fork.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cgroup.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <linux/tty.h>
  51. #include <linux/proc_fs.h>
  52. #include <asm/pgtable.h>
  53. #include <asm/pgalloc.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/cacheflush.h>
  57. #include <asm/tlbflush.h>
  58. /*
  59. * Protected counters by write_lock_irq(&tasklist_lock)
  60. */
  61. unsigned long total_forks; /* Handle normal Linux uptimes. */
  62. int nr_threads; /* The idle threads do not count.. */
  63. int max_threads; /* tunable limit on nr_threads */
  64. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  65. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  66. int nr_processes(void)
  67. {
  68. int cpu;
  69. int total = 0;
  70. for_each_online_cpu(cpu)
  71. total += per_cpu(process_counts, cpu);
  72. return total;
  73. }
  74. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  75. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  76. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  77. static struct kmem_cache *task_struct_cachep;
  78. #endif
  79. /* SLAB cache for signal_struct structures (tsk->signal) */
  80. static struct kmem_cache *signal_cachep;
  81. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  82. struct kmem_cache *sighand_cachep;
  83. /* SLAB cache for files_struct structures (tsk->files) */
  84. struct kmem_cache *files_cachep;
  85. /* SLAB cache for fs_struct structures (tsk->fs) */
  86. struct kmem_cache *fs_cachep;
  87. /* SLAB cache for vm_area_struct structures */
  88. struct kmem_cache *vm_area_cachep;
  89. /* SLAB cache for mm_struct structures (tsk->mm) */
  90. static struct kmem_cache *mm_cachep;
  91. void free_task(struct task_struct *tsk)
  92. {
  93. prop_local_destroy_single(&tsk->dirties);
  94. free_thread_info(tsk->stack);
  95. rt_mutex_debug_task_free(tsk);
  96. free_task_struct(tsk);
  97. }
  98. EXPORT_SYMBOL(free_task);
  99. void __put_task_struct(struct task_struct *tsk)
  100. {
  101. WARN_ON(!tsk->exit_state);
  102. WARN_ON(atomic_read(&tsk->usage));
  103. WARN_ON(tsk == current);
  104. security_task_free(tsk);
  105. free_uid(tsk->user);
  106. put_group_info(tsk->group_info);
  107. delayacct_tsk_free(tsk);
  108. if (!profile_handoff_task(tsk))
  109. free_task(tsk);
  110. }
  111. void __init fork_init(unsigned long mempages)
  112. {
  113. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  114. #ifndef ARCH_MIN_TASKALIGN
  115. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  116. #endif
  117. /* create a slab on which task_structs can be allocated */
  118. task_struct_cachep =
  119. kmem_cache_create("task_struct", sizeof(struct task_struct),
  120. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  121. #endif
  122. /*
  123. * The default maximum number of threads is set to a safe
  124. * value: the thread structures can take up at most half
  125. * of memory.
  126. */
  127. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  128. /*
  129. * we need to allow at least 20 threads to boot a system
  130. */
  131. if(max_threads < 20)
  132. max_threads = 20;
  133. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  134. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  135. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  136. init_task.signal->rlim[RLIMIT_NPROC];
  137. }
  138. static struct task_struct *dup_task_struct(struct task_struct *orig)
  139. {
  140. struct task_struct *tsk;
  141. struct thread_info *ti;
  142. int err;
  143. prepare_to_copy(orig);
  144. tsk = alloc_task_struct();
  145. if (!tsk)
  146. return NULL;
  147. ti = alloc_thread_info(tsk);
  148. if (!ti) {
  149. free_task_struct(tsk);
  150. return NULL;
  151. }
  152. *tsk = *orig;
  153. tsk->stack = ti;
  154. err = prop_local_init_single(&tsk->dirties);
  155. if (err) {
  156. free_thread_info(ti);
  157. free_task_struct(tsk);
  158. return NULL;
  159. }
  160. setup_thread_stack(tsk, orig);
  161. #ifdef CONFIG_CC_STACKPROTECTOR
  162. tsk->stack_canary = get_random_int();
  163. #endif
  164. /* One for us, one for whoever does the "release_task()" (usually parent) */
  165. atomic_set(&tsk->usage,2);
  166. atomic_set(&tsk->fs_excl, 0);
  167. #ifdef CONFIG_BLK_DEV_IO_TRACE
  168. tsk->btrace_seq = 0;
  169. #endif
  170. tsk->splice_pipe = NULL;
  171. return tsk;
  172. }
  173. #ifdef CONFIG_MMU
  174. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  175. {
  176. struct vm_area_struct *mpnt, *tmp, **pprev;
  177. struct rb_node **rb_link, *rb_parent;
  178. int retval;
  179. unsigned long charge;
  180. struct mempolicy *pol;
  181. down_write(&oldmm->mmap_sem);
  182. flush_cache_dup_mm(oldmm);
  183. /*
  184. * Not linked in yet - no deadlock potential:
  185. */
  186. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  187. mm->locked_vm = 0;
  188. mm->mmap = NULL;
  189. mm->mmap_cache = NULL;
  190. mm->free_area_cache = oldmm->mmap_base;
  191. mm->cached_hole_size = ~0UL;
  192. mm->map_count = 0;
  193. cpus_clear(mm->cpu_vm_mask);
  194. mm->mm_rb = RB_ROOT;
  195. rb_link = &mm->mm_rb.rb_node;
  196. rb_parent = NULL;
  197. pprev = &mm->mmap;
  198. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  199. struct file *file;
  200. if (mpnt->vm_flags & VM_DONTCOPY) {
  201. long pages = vma_pages(mpnt);
  202. mm->total_vm -= pages;
  203. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  204. -pages);
  205. continue;
  206. }
  207. charge = 0;
  208. if (mpnt->vm_flags & VM_ACCOUNT) {
  209. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  210. if (security_vm_enough_memory(len))
  211. goto fail_nomem;
  212. charge = len;
  213. }
  214. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  215. if (!tmp)
  216. goto fail_nomem;
  217. *tmp = *mpnt;
  218. pol = mpol_copy(vma_policy(mpnt));
  219. retval = PTR_ERR(pol);
  220. if (IS_ERR(pol))
  221. goto fail_nomem_policy;
  222. vma_set_policy(tmp, pol);
  223. tmp->vm_flags &= ~VM_LOCKED;
  224. tmp->vm_mm = mm;
  225. tmp->vm_next = NULL;
  226. anon_vma_link(tmp);
  227. file = tmp->vm_file;
  228. if (file) {
  229. struct inode *inode = file->f_path.dentry->d_inode;
  230. get_file(file);
  231. if (tmp->vm_flags & VM_DENYWRITE)
  232. atomic_dec(&inode->i_writecount);
  233. /* insert tmp into the share list, just after mpnt */
  234. spin_lock(&file->f_mapping->i_mmap_lock);
  235. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  236. flush_dcache_mmap_lock(file->f_mapping);
  237. vma_prio_tree_add(tmp, mpnt);
  238. flush_dcache_mmap_unlock(file->f_mapping);
  239. spin_unlock(&file->f_mapping->i_mmap_lock);
  240. }
  241. /*
  242. * Link in the new vma and copy the page table entries.
  243. */
  244. *pprev = tmp;
  245. pprev = &tmp->vm_next;
  246. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  247. rb_link = &tmp->vm_rb.rb_right;
  248. rb_parent = &tmp->vm_rb;
  249. mm->map_count++;
  250. retval = copy_page_range(mm, oldmm, mpnt);
  251. if (tmp->vm_ops && tmp->vm_ops->open)
  252. tmp->vm_ops->open(tmp);
  253. if (retval)
  254. goto out;
  255. }
  256. /* a new mm has just been created */
  257. arch_dup_mmap(oldmm, mm);
  258. retval = 0;
  259. out:
  260. up_write(&mm->mmap_sem);
  261. flush_tlb_mm(oldmm);
  262. up_write(&oldmm->mmap_sem);
  263. return retval;
  264. fail_nomem_policy:
  265. kmem_cache_free(vm_area_cachep, tmp);
  266. fail_nomem:
  267. retval = -ENOMEM;
  268. vm_unacct_memory(charge);
  269. goto out;
  270. }
  271. static inline int mm_alloc_pgd(struct mm_struct * mm)
  272. {
  273. mm->pgd = pgd_alloc(mm);
  274. if (unlikely(!mm->pgd))
  275. return -ENOMEM;
  276. return 0;
  277. }
  278. static inline void mm_free_pgd(struct mm_struct * mm)
  279. {
  280. pgd_free(mm->pgd);
  281. }
  282. #else
  283. #define dup_mmap(mm, oldmm) (0)
  284. #define mm_alloc_pgd(mm) (0)
  285. #define mm_free_pgd(mm)
  286. #endif /* CONFIG_MMU */
  287. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  288. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  289. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  290. #include <linux/init_task.h>
  291. static struct mm_struct * mm_init(struct mm_struct * mm)
  292. {
  293. atomic_set(&mm->mm_users, 1);
  294. atomic_set(&mm->mm_count, 1);
  295. init_rwsem(&mm->mmap_sem);
  296. INIT_LIST_HEAD(&mm->mmlist);
  297. mm->flags = (current->mm) ? current->mm->flags
  298. : MMF_DUMP_FILTER_DEFAULT;
  299. mm->core_waiters = 0;
  300. mm->nr_ptes = 0;
  301. set_mm_counter(mm, file_rss, 0);
  302. set_mm_counter(mm, anon_rss, 0);
  303. spin_lock_init(&mm->page_table_lock);
  304. rwlock_init(&mm->ioctx_list_lock);
  305. mm->ioctx_list = NULL;
  306. mm->free_area_cache = TASK_UNMAPPED_BASE;
  307. mm->cached_hole_size = ~0UL;
  308. if (likely(!mm_alloc_pgd(mm))) {
  309. mm->def_flags = 0;
  310. return mm;
  311. }
  312. free_mm(mm);
  313. return NULL;
  314. }
  315. /*
  316. * Allocate and initialize an mm_struct.
  317. */
  318. struct mm_struct * mm_alloc(void)
  319. {
  320. struct mm_struct * mm;
  321. mm = allocate_mm();
  322. if (mm) {
  323. memset(mm, 0, sizeof(*mm));
  324. mm = mm_init(mm);
  325. }
  326. return mm;
  327. }
  328. /*
  329. * Called when the last reference to the mm
  330. * is dropped: either by a lazy thread or by
  331. * mmput. Free the page directory and the mm.
  332. */
  333. void fastcall __mmdrop(struct mm_struct *mm)
  334. {
  335. BUG_ON(mm == &init_mm);
  336. mm_free_pgd(mm);
  337. destroy_context(mm);
  338. free_mm(mm);
  339. }
  340. /*
  341. * Decrement the use count and release all resources for an mm.
  342. */
  343. void mmput(struct mm_struct *mm)
  344. {
  345. might_sleep();
  346. if (atomic_dec_and_test(&mm->mm_users)) {
  347. exit_aio(mm);
  348. exit_mmap(mm);
  349. if (!list_empty(&mm->mmlist)) {
  350. spin_lock(&mmlist_lock);
  351. list_del(&mm->mmlist);
  352. spin_unlock(&mmlist_lock);
  353. }
  354. put_swap_token(mm);
  355. mmdrop(mm);
  356. }
  357. }
  358. EXPORT_SYMBOL_GPL(mmput);
  359. /**
  360. * get_task_mm - acquire a reference to the task's mm
  361. *
  362. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  363. * this kernel workthread has transiently adopted a user mm with use_mm,
  364. * to do its AIO) is not set and if so returns a reference to it, after
  365. * bumping up the use count. User must release the mm via mmput()
  366. * after use. Typically used by /proc and ptrace.
  367. */
  368. struct mm_struct *get_task_mm(struct task_struct *task)
  369. {
  370. struct mm_struct *mm;
  371. task_lock(task);
  372. mm = task->mm;
  373. if (mm) {
  374. if (task->flags & PF_BORROWED_MM)
  375. mm = NULL;
  376. else
  377. atomic_inc(&mm->mm_users);
  378. }
  379. task_unlock(task);
  380. return mm;
  381. }
  382. EXPORT_SYMBOL_GPL(get_task_mm);
  383. /* Please note the differences between mmput and mm_release.
  384. * mmput is called whenever we stop holding onto a mm_struct,
  385. * error success whatever.
  386. *
  387. * mm_release is called after a mm_struct has been removed
  388. * from the current process.
  389. *
  390. * This difference is important for error handling, when we
  391. * only half set up a mm_struct for a new process and need to restore
  392. * the old one. Because we mmput the new mm_struct before
  393. * restoring the old one. . .
  394. * Eric Biederman 10 January 1998
  395. */
  396. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  397. {
  398. struct completion *vfork_done = tsk->vfork_done;
  399. /* Get rid of any cached register state */
  400. deactivate_mm(tsk, mm);
  401. /* notify parent sleeping on vfork() */
  402. if (vfork_done) {
  403. tsk->vfork_done = NULL;
  404. complete(vfork_done);
  405. }
  406. /*
  407. * If we're exiting normally, clear a user-space tid field if
  408. * requested. We leave this alone when dying by signal, to leave
  409. * the value intact in a core dump, and to save the unnecessary
  410. * trouble otherwise. Userland only wants this done for a sys_exit.
  411. */
  412. if (tsk->clear_child_tid
  413. && !(tsk->flags & PF_SIGNALED)
  414. && atomic_read(&mm->mm_users) > 1) {
  415. u32 __user * tidptr = tsk->clear_child_tid;
  416. tsk->clear_child_tid = NULL;
  417. /*
  418. * We don't check the error code - if userspace has
  419. * not set up a proper pointer then tough luck.
  420. */
  421. put_user(0, tidptr);
  422. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  423. }
  424. }
  425. /*
  426. * Allocate a new mm structure and copy contents from the
  427. * mm structure of the passed in task structure.
  428. */
  429. static struct mm_struct *dup_mm(struct task_struct *tsk)
  430. {
  431. struct mm_struct *mm, *oldmm = current->mm;
  432. int err;
  433. if (!oldmm)
  434. return NULL;
  435. mm = allocate_mm();
  436. if (!mm)
  437. goto fail_nomem;
  438. memcpy(mm, oldmm, sizeof(*mm));
  439. /* Initializing for Swap token stuff */
  440. mm->token_priority = 0;
  441. mm->last_interval = 0;
  442. if (!mm_init(mm))
  443. goto fail_nomem;
  444. if (init_new_context(tsk, mm))
  445. goto fail_nocontext;
  446. err = dup_mmap(mm, oldmm);
  447. if (err)
  448. goto free_pt;
  449. mm->hiwater_rss = get_mm_rss(mm);
  450. mm->hiwater_vm = mm->total_vm;
  451. return mm;
  452. free_pt:
  453. mmput(mm);
  454. fail_nomem:
  455. return NULL;
  456. fail_nocontext:
  457. /*
  458. * If init_new_context() failed, we cannot use mmput() to free the mm
  459. * because it calls destroy_context()
  460. */
  461. mm_free_pgd(mm);
  462. free_mm(mm);
  463. return NULL;
  464. }
  465. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  466. {
  467. struct mm_struct * mm, *oldmm;
  468. int retval;
  469. tsk->min_flt = tsk->maj_flt = 0;
  470. tsk->nvcsw = tsk->nivcsw = 0;
  471. tsk->mm = NULL;
  472. tsk->active_mm = NULL;
  473. /*
  474. * Are we cloning a kernel thread?
  475. *
  476. * We need to steal a active VM for that..
  477. */
  478. oldmm = current->mm;
  479. if (!oldmm)
  480. return 0;
  481. if (clone_flags & CLONE_VM) {
  482. atomic_inc(&oldmm->mm_users);
  483. mm = oldmm;
  484. goto good_mm;
  485. }
  486. retval = -ENOMEM;
  487. mm = dup_mm(tsk);
  488. if (!mm)
  489. goto fail_nomem;
  490. good_mm:
  491. /* Initializing for Swap token stuff */
  492. mm->token_priority = 0;
  493. mm->last_interval = 0;
  494. tsk->mm = mm;
  495. tsk->active_mm = mm;
  496. return 0;
  497. fail_nomem:
  498. return retval;
  499. }
  500. static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  501. {
  502. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  503. /* We don't need to lock fs - think why ;-) */
  504. if (fs) {
  505. atomic_set(&fs->count, 1);
  506. rwlock_init(&fs->lock);
  507. fs->umask = old->umask;
  508. read_lock(&old->lock);
  509. fs->rootmnt = mntget(old->rootmnt);
  510. fs->root = dget(old->root);
  511. fs->pwdmnt = mntget(old->pwdmnt);
  512. fs->pwd = dget(old->pwd);
  513. if (old->altroot) {
  514. fs->altrootmnt = mntget(old->altrootmnt);
  515. fs->altroot = dget(old->altroot);
  516. } else {
  517. fs->altrootmnt = NULL;
  518. fs->altroot = NULL;
  519. }
  520. read_unlock(&old->lock);
  521. }
  522. return fs;
  523. }
  524. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  525. {
  526. return __copy_fs_struct(old);
  527. }
  528. EXPORT_SYMBOL_GPL(copy_fs_struct);
  529. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  530. {
  531. if (clone_flags & CLONE_FS) {
  532. atomic_inc(&current->fs->count);
  533. return 0;
  534. }
  535. tsk->fs = __copy_fs_struct(current->fs);
  536. if (!tsk->fs)
  537. return -ENOMEM;
  538. return 0;
  539. }
  540. static int count_open_files(struct fdtable *fdt)
  541. {
  542. int size = fdt->max_fds;
  543. int i;
  544. /* Find the last open fd */
  545. for (i = size/(8*sizeof(long)); i > 0; ) {
  546. if (fdt->open_fds->fds_bits[--i])
  547. break;
  548. }
  549. i = (i+1) * 8 * sizeof(long);
  550. return i;
  551. }
  552. static struct files_struct *alloc_files(void)
  553. {
  554. struct files_struct *newf;
  555. struct fdtable *fdt;
  556. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  557. if (!newf)
  558. goto out;
  559. atomic_set(&newf->count, 1);
  560. spin_lock_init(&newf->file_lock);
  561. newf->next_fd = 0;
  562. fdt = &newf->fdtab;
  563. fdt->max_fds = NR_OPEN_DEFAULT;
  564. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  565. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  566. fdt->fd = &newf->fd_array[0];
  567. INIT_RCU_HEAD(&fdt->rcu);
  568. fdt->next = NULL;
  569. rcu_assign_pointer(newf->fdt, fdt);
  570. out:
  571. return newf;
  572. }
  573. /*
  574. * Allocate a new files structure and copy contents from the
  575. * passed in files structure.
  576. * errorp will be valid only when the returned files_struct is NULL.
  577. */
  578. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  579. {
  580. struct files_struct *newf;
  581. struct file **old_fds, **new_fds;
  582. int open_files, size, i;
  583. struct fdtable *old_fdt, *new_fdt;
  584. *errorp = -ENOMEM;
  585. newf = alloc_files();
  586. if (!newf)
  587. goto out;
  588. spin_lock(&oldf->file_lock);
  589. old_fdt = files_fdtable(oldf);
  590. new_fdt = files_fdtable(newf);
  591. open_files = count_open_files(old_fdt);
  592. /*
  593. * Check whether we need to allocate a larger fd array and fd set.
  594. * Note: we're not a clone task, so the open count won't change.
  595. */
  596. if (open_files > new_fdt->max_fds) {
  597. new_fdt->max_fds = 0;
  598. spin_unlock(&oldf->file_lock);
  599. spin_lock(&newf->file_lock);
  600. *errorp = expand_files(newf, open_files-1);
  601. spin_unlock(&newf->file_lock);
  602. if (*errorp < 0)
  603. goto out_release;
  604. new_fdt = files_fdtable(newf);
  605. /*
  606. * Reacquire the oldf lock and a pointer to its fd table
  607. * who knows it may have a new bigger fd table. We need
  608. * the latest pointer.
  609. */
  610. spin_lock(&oldf->file_lock);
  611. old_fdt = files_fdtable(oldf);
  612. }
  613. old_fds = old_fdt->fd;
  614. new_fds = new_fdt->fd;
  615. memcpy(new_fdt->open_fds->fds_bits,
  616. old_fdt->open_fds->fds_bits, open_files/8);
  617. memcpy(new_fdt->close_on_exec->fds_bits,
  618. old_fdt->close_on_exec->fds_bits, open_files/8);
  619. for (i = open_files; i != 0; i--) {
  620. struct file *f = *old_fds++;
  621. if (f) {
  622. get_file(f);
  623. } else {
  624. /*
  625. * The fd may be claimed in the fd bitmap but not yet
  626. * instantiated in the files array if a sibling thread
  627. * is partway through open(). So make sure that this
  628. * fd is available to the new process.
  629. */
  630. FD_CLR(open_files - i, new_fdt->open_fds);
  631. }
  632. rcu_assign_pointer(*new_fds++, f);
  633. }
  634. spin_unlock(&oldf->file_lock);
  635. /* compute the remainder to be cleared */
  636. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  637. /* This is long word aligned thus could use a optimized version */
  638. memset(new_fds, 0, size);
  639. if (new_fdt->max_fds > open_files) {
  640. int left = (new_fdt->max_fds-open_files)/8;
  641. int start = open_files / (8 * sizeof(unsigned long));
  642. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  643. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  644. }
  645. return newf;
  646. out_release:
  647. kmem_cache_free(files_cachep, newf);
  648. out:
  649. return NULL;
  650. }
  651. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  652. {
  653. struct files_struct *oldf, *newf;
  654. int error = 0;
  655. /*
  656. * A background process may not have any files ...
  657. */
  658. oldf = current->files;
  659. if (!oldf)
  660. goto out;
  661. if (clone_flags & CLONE_FILES) {
  662. atomic_inc(&oldf->count);
  663. goto out;
  664. }
  665. /*
  666. * Note: we may be using current for both targets (See exec.c)
  667. * This works because we cache current->files (old) as oldf. Don't
  668. * break this.
  669. */
  670. tsk->files = NULL;
  671. newf = dup_fd(oldf, &error);
  672. if (!newf)
  673. goto out;
  674. tsk->files = newf;
  675. error = 0;
  676. out:
  677. return error;
  678. }
  679. /*
  680. * Helper to unshare the files of the current task.
  681. * We don't want to expose copy_files internals to
  682. * the exec layer of the kernel.
  683. */
  684. int unshare_files(void)
  685. {
  686. struct files_struct *files = current->files;
  687. int rc;
  688. BUG_ON(!files);
  689. /* This can race but the race causes us to copy when we don't
  690. need to and drop the copy */
  691. if(atomic_read(&files->count) == 1)
  692. {
  693. atomic_inc(&files->count);
  694. return 0;
  695. }
  696. rc = copy_files(0, current);
  697. if(rc)
  698. current->files = files;
  699. return rc;
  700. }
  701. EXPORT_SYMBOL(unshare_files);
  702. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  703. {
  704. struct sighand_struct *sig;
  705. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  706. atomic_inc(&current->sighand->count);
  707. return 0;
  708. }
  709. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  710. rcu_assign_pointer(tsk->sighand, sig);
  711. if (!sig)
  712. return -ENOMEM;
  713. atomic_set(&sig->count, 1);
  714. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  715. return 0;
  716. }
  717. void __cleanup_sighand(struct sighand_struct *sighand)
  718. {
  719. if (atomic_dec_and_test(&sighand->count))
  720. kmem_cache_free(sighand_cachep, sighand);
  721. }
  722. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  723. {
  724. struct signal_struct *sig;
  725. int ret;
  726. if (clone_flags & CLONE_THREAD) {
  727. atomic_inc(&current->signal->count);
  728. atomic_inc(&current->signal->live);
  729. return 0;
  730. }
  731. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  732. tsk->signal = sig;
  733. if (!sig)
  734. return -ENOMEM;
  735. ret = copy_thread_group_keys(tsk);
  736. if (ret < 0) {
  737. kmem_cache_free(signal_cachep, sig);
  738. return ret;
  739. }
  740. atomic_set(&sig->count, 1);
  741. atomic_set(&sig->live, 1);
  742. init_waitqueue_head(&sig->wait_chldexit);
  743. sig->flags = 0;
  744. sig->group_exit_code = 0;
  745. sig->group_exit_task = NULL;
  746. sig->group_stop_count = 0;
  747. sig->curr_target = NULL;
  748. init_sigpending(&sig->shared_pending);
  749. INIT_LIST_HEAD(&sig->posix_timers);
  750. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  751. sig->it_real_incr.tv64 = 0;
  752. sig->real_timer.function = it_real_fn;
  753. sig->tsk = tsk;
  754. sig->it_virt_expires = cputime_zero;
  755. sig->it_virt_incr = cputime_zero;
  756. sig->it_prof_expires = cputime_zero;
  757. sig->it_prof_incr = cputime_zero;
  758. sig->leader = 0; /* session leadership doesn't inherit */
  759. sig->tty_old_pgrp = NULL;
  760. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  761. sig->gtime = cputime_zero;
  762. sig->cgtime = cputime_zero;
  763. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  764. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  765. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  766. sig->sum_sched_runtime = 0;
  767. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  768. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  769. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  770. taskstats_tgid_init(sig);
  771. task_lock(current->group_leader);
  772. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  773. task_unlock(current->group_leader);
  774. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  775. /*
  776. * New sole thread in the process gets an expiry time
  777. * of the whole CPU time limit.
  778. */
  779. tsk->it_prof_expires =
  780. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  781. }
  782. acct_init_pacct(&sig->pacct);
  783. tty_audit_fork(sig);
  784. return 0;
  785. }
  786. void __cleanup_signal(struct signal_struct *sig)
  787. {
  788. exit_thread_group_keys(sig);
  789. kmem_cache_free(signal_cachep, sig);
  790. }
  791. static void cleanup_signal(struct task_struct *tsk)
  792. {
  793. struct signal_struct *sig = tsk->signal;
  794. atomic_dec(&sig->live);
  795. if (atomic_dec_and_test(&sig->count))
  796. __cleanup_signal(sig);
  797. }
  798. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  799. {
  800. unsigned long new_flags = p->flags;
  801. new_flags &= ~PF_SUPERPRIV;
  802. new_flags |= PF_FORKNOEXEC;
  803. if (!(clone_flags & CLONE_PTRACE))
  804. p->ptrace = 0;
  805. p->flags = new_flags;
  806. clear_freeze_flag(p);
  807. }
  808. asmlinkage long sys_set_tid_address(int __user *tidptr)
  809. {
  810. current->clear_child_tid = tidptr;
  811. return task_pid_vnr(current);
  812. }
  813. static void rt_mutex_init_task(struct task_struct *p)
  814. {
  815. spin_lock_init(&p->pi_lock);
  816. #ifdef CONFIG_RT_MUTEXES
  817. plist_head_init(&p->pi_waiters, &p->pi_lock);
  818. p->pi_blocked_on = NULL;
  819. #endif
  820. }
  821. /*
  822. * This creates a new process as a copy of the old one,
  823. * but does not actually start it yet.
  824. *
  825. * It copies the registers, and all the appropriate
  826. * parts of the process environment (as per the clone
  827. * flags). The actual kick-off is left to the caller.
  828. */
  829. static struct task_struct *copy_process(unsigned long clone_flags,
  830. unsigned long stack_start,
  831. struct pt_regs *regs,
  832. unsigned long stack_size,
  833. int __user *child_tidptr,
  834. struct pid *pid)
  835. {
  836. int retval;
  837. struct task_struct *p;
  838. int cgroup_callbacks_done = 0;
  839. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  840. return ERR_PTR(-EINVAL);
  841. /*
  842. * Thread groups must share signals as well, and detached threads
  843. * can only be started up within the thread group.
  844. */
  845. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  846. return ERR_PTR(-EINVAL);
  847. /*
  848. * Shared signal handlers imply shared VM. By way of the above,
  849. * thread groups also imply shared VM. Blocking this case allows
  850. * for various simplifications in other code.
  851. */
  852. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  853. return ERR_PTR(-EINVAL);
  854. retval = security_task_create(clone_flags);
  855. if (retval)
  856. goto fork_out;
  857. retval = -ENOMEM;
  858. p = dup_task_struct(current);
  859. if (!p)
  860. goto fork_out;
  861. rt_mutex_init_task(p);
  862. #ifdef CONFIG_TRACE_IRQFLAGS
  863. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  864. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  865. #endif
  866. retval = -EAGAIN;
  867. if (atomic_read(&p->user->processes) >=
  868. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  869. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  870. p->user != current->nsproxy->user_ns->root_user)
  871. goto bad_fork_free;
  872. }
  873. atomic_inc(&p->user->__count);
  874. atomic_inc(&p->user->processes);
  875. get_group_info(p->group_info);
  876. /*
  877. * If multiple threads are within copy_process(), then this check
  878. * triggers too late. This doesn't hurt, the check is only there
  879. * to stop root fork bombs.
  880. */
  881. if (nr_threads >= max_threads)
  882. goto bad_fork_cleanup_count;
  883. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  884. goto bad_fork_cleanup_count;
  885. if (p->binfmt && !try_module_get(p->binfmt->module))
  886. goto bad_fork_cleanup_put_domain;
  887. p->did_exec = 0;
  888. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  889. copy_flags(clone_flags, p);
  890. INIT_LIST_HEAD(&p->children);
  891. INIT_LIST_HEAD(&p->sibling);
  892. #ifdef CONFIG_PREEMPT_RCU
  893. p->rcu_read_lock_nesting = 0;
  894. p->rcu_flipctr_idx = 0;
  895. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  896. p->vfork_done = NULL;
  897. spin_lock_init(&p->alloc_lock);
  898. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  899. init_sigpending(&p->pending);
  900. p->utime = cputime_zero;
  901. p->stime = cputime_zero;
  902. p->gtime = cputime_zero;
  903. p->utimescaled = cputime_zero;
  904. p->stimescaled = cputime_zero;
  905. p->prev_utime = cputime_zero;
  906. p->prev_stime = cputime_zero;
  907. #ifdef CONFIG_DETECT_SOFTLOCKUP
  908. p->last_switch_count = 0;
  909. p->last_switch_timestamp = 0;
  910. #endif
  911. #ifdef CONFIG_TASK_XACCT
  912. p->rchar = 0; /* I/O counter: bytes read */
  913. p->wchar = 0; /* I/O counter: bytes written */
  914. p->syscr = 0; /* I/O counter: read syscalls */
  915. p->syscw = 0; /* I/O counter: write syscalls */
  916. #endif
  917. task_io_accounting_init(p);
  918. acct_clear_integrals(p);
  919. p->it_virt_expires = cputime_zero;
  920. p->it_prof_expires = cputime_zero;
  921. p->it_sched_expires = 0;
  922. INIT_LIST_HEAD(&p->cpu_timers[0]);
  923. INIT_LIST_HEAD(&p->cpu_timers[1]);
  924. INIT_LIST_HEAD(&p->cpu_timers[2]);
  925. p->lock_depth = -1; /* -1 = no lock */
  926. do_posix_clock_monotonic_gettime(&p->start_time);
  927. p->real_start_time = p->start_time;
  928. monotonic_to_bootbased(&p->real_start_time);
  929. #ifdef CONFIG_SECURITY
  930. p->security = NULL;
  931. #endif
  932. p->io_context = NULL;
  933. p->audit_context = NULL;
  934. cgroup_fork(p);
  935. #ifdef CONFIG_NUMA
  936. p->mempolicy = mpol_copy(p->mempolicy);
  937. if (IS_ERR(p->mempolicy)) {
  938. retval = PTR_ERR(p->mempolicy);
  939. p->mempolicy = NULL;
  940. goto bad_fork_cleanup_cgroup;
  941. }
  942. mpol_fix_fork_child_flag(p);
  943. #endif
  944. #ifdef CONFIG_TRACE_IRQFLAGS
  945. p->irq_events = 0;
  946. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  947. p->hardirqs_enabled = 1;
  948. #else
  949. p->hardirqs_enabled = 0;
  950. #endif
  951. p->hardirq_enable_ip = 0;
  952. p->hardirq_enable_event = 0;
  953. p->hardirq_disable_ip = _THIS_IP_;
  954. p->hardirq_disable_event = 0;
  955. p->softirqs_enabled = 1;
  956. p->softirq_enable_ip = _THIS_IP_;
  957. p->softirq_enable_event = 0;
  958. p->softirq_disable_ip = 0;
  959. p->softirq_disable_event = 0;
  960. p->hardirq_context = 0;
  961. p->softirq_context = 0;
  962. #endif
  963. #ifdef CONFIG_LOCKDEP
  964. p->lockdep_depth = 0; /* no locks held yet */
  965. p->curr_chain_key = 0;
  966. p->lockdep_recursion = 0;
  967. #endif
  968. #ifdef CONFIG_DEBUG_MUTEXES
  969. p->blocked_on = NULL; /* not blocked yet */
  970. #endif
  971. /* Perform scheduler related setup. Assign this task to a CPU. */
  972. sched_fork(p, clone_flags);
  973. if ((retval = security_task_alloc(p)))
  974. goto bad_fork_cleanup_policy;
  975. if ((retval = audit_alloc(p)))
  976. goto bad_fork_cleanup_security;
  977. /* copy all the process information */
  978. if ((retval = copy_semundo(clone_flags, p)))
  979. goto bad_fork_cleanup_audit;
  980. if ((retval = copy_files(clone_flags, p)))
  981. goto bad_fork_cleanup_semundo;
  982. if ((retval = copy_fs(clone_flags, p)))
  983. goto bad_fork_cleanup_files;
  984. if ((retval = copy_sighand(clone_flags, p)))
  985. goto bad_fork_cleanup_fs;
  986. if ((retval = copy_signal(clone_flags, p)))
  987. goto bad_fork_cleanup_sighand;
  988. if ((retval = copy_mm(clone_flags, p)))
  989. goto bad_fork_cleanup_signal;
  990. if ((retval = copy_keys(clone_flags, p)))
  991. goto bad_fork_cleanup_mm;
  992. if ((retval = copy_namespaces(clone_flags, p)))
  993. goto bad_fork_cleanup_keys;
  994. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  995. if (retval)
  996. goto bad_fork_cleanup_namespaces;
  997. if (pid != &init_struct_pid) {
  998. retval = -ENOMEM;
  999. pid = alloc_pid(task_active_pid_ns(p));
  1000. if (!pid)
  1001. goto bad_fork_cleanup_namespaces;
  1002. if (clone_flags & CLONE_NEWPID) {
  1003. retval = pid_ns_prepare_proc(task_active_pid_ns(p));
  1004. if (retval < 0)
  1005. goto bad_fork_free_pid;
  1006. }
  1007. }
  1008. p->pid = pid_nr(pid);
  1009. p->tgid = p->pid;
  1010. if (clone_flags & CLONE_THREAD)
  1011. p->tgid = current->tgid;
  1012. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1013. /*
  1014. * Clear TID on mm_release()?
  1015. */
  1016. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  1017. #ifdef CONFIG_FUTEX
  1018. p->robust_list = NULL;
  1019. #ifdef CONFIG_COMPAT
  1020. p->compat_robust_list = NULL;
  1021. #endif
  1022. INIT_LIST_HEAD(&p->pi_state_list);
  1023. p->pi_state_cache = NULL;
  1024. #endif
  1025. /*
  1026. * sigaltstack should be cleared when sharing the same VM
  1027. */
  1028. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1029. p->sas_ss_sp = p->sas_ss_size = 0;
  1030. /*
  1031. * Syscall tracing should be turned off in the child regardless
  1032. * of CLONE_PTRACE.
  1033. */
  1034. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1035. #ifdef TIF_SYSCALL_EMU
  1036. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1037. #endif
  1038. clear_all_latency_tracing(p);
  1039. /* Our parent execution domain becomes current domain
  1040. These must match for thread signalling to apply */
  1041. p->parent_exec_id = p->self_exec_id;
  1042. /* ok, now we should be set up.. */
  1043. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1044. p->pdeath_signal = 0;
  1045. p->exit_state = 0;
  1046. /*
  1047. * Ok, make it visible to the rest of the system.
  1048. * We dont wake it up yet.
  1049. */
  1050. p->group_leader = p;
  1051. INIT_LIST_HEAD(&p->thread_group);
  1052. INIT_LIST_HEAD(&p->ptrace_children);
  1053. INIT_LIST_HEAD(&p->ptrace_list);
  1054. /* Now that the task is set up, run cgroup callbacks if
  1055. * necessary. We need to run them before the task is visible
  1056. * on the tasklist. */
  1057. cgroup_fork_callbacks(p);
  1058. cgroup_callbacks_done = 1;
  1059. /* Need tasklist lock for parent etc handling! */
  1060. write_lock_irq(&tasklist_lock);
  1061. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1062. p->ioprio = current->ioprio;
  1063. /*
  1064. * The task hasn't been attached yet, so its cpus_allowed mask will
  1065. * not be changed, nor will its assigned CPU.
  1066. *
  1067. * The cpus_allowed mask of the parent may have changed after it was
  1068. * copied first time - so re-copy it here, then check the child's CPU
  1069. * to ensure it is on a valid CPU (and if not, just force it back to
  1070. * parent's CPU). This avoids alot of nasty races.
  1071. */
  1072. p->cpus_allowed = current->cpus_allowed;
  1073. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1074. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1075. !cpu_online(task_cpu(p))))
  1076. set_task_cpu(p, smp_processor_id());
  1077. /* CLONE_PARENT re-uses the old parent */
  1078. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1079. p->real_parent = current->real_parent;
  1080. else
  1081. p->real_parent = current;
  1082. p->parent = p->real_parent;
  1083. spin_lock(&current->sighand->siglock);
  1084. /*
  1085. * Process group and session signals need to be delivered to just the
  1086. * parent before the fork or both the parent and the child after the
  1087. * fork. Restart if a signal comes in before we add the new process to
  1088. * it's process group.
  1089. * A fatal signal pending means that current will exit, so the new
  1090. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1091. */
  1092. recalc_sigpending();
  1093. if (signal_pending(current)) {
  1094. spin_unlock(&current->sighand->siglock);
  1095. write_unlock_irq(&tasklist_lock);
  1096. retval = -ERESTARTNOINTR;
  1097. goto bad_fork_free_pid;
  1098. }
  1099. if (clone_flags & CLONE_THREAD) {
  1100. p->group_leader = current->group_leader;
  1101. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1102. if (!cputime_eq(current->signal->it_virt_expires,
  1103. cputime_zero) ||
  1104. !cputime_eq(current->signal->it_prof_expires,
  1105. cputime_zero) ||
  1106. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1107. !list_empty(&current->signal->cpu_timers[0]) ||
  1108. !list_empty(&current->signal->cpu_timers[1]) ||
  1109. !list_empty(&current->signal->cpu_timers[2])) {
  1110. /*
  1111. * Have child wake up on its first tick to check
  1112. * for process CPU timers.
  1113. */
  1114. p->it_prof_expires = jiffies_to_cputime(1);
  1115. }
  1116. }
  1117. if (likely(p->pid)) {
  1118. add_parent(p);
  1119. if (unlikely(p->ptrace & PT_PTRACED))
  1120. __ptrace_link(p, current->parent);
  1121. if (thread_group_leader(p)) {
  1122. if (clone_flags & CLONE_NEWPID)
  1123. p->nsproxy->pid_ns->child_reaper = p;
  1124. p->signal->tty = current->signal->tty;
  1125. set_task_pgrp(p, task_pgrp_nr(current));
  1126. set_task_session(p, task_session_nr(current));
  1127. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1128. attach_pid(p, PIDTYPE_SID, task_session(current));
  1129. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1130. __get_cpu_var(process_counts)++;
  1131. }
  1132. attach_pid(p, PIDTYPE_PID, pid);
  1133. nr_threads++;
  1134. }
  1135. total_forks++;
  1136. spin_unlock(&current->sighand->siglock);
  1137. write_unlock_irq(&tasklist_lock);
  1138. proc_fork_connector(p);
  1139. cgroup_post_fork(p);
  1140. return p;
  1141. bad_fork_free_pid:
  1142. if (pid != &init_struct_pid)
  1143. free_pid(pid);
  1144. bad_fork_cleanup_namespaces:
  1145. exit_task_namespaces(p);
  1146. bad_fork_cleanup_keys:
  1147. exit_keys(p);
  1148. bad_fork_cleanup_mm:
  1149. if (p->mm)
  1150. mmput(p->mm);
  1151. bad_fork_cleanup_signal:
  1152. cleanup_signal(p);
  1153. bad_fork_cleanup_sighand:
  1154. __cleanup_sighand(p->sighand);
  1155. bad_fork_cleanup_fs:
  1156. exit_fs(p); /* blocking */
  1157. bad_fork_cleanup_files:
  1158. exit_files(p); /* blocking */
  1159. bad_fork_cleanup_semundo:
  1160. exit_sem(p);
  1161. bad_fork_cleanup_audit:
  1162. audit_free(p);
  1163. bad_fork_cleanup_security:
  1164. security_task_free(p);
  1165. bad_fork_cleanup_policy:
  1166. #ifdef CONFIG_NUMA
  1167. mpol_free(p->mempolicy);
  1168. bad_fork_cleanup_cgroup:
  1169. #endif
  1170. cgroup_exit(p, cgroup_callbacks_done);
  1171. delayacct_tsk_free(p);
  1172. if (p->binfmt)
  1173. module_put(p->binfmt->module);
  1174. bad_fork_cleanup_put_domain:
  1175. module_put(task_thread_info(p)->exec_domain->module);
  1176. bad_fork_cleanup_count:
  1177. put_group_info(p->group_info);
  1178. atomic_dec(&p->user->processes);
  1179. free_uid(p->user);
  1180. bad_fork_free:
  1181. free_task(p);
  1182. fork_out:
  1183. return ERR_PTR(retval);
  1184. }
  1185. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1186. {
  1187. memset(regs, 0, sizeof(struct pt_regs));
  1188. return regs;
  1189. }
  1190. struct task_struct * __cpuinit fork_idle(int cpu)
  1191. {
  1192. struct task_struct *task;
  1193. struct pt_regs regs;
  1194. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1195. &init_struct_pid);
  1196. if (!IS_ERR(task))
  1197. init_idle(task, cpu);
  1198. return task;
  1199. }
  1200. static int fork_traceflag(unsigned clone_flags)
  1201. {
  1202. if (clone_flags & CLONE_UNTRACED)
  1203. return 0;
  1204. else if (clone_flags & CLONE_VFORK) {
  1205. if (current->ptrace & PT_TRACE_VFORK)
  1206. return PTRACE_EVENT_VFORK;
  1207. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1208. if (current->ptrace & PT_TRACE_CLONE)
  1209. return PTRACE_EVENT_CLONE;
  1210. } else if (current->ptrace & PT_TRACE_FORK)
  1211. return PTRACE_EVENT_FORK;
  1212. return 0;
  1213. }
  1214. /*
  1215. * Ok, this is the main fork-routine.
  1216. *
  1217. * It copies the process, and if successful kick-starts
  1218. * it and waits for it to finish using the VM if required.
  1219. */
  1220. long do_fork(unsigned long clone_flags,
  1221. unsigned long stack_start,
  1222. struct pt_regs *regs,
  1223. unsigned long stack_size,
  1224. int __user *parent_tidptr,
  1225. int __user *child_tidptr)
  1226. {
  1227. struct task_struct *p;
  1228. int trace = 0;
  1229. long nr;
  1230. if (unlikely(current->ptrace)) {
  1231. trace = fork_traceflag (clone_flags);
  1232. if (trace)
  1233. clone_flags |= CLONE_PTRACE;
  1234. }
  1235. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1236. child_tidptr, NULL);
  1237. /*
  1238. * Do this prior waking up the new thread - the thread pointer
  1239. * might get invalid after that point, if the thread exits quickly.
  1240. */
  1241. if (!IS_ERR(p)) {
  1242. struct completion vfork;
  1243. /*
  1244. * this is enough to call pid_nr_ns here, but this if
  1245. * improves optimisation of regular fork()
  1246. */
  1247. nr = (clone_flags & CLONE_NEWPID) ?
  1248. task_pid_nr_ns(p, current->nsproxy->pid_ns) :
  1249. task_pid_vnr(p);
  1250. if (clone_flags & CLONE_PARENT_SETTID)
  1251. put_user(nr, parent_tidptr);
  1252. if (clone_flags & CLONE_VFORK) {
  1253. p->vfork_done = &vfork;
  1254. init_completion(&vfork);
  1255. }
  1256. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1257. /*
  1258. * We'll start up with an immediate SIGSTOP.
  1259. */
  1260. sigaddset(&p->pending.signal, SIGSTOP);
  1261. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1262. }
  1263. if (!(clone_flags & CLONE_STOPPED))
  1264. wake_up_new_task(p, clone_flags);
  1265. else
  1266. p->state = TASK_STOPPED;
  1267. if (unlikely (trace)) {
  1268. current->ptrace_message = nr;
  1269. ptrace_notify ((trace << 8) | SIGTRAP);
  1270. }
  1271. if (clone_flags & CLONE_VFORK) {
  1272. freezer_do_not_count();
  1273. wait_for_completion(&vfork);
  1274. freezer_count();
  1275. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1276. current->ptrace_message = nr;
  1277. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1278. }
  1279. }
  1280. } else {
  1281. nr = PTR_ERR(p);
  1282. }
  1283. return nr;
  1284. }
  1285. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1286. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1287. #endif
  1288. static void sighand_ctor(struct kmem_cache *cachep, void *data)
  1289. {
  1290. struct sighand_struct *sighand = data;
  1291. spin_lock_init(&sighand->siglock);
  1292. init_waitqueue_head(&sighand->signalfd_wqh);
  1293. }
  1294. void __init proc_caches_init(void)
  1295. {
  1296. sighand_cachep = kmem_cache_create("sighand_cache",
  1297. sizeof(struct sighand_struct), 0,
  1298. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1299. sighand_ctor);
  1300. signal_cachep = kmem_cache_create("signal_cache",
  1301. sizeof(struct signal_struct), 0,
  1302. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1303. files_cachep = kmem_cache_create("files_cache",
  1304. sizeof(struct files_struct), 0,
  1305. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1306. fs_cachep = kmem_cache_create("fs_cache",
  1307. sizeof(struct fs_struct), 0,
  1308. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1309. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1310. sizeof(struct vm_area_struct), 0,
  1311. SLAB_PANIC, NULL);
  1312. mm_cachep = kmem_cache_create("mm_struct",
  1313. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1314. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1315. }
  1316. /*
  1317. * Check constraints on flags passed to the unshare system call and
  1318. * force unsharing of additional process context as appropriate.
  1319. */
  1320. static void check_unshare_flags(unsigned long *flags_ptr)
  1321. {
  1322. /*
  1323. * If unsharing a thread from a thread group, must also
  1324. * unshare vm.
  1325. */
  1326. if (*flags_ptr & CLONE_THREAD)
  1327. *flags_ptr |= CLONE_VM;
  1328. /*
  1329. * If unsharing vm, must also unshare signal handlers.
  1330. */
  1331. if (*flags_ptr & CLONE_VM)
  1332. *flags_ptr |= CLONE_SIGHAND;
  1333. /*
  1334. * If unsharing signal handlers and the task was created
  1335. * using CLONE_THREAD, then must unshare the thread
  1336. */
  1337. if ((*flags_ptr & CLONE_SIGHAND) &&
  1338. (atomic_read(&current->signal->count) > 1))
  1339. *flags_ptr |= CLONE_THREAD;
  1340. /*
  1341. * If unsharing namespace, must also unshare filesystem information.
  1342. */
  1343. if (*flags_ptr & CLONE_NEWNS)
  1344. *flags_ptr |= CLONE_FS;
  1345. }
  1346. /*
  1347. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1348. */
  1349. static int unshare_thread(unsigned long unshare_flags)
  1350. {
  1351. if (unshare_flags & CLONE_THREAD)
  1352. return -EINVAL;
  1353. return 0;
  1354. }
  1355. /*
  1356. * Unshare the filesystem structure if it is being shared
  1357. */
  1358. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1359. {
  1360. struct fs_struct *fs = current->fs;
  1361. if ((unshare_flags & CLONE_FS) &&
  1362. (fs && atomic_read(&fs->count) > 1)) {
  1363. *new_fsp = __copy_fs_struct(current->fs);
  1364. if (!*new_fsp)
  1365. return -ENOMEM;
  1366. }
  1367. return 0;
  1368. }
  1369. /*
  1370. * Unsharing of sighand is not supported yet
  1371. */
  1372. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1373. {
  1374. struct sighand_struct *sigh = current->sighand;
  1375. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1376. return -EINVAL;
  1377. else
  1378. return 0;
  1379. }
  1380. /*
  1381. * Unshare vm if it is being shared
  1382. */
  1383. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1384. {
  1385. struct mm_struct *mm = current->mm;
  1386. if ((unshare_flags & CLONE_VM) &&
  1387. (mm && atomic_read(&mm->mm_users) > 1)) {
  1388. return -EINVAL;
  1389. }
  1390. return 0;
  1391. }
  1392. /*
  1393. * Unshare file descriptor table if it is being shared
  1394. */
  1395. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1396. {
  1397. struct files_struct *fd = current->files;
  1398. int error = 0;
  1399. if ((unshare_flags & CLONE_FILES) &&
  1400. (fd && atomic_read(&fd->count) > 1)) {
  1401. *new_fdp = dup_fd(fd, &error);
  1402. if (!*new_fdp)
  1403. return error;
  1404. }
  1405. return 0;
  1406. }
  1407. /*
  1408. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1409. * supported yet
  1410. */
  1411. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1412. {
  1413. if (unshare_flags & CLONE_SYSVSEM)
  1414. return -EINVAL;
  1415. return 0;
  1416. }
  1417. /*
  1418. * unshare allows a process to 'unshare' part of the process
  1419. * context which was originally shared using clone. copy_*
  1420. * functions used by do_fork() cannot be used here directly
  1421. * because they modify an inactive task_struct that is being
  1422. * constructed. Here we are modifying the current, active,
  1423. * task_struct.
  1424. */
  1425. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1426. {
  1427. int err = 0;
  1428. struct fs_struct *fs, *new_fs = NULL;
  1429. struct sighand_struct *new_sigh = NULL;
  1430. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1431. struct files_struct *fd, *new_fd = NULL;
  1432. struct sem_undo_list *new_ulist = NULL;
  1433. struct nsproxy *new_nsproxy = NULL;
  1434. check_unshare_flags(&unshare_flags);
  1435. /* Return -EINVAL for all unsupported flags */
  1436. err = -EINVAL;
  1437. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1438. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1439. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
  1440. CLONE_NEWNET))
  1441. goto bad_unshare_out;
  1442. if ((err = unshare_thread(unshare_flags)))
  1443. goto bad_unshare_out;
  1444. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1445. goto bad_unshare_cleanup_thread;
  1446. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1447. goto bad_unshare_cleanup_fs;
  1448. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1449. goto bad_unshare_cleanup_sigh;
  1450. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1451. goto bad_unshare_cleanup_vm;
  1452. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1453. goto bad_unshare_cleanup_fd;
  1454. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1455. new_fs)))
  1456. goto bad_unshare_cleanup_semundo;
  1457. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1458. if (new_nsproxy) {
  1459. switch_task_namespaces(current, new_nsproxy);
  1460. new_nsproxy = NULL;
  1461. }
  1462. task_lock(current);
  1463. if (new_fs) {
  1464. fs = current->fs;
  1465. current->fs = new_fs;
  1466. new_fs = fs;
  1467. }
  1468. if (new_mm) {
  1469. mm = current->mm;
  1470. active_mm = current->active_mm;
  1471. current->mm = new_mm;
  1472. current->active_mm = new_mm;
  1473. activate_mm(active_mm, new_mm);
  1474. new_mm = mm;
  1475. }
  1476. if (new_fd) {
  1477. fd = current->files;
  1478. current->files = new_fd;
  1479. new_fd = fd;
  1480. }
  1481. task_unlock(current);
  1482. }
  1483. if (new_nsproxy)
  1484. put_nsproxy(new_nsproxy);
  1485. bad_unshare_cleanup_semundo:
  1486. bad_unshare_cleanup_fd:
  1487. if (new_fd)
  1488. put_files_struct(new_fd);
  1489. bad_unshare_cleanup_vm:
  1490. if (new_mm)
  1491. mmput(new_mm);
  1492. bad_unshare_cleanup_sigh:
  1493. if (new_sigh)
  1494. if (atomic_dec_and_test(&new_sigh->count))
  1495. kmem_cache_free(sighand_cachep, new_sigh);
  1496. bad_unshare_cleanup_fs:
  1497. if (new_fs)
  1498. put_fs_struct(new_fs);
  1499. bad_unshare_cleanup_thread:
  1500. bad_unshare_out:
  1501. return err;
  1502. }