled according to the amount of memory in the
  560. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  561. * more.
  562. */
  563. void __init pidhash_init(void)
  564. {
  565. int i, pidhash_size;
  566. unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
  567. pidhash_shift = max(4, fls(megabytes * 4));
  568. pidhash_shift = min(12, pidhash_shift);
  569. pidhash_size = 1 << pidhash_shift;
  570. printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
  571. pidhash_size, pidhash_shift,
  572. pidhash_size * sizeof(struct hlist_head));
  573. pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
  574. if (!pid_hash)
  575. panic("Could not alloc pidhash!\n");
  576. for (i = 0; i < pidhash_size; i++)
  577. INIT_HLIST_HEAD(&pid_hash[i]);
  578. }
  579. void __init pidmap_init(void)
  580. {
  581. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  582. /* Reserve PID 0. We never call free_pidmap(0) */
  583. set_bit(0, init_pid_ns.pidmap[0].page);
  584. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  585. init_pid_ns.pid_cachep = create_pid_cachep(1);
  586. if (init_pid_ns.pid_cachep == NULL)
  587. panic("Can't create pid_1 cachep\n");
  588. pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
  589. }