12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231 |
- /*
- * kernel/cpuset.c
- *
- * Processor and Memory placement constraints for sets of tasks.
- *
- * Copyright (C) 2003 BULL SA.
- * Copyright (C) 2004-2007 Silicon Graphics, Inc.
- * Copyright (C) 2006 Google, Inc
- *
- * Portions derived from Patrick Mochel's sysfs code.
- * sysfs is Copyright (c) 2001-3 Patrick Mochel
- *
- * 2003-10-10 Written by Simon Derr.
- * 2003-10-22 Updates by Stephen Hemminger.
- * 2004 May-July Rework by Paul Jackson.
- * 2006 Rework by Paul Menage to use generic cgroups
- *
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file COPYING in the main directory of the Linux
- * distribution for more details.
- */
- #include <linux/cpu.h>
- #include <linux/cpumask.h>
- #include <linux/cpuset.h>
- #include <linux/err.h>
- #include <linux/errno.h>
- #include <linux/file.h>
- #include <linux/fs.h>
- #include <linux/init.h>
- #include <linux/interrupt.h>
- #include <linux/kernel.h>
- #include <linux/kmod.h>
- #include <linux/list.h>
- #include <linux/mempolicy.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/mount.h>
- #include <linux/namei.h>
- #include <linux/pagemap.h>
- #include <linux/prio_heap.h>
- #include <linux/proc_fs.h>
- #include <linux/rcupdate.h>
- #include <linux/sched.h>
- #include <linux/seq_file.h>
- #include <linux/security.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <linux/stat.h>
- #include <linux/string.h>
- #include <linux/time.h>
- #include <linux/backing-dev.h>
- #include <linux/sort.h>
- #include <asm/uaccess.h>
- #include <asm/atomic.h>
- #include <linux/mutex.h>
- #include <linux/kfifo.h>
- /*
- * Tracks how many cpusets are currently defined in system.
- * When there is only one cpuset (the root cpuset) we can
- * short circuit some hooks.
- */
- int number_of_cpusets __read_mostly;
- /* Retrieve the cpuset from a cgroup */
- struct cgroup_subsys cpuset_subsys;
- struct cpuset;
- /* See "Frequency meter" comments, below. */
- struct fmeter {
- int cnt; /* unprocessed events count */
- int val; /* most recent output value */
- time_t time; /* clock (secs) when val computed */
- spinlock_t lock; /* guards read or write of above */
- };
- struct cpuset {
- struct cgroup_subsys_state css;
- unsigned long flags; /* "unsigned long" so bitops work */
- cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
- nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
- struct cpuset *parent; /* my parent */
- /*
- * Copy of global cpuset_mems_generation as of the most
- * recent time this cpuset changed its mems_allowed.
- */
- int mems_generation;
- struct fmeter fmeter; /* memory_pressure filter */
- /* partition number for rebuild_sched_domains() */
- int pn;
- };
- /* Retrieve the cpuset for a cgroup */
- static inline struct cpuset *cgroup_cs(struct cgroup *cont)
- {
- return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
- struct cpuset, css);
- }
- /* Retrieve the cpuset for a task */
- static inline struct cpuset *task_cs(struct task_struct *task)
- {
- return container_of(task_subsys_state(task, cpuset_subsys_id),
- struct cpuset, css);
- }
- /* bits in struct cpuset flags field */
- typedef enum {
- CS_CPU_EXCLUSIVE,
- CS_MEM_EXCLUSIVE,
- CS_MEMORY_MIGRATE,
- CS_SCHED_LOAD_BALANCE,
- CS_SPREAD_PAGE,
- CS_SPREAD_SLAB,
- } cpuset_flagbits_t;
- /* convenient tests for these bits */
- static inline int is_cpu_exclusive(const struct cpuset *cs)
- {
- return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
- }
- static inline int is_mem_exclusive(const struct cpuset *cs)
- {
- return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
- }
- static inline int is_sched_load_balance(const struct cpuset *cs)
- {
- return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
- }
- static inline int is_memory_migrate(const struct cpuset *cs)
- {
- return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
- }
- static inline int is_spread_page(const struct cpuset *cs)
- {
- return test_bit(CS_SPREAD_PAGE, &cs->flags);
- }
- static inline int is_spread_slab(const struct cpuset *cs)
- {
- return test_bit(CS_SPREAD_SLAB, &cs->flags);
- }
- /*
- * Increment this integer everytime any cpuset changes its
- * mems_allowed value. Users of cpusets can track this generation
- * number, and avoid having to lock and reload mems_allowed unless
- * the cpuset they're using changes generation.
- *
- * A single, global generation is needed because attach_task() could
- * reattach a task to a different cpuset, which must not have its
- * generation numbers aliased with those of that tasks previous cpuset.
- *
- * Generations are needed for mems_allowed because one task cannot
- * modify anothers memory placement. So we must enable every task,
- * on every visit to __alloc_pages(), to efficiently check whether
- * its current->cpuset->mems_allowed has changed, requiring an update
- * of its current->mems_allowed.
- *
- * Since cpuset_mems_generation is guarded by manage_mutex,
- * there is no need to mark it atomic.
- */
- static int cpuset_mems_generation;
- static struct cpuset top_cpuset = {
- .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
- .cpus_allowed = CPU_MASK_ALL,
- .mems_allowed = NODE_MASK_ALL,
- };
- /*
- * We have two global cpuset mutexes below. They can nest.
- * It is ok to first take manage_mutex, then nest callback_mutex. We also
- * require taking task_lock() when dereferencing a tasks cpuset pointer.
- * See "The task_lock() exception", at the end of this comment.
- *
- * A task must hold both mutexes to modify cpusets. If a task
- * holds manage_mutex, then it blocks others wanting that mutex,
- * ensuring that it is the only task able to also acquire callback_mutex
- * and be able to modify cpusets. It can perform various checks on
- * the cpuset structure first, knowing nothing will change. It can
- * also allocate memory while just holding manage_mutex. While it is
- * performing these checks, various callback routines can briefly
- * acquire callback_mutex to query cpusets. Once it is ready to make
- * the changes, it takes callback_mutex, blocking everyone else.
- *
- * Calls to the kernel memory allocator can not be made while holding
- * callback_mutex, as that would risk double tripping on callback_mutex
- * from one of the callbacks into the cpuset code from within
- * __alloc_pages().
- *
- * If a task is only holding callback_mutex, then it has read-only
- * access to cpusets.
- *
- * The task_struct fields mems_allowed and mems_generation may only
- * be accessed in the context of that task, so require no locks.
- *
- * Any task can increment and decrement the count field without lock.
- * So in general, code holding manage_mutex or callback_mutex can't rely
- * on the count field not changing. However, if the count goes to
- * zero, then only attach_task(), which holds both mutexes, can
- * increment it again. Because a count of zero means that no tasks
- * are currently attached, therefore there is no way a task attached
- * to that cpuset can fork (the other way to increment the count).
- * So code holding manage_mutex or callback_mutex can safely assume that
- * if the count is zero, it will stay zero. Similarly, if a task
- * holds manage_mutex or callback_mutex on a cpuset with zero count, it
- * knows that the cpuset won't be removed, as cpuset_rmdir() needs
- * both of those mutexes.
- *
- * The cpuset_common_file_write handler for operations that modify
- * the cpuset hierarchy holds manage_mutex across the entire operation,
- * single threading all such cpuset modifications across the system.
- *
- * The cpuset_common_file_read() handlers only hold callback_mutex across
- * small pieces of code, such as when reading out possibly multi-word
- * cpumasks and nodemasks.
- *
- * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
- * (usually) take either mutex. These are the two most performance
- * critical pieces of code here. The exception occurs on cpuset_exit(),
- * when a task in a notify_on_release cpuset exits. Then manage_mutex
- * is taken, and if the cpuset count is zero, a usermode call made
- * to /sbin/cpuset_release_agent with the name of the cpuset (path
- * relative to the root of cpuset file system) as the argument.
- *
- * A cpuset can only be deleted if both its 'count' of using tasks
- * is zero, and its list of 'children' cpusets is empty. Since all
- * tasks in the system use _some_ cpuset, and since there is always at
- * least one task in the system (init), therefore, top_cpuset
- * always has either children cpusets and/or using tasks. So we don't
- * need a special hack to ensure that top_cpuset cannot be deleted.
- *
- * The above "Tale of Two Semaphores" would be complete, but for:
- *
- * The task_lock() exception
- *
- * The need for this exception arises from the action of attach_task(),
- * which overwrites one tasks cpuset pointer with another. It does
- * so using both mutexes, however there are several performance
- * critical places that need to reference task->cpuset without the
- * expense of grabbing a system global mutex. Therefore except as
- * noted below, when dereferencing or, as in attach_task(), modifying
- * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
- * (task->alloc_lock) already in the task_struct routinely used for
- * such matters.
- *
- * P.S. One more locking exception. RCU is used to guard the
- * update of a tasks cpuset pointer by attach_task() and the
- * access of task->cpuset->mems_generation via that pointer in
- * the routine cpuset_update_task_memory_state().
- */
- static DEFINE_MUTEX(callback_mutex);
- /* This is ugly, but preserves the userspace API for existing cpuset
- * users. If someone tries to mount the "cpuset" filesystem, we
- * silently switch it to mount "cgroup" instead */
- static int cpuset_get_sb(struct file_system_type *fs_type,
- int flags, const char *unused_dev_name,
- void *data, struct vfsmount *mnt)
- {
- struct file_system_type *cgroup_fs = get_fs_type("cgroup");
- int ret = -ENODEV;
- if (cgroup_fs) {
- char mountopts[] =
- "cpuset,noprefix,"
- "release_agent=/sbin/cpuset_release_agent";
- ret = cgroup_fs->get_sb(cgroup_fs, flags,
- unused_dev_name, mountopts, mnt);
- put_filesystem(cgroup_fs);
- }
- return ret;
- }
- static struct file_system_type cpuset_fs_type = {
- .name = "cpuset",
- .get_sb = cpuset_get_sb,
- };
- /*
- * Return in *pmask the portion of a cpusets's cpus_allowed that
- * are online. If none are online, walk up the cpuset hierarchy
- * until we find one that does have some online cpus. If we get
- * all the way to the top and still haven't found any online cpus,
- * return cpu_online_map. Or if passed a NULL cs from an exit'ing
- * task, return cpu_online_map.
- *
- * One way or another, we guarantee to return some non-empty subset
- * of cpu_online_map.
- *
- * Call with callback_mutex held.
- */
- static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
- {
- while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
- cs = cs->parent;
- if (cs)
- cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
- else
- *pmask = cpu_online_map;
- BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
- }
- /*
- * Return in *pmask the portion of a cpusets's mems_allowed that
- * are online, with memory. If none are online with memory, walk
- * up the cpuset hierarchy until we find one that does have some
- * online mems. If we get all the way to the top and still haven't
- * found any online mems, return node_states[N_HIGH_MEMORY].
- *
- * One way or another, we guarantee to return some non-empty subset
- * of node_states[N_HIGH_MEMORY].
- *
- * Call with callback_mutex held.
- */
- static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
- {
- while (cs && !nodes_intersects(cs->mems_allowed,
- node_states[N_HIGH_MEMORY]))
- cs = cs->parent;
- if (cs)
- nodes_and(*pmask, cs->mems_allowed,
- node_states[N_HIGH_MEMORY]);
- else
- *pmask = node_states[N_HIGH_MEMORY];
- BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
- }
- /**
- * cpuset_update_task_memory_state - update task memory placement
- *
- * If the current tasks cpusets mems_allowed changed behind our
- * backs, update current->mems_allowed, mems_generation and task NUMA
- * mempolicy to the new value.
- *
- * Task mempolicy is updated by rebinding it relative to the
- * current->cpuset if a task has its memory placement changed.
- * Do not call this routine if in_interrupt().
- *
- * Call without callback_mutex or task_lock() held. May be
- * called with or without manage_mutex held. Thanks in part to
- * 'the_top_cpuset_hack', the tasks cpuset pointer will never
- * be NULL. This routine also might acquire callback_mutex and
- * current->mm->mmap_sem during call.
- *
- * Reading current->cpuset->mems_generation doesn't need task_lock
- * to guard the current->cpuset derefence, because it is guarded
- * from concurrent freeing of current->cpuset by attach_task(),
- * using RCU.
- *
- * The rcu_dereference() is technically probably not needed,
- * as I don't actually mind if I see a new cpuset pointer but
- * an old value of mems_generation. However this really only
- * matters on alpha systems using cpusets heavily. If I dropped
- * that rcu_dereference(), it would save them a memory barrier.
- * For all other arch's, rcu_dereference is a no-op anyway, and for
- * alpha systems not using cpusets, another planned optimization,
- * avoiding the rcu critical section for tasks in the root cpuset
- * which is statically allocated, so can't vanish, will make this
- * irrelevant. Better to use RCU as intended, than to engage in
- * some cute trick to save a memory barrier that is impossible to
- * test, for alpha systems using cpusets heavily, which might not
- * even exist.
- *
- * This routine is needed to update the per-task mems_allowed data,
- * within the tasks context, when it is trying to allocate memory
- * (in various mm/mempolicy.c routines) and notices that some other
- * task has been modifying its cpuset.
- */
- void cpuset_update_task_memory_state(void)
- {
- int my_cpusets_mem_gen;
- struct task_struct *tsk = current;
- struct cpuset *cs;
- if (task_cs(tsk) == &top_cpuset) {
- /* Don't need rcu for top_cpuset. It's never freed. */
- my_cpusets_mem_gen = top_cpuset.mems_generation;
- } else {
- rcu_read_lock();
- my_cpusets_mem_gen = task_cs(current)->mems_generation;
- rcu_read_unlock();
- }
- if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
- mutex_lock(&callback_mutex);
- task_lock(tsk);
- cs = task_cs(tsk); /* Maybe changed when task not locked */
- guarantee_online_mems(cs, &tsk->mems_allowed);
- tsk->cpuset_mems_generation = cs->mems_generation;
- if (is_spread_page(cs))
- tsk->flags |= PF_SPREAD_PAGE;
- else
- tsk->flags &= ~PF_SPREAD_PAGE;
- if (is_spread_slab(cs))
- tsk->flags |= PF_SPREAD_SLAB;
- else
- tsk->flags &= ~PF_SPREAD_SLAB;
- task_unlock(tsk);
- mutex_unlock(&callback_mutex);
- mpol_rebind_task(tsk, &tsk->mems_allowed);
- }
- }
- /*
- * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
- *
- * One cpuset is a subset of another if all its allowed CPUs and
- * Memory Nodes are a subset of the other, and its exclusive flags
- * are only set if the other's are set. Call holding manage_mutex.
- */
- static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
- {
- return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
- nodes_subset(p->mems_allowed, q->mems_allowed) &&
- is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
- is_mem_exclusive(p) <= is_mem_exclusive(q);
- }
- /*
- * validate_change() - Used to validate that any proposed cpuset change
- * follows the structural rules for cpusets.
- *
- * If we replaced the flag and mask values of the current cpuset
- * (cur) with those values in the trial cpuset (trial), would
- * our various subset and exclusive rules still be valid? Presumes
- * manage_mutex held.
- *
- * 'cur' is the address of an actual, in-use cpuset. Operations
- * such as list traversal that depend on the actual address of the
- * cpuset in the list must use cur below, not trial.
- *
- * 'trial' is the address of bulk structure copy of cur, with
- * perhaps one or more of the fields cpus_allowed, mems_allowed,
- * or flags changed to new, trial values.
- *
- * Return 0 if valid, -errno if not.
- */
- static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
- {
- struct cgroup *cont;
- struct cpuset *c, *par;
- /* Each of our child cpusets must be a subset of us */
- list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
- if (!is_cpuset_subset(cgroup_cs(cont), trial))
- return -EBUSY;
- }
- /* Remaining checks don't apply to root cpuset */
- if (cur == &top_cpuset)
- return 0;
- par = cur->parent;
- /* We must be a subset of our parent cpuset */
- if (!is_cpuset_subset(trial, par))
- return -EACCES;
- /* If either I or some sibling (!= me) is exclusive, we can't overlap */
- list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
- c = cgroup_cs(cont);
- if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
- c != cur &&
- cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
- return -EINVAL;
- if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
- c != cur &&
- nodes_intersects(trial->mems_allowed, c->mems_allowed))
- return -EINVAL;
- }
- /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
- if (cgroup_task_count(cur->css.cgroup)) {
- if (cpus_empty(trial->cpus_allowed) ||
- nodes_empty(trial->mems_allowed)) {
- return -ENOSPC;
- }
- }
- return 0;
- }
- /*
- * Helper routine for rebuild_sched_domains().
- * Do cpusets a, b have overlapping cpus_allowed masks?
- */
- static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
- {
- return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
- }
- /*
- * rebuild_sched_domains()
- *
- * If the flag 'sched_load_balance' of any cpuset with non-empty
- * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
- * which has that flag enabled, or if any cpuset with a non-empty
- * 'cpus' is removed, then call this routine to rebuild the
- * scheduler's dynamic sched domains.
- *
- * This routine builds a partial partition of the systems CPUs
- * (the set of non-overlappping cpumask_t's in the array 'part'
- * below), and passes that partial partition to the kernel/sched.c
- * partition_sched_domains() routine, which will rebuild the
- * schedulers load balancing domains (sched domains) as specified
- * by that partial partition. A 'partial partition' is a set of
- * non-overlapping subsets whose union is a subset of that set.
- *
- * See "What is sched_load_balance" in Documentation/cpusets.txt
- * for a background explanation of this.
- *
- * Does not return errors, on the theory that the callers of this
- * routine would rather not worry about failures to rebuild sched
- * domains when operating in the severe memory shortage situations
- * that could cause allocation failures below.
- *
- * Call with cgroup_mutex held. May take callback_mutex during
- * call due to the kfifo_alloc() and kmalloc() calls. May nest
- * a call to the get_online_cpus()/put_online_cpus() pair.
- * Must not be called holding callback_mutex, because we must not
- * call get_online_cpus() while holding callback_mutex. Elsewhere
- * the kernel nests callback_mutex inside get_online_cpus() calls.
- * So the reverse nesting would risk an ABBA deadlock.
- *
- * The three key local variables below are:
- * q - a kfifo queue of cpuset pointers, used to implement a
- * top-down scan of all cpusets. This scan loads a pointer
- * to each cpuset marked is_sched_load_balance into the
- * array 'csa'. For our purposes, rebuilding the schedulers
- * sched domains, we can ignore !is_sched_load_balance cpusets.
- * csa - (for CpuSet Array) Array of pointers to all the cpusets
- * that need to be load balanced, for convenient iterative
- * access by the subsequent code that finds the best partition,
- * i.e the set of domains (subsets) of CPUs such that the
- * cpus_allowed of every cpuset marked is_sched_load_balance
- * is a subset of one of these domains, while there are as
- * many such domains as possible, each as small as possible.
- * doms - Conversion of 'csa' to an array of cpumasks, for passing to
- * the kernel/sched.c routine partition_sched_domains() in a
- * convenient format, that can be easily compared to the prior
- * value to determine what partition elements (sched domains)
- * were changed (added or removed.)
- *
- * Finding the best partition (set of domains):
- * The triple nested loops below over i, j, k scan over the
- * load balanced cpusets (using the array of cpuset pointers in
- * csa[]) looking for pairs of cpusets that have overlapping
- * cpus_allowed, but which don't have the same 'pn' partition
- * number and gives them in the same partition number. It keeps
- * looping on the 'restart' label until it can no longer find
- * any such pairs.
- *
- * The union of the cpus_allowed masks from the set of
- * all cpusets having the same 'pn' value then form the one
- * element of the partition (one sched domain) to be passed to
- * partition_sched_domains().
- */
- static void rebuild_sched_domains(void)
- {
- struct kfifo *q; /* queue of cpusets to be scanned */
- struct cpuset *cp; /* scans q */
- struct cpuset **csa; /* array of all cpuset ptrs */
- int csn; /* how many cpuset ptrs in csa so far */
- int i, j, k; /* indices for partition finding loops */
- cpumask_t *doms; /* resulting partition; i.e. sched domains */
- int ndoms; /* number of sched domains in result */
- int nslot; /* next empty doms[] cpumask_t slot */
- q = NULL;
- csa = NULL;
- doms = NULL;
- /* Special case for the 99% of systems with one, full, sched domain */
- if (is_sched_load_balance(&top_cpuset)) {
- ndoms = 1;
- doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
- if (!doms)
- goto rebuild;
- *doms = top_cpuset.cpus_allowed;
- goto rebuild;
- }
- q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
- if (IS_ERR(q))
- goto done;
- csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
- if (!csa)
- goto done;
- csn = 0;
- cp = &top_cpuset;
- __kfifo_put(q, (void *)&cp, sizeof(cp));
- while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
- struct cgroup *cont;
- struct cpuset *child; /* scans child cpusets of cp */
- if (is_sched_load_balance(cp))
- csa[csn++] = cp;
- list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
- child = cgroup_cs(cont);
- __kfifo_put(q, (void *)&child, sizeof(cp));
- }
- }
- for (i = 0; i < csn; i++)
- csa[i]->pn = i;
- ndoms = csn;
- restart:
- /* Find the best partition (set of sched domains) */
- for (i = 0; i < csn; i++) {
- struct cpuset *a = csa[i];
- int apn = a->pn;
- for (j = 0; j < csn; j++) {
- struct cpuset *b = csa[j];
- int bpn = b->pn;
- if (apn != bpn && cpusets_overlap(a, b)) {
- for (k = 0; k < csn; k++) {
- struct cpuset *c = csa[k];
- if (c->pn == bpn)
- c->pn = apn;
- }
- ndoms--; /* one less element */
- goto restart;
- }
- }
- }
- /* Convert <csn, csa> to <ndoms, doms> */
- doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
- if (!doms)
- goto rebuild;
- for (nslot = 0, i = 0; i < csn; i++) {
- struct cpuset *a = csa[i];
- int apn = a->pn;
- if (apn >= 0) {
- cpumask_t *dp = doms + nslot;
- if (nslot == ndoms) {
- static int warnings = 10;
- if (warnings) {
- printk(KERN_WARNING
- "rebuild_sched_domains confused:"
- " nslot %d, ndoms %d, csn %d, i %d,"
- " apn %d\n",
- nslot, ndoms, csn, i, apn);
- warnings--;
- }
- continue;
- }
- cpus_clear(*dp);
- for (j = i; j < csn; j++) {
- struct cpuset *b = csa[j];
- if (apn == b->pn) {
- cpus_or(*dp, *dp, b->cpus_allowed);
- b->pn = -1;
- }
- }
- nslot++;
- }
- }
- BUG_ON(nslot != ndoms);
- rebuild:
- /* Have scheduler rebuild sched domains */
- get_online_cpus();
- partition_sched_domains(ndoms, doms);
- put_online_cpus();
- done:
- if (q && !IS_ERR(q))
- kfifo_free(q);
- kfree(csa);
- /* Don't kfree(doms) -- partition_sched_domains() does that. */
- }
- static inline int started_after_time(struct task_struct *t1,
- struct timespec *time,
- struct task_struct *t2)
- {
- int start_diff = timespec_compare(&t1->start_time, time);
- if (start_diff > 0) {
- return 1;
- } else if (start_diff < 0) {
- return 0;
- } else {
- /*
- * Arbitrarily, if two processes started at the same
- * time, we'll say that the lower pointer value
- * started first. Note that t2 may have exited by now
- * so this may not be a valid pointer any longer, but
- * that's fine - it still serves to distinguish
- * between two tasks started (effectively)
- * simultaneously.
- */
- return t1 > t2;
- }
- }
- static inline int started_after(void *p1, void *p2)
- {
- struct task_struct *t1 = p1;
- struct task_struct *t2 = p2;
- return started_after_time(t1, &t2->start_time, t2);
- }
- /*
- * Call with manage_mutex held. May take callback_mutex during call.
- */
- static int update_cpumask(struct cpuset *cs, char *buf)
- {
- struct cpuset trialcs;
- int retval, i;
- int is_load_balanced;
- struct cgroup_iter it;
- struct cgroup *cgrp = cs->css.cgroup;
- struct task_struct *p, *dropped;
- /* Never dereference latest_task, since it's not refcounted */
- struct task_struct *latest_task = NULL;
- struct ptr_heap heap;
- struct timespec latest_time = { 0, 0 };
- /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
- if (cs == &top_cpuset)
- return -EACCES;
- trialcs = *cs;
- /*
- * An empty cpus_allowed is ok iff there are no tasks in the cpuset.
- * Since cpulist_parse() fails on an empty mask, we special case
- * that parsing. The validate_change() call ensures that cpusets
- * with tasks have cpus.
- */
- buf = strstrip(buf);
- if (!*buf) {
- cpus_clear(trialcs.cpus_allowed);
- } else {
- retval = cpulist_parse(buf, trialcs.cpus_allowed);
- if (retval < 0)
- return retval;
- }
- cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
- retval = validate_change(cs, &trialcs);
- if (retval < 0)
- return retval;
- /* Nothing to do if the cpus didn't change */
- if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
- return 0;
- retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
- if (retval)
- return retval;
- is_load_balanced = is_sched_load_balance(&trialcs);
- mutex_lock(&callback_mutex);
- cs->cpus_allowed = trialcs.cpus_allowed;
- mutex_unlock(&callback_mutex);
- again:
- /*
- * Scan tasks in the cpuset, and update the cpumasks of any
- * that need an update. Since we can't call set_cpus_allowed()
- * while holding tasklist_lock, gather tasks to be processed
- * in a heap structure. If the statically-sized heap fills up,
- * overflow tasks that started later, and in future iterations
- * only consider tasks that started after the latest task in
- * the previous pass. This guarantees forward progress and
- * that we don't miss any tasks
- */
- heap.size = 0;
- cgroup_iter_start(cgrp, &it);
- while ((p = cgroup_iter_next(cgrp, &it))) {
- /* Only affect tasks that don't have the right cpus_allowed */
- if (cpus_equal(p->cpus_allowed, cs->cpus_allowed))
- continue;
- /*
- * Only process tasks that started after the last task
- * we processed
- */
- if (!started_after_time(p, &latest_time, latest_task))
- continue;
- dropped = heap_insert(&heap, p);
- if (dropped == NULL) {
- get_task_struct(p);
- } else if (dropped != p) {
- get_task_struct(p);
- put_task_struct(dropped);
- }
- }
- cgroup_iter_end(cgrp, &it);
- if (heap.size) {
- for (i = 0; i < heap.size; i++) {
- struct task_struct *p = heap.ptrs[i];
- if (i == 0) {
- latest_time = p->start_time;
- latest_task = p;
- }
- set_cpus_allowed(p, cs->cpus_allowed);
- put_task_struct(p);
- }
- /*
- * If we had to process any tasks at all, scan again
- * in case some of them were in the middle of forking
- * children that didn't notice the new cpumask
- * restriction. Not the most efficient way to do it,
- * but it avoids having to take callback_mutex in the
- * fork path
- */
- goto again;
- }
- heap_free(&heap);
- if (is_load_balanced)
- rebuild_sched_domains();
- return 0;
- }
- /*
- * cpuset_migrate_mm
- *
- * Migrate memory region from one set of nodes to another.
- *
- * Temporarilly set tasks mems_allowed to target nodes of migration,
- * so that the migration code can allocate pages on these nodes.
- *
- * Call holding manage_mutex, so our current->cpuset won't change
- * during this call, as manage_mutex holds off any attach_task()
- * calls. Therefore we don't need to take task_lock around the
- * call to guarantee_online_mems(), as we know no one is changing
- * our tasks cpuset.
- *
- * Hold callback_mutex around the two modifications of our tasks
- * mems_allowed to synchronize with cpuset_mems_allowed().
- *
- * While the mm_struct we are migrating is typically from some
- * other task, the task_struct mems_allowed that we are hacking
- * is for our current task, which must allocate new pages for that
- * migrating memory region.
- *
- * We call cpuset_update_task_memory_state() before hacking
- * our tasks mems_allowed, so that we are assured of being in
- * sync with our tasks cpuset, and in particular, callbacks to
- * cpuset_update_task_memory_state() from nested page allocations
- * won't see any mismatch of our cpuset and task mems_generation
- * values, so won't overwrite our hacked tasks mems_allowed
- * nodemask.
- */
- static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
- const nodemask_t *to)
- {
- struct task_struct *tsk = current;
- cpuset_update_task_memory_state();
- mutex_lock(&callback_mutex);
- tsk->mems_allowed = *to;
- mutex_unlock(&callback_mutex);
- do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
- mutex_lock(&callback_mutex);
- guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
- mutex_unlock(&callback_mutex);
- }
- /*
- * Handle user request to change the 'mems' memory placement
- * of a cpuset. Needs to validate the request, update the
- * cpusets mems_allowed and mems_generation, and for each
- * task in the cpuset, rebind any vma mempolicies and if
- * the cpuset is marked 'memory_migrate', migrate the tasks
- * pages to the new memory.
- *
- * Call with manage_mutex held. May take callback_mutex during call.
- * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
- * lock each such tasks mm->mmap_sem, scan its vma's and rebind
- * their mempolicies to the cpusets new mems_allowed.
- */
- static void *cpuset_being_rebound;
- static int update_nodemask(struct cpuset *cs, char *buf)
- {
- struct cpuset trialcs;
- nodemask_t oldmem;
- struct task_struct *p;
- struct mm_struct **mmarray;
- int i, n, ntasks;
- int migrate;
- int fudge;
- int retval;
- struct cgroup_iter it;
- /*
- * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
- * it's read-only
- */
- if (cs == &top_cpuset)
- return -EACCES;
- trialcs = *cs;
- /*
- * An empty mems_allowed is ok iff there are no tasks in the cpuset.
- * Since nodelist_parse() fails on an empty mask, we special case
- * that parsing. The validate_change() call ensures that cpusets
- * with tasks have memory.
- */
- buf = strstrip(buf);
- if (!*buf) {
- nodes_clear(trialcs.mems_allowed);
- } else {
- retval = nodelist_parse(buf, trialcs.mems_allowed);
- if (retval < 0)
- goto done;
- }
- nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
- node_states[N_HIGH_MEMORY]);
- oldmem = cs->mems_allowed;
- if (nodes_equal(oldmem, trialcs.mems_allowed)) {
- retval = 0; /* Too easy - nothing to do */
- goto done;
- }
- retval = validate_change(cs, &trialcs);
- if (retval < 0)
- goto done;
- mutex_lock(&callback_mutex);
- cs->mems_allowed = trialcs.mems_allowed;
- cs->mems_generation = cpuset_mems_generation++;
- mutex_unlock(&callback_mutex);
- cpuset_being_rebound = cs; /* causes mpol_copy() rebind */
- fudge = 10; /* spare mmarray[] slots */
- fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
- retval = -ENOMEM;
- /*
- * Allocate mmarray[] to hold mm reference for each task
- * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
- * tasklist_lock. We could use GFP_ATOMIC, but with a
- * few more lines of code, we can retry until we get a big
- * enough mmarray[] w/o using GFP_ATOMIC.
- */
- while (1) {
- ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
- ntasks += fudge;
- mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
- if (!mmarray)
- goto done;
- read_lock(&tasklist_lock); /* block fork */
- if (cgroup_task_count(cs->css.cgroup) <= ntasks)
- break; /* got enough */
- read_unlock(&tasklist_lock); /* try again */
- kfree(mmarray);
- }
- n = 0;
- /* Load up mmarray[] with mm reference for each task in cpuset. */
- cgroup_iter_start(cs->css.cgroup, &it);
- while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
- struct mm_struct *mm;
- if (n >= ntasks) {
- printk(KERN_WARNING
- "Cpuset mempolicy rebind incomplete.\n");
- break;
- }
- mm = get_task_mm(p);
- if (!mm)
- continue;
- mmarray[n++] = mm;
- }
- cgroup_iter_end(cs->css.cgroup, &it);
- read_unlock(&tasklist_lock);
- /*
- * Now that we've dropped the tasklist spinlock, we can
- * rebind the vma mempolicies of each mm in mmarray[] to their
- * new cpuset, and release that mm. The mpol_rebind_mm()
- * call takes mmap_sem, which we couldn't take while holding
- * tasklist_lock. Forks can happen again now - the mpol_copy()
- * cpuset_being_rebound check will catch such forks, and rebind
- * their vma mempolicies too. Because we still hold the global
- * cpuset manage_mutex, we know that no other rebind effort will
- * be contending for the global variable cpuset_being_rebound.
- * It's ok if we rebind the same mm twice; mpol_rebind_mm()
- * is idempotent. Also migrate pages in each mm to new nodes.
- */
- migrate = is_memory_migrate(cs);
- for (i = 0; i < n; i++) {
- struct mm_struct *mm = mmarray[i];
- mpol_rebind_mm(mm, &cs->mems_allowed);
- if (migrate)
- cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
- mmput(mm);
- }
- /* We're done rebinding vma's to this cpusets new mems_allowed. */
- kfree(mmarray);
- cpuset_being_rebound = NULL;
- retval = 0;
- done:
- return retval;
- }
- int current_cpuset_is_being_rebound(void)
- {
- return task_cs(current) == cpuset_being_rebound;
- }
- /*
- * Call with manage_mutex held.
- */
- static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
- {
- if (simple_strtoul(buf, NULL, 10) != 0)
- cpuset_memory_pressure_enabled = 1;
- else
- cpuset_memory_pressure_enabled = 0;
- return 0;
- }
- /*
- * update_flag - read a 0 or a 1 in a file and update associated flag
- * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
- * CS_SCHED_LOAD_BALANCE,
- * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
- * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
- * cs: the cpuset to update
- * buf: the buffer where we read the 0 or 1
- *
- * Call with manage_mutex held.
- */
- static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
- {
- int turning_on;
- struct cpuset trialcs;
- int err;
- int cpus_nonempty, balance_flag_changed;
- turning_on = (simple_strtoul(buf, NULL, 10) != 0);
- trialcs = *cs;
- if (turning_on)
- set_bit(bit, &trialcs.flags);
- else
- clear_bit(bit, &trialcs.flags);
- err = validate_change(cs, &trialcs);
- if (err < 0)
- return err;
- cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
- balance_flag_changed = (is_sched_load_balance(cs) !=
- is_sched_load_balance(&trialcs));
- mutex_lock(&callback_mutex);
- cs->flags = trialcs.flags;
- mutex_unlock(&callback_mutex);
- if (cpus_nonempty && balance_flag_changed)
- rebuild_sched_domains();
- return 0;
- }
- /*
- * Frequency meter - How fast is some event occurring?
- *
- * These routines manage a digitally filtered, constant time based,
- * event frequency meter. There are four routines:
- * fmeter_init() - initialize a frequency meter.
- * fmeter_markevent() - called each time the event happens.
- * fmeter_getrate() - returns the recent rate of such events.
- * fmeter_update() - internal routine used to update fmeter.
- *
- * A common data structure is passed to each of these routines,
- * which is used to keep track of the state required to manage the
- * frequency meter and its digital filter.
- *
- * The filter works on the number of events marked per unit time.
- * The filter is single-pole low-pass recursive (IIR). The time unit
- * is 1 second. Arithmetic is done using 32-bit integers scaled to
- * simulate 3 decimal digits of precision (multiplied by 1000).
- *
- * With an FM_COEF of 933, and a time base of 1 second, the filter
- * has a half-life of 10 seconds, meaning that if the events quit
- * happening, then the rate returned from the fmeter_getrate()
- * will be cut in half each 10 seconds, until it converges to zero.
- *
- * It is not worth doing a real infinitely recursive filter. If more
- * than FM_MAXTICKS ticks have elapsed since the last filter event,
- * just compute FM_MAXTICKS ticks worth, by which point the level
- * will be stable.
- *
- * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
- * arithmetic overflow in the fmeter_update() routine.
- *
- * Given the simple 32 bit integer arithmetic used, this meter works
- * best for reporting rates between one per millisecond (msec) and
- * one per 32 (approx) seconds. At constant rates faster than one
- * per msec it maxes out at values just under 1,000,000. At constant
- * rates between one per msec, and one per second it will stabilize
- * to a value N*1000, where N is the rate of events per second.
- * At constant rates between one per second and one per 32 seconds,
- * it will be choppy, moving up on the seconds that have an event,
- * and then decaying until the next event. At rates slower than
- * about one in 32 seconds, it decays all the way back to zero between
- * each event.
- */
- #define FM_COEF 933 /* coefficient for half-life of 10 secs */
- #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
- #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
- #define FM_SCALE 1000 /* faux fixed point scale */
- /* Initialize a frequency meter */
- static void fmeter_init(struct fmeter *fmp)
- {
- fmp->cnt = 0;
- fmp->val = 0;
- fmp->time = 0;
- spin_lock_init(&fmp->lock);
- }
- /* Internal meter update - process cnt events and update value */
- static void fmeter_update(struct fmeter *fmp)
- {
- time_t now = get_seconds();
- time_t ticks = now - fmp->time;
- if (ticks == 0)
- return;
- ticks = min(FM_MAXTICKS, ticks);
- while (ticks-- > 0)
- fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
- fmp->time = now;
- fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
- fmp->cnt = 0;
- }
- /* Process any previous ticks, then bump cnt by one (times scale). */
- static void fmeter_markevent(struct fmeter *fmp)
- {
- spin_lock(&fmp->lock);
- fmeter_update(fmp);
- fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
- spin_unlock(&fmp->lock);
- }
- /* Process any previous ticks, then return current value. */
- static int fmeter_getrate(struct fmeter *fmp)
- {
- int val;
- spin_lock(&fmp->lock);
- fmeter_update(fmp);
- val = fmp->val;
- spin_unlock(&fmp->lock);
- return val;
- }
- static int cpuset_can_attach(struct cgroup_subsys *ss,
- struct cgroup *cont, struct task_struct *tsk)
- {
- struct cpuset *cs = cgroup_cs(cont);
- if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
- return -ENOSPC;
- return security_task_setscheduler(tsk, 0, NULL);
- }
- static void cpuset_attach(struct cgroup_subsys *ss,
- struct cgroup *cont, struct cgroup *oldcont,
- struct task_struct *tsk)
- {
- cpumask_t cpus;
- nodemask_t from, to;
- struct mm_struct *mm;
- struct cpuset *cs = cgroup_cs(cont);
- struct cpuset *oldcs = cgroup_cs(oldcont);
- mutex_lock(&callback_mutex);
- guarantee_online_cpus(cs, &cpus);
- set_cpus_allowed(tsk, cpus);
- mutex_unlock(&callback_mutex);
- from = oldcs->mems_allowed;
- to = cs->mems_allowed;
- mm = get_task_mm(tsk);
- if (mm) {
- mpol_rebind_mm(mm, &to);
- if (is_memory_migrate(cs))
- cpuset_migrate_mm(mm, &from, &to);
- mmput(mm);
- }
- }
- /* The various types of files and directories in a cpuset file system */
- typedef enum {
- FILE_MEMORY_MIGRATE,
- FILE_CPULIST,
- FILE_MEMLIST,
- FILE_CPU_EXCLUSIVE,
- FILE_MEM_EXCLUSIVE,
- FILE_SCHED_LOAD_BALANCE,
- FILE_MEMORY_PRESSURE_ENABLED,
- FILE_MEMORY_PRESSURE,
- FILE_SPREAD_PAGE,
- FILE_SPREAD_SLAB,
- } cpuset_filetype_t;
- static ssize_t cpuset_common_file_write(struct cgroup *cont,
- struct cftype *cft,
- struct file *file,
- const char __user *userbuf,
- size_t nbytes, loff_t *unused_ppos)
- {
- struct cpuset *cs = cgroup_cs(cont);
- cpuset_filetype_t type = cft->private;
- char *buffer;
- int retval = 0;
- /* Crude upper limit on largest legitimate cpulist user might write. */
- if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
- return -E2BIG;
- /* +1 for nul-terminator */
- if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
- return -ENOMEM;
- if (copy_from_user(buffer, userbuf, nbytes)) {
- retval = -EFAULT;
- goto out1;
- }
- buffer[nbytes] = 0; /* nul-terminate */
- cgroup_lock();
- if (cgroup_is_removed(cont)) {
- retval = -ENODEV;
- goto out2;
- }
- switch (type) {
- case FILE_CPULIST:
- retval = update_cpumask(cs, buffer);
- break;
- case FILE_MEMLIST:
- retval = update_nodemask(cs, buffer);
- break;
- case FILE_CPU_EXCLUSIVE:
- retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
- break;
- case FILE_MEM_EXCLUSIVE:
- retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
- break;
- case FILE_SCHED_LOAD_BALANCE:
- retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
- break;
- case FILE_MEMORY_MIGRATE:
- retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
- break;
- case FILE_MEMORY_PRESSURE_ENABLED:
- retval = update_memory_pressure_enabled(cs, buffer);
- break;
- case FILE_MEMORY_PRESSURE:
- retval = -EACCES;
- break;
- case FILE_SPREAD_PAGE:
- retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
- cs->mems_generation = cpuset_mems_generation++;
- break;
- case FILE_SPREAD_SLAB:
- retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
- cs->mems_generation = cpuset_mems_generation++;
- break;
- default:
- retval = -EINVAL;
- goto out2;
- }
- if (retval == 0)
- retval = nbytes;
- out2:
- cgroup_unlock();
- out1:
- kfree(buffer);
- return retval;
- }
- /*
- * These ascii lists should be read in a single call, by using a user
- * buffer large enough to hold the entire map. If read in smaller
- * chunks, there is no guarantee of atomicity. Since the display format
- * used, list of ranges of sequential numbers, is variable length,
- * and since these maps can change value dynamically, one could read
- * gibberish by doing partial reads while a list was changing.
- * A single large read to a buffer that crosses a page boundary is
- * ok, because the result being copied to user land is not recomputed
- * across a page fault.
- */
- static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
- {
- cpumask_t mask;
- mutex_lock(&callback_mutex);
- mask = cs->cpus_allowed;
- mutex_unlock(&callback_mutex);
- return cpulist_scnprintf(page, PAGE_SIZE, mask);
- }
- static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
- {
- nodemask_t mask;
- mutex_lock(&callback_mutex);
- mask = cs->mems_allowed;
- mutex_unlock(&callback_mutex);
- return nodelist_scnprintf(page, PAGE_SIZE, mask);
- }
- static ssize_t cpuset_common_file_read(struct cgroup *cont,
- struct cftype *cft,
- struct file *file,
- char __user *buf,
- size_t nbytes, loff_t *ppos)
- {
- struct cpuset *cs = cgroup_cs(cont);
- cpuset_filetype_t type = cft->private;
- char *page;
- ssize_t retval = 0;
- char *s;
- if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
- return -ENOMEM;
- s = page;
- switch (type) {
- case FILE_CPULIST:
- s += cpuset_sprintf_cpulist(s, cs);
- break;
- case FILE_MEMLIST:
- s += cpuset_sprintf_memlist(s, cs);
- break;
- case FILE_CPU_EXCLUSIVE:
- *s++ = is_cpu_exclusive(cs) ? '1' : '0';
- break;
- case FILE_MEM_EXCLUSIVE:
- *s++ = is_mem_exclusive(cs) ? '1' : '0';
- break;
- case FILE_SCHED_LOAD_BALANCE:
- *s++ = is_sched_load_balance(cs) ? '1' : '0';
- break;
- case FILE_MEMORY_MIGRATE:
- *s++ = is_memory_migrate(cs) ? '1' : '0';
- break;
- case FILE_MEMORY_PRESSURE_ENABLED:
- *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
- break;
- case FILE_MEMORY_PRESSURE:
- s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
- break;
- case FILE_SPREAD_PAGE:
- *s++ = is_spread_page(cs) ? '1' : '0';
- break;
- case FILE_SPREAD_SLAB:
- *s++ = is_spread_slab(cs) ? '1' : '0';
- break;
- default:
- retval = -EINVAL;
- goto out;
- }
- *s++ = '\n';
- retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
- out:
- free_page((unsigned long)page);
- return retval;
- }
- /*
- * for the common functions, 'private' gives the type of file
- */
- static struct cftype cft_cpus = {
- .name = "cpus",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_CPULIST,
- };
- static struct cftype cft_mems = {
- .name = "mems",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_MEMLIST,
- };
- static struct cftype cft_cpu_exclusive = {
- .name = "cpu_exclusive",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_CPU_EXCLUSIVE,
- };
- static struct cftype cft_mem_exclusive = {
- .name = "mem_exclusive",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_MEM_EXCLUSIVE,
- };
- static struct cftype cft_sched_load_balance = {
- .name = "sched_load_balance",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_SCHED_LOAD_BALANCE,
- };
- static struct cftype cft_memory_migrate = {
- .name = "memory_migrate",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_MEMORY_MIGRATE,
- };
- static struct cftype cft_memory_pressure_enabled = {
- .name = "memory_pressure_enabled",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_MEMORY_PRESSURE_ENABLED,
- };
- static struct cftype cft_memory_pressure = {
- .name = "memory_pressure",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_MEMORY_PRESSURE,
- };
- static struct cftype cft_spread_page = {
- .name = "memory_spread_page",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_SPREAD_PAGE,
- };
- static struct cftype cft_spread_slab = {
- .name = "memory_spread_slab",
- .read = cpuset_common_file_read,
- .write = cpuset_common_file_write,
- .private = FILE_SPREAD_SLAB,
- };
- static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
- {
- int err;
- if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
- return err;
- if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
- return err;
- /* memory_pressure_enabled is in root cpuset only */
- if (err == 0 && !cont->parent)
- err = cgroup_add_file(cont, ss,
- &cft_memory_pressure_enabled);
- return 0;
- }
- /*
- * post_clone() is called at the end of cgroup_clone().
- * 'cgroup' was just created automatically as a result of
- * a cgroup_clone(), and the current task is about to
- * be moved into 'cgroup'.
- *
- * Currently we refuse to set up the cgroup - thereby
- * refusing the task to be entered, and as a result refusing
- * the sys_unshare() or clone() which initiated it - if any
- * sibling cpusets have exclusive cpus or mem.
- *
- * If this becomes a problem for some users who wish to
- * allow that scenario, then cpuset_post_clone() could be
- * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
- * (and likewise for mems) to the new cgroup.
- */
- static void cpuset_post_clone(struct cgroup_subsys *ss,
- struct cgroup *cgroup)
- {
- struct cgroup *parent, *child;
- struct cpuset *cs, *parent_cs;
- parent = cgroup->parent;
- list_for_each_entry(child, &parent->children, sibling) {
- cs = cgroup_cs(child);
- if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
- return;
- }
- cs = cgroup_cs(cgroup);
- parent_cs = cgroup_cs(parent);
- cs->mems_allowed = parent_cs->mems_allowed;
- cs->cpus_allowed = parent_cs->cpus_allowed;
- return;
- }
- /*
- * cpuset_create - create a cpuset
- * parent: cpuset that will be parent of the new cpuset.
- * name: name of the new cpuset. Will be strcpy'ed.
- * mode: mode to set on new inode
- *
- * Must be called with the mutex on the parent inode held
- */
- static struct cgroup_subsys_state *cpuset_create(
- struct cgroup_subsys *ss,
- struct cgroup *cont)
- {
- struct cpuset *cs;
- struct cpuset *parent;
- if (!cont->parent) {
- /* This is early initialization for the top cgroup */
- top_cpuset.mems_generation = cpuset_mems_generation++;
- return &top_cpuset.css;
- }
- parent = cgroup_cs(cont->parent);
- cs = kmalloc(sizeof(*cs), GFP_KERNEL);
- if (!cs)
- return ERR_PTR(-ENOMEM);
- cpuset_update_task_memory_state();
- cs->flags = 0;
- if (is_spread_page(parent))
- set_bit(CS_SPREAD_PAGE, &cs->flags);
- if (is_spread_slab(parent))
- set_bit(CS_SPREAD_SLAB, &cs->flags);
- set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
- cs->cpus_allowed = CPU_MASK_NONE;
- cs->mems_allowed = NODE_MASK_NONE;
- cs->mems_generation = cpuset_mems_generation++;
- fmeter_init(&cs->fmeter);
- cs->parent = parent;
- number_of_cpusets++;
- return &cs->css ;
- }
- /*
- * Locking note on the strange update_flag() call below:
- *
- * If the cpuset being removed has its flag 'sched_load_balance'
- * enabled, then simulate turning sched_load_balance off, which
- * will call rebuild_sched_domains(). The get_online_cpus()
- * call in rebuild_sched_domains() must not be made while holding
- * callback_mutex. Elsewhere the kernel nests callback_mutex inside
- * get_online_cpus() calls. So the reverse nesting would risk an
- * ABBA deadlock.
- */
- static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
- {
- struct cpuset *cs = cgroup_cs(cont);
- cpuset_update_task_memory_state();
- if (is_sched_load_balance(cs))
- update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");
- number_of_cpusets--;
- kfree(cs);
- }
- struct cgroup_subsys cpuset_subsys = {
- .name = "cpuset",
- .create = cpuset_create,
- .destroy = cpuset_destroy,
- .can_attach = cpuset_can_attach,
- .attach = cpuset_attach,
- .populate = cpuset_populate,
- .post_clone = cpuset_post_clone,
- .subsys_id = cpuset_subsys_id,
- .early_init = 1,
- };
- /*
- * cpuset_init_early - just enough so that the calls to
- * cpuset_update_task_memory_state() in early init code
- * are harmless.
- */
- int __init cpuset_init_early(void)
- {
- top_cpuset.mems_generation = cpuset_mems_generation++;
- return 0;
- }
- /**
- * cpuset_init - initialize cpusets at system boot
- *
- * Description: Initialize top_cpuset and the cpuset internal file system,
- **/
- int __init cpuset_init(void)
- {
- int err = 0;
- top_cpuset.cpus_allowed = CPU_MASK_ALL;
- top_cpuset.mems_allowed = NODE_MASK_ALL;
- fmeter_init(&top_cpuset.fmeter);
- top_cpuset.mems_generation = cpuset_mems_generation++;
- set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
- err = register_filesystem(&cpuset_fs_type);
- if (err < 0)
- return err;
- number_of_cpusets = 1;
- return 0;
- }
- /*
- * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
- * or memory nodes, we need to walk over the cpuset hierarchy,
- * removing that CPU or node from all cpusets. If this removes the
- * last CPU or node from a cpuset, then the guarantee_online_cpus()
- * or guarantee_online_mems() code will use that emptied cpusets
- * parent online CPUs or nodes. Cpusets that were already empty of
- * CPUs or nodes are left empty.
- *
- * This routine is intentionally inefficient in a couple of regards.
- * It will check all cpusets in a subtree even if the top cpuset of
- * the subtree has no offline CPUs or nodes. It checks both CPUs and
- * nodes, even though the caller could have been coded to know that
- * only one of CPUs or nodes needed to be checked on a given call.
- * This was done to minimize text size rather than cpu cycles.
- *
- * Call with both manage_mutex and callback_mutex held.
- *
- * Recursive, on depth of cpuset subtree.
- */
- static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
- {
- struct cgroup *cont;
- struct cpuset *c;
- /* Each of our child cpusets mems must be online */
- list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
- c = cgroup_cs(cont);
- guarantee_online_cpus_mems_in_subtree(c);
- if (!cpus_empty(c->cpus_allowed))
- guarantee_online_cpus(c, &c->cpus_allowed);
- if (!nodes_empty(c->mems_allowed))
- guarantee_online_mems(c, &c->mems_allowed);
- }
- }
- /*
- * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
- * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
- * track what's online after any CPU or memory node hotplug or unplug
- * event.
- *
- * To ensure that we don't remove a CPU or node from the top cpuset
- * that is currently in use by a child cpuset (which would violate
- * the rule that cpusets must be subsets of their parent), we first
- * call the recursive routine guarantee_online_cpus_mems_in_subtree().
- *
- * Since there are two callers of this routine, one for CPU hotplug
- * events and one for memory node hotplug events, we could have coded
- * two separate routines here. We code it as a single common routine
- * in order to minimize text size.
- */
- static void common_cpu_mem_hotplug_unplug(void)
- {
- cgroup_lock();
- mutex_lock(&callback_mutex);
- guarantee_online_cpus_mems_in_subtree(&top_cpuset);
- top_cpuset.cpus_allowed = cpu_online_map;
- top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
- mutex_unlock(&callback_mutex);
- cgroup_unlock();
- }
- /*
- * The top_cpuset tracks what CPUs and Memory Nodes are online,
- * period. This is necessary in order to make cpusets transparent
- * (of no affect) on systems that are actively using CPU hotplug
- * but making no active use of cpusets.
- *
- * This routine ensures that top_cpuset.cpus_allowed tracks
- * cpu_online_map on each CPU hotplug (cpuhp) event.
- */
- static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
- unsigned long phase, void *unused_cpu)
- {
- if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
- return NOTIFY_DONE;
- common_cpu_mem_hotplug_unplug();
- return 0;
- }
- #ifdef CONFIG_MEMORY_HOTPLUG
- /*
- * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
- * Call this routine anytime after you change
- * node_states[N_HIGH_MEMORY].
- * See also the previous routine cpuset_handle_cpuhp().
- */
- void cpuset_track_online_nodes(void)
- {
- common_cpu_mem_hotplug_unplug();
- }
- #endif
- /**
- * cpuset_init_smp - initialize cpus_allowed
- *
- * Description: Finish top cpuset after cpu, node maps are initialized
- **/
- void __init cpuset_init_smp(void)
- {
- top_cpuset.cpus_allowed = cpu_online_map;
- top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
- hotcpu_notifier(cpuset_handle_cpuhp, 0);
- }
- /**
- * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
- * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
- *
- * Description: Returns the cpumask_t cpus_allowed of the cpuset
- * attached to the specified @tsk. Guaranteed to return some non-empty
- * subset of cpu_online_map, even if this means going outside the
- * tasks cpuset.
- **/
- cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
- {
- cpumask_t mask;
- mutex_lock(&callback_mutex);
- mask = cpuset_cpus_allowed_locked(tsk);
- mutex_unlock(&callback_mutex);
- return mask;
- }
- /**
- * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
- * Must be called with callback_mutex held.
- **/
- cpumask_t cpuset_cpus_allowed_locked(struct task_struct *tsk)
- {
- cpumask_t mask;
- task_lock(tsk);
- guarantee_online_cpus(task_cs(tsk), &mask);
- task_unlock(tsk);
- return mask;
- }
- void cpuset_init_current_mems_allowed(void)
- {
- current->mems_allowed = NODE_MASK_ALL;
- }
- /**
- * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
- * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
- *
- * Description: Returns the nodemask_t mems_allowed of the cpuset
- * attached to the specified @tsk. Guaranteed to return some non-empty
- * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
- * tasks cpuset.
- **/
- nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
- {
- nodemask_t mask;
- mutex_lock(&callback_mutex);
- task_lock(tsk);
- guarantee_online_mems(task_cs(tsk), &mask);
- task_unlock(tsk);
- mutex_unlock(&callback_mutex);
- return mask;
- }
- /**
- * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
- * @zl: the zonelist to be checked
- *
- * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
- */
- int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
- {
- int i;
- for (i = 0; zl->zones[i]; i++) {
- int nid = zone_to_nid(zl->zones[i]);
- if (node_isset(nid, current->mems_allowed))
- return 1;
- }
- return 0;
- }
- /*
- * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
- * ancestor to the specified cpuset. Call holding callback_mutex.
- * If no ancestor is mem_exclusive (an unusual configuration), then
- * returns the root cpuset.
- */
- static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
- {
- while (!is_mem_exclusive(cs) && cs->parent)
- cs = cs->parent;
- return cs;
- }
- /**
- * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
- * @z: is this zone on an allowed node?
- * @gfp_mask: memory allocation flags
- *
- * If we're in interrupt, yes, we can always allocate. If
- * __GFP_THISNODE is set, yes, we can always allocate. If zone
- * z's node is in our tasks mems_allowed, yes. If it's not a
- * __GFP_HARDWALL request and this zone's nodes is in the nearest
- * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
- * If the task has been OOM killed and has access to memory reserves
- * as specified by the TIF_MEMDIE flag, yes.
- * Otherwise, no.
- *
- * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
- * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
- * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
- * from an enclosing cpuset.
- *
- * cpuset_zone_allowed_hardwall() only handles the simpler case of
- * hardwall cpusets, and never sleeps.
- *
- * The __GFP_THISNODE placement logic is really handled elsewhere,
- * by forcibly using a zonelist starting at a specified node, and by
- * (in get_page_from_freelist()) refusing to consider the zones for
- * any node on the zonelist except the first. By the time any such
- * calls get to this routine, we should just shut up and say 'yes'.
- *
- * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
- * and do not allow allocations outside the current tasks cpuset
- * unless the task has been OOM killed as is marked TIF_MEMDIE.
- * GFP_KERNEL allocations are not so marked, so can escape to the
- * nearest enclosing mem_exclusive ancestor cpuset.
- *
- * Scanning up parent cpusets requires callback_mutex. The
- * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
- * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
- * current tasks mems_allowed came up empty on the first pass over
- * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
- * cpuset are short of memory, might require taking the callback_mutex
- * mutex.
- *
- * The first call here from mm/page_alloc:get_page_from_freelist()
- * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
- * so no allocation on a node outside the cpuset is allowed (unless
- * in interrupt, of course).
- *
- * The second pass through get_page_from_freelist() doesn't even call
- * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
- * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
- * in alloc_flags. That logic and the checks below have the combined
- * affect that:
- * in_interrupt - any node ok (current task context irrelevant)
- * GFP_ATOMIC - any node ok
- * TIF_MEMDIE - any node ok
- * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
- * GFP_USER - only nodes in current tasks mems allowed ok.
- *
- * Rule:
- * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
- * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
- * the code that might scan up ancestor cpusets and sleep.
- */
- int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
- {
- int node; /* node that zone z is on */
- const struct cpuset *cs; /* current cpuset ancestors */
- int allowed; /* is allocation in zone z allowed? */
- if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
- return 1;
- node = zone_to_nid(z);
- might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
- if (node_isset(node, current->mems_allowed))
- return 1;
- /*
- * Allow tasks that have access to memory reserves because they have
- * been OOM killed to get memory anywhere.
- */
- if (unlikely(test_thread_flag(TIF_MEMDIE)))
- return 1;
- if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
- return 0;
- if (current->flags & PF_EXITING) /* Let dying task have memory */
- return 1;
- /* Not hardwall and node outside mems_allowed: scan up cpusets */
- mutex_lock(&callback_mutex);
- task_lock(current);
- cs = nearest_exclusive_ancestor(task_cs(current));
- task_unlock(current);
- allowed = node_isset(node, cs->mems_allowed);
- mutex_unlock(&callback_mutex);
- return allowed;
- }
- /*
- * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
- * @z: is this zone on an allowed node?
- * @gfp_mask: memory allocation flags
- *
- * If we're in interrupt, yes, we can always allocate.
- * If __GFP_THISNODE is set, yes, we can always allocate. If zone
- * z's node is in our tasks mems_allowed, yes. If the task has been
- * OOM killed and has access to memory reserves as specified by the
- * TIF_MEMDIE flag, yes. Otherwise, no.
- *
- * The __GFP_THISNODE placement logic is really handled elsewhere,
- * by forcibly using a zonelist starting at a specified node, and by
- * (in get_page_from_freelist()) refusing to consider the zones for
- * any node on the zonelist except the first. By the time any such
- * calls get to this routine, we should just shut up and say 'yes'.
- *
- * Unlike the cpuset_zone_allowed_softwall() variant, above,
- * this variant requires that the zone be in the current tasks
- * mems_allowed or that we're in interrupt. It does not scan up the
- * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
- * It never sleeps.
- */
- int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
- {
- int node; /* node that zone z is on */
- if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
- return 1;
- node = zone_to_nid(z);
- if (node_isset(node, current->mems_allowed))
- return 1;
- /*
- * Allow tasks that have access to memory reserves because they have
- * been OOM killed to get memory anywhere.
- */
- if (unlikely(test_thread_flag(TIF_MEMDIE)))
- return 1;
- return 0;
- }
- /**
- * cpuset_lock - lock out any changes to cpuset structures
- *
- * The out of memory (oom) code needs to mutex_lock cpusets
- * from being changed while it scans the tasklist looking for a
- * task in an overlapping cpuset. Expose callback_mutex via this
- * cpuset_lock() routine, so the oom code can lock it, before
- * locking the task list. The tasklist_lock is a spinlock, so
- * must be taken inside callback_mutex.
- */
- void cpuset_lock(void)
- {
- mutex_lock(&callback_mutex);
- }
- /**
- * cpuset_unlock - release lock on cpuset changes
- *
- * Undo the lock taken in a previous cpuset_lock() call.
- */
- void cpuset_unlock(void)
- {
- mutex_unlock(&callback_mutex);
- }
- /**
- * cpuset_mem_spread_node() - On which node to begin search for a page
- *
- * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
- * tasks in a cpuset with is_spread_page or is_spread_slab set),
- * and if the memory allocation used cpuset_mem_spread_node()
- * to determine on which node to start looking, as it will for
- * certain page cache or slab cache pages such as used for file
- * system buffers and inode caches, then instead of starting on the
- * local node to look for a free page, rather spread the starting
- * node around the tasks mems_allowed nodes.
- *
- * We don't have to worry about the returned node being offline
- * because "it can't happen", and even if it did, it would be ok.
- *
- * The routines calling guarantee_online_mems() are careful to
- * only set nodes in task->mems_allowed that are online. So it
- * should not be possible for the following code to return an
- * offline node. But if it did, that would be ok, as this routine
- * is not returning the node where the allocation must be, only
- * the node where the search should start. The zonelist passed to
- * __alloc_pages() will include all nodes. If the slab allocator
- * is passed an offline node, it will fall back to the local node.
- * See kmem_cache_alloc_node().
- */
- int cpuset_mem_spread_node(void)
- {
- int node;
- node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
- if (node == MAX_NUMNODES)
- node = first_node(current->mems_allowed);
- current->cpuset_mem_spread_rotor = node;
- return node;
- }
- EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
- /**
- * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
- * @tsk1: pointer to task_struct of some task.
- * @tsk2: pointer to task_struct of some other task.
- *
- * Description: Return true if @tsk1's mems_allowed intersects the
- * mems_allowed of @tsk2. Used by the OOM killer to determine if
- * one of the task's memory usage might impact the memory available
- * to the other.
- **/
- int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
- const struct task_struct *tsk2)
- {
- return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
- }
- /*
- * Collection of memory_pressure is suppressed unless
- * this flag is enabled by writing "1" to the special
- * cpuset file 'memory_pressure_enabled' in the root cpuset.
- */
- int cpuset_memory_pressure_enabled __read_mostly;
- /**
- * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
- *
- * Keep a running average of the rate of synchronous (direct)
- * page reclaim efforts initiated by tasks in each cpuset.
- *
- * This represents the rate at which some task in the cpuset
- * ran low on memory on all nodes it was allowed to use, and
- * had to enter the kernels page reclaim code in an effort to
- * create more free memory by tossing clean pages or swapping
- * or writing dirty pages.
- *
- * Display to user space in the per-cpuset read-only file
- * "memory_pressure". Value displayed is an integer
- * representing the recent rate of entry into the synchronous
- * (direct) page reclaim by any task attached to the cpuset.
- **/
- void __cpuset_memory_pressure_bump(void)
- {
- task_lock(current);
- fmeter_markevent(&task_cs(current)->fmeter);
- task_unlock(current);
- }
- #ifdef CONFIG_PROC_PID_CPUSET
- /*
- * proc_cpuset_show()
- * - Print tasks cpuset path into seq_file.
- * - Used for /proc/<pid>/cpuset.
- * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
- * doesn't really matter if tsk->cpuset changes after we read it,
- * and we take manage_mutex, keeping attach_task() from changing it
- * anyway. No need to check that tsk->cpuset != NULL, thanks to
- * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
- * cpuset to top_cpuset.
- */
- static int proc_cpuset_show(struct seq_file *m, void *unused_v)
- {
- struct pid *pid;
- struct task_struct *tsk;
- char *buf;
- struct cgroup_subsys_state *css;
- int retval;
- retval = -ENOMEM;
- buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
- if (!buf)
- goto out;
- retval = -ESRCH;
- pid = m->private;
- tsk = get_pid_task(pid, PIDTYPE_PID);
- if (!tsk)
- goto out_free;
- retval = -EINVAL;
- cgroup_lock();
- css = task_subsys_state(tsk, cpuset_subsys_id);
- retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
- if (retval < 0)
- goto out_unlock;
- seq_puts(m, buf);
- seq_putc(m, '\n');
- out_unlock:
- cgroup_unlock();
- put_task_struct(tsk);
- out_free:
- kfree(buf);
- out:
- return retval;
- }
- static int cpuset_open(struct inode *inode, struct file *file)
- {
- struct pid *pid = PROC_I(inode)->pid;
- return single_open(file, proc_cpuset_show, pid);
- }
- const struct file_operations proc_cpuset_operations = {
- .open = cpuset_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
- };
- #endif /* CONFIG_PROC_PID_CPUSET */
- /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
- char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
- {
- buffer += sprintf(buffer, "Cpus_allowed:\t");
- buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
- buffer += sprintf(buffer, "\n");
- buffer += sprintf(buffer, "Mems_allowed:\t");
- buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
- buffer += sprintf(buffer, "\n");
- return buffer;
- }
|