xfs_inode.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. #include "xfs_vnodeops.h"
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. kmem_zone_t *xfs_icluster_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * This routine is called to map an inode number within a file
  119. * system to the buffer containing the on-disk version of the
  120. * inode. It returns a pointer to the buffer containing the
  121. * on-disk inode in the bpp parameter, and in the dip parameter
  122. * it returns a pointer to the on-disk inode within that buffer.
  123. *
  124. * If a non-zero error is returned, then the contents of bpp and
  125. * dipp are undefined.
  126. *
  127. * Use xfs_imap() to determine the size and location of the
  128. * buffer to read from disk.
  129. */
  130. STATIC int
  131. xfs_inotobp(
  132. xfs_mount_t *mp,
  133. xfs_trans_t *tp,
  134. xfs_ino_t ino,
  135. xfs_dinode_t **dipp,
  136. xfs_buf_t **bpp,
  137. int *offset)
  138. {
  139. int di_ok;
  140. xfs_imap_t imap;
  141. xfs_buf_t *bp;
  142. int error;
  143. xfs_dinode_t *dip;
  144. /*
  145. * Call the space management code to find the location of the
  146. * inode on disk.
  147. */
  148. imap.im_blkno = 0;
  149. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  150. if (error != 0) {
  151. cmn_err(CE_WARN,
  152. "xfs_inotobp: xfs_imap() returned an "
  153. "error %d on %s. Returning error.", error, mp->m_fsname);
  154. return error;
  155. }
  156. /*
  157. * If the inode number maps to a block outside the bounds of the
  158. * file system then return NULL rather than calling read_buf
  159. * and panicing when we get an error from the driver.
  160. */
  161. if ((imap.im_blkno + imap.im_len) >
  162. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  163. cmn_err(CE_WARN,
  164. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  165. "of the file system %s. Returning EINVAL.",
  166. (unsigned long long)imap.im_blkno,
  167. imap.im_len, mp->m_fsname);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. /*
  171. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  172. * default to just a read_buf() call.
  173. */
  174. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  175. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  176. if (error) {
  177. cmn_err(CE_WARN,
  178. "xfs_inotobp: xfs_trans_read_buf() returned an "
  179. "error %d on %s. Returning error.", error, mp->m_fsname);
  180. return error;
  181. }
  182. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  183. di_ok =
  184. be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  185. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  186. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  187. XFS_RANDOM_ITOBP_INOTOBP))) {
  188. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  189. xfs_trans_brelse(tp, bp);
  190. cmn_err(CE_WARN,
  191. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  192. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  193. return XFS_ERROR(EFSCORRUPTED);
  194. }
  195. xfs_inobp_check(mp, bp);
  196. /*
  197. * Set *dipp to point to the on-disk inode in the buffer.
  198. */
  199. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  200. *bpp = bp;
  201. *offset = imap.im_boffset;
  202. return 0;
  203. }
  204. /*
  205. * This routine is called to map an inode to the buffer containing
  206. * the on-disk version of the inode. It returns a pointer to the
  207. * buffer containing the on-disk inode in the bpp parameter, and in
  208. * the dip parameter it returns a pointer to the on-disk inode within
  209. * that buffer.
  210. *
  211. * If a non-zero error is returned, then the contents of bpp and
  212. * dipp are undefined.
  213. *
  214. * If the inode is new and has not yet been initialized, use xfs_imap()
  215. * to determine the size and location of the buffer to read from disk.
  216. * If the inode has already been mapped to its buffer and read in once,
  217. * then use the mapping information stored in the inode rather than
  218. * calling xfs_imap(). This allows us to avoid the overhead of looking
  219. * at the inode btree for small block file systems (see xfs_dilocate()).
  220. * We can tell whether the inode has been mapped in before by comparing
  221. * its disk block address to 0. Only uninitialized inodes will have
  222. * 0 for the disk block address.
  223. */
  224. int
  225. xfs_itobp(
  226. xfs_mount_t *mp,
  227. xfs_trans_t *tp,
  228. xfs_inode_t *ip,
  229. xfs_dinode_t **dipp,
  230. xfs_buf_t **bpp,
  231. xfs_daddr_t bno,
  232. uint imap_flags)
  233. {
  234. xfs_imap_t imap;
  235. xfs_buf_t *bp;
  236. int error;
  237. int i;
  238. int ni;
  239. if (ip->i_blkno == (xfs_daddr_t)0) {
  240. /*
  241. * Call the space management code to find the location of the
  242. * inode on disk.
  243. */
  244. imap.im_blkno = bno;
  245. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  246. XFS_IMAP_LOOKUP | imap_flags)))
  247. return error;
  248. /*
  249. * If the inode number maps to a block outside the bounds
  250. * of the file system then return NULL rather than calling
  251. * read_buf and panicing when we get an error from the
  252. * driver.
  253. */
  254. if ((imap.im_blkno + imap.im_len) >
  255. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  256. #ifdef DEBUG
  257. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  258. "(imap.im_blkno (0x%llx) "
  259. "+ imap.im_len (0x%llx)) > "
  260. " XFS_FSB_TO_BB(mp, "
  261. "mp->m_sb.sb_dblocks) (0x%llx)",
  262. (unsigned long long) imap.im_blkno,
  263. (unsigned long long) imap.im_len,
  264. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  265. #endif /* DEBUG */
  266. return XFS_ERROR(EINVAL);
  267. }
  268. /*
  269. * Fill in the fields in the inode that will be used to
  270. * map the inode to its buffer from now on.
  271. */
  272. ip->i_blkno = imap.im_blkno;
  273. ip->i_len = imap.im_len;
  274. ip->i_boffset = imap.im_boffset;
  275. } else {
  276. /*
  277. * We've already mapped the inode once, so just use the
  278. * mapping that we saved the first time.
  279. */
  280. imap.im_blkno = ip->i_blkno;
  281. imap.im_len = ip->i_len;
  282. imap.im_boffset = ip->i_boffset;
  283. }
  284. ASSERT(bno == 0 || bno == imap.im_blkno);
  285. /*
  286. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  287. * default to just a read_buf() call.
  288. */
  289. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  290. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  291. if (error) {
  292. #ifdef DEBUG
  293. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  294. "xfs_trans_read_buf() returned error %d, "
  295. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  296. error, (unsigned long long) imap.im_blkno,
  297. (unsigned long long) imap.im_len);
  298. #endif /* DEBUG */
  299. return error;
  300. }
  301. /*
  302. * Validate the magic number and version of every inode in the buffer
  303. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  304. * No validation is done here in userspace (xfs_repair).
  305. */
  306. #if !defined(__KERNEL__)
  307. ni = 0;
  308. #elif defined(DEBUG)
  309. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  310. #else /* usual case */
  311. ni = 1;
  312. #endif
  313. for (i = 0; i < ni; i++) {
  314. int di_ok;
  315. xfs_dinode_t *dip;
  316. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  317. (i << mp->m_sb.sb_inodelog));
  318. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  319. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  320. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  321. XFS_ERRTAG_ITOBP_INOTOBP,
  322. XFS_RANDOM_ITOBP_INOTOBP))) {
  323. if (imap_flags & XFS_IMAP_BULKSTAT) {
  324. xfs_trans_brelse(tp, bp);
  325. return XFS_ERROR(EINVAL);
  326. }
  327. #ifdef DEBUG
  328. cmn_err(CE_ALERT,
  329. "Device %s - bad inode magic/vsn "
  330. "daddr %lld #%d (magic=%x)",
  331. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  332. (unsigned long long)imap.im_blkno, i,
  333. be16_to_cpu(dip->di_core.di_magic));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. xfs_inobp_check(mp, bp);
  342. /*
  343. * Mark the buffer as an inode buffer now that it looks good
  344. */
  345. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  346. /*
  347. * Set *dipp to point to the on-disk inode in the buffer.
  348. */
  349. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  350. *bpp = bp;
  351. return 0;
  352. }
  353. /*
  354. * Move inode type and inode format specific information from the
  355. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  356. * this means set if_rdev to the proper value. For files, directories,
  357. * and symlinks this means to bring in the in-line data or extent
  358. * pointers. For a file in B-tree format, only the root is immediately
  359. * brought in-core. The rest will be in-lined in if_extents when it
  360. * is first referenced (see xfs_iread_extents()).
  361. */
  362. STATIC int
  363. xfs_iformat(
  364. xfs_inode_t *ip,
  365. xfs_dinode_t *dip)
  366. {
  367. xfs_attr_shortform_t *atp;
  368. int size;
  369. int error;
  370. xfs_fsize_t di_size;
  371. ip->i_df.if_ext_max =
  372. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  373. error = 0;
  374. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  375. be16_to_cpu(dip->di_core.di_anextents) >
  376. be64_to_cpu(dip->di_core.di_nblocks))) {
  377. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  378. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  379. (unsigned long long)ip->i_ino,
  380. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  381. be16_to_cpu(dip->di_core.di_anextents)),
  382. (unsigned long long)
  383. be64_to_cpu(dip->di_core.di_nblocks));
  384. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  385. ip->i_mount, dip);
  386. return XFS_ERROR(EFSCORRUPTED);
  387. }
  388. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  389. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  390. "corrupt dinode %Lu, forkoff = 0x%x.",
  391. (unsigned long long)ip->i_ino,
  392. dip->di_core.di_forkoff);
  393. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  394. ip->i_mount, dip);
  395. return XFS_ERROR(EFSCORRUPTED);
  396. }
  397. switch (ip->i_d.di_mode & S_IFMT) {
  398. case S_IFIFO:
  399. case S_IFCHR:
  400. case S_IFBLK:
  401. case S_IFSOCK:
  402. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  403. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. ip->i_d.di_size = 0;
  408. ip->i_size = 0;
  409. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  410. break;
  411. case S_IFREG:
  412. case S_IFLNK:
  413. case S_IFDIR:
  414. switch (dip->di_core.di_format) {
  415. case XFS_DINODE_FMT_LOCAL:
  416. /*
  417. * no local regular files yet
  418. */
  419. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  420. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  421. "corrupt inode %Lu "
  422. "(local format for regular file).",
  423. (unsigned long long) ip->i_ino);
  424. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  425. XFS_ERRLEVEL_LOW,
  426. ip->i_mount, dip);
  427. return XFS_ERROR(EFSCORRUPTED);
  428. }
  429. di_size = be64_to_cpu(dip->di_core.di_size);
  430. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  431. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  432. "corrupt inode %Lu "
  433. "(bad size %Ld for local inode).",
  434. (unsigned long long) ip->i_ino,
  435. (long long) di_size);
  436. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  437. XFS_ERRLEVEL_LOW,
  438. ip->i_mount, dip);
  439. return XFS_ERROR(EFSCORRUPTED);
  440. }
  441. size = (int)di_size;
  442. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  443. break;
  444. case XFS_DINODE_FMT_EXTENTS:
  445. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  446. break;
  447. case XFS_DINODE_FMT_BTREE:
  448. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  449. break;
  450. default:
  451. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  452. ip->i_mount);
  453. return XFS_ERROR(EFSCORRUPTED);
  454. }
  455. break;
  456. default:
  457. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. if (error) {
  461. return error;
  462. }
  463. if (!XFS_DFORK_Q(dip))
  464. return 0;
  465. ASSERT(ip->i_afp == NULL);
  466. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  467. ip->i_afp->if_ext_max =
  468. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  469. switch (dip->di_core.di_aformat) {
  470. case XFS_DINODE_FMT_LOCAL:
  471. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  472. size = be16_to_cpu(atp->hdr.totsize);
  473. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  474. break;
  475. case XFS_DINODE_FMT_EXTENTS:
  476. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  477. break;
  478. case XFS_DINODE_FMT_BTREE:
  479. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  480. break;
  481. default:
  482. error = XFS_ERROR(EFSCORRUPTED);
  483. break;
  484. }
  485. if (error) {
  486. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  487. ip->i_afp = NULL;
  488. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  489. }
  490. return error;
  491. }
  492. /*
  493. * The file is in-lined in the on-disk inode.
  494. * If it fits into if_inline_data, then copy
  495. * it there, otherwise allocate a buffer for it
  496. * and copy the data there. Either way, set
  497. * if_data to point at the data.
  498. * If we allocate a buffer for the data, make
  499. * sure that its size is a multiple of 4 and
  500. * record the real size in i_real_bytes.
  501. */
  502. STATIC int
  503. xfs_iformat_local(
  504. xfs_inode_t *ip,
  505. xfs_dinode_t *dip,
  506. int whichfork,
  507. int size)
  508. {
  509. xfs_ifork_t *ifp;
  510. int real_size;
  511. /*
  512. * If the size is unreasonable, then something
  513. * is wrong and we just bail out rather than crash in
  514. * kmem_alloc() or memcpy() below.
  515. */
  516. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  517. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  518. "corrupt inode %Lu "
  519. "(bad size %d for local fork, size = %d).",
  520. (unsigned long long) ip->i_ino, size,
  521. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  522. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  523. ip->i_mount, dip);
  524. return XFS_ERROR(EFSCORRUPTED);
  525. }
  526. ifp = XFS_IFORK_PTR(ip, whichfork);
  527. real_size = 0;
  528. if (size == 0)
  529. ifp->if_u1.if_data = NULL;
  530. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  531. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  532. else {
  533. real_size = roundup(size, 4);
  534. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  535. }
  536. ifp->if_bytes = size;
  537. ifp->if_real_bytes = real_size;
  538. if (size)
  539. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  540. ifp->if_flags &= ~XFS_IFEXTENTS;
  541. ifp->if_flags |= XFS_IFINLINE;
  542. return 0;
  543. }
  544. /*
  545. * The file consists of a set of extents all
  546. * of which fit into the on-disk inode.
  547. * If there are few enough extents to fit into
  548. * the if_inline_ext, then copy them there.
  549. * Otherwise allocate a buffer for them and copy
  550. * them into it. Either way, set if_extents
  551. * to point at the extents.
  552. */
  553. STATIC int
  554. xfs_iformat_extents(
  555. xfs_inode_t *ip,
  556. xfs_dinode_t *dip,
  557. int whichfork)
  558. {
  559. xfs_bmbt_rec_t *dp;
  560. xfs_ifork_t *ifp;
  561. int nex;
  562. int size;
  563. int i;
  564. ifp = XFS_IFORK_PTR(ip, whichfork);
  565. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  566. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  567. /*
  568. * If the number of extents is unreasonable, then something
  569. * is wrong and we just bail out rather than crash in
  570. * kmem_alloc() or memcpy() below.
  571. */
  572. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  573. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  574. "corrupt inode %Lu ((a)extents = %d).",
  575. (unsigned long long) ip->i_ino, nex);
  576. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  577. ip->i_mount, dip);
  578. return XFS_ERROR(EFSCORRUPTED);
  579. }
  580. ifp->if_real_bytes = 0;
  581. if (nex == 0)
  582. ifp->if_u1.if_extents = NULL;
  583. else if (nex <= XFS_INLINE_EXTS)
  584. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  585. else
  586. xfs_iext_add(ifp, 0, nex);
  587. ifp->if_bytes = size;
  588. if (size) {
  589. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  590. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  591. for (i = 0; i < nex; i++, dp++) {
  592. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  593. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  594. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  595. }
  596. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  597. if (whichfork != XFS_DATA_FORK ||
  598. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  599. if (unlikely(xfs_check_nostate_extents(
  600. ifp, 0, nex))) {
  601. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  602. XFS_ERRLEVEL_LOW,
  603. ip->i_mount);
  604. return XFS_ERROR(EFSCORRUPTED);
  605. }
  606. }
  607. ifp->if_flags |= XFS_IFEXTENTS;
  608. return 0;
  609. }
  610. /*
  611. * The file has too many extents to fit into
  612. * the inode, so they are in B-tree format.
  613. * Allocate a buffer for the root of the B-tree
  614. * and copy the root into it. The i_extents
  615. * field will remain NULL until all of the
  616. * extents are read in (when they are needed).
  617. */
  618. STATIC int
  619. xfs_iformat_btree(
  620. xfs_inode_t *ip,
  621. xfs_dinode_t *dip,
  622. int whichfork)
  623. {
  624. xfs_bmdr_block_t *dfp;
  625. xfs_ifork_t *ifp;
  626. /* REFERENCED */
  627. int nrecs;
  628. int size;
  629. ifp = XFS_IFORK_PTR(ip, whichfork);
  630. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  631. size = XFS_BMAP_BROOT_SPACE(dfp);
  632. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  633. /*
  634. * blow out if -- fork has less extents than can fit in
  635. * fork (fork shouldn't be a btree format), root btree
  636. * block has more records than can fit into the fork,
  637. * or the number of extents is greater than the number of
  638. * blocks.
  639. */
  640. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  641. || XFS_BMDR_SPACE_CALC(nrecs) >
  642. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  643. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  644. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  645. "corrupt inode %Lu (btree).",
  646. (unsigned long long) ip->i_ino);
  647. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  648. ip->i_mount);
  649. return XFS_ERROR(EFSCORRUPTED);
  650. }
  651. ifp->if_broot_bytes = size;
  652. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  653. ASSERT(ifp->if_broot != NULL);
  654. /*
  655. * Copy and convert from the on-disk structure
  656. * to the in-memory structure.
  657. */
  658. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  659. ifp->if_broot, size);
  660. ifp->if_flags &= ~XFS_IFEXTENTS;
  661. ifp->if_flags |= XFS_IFBROOT;
  662. return 0;
  663. }
  664. void
  665. xfs_dinode_from_disk(
  666. xfs_icdinode_t *to,
  667. xfs_dinode_core_t *from)
  668. {
  669. to->di_magic = be16_to_cpu(from->di_magic);
  670. to->di_mode = be16_to_cpu(from->di_mode);
  671. to->di_version = from ->di_version;
  672. to->di_format = from->di_format;
  673. to->di_onlink = be16_to_cpu(from->di_onlink);
  674. to->di_uid = be32_to_cpu(from->di_uid);
  675. to->di_gid = be32_to_cpu(from->di_gid);
  676. to->di_nlink = be32_to_cpu(from->di_nlink);
  677. to->di_projid = be16_to_cpu(from->di_projid);
  678. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  679. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  680. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  681. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  682. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  683. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  684. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  685. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  686. to->di_size = be64_to_cpu(from->di_size);
  687. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  688. to->di_extsize = be32_to_cpu(from->di_extsize);
  689. to->di_nextents = be32_to_cpu(from->di_nextents);
  690. to->di_anextents = be16_to_cpu(from->di_anextents);
  691. to->di_forkoff = from->di_forkoff;
  692. to->di_aformat = from->di_aformat;
  693. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  694. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  695. to->di_flags = be16_to_cpu(from->di_flags);
  696. to->di_gen = be32_to_cpu(from->di_gen);
  697. }
  698. void
  699. xfs_dinode_to_disk(
  700. xfs_dinode_core_t *to,
  701. xfs_icdinode_t *from)
  702. {
  703. to->di_magic = cpu_to_be16(from->di_magic);
  704. to->di_mode = cpu_to_be16(from->di_mode);
  705. to->di_version = from ->di_version;
  706. to->di_format = from->di_format;
  707. to->di_onlink = cpu_to_be16(from->di_onlink);
  708. to->di_uid = cpu_to_be32(from->di_uid);
  709. to->di_gid = cpu_to_be32(from->di_gid);
  710. to->di_nlink = cpu_to_be32(from->di_nlink);
  711. to->di_projid = cpu_to_be16(from->di_projid);
  712. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  713. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  714. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  715. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  716. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  717. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  718. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  719. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  720. to->di_size = cpu_to_be64(from->di_size);
  721. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  722. to->di_extsize = cpu_to_be32(from->di_extsize);
  723. to->di_nextents = cpu_to_be32(from->di_nextents);
  724. to->di_anextents = cpu_to_be16(from->di_anextents);
  725. to->di_forkoff = from->di_forkoff;
  726. to->di_aformat = from->di_aformat;
  727. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  728. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  729. to->di_flags = cpu_to_be16(from->di_flags);
  730. to->di_gen = cpu_to_be32(from->di_gen);
  731. }
  732. STATIC uint
  733. _xfs_dic2xflags(
  734. __uint16_t di_flags)
  735. {
  736. uint flags = 0;
  737. if (di_flags & XFS_DIFLAG_ANY) {
  738. if (di_flags & XFS_DIFLAG_REALTIME)
  739. flags |= XFS_XFLAG_REALTIME;
  740. if (di_flags & XFS_DIFLAG_PREALLOC)
  741. flags |= XFS_XFLAG_PREALLOC;
  742. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  743. flags |= XFS_XFLAG_IMMUTABLE;
  744. if (di_flags & XFS_DIFLAG_APPEND)
  745. flags |= XFS_XFLAG_APPEND;
  746. if (di_flags & XFS_DIFLAG_SYNC)
  747. flags |= XFS_XFLAG_SYNC;
  748. if (di_flags & XFS_DIFLAG_NOATIME)
  749. flags |= XFS_XFLAG_NOATIME;
  750. if (di_flags & XFS_DIFLAG_NODUMP)
  751. flags |= XFS_XFLAG_NODUMP;
  752. if (di_flags & XFS_DIFLAG_RTINHERIT)
  753. flags |= XFS_XFLAG_RTINHERIT;
  754. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  755. flags |= XFS_XFLAG_PROJINHERIT;
  756. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  757. flags |= XFS_XFLAG_NOSYMLINKS;
  758. if (di_flags & XFS_DIFLAG_EXTSIZE)
  759. flags |= XFS_XFLAG_EXTSIZE;
  760. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  761. flags |= XFS_XFLAG_EXTSZINHERIT;
  762. if (di_flags & XFS_DIFLAG_NODEFRAG)
  763. flags |= XFS_XFLAG_NODEFRAG;
  764. if (di_flags & XFS_DIFLAG_FILESTREAM)
  765. flags |= XFS_XFLAG_FILESTREAM;
  766. }
  767. return flags;
  768. }
  769. uint
  770. xfs_ip2xflags(
  771. xfs_inode_t *ip)
  772. {
  773. xfs_icdinode_t *dic = &ip->i_d;
  774. return _xfs_dic2xflags(dic->di_flags) |
  775. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  776. }
  777. uint
  778. xfs_dic2xflags(
  779. xfs_dinode_core_t *dic)
  780. {
  781. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  782. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  783. }
  784. /*
  785. * Given a mount structure and an inode number, return a pointer
  786. * to a newly allocated in-core inode corresponding to the given
  787. * inode number.
  788. *
  789. * Initialize the inode's attributes and extent pointers if it
  790. * already has them (it will not if the inode has no links).
  791. */
  792. int
  793. xfs_iread(
  794. xfs_mount_t *mp,
  795. xfs_trans_t *tp,
  796. xfs_ino_t ino,
  797. xfs_inode_t **ipp,
  798. xfs_daddr_t bno,
  799. uint imap_flags)
  800. {
  801. xfs_buf_t *bp;
  802. xfs_dinode_t *dip;
  803. xfs_inode_t *ip;
  804. int error;
  805. ASSERT(xfs_inode_zone != NULL);
  806. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  807. ip->i_ino = ino;
  808. ip->i_mount = mp;
  809. atomic_set(&ip->i_iocount, 0);
  810. spin_lock_init(&ip->i_flags_lock);
  811. /*
  812. * Get pointer's to the on-disk inode and the buffer containing it.
  813. * If the inode number refers to a block outside the file system
  814. * then xfs_itobp() will return NULL. In this case we should
  815. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  816. * know that this is a new incore inode.
  817. */
  818. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  819. if (error) {
  820. kmem_zone_free(xfs_inode_zone, ip);
  821. return error;
  822. }
  823. /*
  824. * Initialize inode's trace buffers.
  825. * Do this before xfs_iformat in case it adds entries.
  826. */
  827. #ifdef XFS_VNODE_TRACE
  828. ip->i_trace = ktrace_alloc(VNODE_TRACE_SIZE, KM_SLEEP);
  829. #endif
  830. #ifdef XFS_BMAP_TRACE
  831. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  832. #endif
  833. #ifdef XFS_BMBT_TRACE
  834. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  835. #endif
  836. #ifdef XFS_RW_TRACE
  837. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  838. #endif
  839. #ifdef XFS_ILOCK_TRACE
  840. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  841. #endif
  842. #ifdef XFS_DIR2_TRACE
  843. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  844. #endif
  845. /*
  846. * If we got something that isn't an inode it means someone
  847. * (nfs or dmi) has a stale handle.
  848. */
  849. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  850. kmem_zone_free(xfs_inode_zone, ip);
  851. xfs_trans_brelse(tp, bp);
  852. #ifdef DEBUG
  853. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  854. "dip->di_core.di_magic (0x%x) != "
  855. "XFS_DINODE_MAGIC (0x%x)",
  856. be16_to_cpu(dip->di_core.di_magic),
  857. XFS_DINODE_MAGIC);
  858. #endif /* DEBUG */
  859. return XFS_ERROR(EINVAL);
  860. }
  861. /*
  862. * If the on-disk inode is already linked to a directory
  863. * entry, copy all of the inode into the in-core inode.
  864. * xfs_iformat() handles copying in the inode format
  865. * specific information.
  866. * Otherwise, just get the truly permanent information.
  867. */
  868. if (dip->di_core.di_mode) {
  869. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  870. error = xfs_iformat(ip, dip);
  871. if (error) {
  872. kmem_zone_free(xfs_inode_zone, ip);
  873. xfs_trans_brelse(tp, bp);
  874. #ifdef DEBUG
  875. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  876. "xfs_iformat() returned error %d",
  877. error);
  878. #endif /* DEBUG */
  879. return error;
  880. }
  881. } else {
  882. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  883. ip->i_d.di_version = dip->di_core.di_version;
  884. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  885. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  886. /*
  887. * Make sure to pull in the mode here as well in
  888. * case the inode is released without being used.
  889. * This ensures that xfs_inactive() will see that
  890. * the inode is already free and not try to mess
  891. * with the uninitialized part of it.
  892. */
  893. ip->i_d.di_mode = 0;
  894. /*
  895. * Initialize the per-fork minima and maxima for a new
  896. * inode here. xfs_iformat will do it for old inodes.
  897. */
  898. ip->i_df.if_ext_max =
  899. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  900. }
  901. INIT_LIST_HEAD(&ip->i_reclaim);
  902. /*
  903. * The inode format changed when we moved the link count and
  904. * made it 32 bits long. If this is an old format inode,
  905. * convert it in memory to look like a new one. If it gets
  906. * flushed to disk we will convert back before flushing or
  907. * logging it. We zero out the new projid field and the old link
  908. * count field. We'll handle clearing the pad field (the remains
  909. * of the old uuid field) when we actually convert the inode to
  910. * the new format. We don't change the version number so that we
  911. * can distinguish this from a real new format inode.
  912. */
  913. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  914. ip->i_d.di_nlink = ip->i_d.di_onlink;
  915. ip->i_d.di_onlink = 0;
  916. ip->i_d.di_projid = 0;
  917. }
  918. ip->i_delayed_blks = 0;
  919. ip->i_size = ip->i_d.di_size;
  920. /*
  921. * Mark the buffer containing the inode as something to keep
  922. * around for a while. This helps to keep recently accessed
  923. * meta-data in-core longer.
  924. */
  925. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  926. /*
  927. * Use xfs_trans_brelse() to release the buffer containing the
  928. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  929. * in xfs_itobp() above. If tp is NULL, this is just a normal
  930. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  931. * will only release the buffer if it is not dirty within the
  932. * transaction. It will be OK to release the buffer in this case,
  933. * because inodes on disk are never destroyed and we will be
  934. * locking the new in-core inode before putting it in the hash
  935. * table where other processes can find it. Thus we don't have
  936. * to worry about the inode being changed just because we released
  937. * the buffer.
  938. */
  939. xfs_trans_brelse(tp, bp);
  940. *ipp = ip;
  941. return 0;
  942. }
  943. /*
  944. * Read in extents from a btree-format inode.
  945. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  946. */
  947. int
  948. xfs_iread_extents(
  949. xfs_trans_t *tp,
  950. xfs_inode_t *ip,
  951. int whichfork)
  952. {
  953. int error;
  954. xfs_ifork_t *ifp;
  955. xfs_extnum_t nextents;
  956. size_t size;
  957. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  958. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  959. ip->i_mount);
  960. return XFS_ERROR(EFSCORRUPTED);
  961. }
  962. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  963. size = nextents * sizeof(xfs_bmbt_rec_t);
  964. ifp = XFS_IFORK_PTR(ip, whichfork);
  965. /*
  966. * We know that the size is valid (it's checked in iformat_btree)
  967. */
  968. ifp->if_lastex = NULLEXTNUM;
  969. ifp->if_bytes = ifp->if_real_bytes = 0;
  970. ifp->if_flags |= XFS_IFEXTENTS;
  971. xfs_iext_add(ifp, 0, nextents);
  972. error = xfs_bmap_read_extents(tp, ip, whichfork);
  973. if (error) {
  974. xfs_iext_destroy(ifp);
  975. ifp->if_flags &= ~XFS_IFEXTENTS;
  976. return error;
  977. }
  978. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  979. return 0;
  980. }
  981. /*
  982. * Allocate an inode on disk and return a copy of its in-core version.
  983. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  984. * appropriately within the inode. The uid and gid for the inode are
  985. * set according to the contents of the given cred structure.
  986. *
  987. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  988. * has a free inode available, call xfs_iget()
  989. * to obtain the in-core version of the allocated inode. Finally,
  990. * fill in the inode and log its initial contents. In this case,
  991. * ialloc_context would be set to NULL and call_again set to false.
  992. *
  993. * If xfs_dialloc() does not have an available inode,
  994. * it will replenish its supply by doing an allocation. Since we can
  995. * only do one allocation within a transaction without deadlocks, we
  996. * must commit the current transaction before returning the inode itself.
  997. * In this case, therefore, we will set call_again to true and return.
  998. * The caller should then commit the current transaction, start a new
  999. * transaction, and call xfs_ialloc() again to actually get the inode.
  1000. *
  1001. * To ensure that some other process does not grab the inode that
  1002. * was allocated during the first call to xfs_ialloc(), this routine
  1003. * also returns the [locked] bp pointing to the head of the freelist
  1004. * as ialloc_context. The caller should hold this buffer across
  1005. * the commit and pass it back into this routine on the second call.
  1006. *
  1007. * If we are allocating quota inodes, we do not have a parent inode
  1008. * to attach to or associate with (i.e. pip == NULL) because they
  1009. * are not linked into the directory structure - they are attached
  1010. * directly to the superblock - and so have no parent.
  1011. */
  1012. int
  1013. xfs_ialloc(
  1014. xfs_trans_t *tp,
  1015. xfs_inode_t *pip,
  1016. mode_t mode,
  1017. xfs_nlink_t nlink,
  1018. xfs_dev_t rdev,
  1019. cred_t *cr,
  1020. xfs_prid_t prid,
  1021. int okalloc,
  1022. xfs_buf_t **ialloc_context,
  1023. boolean_t *call_again,
  1024. xfs_inode_t **ipp)
  1025. {
  1026. xfs_ino_t ino;
  1027. xfs_inode_t *ip;
  1028. bhv_vnode_t *vp;
  1029. uint flags;
  1030. int error;
  1031. /*
  1032. * Call the space management code to pick
  1033. * the on-disk inode to be allocated.
  1034. */
  1035. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1036. ialloc_context, call_again, &ino);
  1037. if (error != 0) {
  1038. return error;
  1039. }
  1040. if (*call_again || ino == NULLFSINO) {
  1041. *ipp = NULL;
  1042. return 0;
  1043. }
  1044. ASSERT(*ialloc_context == NULL);
  1045. /*
  1046. * Get the in-core inode with the lock held exclusively.
  1047. * This is because we're setting fields here we need
  1048. * to prevent others from looking at until we're done.
  1049. */
  1050. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1051. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1052. if (error != 0) {
  1053. return error;
  1054. }
  1055. ASSERT(ip != NULL);
  1056. vp = XFS_ITOV(ip);
  1057. ip->i_d.di_mode = (__uint16_t)mode;
  1058. ip->i_d.di_onlink = 0;
  1059. ip->i_d.di_nlink = nlink;
  1060. ASSERT(ip->i_d.di_nlink == nlink);
  1061. ip->i_d.di_uid = current_fsuid(cr);
  1062. ip->i_d.di_gid = current_fsgid(cr);
  1063. ip->i_d.di_projid = prid;
  1064. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1065. /*
  1066. * If the superblock version is up to where we support new format
  1067. * inodes and this is currently an old format inode, then change
  1068. * the inode version number now. This way we only do the conversion
  1069. * here rather than here and in the flush/logging code.
  1070. */
  1071. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1072. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1073. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1074. /*
  1075. * We've already zeroed the old link count, the projid field,
  1076. * and the pad field.
  1077. */
  1078. }
  1079. /*
  1080. * Project ids won't be stored on disk if we are using a version 1 inode.
  1081. */
  1082. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1083. xfs_bump_ino_vers2(tp, ip);
  1084. if (pip && XFS_INHERIT_GID(pip)) {
  1085. ip->i_d.di_gid = pip->i_d.di_gid;
  1086. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1087. ip->i_d.di_mode |= S_ISGID;
  1088. }
  1089. }
  1090. /*
  1091. * If the group ID of the new file does not match the effective group
  1092. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1093. * (and only if the irix_sgid_inherit compatibility variable is set).
  1094. */
  1095. if ((irix_sgid_inherit) &&
  1096. (ip->i_d.di_mode & S_ISGID) &&
  1097. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1098. ip->i_d.di_mode &= ~S_ISGID;
  1099. }
  1100. ip->i_d.di_size = 0;
  1101. ip->i_size = 0;
  1102. ip->i_d.di_nextents = 0;
  1103. ASSERT(ip->i_d.di_nblocks == 0);
  1104. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1105. /*
  1106. * di_gen will have been taken care of in xfs_iread.
  1107. */
  1108. ip->i_d.di_extsize = 0;
  1109. ip->i_d.di_dmevmask = 0;
  1110. ip->i_d.di_dmstate = 0;
  1111. ip->i_d.di_flags = 0;
  1112. flags = XFS_ILOG_CORE;
  1113. switch (mode & S_IFMT) {
  1114. case S_IFIFO:
  1115. case S_IFCHR:
  1116. case S_IFBLK:
  1117. case S_IFSOCK:
  1118. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1119. ip->i_df.if_u2.if_rdev = rdev;
  1120. ip->i_df.if_flags = 0;
  1121. flags |= XFS_ILOG_DEV;
  1122. break;
  1123. case S_IFREG:
  1124. if (pip && xfs_inode_is_filestream(pip)) {
  1125. error = xfs_filestream_associate(pip, ip);
  1126. if (error < 0)
  1127. return -error;
  1128. if (!error)
  1129. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1130. }
  1131. /* fall through */
  1132. case S_IFDIR:
  1133. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1134. uint di_flags = 0;
  1135. if ((mode & S_IFMT) == S_IFDIR) {
  1136. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1137. di_flags |= XFS_DIFLAG_RTINHERIT;
  1138. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1139. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1140. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1141. }
  1142. } else if ((mode & S_IFMT) == S_IFREG) {
  1143. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1144. di_flags |= XFS_DIFLAG_REALTIME;
  1145. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1146. }
  1147. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1148. di_flags |= XFS_DIFLAG_EXTSIZE;
  1149. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1150. }
  1151. }
  1152. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1153. xfs_inherit_noatime)
  1154. di_flags |= XFS_DIFLAG_NOATIME;
  1155. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1156. xfs_inherit_nodump)
  1157. di_flags |= XFS_DIFLAG_NODUMP;
  1158. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1159. xfs_inherit_sync)
  1160. di_flags |= XFS_DIFLAG_SYNC;
  1161. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1162. xfs_inherit_nosymlinks)
  1163. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1164. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1165. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1166. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1167. xfs_inherit_nodefrag)
  1168. di_flags |= XFS_DIFLAG_NODEFRAG;
  1169. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1170. di_flags |= XFS_DIFLAG_FILESTREAM;
  1171. ip->i_d.di_flags |= di_flags;
  1172. }
  1173. /* FALLTHROUGH */
  1174. case S_IFLNK:
  1175. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1176. ip->i_df.if_flags = XFS_IFEXTENTS;
  1177. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1178. ip->i_df.if_u1.if_extents = NULL;
  1179. break;
  1180. default:
  1181. ASSERT(0);
  1182. }
  1183. /*
  1184. * Attribute fork settings for new inode.
  1185. */
  1186. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1187. ip->i_d.di_anextents = 0;
  1188. /*
  1189. * Log the new values stuffed into the inode.
  1190. */
  1191. xfs_trans_log_inode(tp, ip, flags);
  1192. /* now that we have an i_mode we can setup inode ops and unlock */
  1193. xfs_initialize_vnode(tp->t_mountp, vp, ip);
  1194. *ipp = ip;
  1195. return 0;
  1196. }
  1197. /*
  1198. * Check to make sure that there are no blocks allocated to the
  1199. * file beyond the size of the file. We don't check this for
  1200. * files with fixed size extents or real time extents, but we
  1201. * at least do it for regular files.
  1202. */
  1203. #ifdef DEBUG
  1204. void
  1205. xfs_isize_check(
  1206. xfs_mount_t *mp,
  1207. xfs_inode_t *ip,
  1208. xfs_fsize_t isize)
  1209. {
  1210. xfs_fileoff_t map_first;
  1211. int nimaps;
  1212. xfs_bmbt_irec_t imaps[2];
  1213. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1214. return;
  1215. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1216. return;
  1217. nimaps = 2;
  1218. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1219. /*
  1220. * The filesystem could be shutting down, so bmapi may return
  1221. * an error.
  1222. */
  1223. if (xfs_bmapi(NULL, ip, map_first,
  1224. (XFS_B_TO_FSB(mp,
  1225. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1226. map_first),
  1227. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1228. NULL, NULL))
  1229. return;
  1230. ASSERT(nimaps == 1);
  1231. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1232. }
  1233. #endif /* DEBUG */
  1234. /*
  1235. * Calculate the last possible buffered byte in a file. This must
  1236. * include data that was buffered beyond the EOF by the write code.
  1237. * This also needs to deal with overflowing the xfs_fsize_t type
  1238. * which can happen for sizes near the limit.
  1239. *
  1240. * We also need to take into account any blocks beyond the EOF. It
  1241. * may be the case that they were buffered by a write which failed.
  1242. * In that case the pages will still be in memory, but the inode size
  1243. * will never have been updated.
  1244. */
  1245. xfs_fsize_t
  1246. xfs_file_last_byte(
  1247. xfs_inode_t *ip)
  1248. {
  1249. xfs_mount_t *mp;
  1250. xfs_fsize_t last_byte;
  1251. xfs_fileoff_t last_block;
  1252. xfs_fileoff_t size_last_block;
  1253. int error;
  1254. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1255. mp = ip->i_mount;
  1256. /*
  1257. * Only check for blocks beyond the EOF if the extents have
  1258. * been read in. This eliminates the need for the inode lock,
  1259. * and it also saves us from looking when it really isn't
  1260. * necessary.
  1261. */
  1262. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1263. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1264. XFS_DATA_FORK);
  1265. if (error) {
  1266. last_block = 0;
  1267. }
  1268. } else {
  1269. last_block = 0;
  1270. }
  1271. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1272. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1273. last_byte = XFS_FSB_TO_B(mp, last_block);
  1274. if (last_byte < 0) {
  1275. return XFS_MAXIOFFSET(mp);
  1276. }
  1277. last_byte += (1 << mp->m_writeio_log);
  1278. if (last_byte < 0) {
  1279. return XFS_MAXIOFFSET(mp);
  1280. }
  1281. return last_byte;
  1282. }
  1283. #if defined(XFS_RW_TRACE)
  1284. STATIC void
  1285. xfs_itrunc_trace(
  1286. int tag,
  1287. xfs_inode_t *ip,
  1288. int flag,
  1289. xfs_fsize_t new_size,
  1290. xfs_off_t toss_start,
  1291. xfs_off_t toss_finish)
  1292. {
  1293. if (ip->i_rwtrace == NULL) {
  1294. return;
  1295. }
  1296. ktrace_enter(ip->i_rwtrace,
  1297. (void*)((long)tag),
  1298. (void*)ip,
  1299. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1300. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1301. (void*)((long)flag),
  1302. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1303. (void*)(unsigned long)(new_size & 0xffffffff),
  1304. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1305. (void*)(unsigned long)(toss_start & 0xffffffff),
  1306. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1307. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1308. (void*)(unsigned long)current_cpu(),
  1309. (void*)(unsigned long)current_pid(),
  1310. (void*)NULL,
  1311. (void*)NULL,
  1312. (void*)NULL);
  1313. }
  1314. #else
  1315. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1316. #endif
  1317. /*
  1318. * Start the truncation of the file to new_size. The new size
  1319. * must be smaller than the current size. This routine will
  1320. * clear the buffer and page caches of file data in the removed
  1321. * range, and xfs_itruncate_finish() will remove the underlying
  1322. * disk blocks.
  1323. *
  1324. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1325. * must NOT have the inode lock held at all. This is because we're
  1326. * calling into the buffer/page cache code and we can't hold the
  1327. * inode lock when we do so.
  1328. *
  1329. * We need to wait for any direct I/Os in flight to complete before we
  1330. * proceed with the truncate. This is needed to prevent the extents
  1331. * being read or written by the direct I/Os from being removed while the
  1332. * I/O is in flight as there is no other method of synchronising
  1333. * direct I/O with the truncate operation. Also, because we hold
  1334. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1335. * started until the truncate completes and drops the lock. Essentially,
  1336. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1337. * between direct I/Os and the truncate operation.
  1338. *
  1339. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1340. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1341. * in the case that the caller is locking things out of order and
  1342. * may not be able to call xfs_itruncate_finish() with the inode lock
  1343. * held without dropping the I/O lock. If the caller must drop the
  1344. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1345. * must be called again with all the same restrictions as the initial
  1346. * call.
  1347. */
  1348. int
  1349. xfs_itruncate_start(
  1350. xfs_inode_t *ip,
  1351. uint flags,
  1352. xfs_fsize_t new_size)
  1353. {
  1354. xfs_fsize_t last_byte;
  1355. xfs_off_t toss_start;
  1356. xfs_mount_t *mp;
  1357. bhv_vnode_t *vp;
  1358. int error = 0;
  1359. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1360. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1361. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1362. (flags == XFS_ITRUNC_MAYBE));
  1363. mp = ip->i_mount;
  1364. vp = XFS_ITOV(ip);
  1365. /* wait for the completion of any pending DIOs */
  1366. if (new_size < ip->i_size)
  1367. vn_iowait(ip);
  1368. /*
  1369. * Call toss_pages or flushinval_pages to get rid of pages
  1370. * overlapping the region being removed. We have to use
  1371. * the less efficient flushinval_pages in the case that the
  1372. * caller may not be able to finish the truncate without
  1373. * dropping the inode's I/O lock. Make sure
  1374. * to catch any pages brought in by buffers overlapping
  1375. * the EOF by searching out beyond the isize by our
  1376. * block size. We round new_size up to a block boundary
  1377. * so that we don't toss things on the same block as
  1378. * new_size but before it.
  1379. *
  1380. * Before calling toss_page or flushinval_pages, make sure to
  1381. * call remapf() over the same region if the file is mapped.
  1382. * This frees up mapped file references to the pages in the
  1383. * given range and for the flushinval_pages case it ensures
  1384. * that we get the latest mapped changes flushed out.
  1385. */
  1386. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1387. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1388. if (toss_start < 0) {
  1389. /*
  1390. * The place to start tossing is beyond our maximum
  1391. * file size, so there is no way that the data extended
  1392. * out there.
  1393. */
  1394. return 0;
  1395. }
  1396. last_byte = xfs_file_last_byte(ip);
  1397. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1398. last_byte);
  1399. if (last_byte > toss_start) {
  1400. if (flags & XFS_ITRUNC_DEFINITE) {
  1401. xfs_tosspages(ip, toss_start,
  1402. -1, FI_REMAPF_LOCKED);
  1403. } else {
  1404. error = xfs_flushinval_pages(ip, toss_start,
  1405. -1, FI_REMAPF_LOCKED);
  1406. }
  1407. }
  1408. #ifdef DEBUG
  1409. if (new_size == 0) {
  1410. ASSERT(VN_CACHED(vp) == 0);
  1411. }
  1412. #endif
  1413. return error;
  1414. }
  1415. /*
  1416. * Shrink the file to the given new_size. The new
  1417. * size must be smaller than the current size.
  1418. * This will free up the underlying blocks
  1419. * in the removed range after a call to xfs_itruncate_start()
  1420. * or xfs_atruncate_start().
  1421. *
  1422. * The transaction passed to this routine must have made
  1423. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1424. * This routine may commit the given transaction and
  1425. * start new ones, so make sure everything involved in
  1426. * the transaction is tidy before calling here.
  1427. * Some transaction will be returned to the caller to be
  1428. * committed. The incoming transaction must already include
  1429. * the inode, and both inode locks must be held exclusively.
  1430. * The inode must also be "held" within the transaction. On
  1431. * return the inode will be "held" within the returned transaction.
  1432. * This routine does NOT require any disk space to be reserved
  1433. * for it within the transaction.
  1434. *
  1435. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1436. * and it indicates the fork which is to be truncated. For the
  1437. * attribute fork we only support truncation to size 0.
  1438. *
  1439. * We use the sync parameter to indicate whether or not the first
  1440. * transaction we perform might have to be synchronous. For the attr fork,
  1441. * it needs to be so if the unlink of the inode is not yet known to be
  1442. * permanent in the log. This keeps us from freeing and reusing the
  1443. * blocks of the attribute fork before the unlink of the inode becomes
  1444. * permanent.
  1445. *
  1446. * For the data fork, we normally have to run synchronously if we're
  1447. * being called out of the inactive path or we're being called
  1448. * out of the create path where we're truncating an existing file.
  1449. * Either way, the truncate needs to be sync so blocks don't reappear
  1450. * in the file with altered data in case of a crash. wsync filesystems
  1451. * can run the first case async because anything that shrinks the inode
  1452. * has to run sync so by the time we're called here from inactive, the
  1453. * inode size is permanently set to 0.
  1454. *
  1455. * Calls from the truncate path always need to be sync unless we're
  1456. * in a wsync filesystem and the file has already been unlinked.
  1457. *
  1458. * The caller is responsible for correctly setting the sync parameter.
  1459. * It gets too hard for us to guess here which path we're being called
  1460. * out of just based on inode state.
  1461. */
  1462. int
  1463. xfs_itruncate_finish(
  1464. xfs_trans_t **tp,
  1465. xfs_inode_t *ip,
  1466. xfs_fsize_t new_size,
  1467. int fork,
  1468. int sync)
  1469. {
  1470. xfs_fsblock_t first_block;
  1471. xfs_fileoff_t first_unmap_block;
  1472. xfs_fileoff_t last_block;
  1473. xfs_filblks_t unmap_len=0;
  1474. xfs_mount_t *mp;
  1475. xfs_trans_t *ntp;
  1476. int done;
  1477. int committed;
  1478. xfs_bmap_free_t free_list;
  1479. int error;
  1480. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1481. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1482. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1483. ASSERT(*tp != NULL);
  1484. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1485. ASSERT(ip->i_transp == *tp);
  1486. ASSERT(ip->i_itemp != NULL);
  1487. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1488. ntp = *tp;
  1489. mp = (ntp)->t_mountp;
  1490. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1491. /*
  1492. * We only support truncating the entire attribute fork.
  1493. */
  1494. if (fork == XFS_ATTR_FORK) {
  1495. new_size = 0LL;
  1496. }
  1497. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1498. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1499. /*
  1500. * The first thing we do is set the size to new_size permanently
  1501. * on disk. This way we don't have to worry about anyone ever
  1502. * being able to look at the data being freed even in the face
  1503. * of a crash. What we're getting around here is the case where
  1504. * we free a block, it is allocated to another file, it is written
  1505. * to, and then we crash. If the new data gets written to the
  1506. * file but the log buffers containing the free and reallocation
  1507. * don't, then we'd end up with garbage in the blocks being freed.
  1508. * As long as we make the new_size permanent before actually
  1509. * freeing any blocks it doesn't matter if they get writtten to.
  1510. *
  1511. * The callers must signal into us whether or not the size
  1512. * setting here must be synchronous. There are a few cases
  1513. * where it doesn't have to be synchronous. Those cases
  1514. * occur if the file is unlinked and we know the unlink is
  1515. * permanent or if the blocks being truncated are guaranteed
  1516. * to be beyond the inode eof (regardless of the link count)
  1517. * and the eof value is permanent. Both of these cases occur
  1518. * only on wsync-mounted filesystems. In those cases, we're
  1519. * guaranteed that no user will ever see the data in the blocks
  1520. * that are being truncated so the truncate can run async.
  1521. * In the free beyond eof case, the file may wind up with
  1522. * more blocks allocated to it than it needs if we crash
  1523. * and that won't get fixed until the next time the file
  1524. * is re-opened and closed but that's ok as that shouldn't
  1525. * be too many blocks.
  1526. *
  1527. * However, we can't just make all wsync xactions run async
  1528. * because there's one call out of the create path that needs
  1529. * to run sync where it's truncating an existing file to size
  1530. * 0 whose size is > 0.
  1531. *
  1532. * It's probably possible to come up with a test in this
  1533. * routine that would correctly distinguish all the above
  1534. * cases from the values of the function parameters and the
  1535. * inode state but for sanity's sake, I've decided to let the
  1536. * layers above just tell us. It's simpler to correctly figure
  1537. * out in the layer above exactly under what conditions we
  1538. * can run async and I think it's easier for others read and
  1539. * follow the logic in case something has to be changed.
  1540. * cscope is your friend -- rcc.
  1541. *
  1542. * The attribute fork is much simpler.
  1543. *
  1544. * For the attribute fork we allow the caller to tell us whether
  1545. * the unlink of the inode that led to this call is yet permanent
  1546. * in the on disk log. If it is not and we will be freeing extents
  1547. * in this inode then we make the first transaction synchronous
  1548. * to make sure that the unlink is permanent by the time we free
  1549. * the blocks.
  1550. */
  1551. if (fork == XFS_DATA_FORK) {
  1552. if (ip->i_d.di_nextents > 0) {
  1553. /*
  1554. * If we are not changing the file size then do
  1555. * not update the on-disk file size - we may be
  1556. * called from xfs_inactive_free_eofblocks(). If we
  1557. * update the on-disk file size and then the system
  1558. * crashes before the contents of the file are
  1559. * flushed to disk then the files may be full of
  1560. * holes (ie NULL files bug).
  1561. */
  1562. if (ip->i_size != new_size) {
  1563. ip->i_d.di_size = new_size;
  1564. ip->i_size = new_size;
  1565. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1566. }
  1567. }
  1568. } else if (sync) {
  1569. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1570. if (ip->i_d.di_anextents > 0)
  1571. xfs_trans_set_sync(ntp);
  1572. }
  1573. ASSERT(fork == XFS_DATA_FORK ||
  1574. (fork == XFS_ATTR_FORK &&
  1575. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1576. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1577. /*
  1578. * Since it is possible for space to become allocated beyond
  1579. * the end of the file (in a crash where the space is allocated
  1580. * but the inode size is not yet updated), simply remove any
  1581. * blocks which show up between the new EOF and the maximum
  1582. * possible file size. If the first block to be removed is
  1583. * beyond the maximum file size (ie it is the same as last_block),
  1584. * then there is nothing to do.
  1585. */
  1586. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1587. ASSERT(first_unmap_block <= last_block);
  1588. done = 0;
  1589. if (last_block == first_unmap_block) {
  1590. done = 1;
  1591. } else {
  1592. unmap_len = last_block - first_unmap_block + 1;
  1593. }
  1594. while (!done) {
  1595. /*
  1596. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1597. * will tell us whether it freed the entire range or
  1598. * not. If this is a synchronous mount (wsync),
  1599. * then we can tell bunmapi to keep all the
  1600. * transactions asynchronous since the unlink
  1601. * transaction that made this inode inactive has
  1602. * already hit the disk. There's no danger of
  1603. * the freed blocks being reused, there being a
  1604. * crash, and the reused blocks suddenly reappearing
  1605. * in this file with garbage in them once recovery
  1606. * runs.
  1607. */
  1608. XFS_BMAP_INIT(&free_list, &first_block);
  1609. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1610. first_unmap_block, unmap_len,
  1611. XFS_BMAPI_AFLAG(fork) |
  1612. (sync ? 0 : XFS_BMAPI_ASYNC),
  1613. XFS_ITRUNC_MAX_EXTENTS,
  1614. &first_block, &free_list,
  1615. NULL, &done);
  1616. if (error) {
  1617. /*
  1618. * If the bunmapi call encounters an error,
  1619. * return to the caller where the transaction
  1620. * can be properly aborted. We just need to
  1621. * make sure we're not holding any resources
  1622. * that we were not when we came in.
  1623. */
  1624. xfs_bmap_cancel(&free_list);
  1625. return error;
  1626. }
  1627. /*
  1628. * Duplicate the transaction that has the permanent
  1629. * reservation and commit the old transaction.
  1630. */
  1631. error = xfs_bmap_finish(tp, &free_list, &committed);
  1632. ntp = *tp;
  1633. if (error) {
  1634. /*
  1635. * If the bmap finish call encounters an error,
  1636. * return to the caller where the transaction
  1637. * can be properly aborted. We just need to
  1638. * make sure we're not holding any resources
  1639. * that we were not when we came in.
  1640. *
  1641. * Aborting from this point might lose some
  1642. * blocks in the file system, but oh well.
  1643. */
  1644. xfs_bmap_cancel(&free_list);
  1645. if (committed) {
  1646. /*
  1647. * If the passed in transaction committed
  1648. * in xfs_bmap_finish(), then we want to
  1649. * add the inode to this one before returning.
  1650. * This keeps things simple for the higher
  1651. * level code, because it always knows that
  1652. * the inode is locked and held in the
  1653. * transaction that returns to it whether
  1654. * errors occur or not. We don't mark the
  1655. * inode dirty so that this transaction can
  1656. * be easily aborted if possible.
  1657. */
  1658. xfs_trans_ijoin(ntp, ip,
  1659. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1660. xfs_trans_ihold(ntp, ip);
  1661. }
  1662. return error;
  1663. }
  1664. if (committed) {
  1665. /*
  1666. * The first xact was committed,
  1667. * so add the inode to the new one.
  1668. * Mark it dirty so it will be logged
  1669. * and moved forward in the log as
  1670. * part of every commit.
  1671. */
  1672. xfs_trans_ijoin(ntp, ip,
  1673. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1674. xfs_trans_ihold(ntp, ip);
  1675. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1676. }
  1677. ntp = xfs_trans_dup(ntp);
  1678. (void) xfs_trans_commit(*tp, 0);
  1679. *tp = ntp;
  1680. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1681. XFS_TRANS_PERM_LOG_RES,
  1682. XFS_ITRUNCATE_LOG_COUNT);
  1683. /*
  1684. * Add the inode being truncated to the next chained
  1685. * transaction.
  1686. */
  1687. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1688. xfs_trans_ihold(ntp, ip);
  1689. if (error)
  1690. return (error);
  1691. }
  1692. /*
  1693. * Only update the size in the case of the data fork, but
  1694. * always re-log the inode so that our permanent transaction
  1695. * can keep on rolling it forward in the log.
  1696. */
  1697. if (fork == XFS_DATA_FORK) {
  1698. xfs_isize_check(mp, ip, new_size);
  1699. /*
  1700. * If we are not changing the file size then do
  1701. * not update the on-disk file size - we may be
  1702. * called from xfs_inactive_free_eofblocks(). If we
  1703. * update the on-disk file size and then the system
  1704. * crashes before the contents of the file are
  1705. * flushed to disk then the files may be full of
  1706. * holes (ie NULL files bug).
  1707. */
  1708. if (ip->i_size != new_size) {
  1709. ip->i_d.di_size = new_size;
  1710. ip->i_size = new_size;
  1711. }
  1712. }
  1713. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1714. ASSERT((new_size != 0) ||
  1715. (fork == XFS_ATTR_FORK) ||
  1716. (ip->i_delayed_blks == 0));
  1717. ASSERT((new_size != 0) ||
  1718. (fork == XFS_ATTR_FORK) ||
  1719. (ip->i_d.di_nextents == 0));
  1720. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1721. return 0;
  1722. }
  1723. /*
  1724. * xfs_igrow_start
  1725. *
  1726. * Do the first part of growing a file: zero any data in the last
  1727. * block that is beyond the old EOF. We need to do this before
  1728. * the inode is joined to the transaction to modify the i_size.
  1729. * That way we can drop the inode lock and call into the buffer
  1730. * cache to get the buffer mapping the EOF.
  1731. */
  1732. int
  1733. xfs_igrow_start(
  1734. xfs_inode_t *ip,
  1735. xfs_fsize_t new_size,
  1736. cred_t *credp)
  1737. {
  1738. int error;
  1739. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1740. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1741. ASSERT(new_size > ip->i_size);
  1742. /*
  1743. * Zero any pages that may have been created by
  1744. * xfs_write_file() beyond the end of the file
  1745. * and any blocks between the old and new file sizes.
  1746. */
  1747. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1748. ip->i_size);
  1749. return error;
  1750. }
  1751. /*
  1752. * xfs_igrow_finish
  1753. *
  1754. * This routine is called to extend the size of a file.
  1755. * The inode must have both the iolock and the ilock locked
  1756. * for update and it must be a part of the current transaction.
  1757. * The xfs_igrow_start() function must have been called previously.
  1758. * If the change_flag is not zero, the inode change timestamp will
  1759. * be updated.
  1760. */
  1761. void
  1762. xfs_igrow_finish(
  1763. xfs_trans_t *tp,
  1764. xfs_inode_t *ip,
  1765. xfs_fsize_t new_size,
  1766. int change_flag)
  1767. {
  1768. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1769. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1770. ASSERT(ip->i_transp == tp);
  1771. ASSERT(new_size > ip->i_size);
  1772. /*
  1773. * Update the file size. Update the inode change timestamp
  1774. * if change_flag set.
  1775. */
  1776. ip->i_d.di_size = new_size;
  1777. ip->i_size = new_size;
  1778. if (change_flag)
  1779. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1780. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1781. }
  1782. /*
  1783. * This is called when the inode's link count goes to 0.
  1784. * We place the on-disk inode on a list in the AGI. It
  1785. * will be pulled from this list when the inode is freed.
  1786. */
  1787. int
  1788. xfs_iunlink(
  1789. xfs_trans_t *tp,
  1790. xfs_inode_t *ip)
  1791. {
  1792. xfs_mount_t *mp;
  1793. xfs_agi_t *agi;
  1794. xfs_dinode_t *dip;
  1795. xfs_buf_t *agibp;
  1796. xfs_buf_t *ibp;
  1797. xfs_agnumber_t agno;
  1798. xfs_daddr_t agdaddr;
  1799. xfs_agino_t agino;
  1800. short bucket_index;
  1801. int offset;
  1802. int error;
  1803. int agi_ok;
  1804. ASSERT(ip->i_d.di_nlink == 0);
  1805. ASSERT(ip->i_d.di_mode != 0);
  1806. ASSERT(ip->i_transp == tp);
  1807. mp = tp->t_mountp;
  1808. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1809. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1810. /*
  1811. * Get the agi buffer first. It ensures lock ordering
  1812. * on the list.
  1813. */
  1814. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1815. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1816. if (error)
  1817. return error;
  1818. /*
  1819. * Validate the magic number of the agi block.
  1820. */
  1821. agi = XFS_BUF_TO_AGI(agibp);
  1822. agi_ok =
  1823. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1824. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1825. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1826. XFS_RANDOM_IUNLINK))) {
  1827. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1828. xfs_trans_brelse(tp, agibp);
  1829. return XFS_ERROR(EFSCORRUPTED);
  1830. }
  1831. /*
  1832. * Get the index into the agi hash table for the
  1833. * list this inode will go on.
  1834. */
  1835. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1836. ASSERT(agino != 0);
  1837. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1838. ASSERT(agi->agi_unlinked[bucket_index]);
  1839. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1840. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1841. if (error)
  1842. return error;
  1843. /*
  1844. * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
  1845. * from picking up this inode when it is reclaimed (its incore state
  1846. * initialzed but not flushed to disk yet). The in-core di_nlink is
  1847. * already cleared in xfs_droplink() and a corresponding transaction
  1848. * logged. The hack here just synchronizes the in-core to on-disk
  1849. * di_nlink value in advance before the actual inode sync to disk.
  1850. * This is OK because the inode is already unlinked and would never
  1851. * change its di_nlink again for this inode generation.
  1852. * This is a temporary hack that would require a proper fix
  1853. * in the future.
  1854. */
  1855. dip->di_core.di_nlink = 0;
  1856. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1857. /*
  1858. * There is already another inode in the bucket we need
  1859. * to add ourselves to. Add us at the front of the list.
  1860. * Here we put the head pointer into our next pointer,
  1861. * and then we fall through to point the head at us.
  1862. */
  1863. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1864. /* both on-disk, don't endian flip twice */
  1865. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1866. offset = ip->i_boffset +
  1867. offsetof(xfs_dinode_t, di_next_unlinked);
  1868. xfs_trans_inode_buf(tp, ibp);
  1869. xfs_trans_log_buf(tp, ibp, offset,
  1870. (offset + sizeof(xfs_agino_t) - 1));
  1871. xfs_inobp_check(mp, ibp);
  1872. }
  1873. /*
  1874. * Point the bucket head pointer at the inode being inserted.
  1875. */
  1876. ASSERT(agino != 0);
  1877. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1878. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1879. (sizeof(xfs_agino_t) * bucket_index);
  1880. xfs_trans_log_buf(tp, agibp, offset,
  1881. (offset + sizeof(xfs_agino_t) - 1));
  1882. return 0;
  1883. }
  1884. /*
  1885. * Pull the on-disk inode from the AGI unlinked list.
  1886. */
  1887. STATIC int
  1888. xfs_iunlink_remove(
  1889. xfs_trans_t *tp,
  1890. xfs_inode_t *ip)
  1891. {
  1892. xfs_ino_t next_ino;
  1893. xfs_mount_t *mp;
  1894. xfs_agi_t *agi;
  1895. xfs_dinode_t *dip;
  1896. xfs_buf_t *agibp;
  1897. xfs_buf_t *ibp;
  1898. xfs_agnumber_t agno;
  1899. xfs_daddr_t agdaddr;
  1900. xfs_agino_t agino;
  1901. xfs_agino_t next_agino;
  1902. xfs_buf_t *last_ibp;
  1903. xfs_dinode_t *last_dip = NULL;
  1904. short bucket_index;
  1905. int offset, last_offset = 0;
  1906. int error;
  1907. int agi_ok;
  1908. /*
  1909. * First pull the on-disk inode from the AGI unlinked list.
  1910. */
  1911. mp = tp->t_mountp;
  1912. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1913. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1914. /*
  1915. * Get the agi buffer first. It ensures lock ordering
  1916. * on the list.
  1917. */
  1918. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1919. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1920. if (error) {
  1921. cmn_err(CE_WARN,
  1922. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1923. error, mp->m_fsname);
  1924. return error;
  1925. }
  1926. /*
  1927. * Validate the magic number of the agi block.
  1928. */
  1929. agi = XFS_BUF_TO_AGI(agibp);
  1930. agi_ok =
  1931. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1932. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1933. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1934. XFS_RANDOM_IUNLINK_REMOVE))) {
  1935. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1936. mp, agi);
  1937. xfs_trans_brelse(tp, agibp);
  1938. cmn_err(CE_WARN,
  1939. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1940. mp->m_fsname);
  1941. return XFS_ERROR(EFSCORRUPTED);
  1942. }
  1943. /*
  1944. * Get the index into the agi hash table for the
  1945. * list this inode will go on.
  1946. */
  1947. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1948. ASSERT(agino != 0);
  1949. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1950. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1951. ASSERT(agi->agi_unlinked[bucket_index]);
  1952. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1953. /*
  1954. * We're at the head of the list. Get the inode's
  1955. * on-disk buffer to see if there is anyone after us
  1956. * on the list. Only modify our next pointer if it
  1957. * is not already NULLAGINO. This saves us the overhead
  1958. * of dealing with the buffer when there is no need to
  1959. * change it.
  1960. */
  1961. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1962. if (error) {
  1963. cmn_err(CE_WARN,
  1964. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1965. error, mp->m_fsname);
  1966. return error;
  1967. }
  1968. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1969. ASSERT(next_agino != 0);
  1970. if (next_agino != NULLAGINO) {
  1971. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1972. offset = ip->i_boffset +
  1973. offsetof(xfs_dinode_t, di_next_unlinked);
  1974. xfs_trans_inode_buf(tp, ibp);
  1975. xfs_trans_log_buf(tp, ibp, offset,
  1976. (offset + sizeof(xfs_agino_t) - 1));
  1977. xfs_inobp_check(mp, ibp);
  1978. } else {
  1979. xfs_trans_brelse(tp, ibp);
  1980. }
  1981. /*
  1982. * Point the bucket head pointer at the next inode.
  1983. */
  1984. ASSERT(next_agino != 0);
  1985. ASSERT(next_agino != agino);
  1986. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1987. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1988. (sizeof(xfs_agino_t) * bucket_index);
  1989. xfs_trans_log_buf(tp, agibp, offset,
  1990. (offset + sizeof(xfs_agino_t) - 1));
  1991. } else {
  1992. /*
  1993. * We need to search the list for the inode being freed.
  1994. */
  1995. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1996. last_ibp = NULL;
  1997. while (next_agino != agino) {
  1998. /*
  1999. * If the last inode wasn't the one pointing to
  2000. * us, then release its buffer since we're not
  2001. * going to do anything with it.
  2002. */
  2003. if (last_ibp != NULL) {
  2004. xfs_trans_brelse(tp, last_ibp);
  2005. }
  2006. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  2007. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  2008. &last_ibp, &last_offset);
  2009. if (error) {
  2010. cmn_err(CE_WARN,
  2011. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  2012. error, mp->m_fsname);
  2013. return error;
  2014. }
  2015. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  2016. ASSERT(next_agino != NULLAGINO);
  2017. ASSERT(next_agino != 0);
  2018. }
  2019. /*
  2020. * Now last_ibp points to the buffer previous to us on
  2021. * the unlinked list. Pull us from the list.
  2022. */
  2023. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2024. if (error) {
  2025. cmn_err(CE_WARN,
  2026. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2027. error, mp->m_fsname);
  2028. return error;
  2029. }
  2030. next_agino = be32_to_cpu(dip->di_next_unlinked);
  2031. ASSERT(next_agino != 0);
  2032. ASSERT(next_agino != agino);
  2033. if (next_agino != NULLAGINO) {
  2034. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  2035. offset = ip->i_boffset +
  2036. offsetof(xfs_dinode_t, di_next_unlinked);
  2037. xfs_trans_inode_buf(tp, ibp);
  2038. xfs_trans_log_buf(tp, ibp, offset,
  2039. (offset + sizeof(xfs_agino_t) - 1));
  2040. xfs_inobp_check(mp, ibp);
  2041. } else {
  2042. xfs_trans_brelse(tp, ibp);
  2043. }
  2044. /*
  2045. * Point the previous inode on the list to the next inode.
  2046. */
  2047. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  2048. ASSERT(next_agino != 0);
  2049. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2050. xfs_trans_inode_buf(tp, last_ibp);
  2051. xfs_trans_log_buf(tp, last_ibp, offset,
  2052. (offset + sizeof(xfs_agino_t) - 1));
  2053. xfs_inobp_check(mp, last_ibp);
  2054. }
  2055. return 0;
  2056. }
  2057. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2058. {
  2059. return (((ip->i_itemp == NULL) ||
  2060. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2061. (ip->i_update_core == 0));
  2062. }
  2063. STATIC void
  2064. xfs_ifree_cluster(
  2065. xfs_inode_t *free_ip,
  2066. xfs_trans_t *tp,
  2067. xfs_ino_t inum)
  2068. {
  2069. xfs_mount_t *mp = free_ip->i_mount;
  2070. int blks_per_cluster;
  2071. int nbufs;
  2072. int ninodes;
  2073. int i, j, found, pre_flushed;
  2074. xfs_daddr_t blkno;
  2075. xfs_buf_t *bp;
  2076. xfs_inode_t *ip, **ip_found;
  2077. xfs_inode_log_item_t *iip;
  2078. xfs_log_item_t *lip;
  2079. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  2080. SPLDECL(s);
  2081. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2082. blks_per_cluster = 1;
  2083. ninodes = mp->m_sb.sb_inopblock;
  2084. nbufs = XFS_IALLOC_BLOCKS(mp);
  2085. } else {
  2086. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2087. mp->m_sb.sb_blocksize;
  2088. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2089. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2090. }
  2091. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2092. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2093. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2094. XFS_INO_TO_AGBNO(mp, inum));
  2095. /*
  2096. * Look for each inode in memory and attempt to lock it,
  2097. * we can be racing with flush and tail pushing here.
  2098. * any inode we get the locks on, add to an array of
  2099. * inode items to process later.
  2100. *
  2101. * The get the buffer lock, we could beat a flush
  2102. * or tail pushing thread to the lock here, in which
  2103. * case they will go looking for the inode buffer
  2104. * and fail, we need some other form of interlock
  2105. * here.
  2106. */
  2107. found = 0;
  2108. for (i = 0; i < ninodes; i++) {
  2109. read_lock(&pag->pag_ici_lock);
  2110. ip = radix_tree_lookup(&pag->pag_ici_root,
  2111. XFS_INO_TO_AGINO(mp, (inum + i)));
  2112. /* Inode not in memory or we found it already,
  2113. * nothing to do
  2114. */
  2115. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2116. read_unlock(&pag->pag_ici_lock);
  2117. continue;
  2118. }
  2119. if (xfs_inode_clean(ip)) {
  2120. read_unlock(&pag->pag_ici_lock);
  2121. continue;
  2122. }
  2123. /* If we can get the locks then add it to the
  2124. * list, otherwise by the time we get the bp lock
  2125. * below it will already be attached to the
  2126. * inode buffer.
  2127. */
  2128. /* This inode will already be locked - by us, lets
  2129. * keep it that way.
  2130. */
  2131. if (ip == free_ip) {
  2132. if (xfs_iflock_nowait(ip)) {
  2133. xfs_iflags_set(ip, XFS_ISTALE);
  2134. if (xfs_inode_clean(ip)) {
  2135. xfs_ifunlock(ip);
  2136. } else {
  2137. ip_found[found++] = ip;
  2138. }
  2139. }
  2140. read_unlock(&pag->pag_ici_lock);
  2141. continue;
  2142. }
  2143. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2144. if (xfs_iflock_nowait(ip)) {
  2145. xfs_iflags_set(ip, XFS_ISTALE);
  2146. if (xfs_inode_clean(ip)) {
  2147. xfs_ifunlock(ip);
  2148. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2149. } else {
  2150. ip_found[found++] = ip;
  2151. }
  2152. } else {
  2153. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2154. }
  2155. }
  2156. read_unlock(&pag->pag_ici_lock);
  2157. }
  2158. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2159. mp->m_bsize * blks_per_cluster,
  2160. XFS_BUF_LOCK);
  2161. pre_flushed = 0;
  2162. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2163. while (lip) {
  2164. if (lip->li_type == XFS_LI_INODE) {
  2165. iip = (xfs_inode_log_item_t *)lip;
  2166. ASSERT(iip->ili_logged == 1);
  2167. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2168. AIL_LOCK(mp,s);
  2169. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2170. AIL_UNLOCK(mp, s);
  2171. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2172. pre_flushed++;
  2173. }
  2174. lip = lip->li_bio_list;
  2175. }
  2176. for (i = 0; i < found; i++) {
  2177. ip = ip_found[i];
  2178. iip = ip->i_itemp;
  2179. if (!iip) {
  2180. ip->i_update_core = 0;
  2181. xfs_ifunlock(ip);
  2182. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2183. continue;
  2184. }
  2185. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2186. iip->ili_format.ilf_fields = 0;
  2187. iip->ili_logged = 1;
  2188. AIL_LOCK(mp,s);
  2189. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2190. AIL_UNLOCK(mp, s);
  2191. xfs_buf_attach_iodone(bp,
  2192. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2193. xfs_istale_done, (xfs_log_item_t *)iip);
  2194. if (ip != free_ip) {
  2195. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2196. }
  2197. }
  2198. if (found || pre_flushed)
  2199. xfs_trans_stale_inode_buf(tp, bp);
  2200. xfs_trans_binval(tp, bp);
  2201. }
  2202. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2203. xfs_put_perag(mp, pag);
  2204. }
  2205. /*
  2206. * This is called to return an inode to the inode free list.
  2207. * The inode should already be truncated to 0 length and have
  2208. * no pages associated with it. This routine also assumes that
  2209. * the inode is already a part of the transaction.
  2210. *
  2211. * The on-disk copy of the inode will have been added to the list
  2212. * of unlinked inodes in the AGI. We need to remove the inode from
  2213. * that list atomically with respect to freeing it here.
  2214. */
  2215. int
  2216. xfs_ifree(
  2217. xfs_trans_t *tp,
  2218. xfs_inode_t *ip,
  2219. xfs_bmap_free_t *flist)
  2220. {
  2221. int error;
  2222. int delete;
  2223. xfs_ino_t first_ino;
  2224. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2225. ASSERT(ip->i_transp == tp);
  2226. ASSERT(ip->i_d.di_nlink == 0);
  2227. ASSERT(ip->i_d.di_nextents == 0);
  2228. ASSERT(ip->i_d.di_anextents == 0);
  2229. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2230. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2231. ASSERT(ip->i_d.di_nblocks == 0);
  2232. /*
  2233. * Pull the on-disk inode from the AGI unlinked list.
  2234. */
  2235. error = xfs_iunlink_remove(tp, ip);
  2236. if (error != 0) {
  2237. return error;
  2238. }
  2239. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2240. if (error != 0) {
  2241. return error;
  2242. }
  2243. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2244. ip->i_d.di_flags = 0;
  2245. ip->i_d.di_dmevmask = 0;
  2246. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2247. ip->i_df.if_ext_max =
  2248. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2249. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2250. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2251. /*
  2252. * Bump the generation count so no one will be confused
  2253. * by reincarnations of this inode.
  2254. */
  2255. ip->i_d.di_gen++;
  2256. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2257. if (delete) {
  2258. xfs_ifree_cluster(ip, tp, first_ino);
  2259. }
  2260. return 0;
  2261. }
  2262. /*
  2263. * Reallocate the space for if_broot based on the number of records
  2264. * being added or deleted as indicated in rec_diff. Move the records
  2265. * and pointers in if_broot to fit the new size. When shrinking this
  2266. * will eliminate holes between the records and pointers created by
  2267. * the caller. When growing this will create holes to be filled in
  2268. * by the caller.
  2269. *
  2270. * The caller must not request to add more records than would fit in
  2271. * the on-disk inode root. If the if_broot is currently NULL, then
  2272. * if we adding records one will be allocated. The caller must also
  2273. * not request that the number of records go below zero, although
  2274. * it can go to zero.
  2275. *
  2276. * ip -- the inode whose if_broot area is changing
  2277. * ext_diff -- the change in the number of records, positive or negative,
  2278. * requested for the if_broot array.
  2279. */
  2280. void
  2281. xfs_iroot_realloc(
  2282. xfs_inode_t *ip,
  2283. int rec_diff,
  2284. int whichfork)
  2285. {
  2286. int cur_max;
  2287. xfs_ifork_t *ifp;
  2288. xfs_bmbt_block_t *new_broot;
  2289. int new_max;
  2290. size_t new_size;
  2291. char *np;
  2292. char *op;
  2293. /*
  2294. * Handle the degenerate case quietly.
  2295. */
  2296. if (rec_diff == 0) {
  2297. return;
  2298. }
  2299. ifp = XFS_IFORK_PTR(ip, whichfork);
  2300. if (rec_diff > 0) {
  2301. /*
  2302. * If there wasn't any memory allocated before, just
  2303. * allocate it now and get out.
  2304. */
  2305. if (ifp->if_broot_bytes == 0) {
  2306. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2307. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2308. KM_SLEEP);
  2309. ifp->if_broot_bytes = (int)new_size;
  2310. return;
  2311. }
  2312. /*
  2313. * If there is already an existing if_broot, then we need
  2314. * to realloc() it and shift the pointers to their new
  2315. * location. The records don't change location because
  2316. * they are kept butted up against the btree block header.
  2317. */
  2318. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2319. new_max = cur_max + rec_diff;
  2320. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2321. ifp->if_broot = (xfs_bmbt_block_t *)
  2322. kmem_realloc(ifp->if_broot,
  2323. new_size,
  2324. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2325. KM_SLEEP);
  2326. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2327. ifp->if_broot_bytes);
  2328. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2329. (int)new_size);
  2330. ifp->if_broot_bytes = (int)new_size;
  2331. ASSERT(ifp->if_broot_bytes <=
  2332. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2333. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2334. return;
  2335. }
  2336. /*
  2337. * rec_diff is less than 0. In this case, we are shrinking the
  2338. * if_broot buffer. It must already exist. If we go to zero
  2339. * records, just get rid of the root and clear the status bit.
  2340. */
  2341. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2342. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2343. new_max = cur_max + rec_diff;
  2344. ASSERT(new_max >= 0);
  2345. if (new_max > 0)
  2346. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2347. else
  2348. new_size = 0;
  2349. if (new_size > 0) {
  2350. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2351. /*
  2352. * First copy over the btree block header.
  2353. */
  2354. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2355. } else {
  2356. new_broot = NULL;
  2357. ifp->if_flags &= ~XFS_IFBROOT;
  2358. }
  2359. /*
  2360. * Only copy the records and pointers if there are any.
  2361. */
  2362. if (new_max > 0) {
  2363. /*
  2364. * First copy the records.
  2365. */
  2366. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2367. ifp->if_broot_bytes);
  2368. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2369. (int)new_size);
  2370. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2371. /*
  2372. * Then copy the pointers.
  2373. */
  2374. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2375. ifp->if_broot_bytes);
  2376. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2377. (int)new_size);
  2378. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2379. }
  2380. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2381. ifp->if_broot = new_broot;
  2382. ifp->if_broot_bytes = (int)new_size;
  2383. ASSERT(ifp->if_broot_bytes <=
  2384. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2385. return;
  2386. }
  2387. /*
  2388. * This is called when the amount of space needed for if_data
  2389. * is increased or decreased. The change in size is indicated by
  2390. * the number of bytes that need to be added or deleted in the
  2391. * byte_diff parameter.
  2392. *
  2393. * If the amount of space needed has decreased below the size of the
  2394. * inline buffer, then switch to using the inline buffer. Otherwise,
  2395. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2396. * to what is needed.
  2397. *
  2398. * ip -- the inode whose if_data area is changing
  2399. * byte_diff -- the change in the number of bytes, positive or negative,
  2400. * requested for the if_data array.
  2401. */
  2402. void
  2403. xfs_idata_realloc(
  2404. xfs_inode_t *ip,
  2405. int byte_diff,
  2406. int whichfork)
  2407. {
  2408. xfs_ifork_t *ifp;
  2409. int new_size;
  2410. int real_size;
  2411. if (byte_diff == 0) {
  2412. return;
  2413. }
  2414. ifp = XFS_IFORK_PTR(ip, whichfork);
  2415. new_size = (int)ifp->if_bytes + byte_diff;
  2416. ASSERT(new_size >= 0);
  2417. if (new_size == 0) {
  2418. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2419. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2420. }
  2421. ifp->if_u1.if_data = NULL;
  2422. real_size = 0;
  2423. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2424. /*
  2425. * If the valid extents/data can fit in if_inline_ext/data,
  2426. * copy them from the malloc'd vector and free it.
  2427. */
  2428. if (ifp->if_u1.if_data == NULL) {
  2429. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2430. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2431. ASSERT(ifp->if_real_bytes != 0);
  2432. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2433. new_size);
  2434. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2435. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2436. }
  2437. real_size = 0;
  2438. } else {
  2439. /*
  2440. * Stuck with malloc/realloc.
  2441. * For inline data, the underlying buffer must be
  2442. * a multiple of 4 bytes in size so that it can be
  2443. * logged and stay on word boundaries. We enforce
  2444. * that here.
  2445. */
  2446. real_size = roundup(new_size, 4);
  2447. if (ifp->if_u1.if_data == NULL) {
  2448. ASSERT(ifp->if_real_bytes == 0);
  2449. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2450. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2451. /*
  2452. * Only do the realloc if the underlying size
  2453. * is really changing.
  2454. */
  2455. if (ifp->if_real_bytes != real_size) {
  2456. ifp->if_u1.if_data =
  2457. kmem_realloc(ifp->if_u1.if_data,
  2458. real_size,
  2459. ifp->if_real_bytes,
  2460. KM_SLEEP);
  2461. }
  2462. } else {
  2463. ASSERT(ifp->if_real_bytes == 0);
  2464. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2465. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2466. ifp->if_bytes);
  2467. }
  2468. }
  2469. ifp->if_real_bytes = real_size;
  2470. ifp->if_bytes = new_size;
  2471. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2472. }
  2473. /*
  2474. * Map inode to disk block and offset.
  2475. *
  2476. * mp -- the mount point structure for the current file system
  2477. * tp -- the current transaction
  2478. * ino -- the inode number of the inode to be located
  2479. * imap -- this structure is filled in with the information necessary
  2480. * to retrieve the given inode from disk
  2481. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2482. * lookups in the inode btree were OK or not
  2483. */
  2484. int
  2485. xfs_imap(
  2486. xfs_mount_t *mp,
  2487. xfs_trans_t *tp,
  2488. xfs_ino_t ino,
  2489. xfs_imap_t *imap,
  2490. uint flags)
  2491. {
  2492. xfs_fsblock_t fsbno;
  2493. int len;
  2494. int off;
  2495. int error;
  2496. fsbno = imap->im_blkno ?
  2497. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2498. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2499. if (error != 0) {
  2500. return error;
  2501. }
  2502. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2503. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2504. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2505. imap->im_ioffset = (ushort)off;
  2506. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2507. return 0;
  2508. }
  2509. void
  2510. xfs_idestroy_fork(
  2511. xfs_inode_t *ip,
  2512. int whichfork)
  2513. {
  2514. xfs_ifork_t *ifp;
  2515. ifp = XFS_IFORK_PTR(ip, whichfork);
  2516. if (ifp->if_broot != NULL) {
  2517. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2518. ifp->if_broot = NULL;
  2519. }
  2520. /*
  2521. * If the format is local, then we can't have an extents
  2522. * array so just look for an inline data array. If we're
  2523. * not local then we may or may not have an extents list,
  2524. * so check and free it up if we do.
  2525. */
  2526. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2527. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2528. (ifp->if_u1.if_data != NULL)) {
  2529. ASSERT(ifp->if_real_bytes != 0);
  2530. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2531. ifp->if_u1.if_data = NULL;
  2532. ifp->if_real_bytes = 0;
  2533. }
  2534. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2535. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2536. ((ifp->if_u1.if_extents != NULL) &&
  2537. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2538. ASSERT(ifp->if_real_bytes != 0);
  2539. xfs_iext_destroy(ifp);
  2540. }
  2541. ASSERT(ifp->if_u1.if_extents == NULL ||
  2542. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2543. ASSERT(ifp->if_real_bytes == 0);
  2544. if (whichfork == XFS_ATTR_FORK) {
  2545. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2546. ip->i_afp = NULL;
  2547. }
  2548. }
  2549. /*
  2550. * This is called free all the memory associated with an inode.
  2551. * It must free the inode itself and any buffers allocated for
  2552. * if_extents/if_data and if_broot. It must also free the lock
  2553. * associated with the inode.
  2554. */
  2555. void
  2556. xfs_idestroy(
  2557. xfs_inode_t *ip)
  2558. {
  2559. switch (ip->i_d.di_mode & S_IFMT) {
  2560. case S_IFREG:
  2561. case S_IFDIR:
  2562. case S_IFLNK:
  2563. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2564. break;
  2565. }
  2566. if (ip->i_afp)
  2567. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2568. mrfree(&ip->i_lock);
  2569. mrfree(&ip->i_iolock);
  2570. freesema(&ip->i_flock);
  2571. #ifdef XFS_VNODE_TRACE
  2572. ktrace_free(ip->i_trace);
  2573. #endif
  2574. #ifdef XFS_BMAP_TRACE
  2575. ktrace_free(ip->i_xtrace);
  2576. #endif
  2577. #ifdef XFS_BMBT_TRACE
  2578. ktrace_free(ip->i_btrace);
  2579. #endif
  2580. #ifdef XFS_RW_TRACE
  2581. ktrace_free(ip->i_rwtrace);
  2582. #endif
  2583. #ifdef XFS_ILOCK_TRACE
  2584. ktrace_free(ip->i_lock_trace);
  2585. #endif
  2586. #ifdef XFS_DIR2_TRACE
  2587. ktrace_free(ip->i_dir_trace);
  2588. #endif
  2589. if (ip->i_itemp) {
  2590. /*
  2591. * Only if we are shutting down the fs will we see an
  2592. * inode still in the AIL. If it is there, we should remove
  2593. * it to prevent a use-after-free from occurring.
  2594. */
  2595. xfs_mount_t *mp = ip->i_mount;
  2596. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2597. int s;
  2598. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2599. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2600. if (lip->li_flags & XFS_LI_IN_AIL) {
  2601. AIL_LOCK(mp, s);
  2602. if (lip->li_flags & XFS_LI_IN_AIL)
  2603. xfs_trans_delete_ail(mp, lip, s);
  2604. else
  2605. AIL_UNLOCK(mp, s);
  2606. }
  2607. xfs_inode_item_destroy(ip);
  2608. }
  2609. kmem_zone_free(xfs_inode_zone, ip);
  2610. }
  2611. /*
  2612. * Increment the pin count of the given buffer.
  2613. * This value is protected by ipinlock spinlock in the mount structure.
  2614. */
  2615. void
  2616. xfs_ipin(
  2617. xfs_inode_t *ip)
  2618. {
  2619. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2620. atomic_inc(&ip->i_pincount);
  2621. }
  2622. /*
  2623. * Decrement the pin count of the given inode, and wake up
  2624. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2625. * inode must have been previously pinned with a call to xfs_ipin().
  2626. */
  2627. void
  2628. xfs_iunpin(
  2629. xfs_inode_t *ip)
  2630. {
  2631. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2632. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2633. /*
  2634. * If the inode is currently being reclaimed, the link between
  2635. * the bhv_vnode and the xfs_inode will be broken after the
  2636. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2637. * set, then we can move forward and mark the linux inode dirty
  2638. * knowing that it is still valid as it won't freed until after
  2639. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2640. * i_flags_lock is used to synchronise the setting of the
  2641. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2642. * can execute atomically w.r.t to reclaim by holding this lock
  2643. * here.
  2644. *
  2645. * However, we still need to issue the unpin wakeup call as the
  2646. * inode reclaim may be blocked waiting for the inode to become
  2647. * unpinned.
  2648. */
  2649. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2650. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2651. struct inode *inode = NULL;
  2652. BUG_ON(vp == NULL);
  2653. inode = vn_to_inode(vp);
  2654. BUG_ON(inode->i_state & I_CLEAR);
  2655. /* make sync come back and flush this inode */
  2656. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2657. mark_inode_dirty_sync(inode);
  2658. }
  2659. spin_unlock(&ip->i_flags_lock);
  2660. wake_up(&ip->i_ipin_wait);
  2661. }
  2662. }
  2663. /*
  2664. * This is called to wait for the given inode to be unpinned.
  2665. * It will sleep until this happens. The caller must have the
  2666. * inode locked in at least shared mode so that the buffer cannot
  2667. * be subsequently pinned once someone is waiting for it to be
  2668. * unpinned.
  2669. */
  2670. STATIC void
  2671. xfs_iunpin_wait(
  2672. xfs_inode_t *ip)
  2673. {
  2674. xfs_inode_log_item_t *iip;
  2675. xfs_lsn_t lsn;
  2676. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2677. if (atomic_read(&ip->i_pincount) == 0) {
  2678. return;
  2679. }
  2680. iip = ip->i_itemp;
  2681. if (iip && iip->ili_last_lsn) {
  2682. lsn = iip->ili_last_lsn;
  2683. } else {
  2684. lsn = (xfs_lsn_t)0;
  2685. }
  2686. /*
  2687. * Give the log a push so we don't wait here too long.
  2688. */
  2689. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2690. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2691. }
  2692. /*
  2693. * xfs_iextents_copy()
  2694. *
  2695. * This is called to copy the REAL extents (as opposed to the delayed
  2696. * allocation extents) from the inode into the given buffer. It
  2697. * returns the number of bytes copied into the buffer.
  2698. *
  2699. * If there are no delayed allocation extents, then we can just
  2700. * memcpy() the extents into the buffer. Otherwise, we need to
  2701. * examine each extent in turn and skip those which are delayed.
  2702. */
  2703. int
  2704. xfs_iextents_copy(
  2705. xfs_inode_t *ip,
  2706. xfs_bmbt_rec_t *dp,
  2707. int whichfork)
  2708. {
  2709. int copied;
  2710. int i;
  2711. xfs_ifork_t *ifp;
  2712. int nrecs;
  2713. xfs_fsblock_t start_block;
  2714. ifp = XFS_IFORK_PTR(ip, whichfork);
  2715. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2716. ASSERT(ifp->if_bytes > 0);
  2717. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2718. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2719. ASSERT(nrecs > 0);
  2720. /*
  2721. * There are some delayed allocation extents in the
  2722. * inode, so copy the extents one at a time and skip
  2723. * the delayed ones. There must be at least one
  2724. * non-delayed extent.
  2725. */
  2726. copied = 0;
  2727. for (i = 0; i < nrecs; i++) {
  2728. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2729. start_block = xfs_bmbt_get_startblock(ep);
  2730. if (ISNULLSTARTBLOCK(start_block)) {
  2731. /*
  2732. * It's a delayed allocation extent, so skip it.
  2733. */
  2734. continue;
  2735. }
  2736. /* Translate to on disk format */
  2737. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2738. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2739. dp++;
  2740. copied++;
  2741. }
  2742. ASSERT(copied != 0);
  2743. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2744. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2745. }
  2746. /*
  2747. * Each of the following cases stores data into the same region
  2748. * of the on-disk inode, so only one of them can be valid at
  2749. * any given time. While it is possible to have conflicting formats
  2750. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2751. * in EXTENTS format, this can only happen when the fork has
  2752. * changed formats after being modified but before being flushed.
  2753. * In these cases, the format always takes precedence, because the
  2754. * format indicates the current state of the fork.
  2755. */
  2756. /*ARGSUSED*/
  2757. STATIC int
  2758. xfs_iflush_fork(
  2759. xfs_inode_t *ip,
  2760. xfs_dinode_t *dip,
  2761. xfs_inode_log_item_t *iip,
  2762. int whichfork,
  2763. xfs_buf_t *bp)
  2764. {
  2765. char *cp;
  2766. xfs_ifork_t *ifp;
  2767. xfs_mount_t *mp;
  2768. #ifdef XFS_TRANS_DEBUG
  2769. int first;
  2770. #endif
  2771. static const short brootflag[2] =
  2772. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2773. static const short dataflag[2] =
  2774. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2775. static const short extflag[2] =
  2776. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2777. if (iip == NULL)
  2778. return 0;
  2779. ifp = XFS_IFORK_PTR(ip, whichfork);
  2780. /*
  2781. * This can happen if we gave up in iformat in an error path,
  2782. * for the attribute fork.
  2783. */
  2784. if (ifp == NULL) {
  2785. ASSERT(whichfork == XFS_ATTR_FORK);
  2786. return 0;
  2787. }
  2788. cp = XFS_DFORK_PTR(dip, whichfork);
  2789. mp = ip->i_mount;
  2790. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2791. case XFS_DINODE_FMT_LOCAL:
  2792. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2793. (ifp->if_bytes > 0)) {
  2794. ASSERT(ifp->if_u1.if_data != NULL);
  2795. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2796. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2797. }
  2798. break;
  2799. case XFS_DINODE_FMT_EXTENTS:
  2800. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2801. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2802. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2803. (ifp->if_bytes == 0));
  2804. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2805. (ifp->if_bytes > 0));
  2806. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2807. (ifp->if_bytes > 0)) {
  2808. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2809. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2810. whichfork);
  2811. }
  2812. break;
  2813. case XFS_DINODE_FMT_BTREE:
  2814. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2815. (ifp->if_broot_bytes > 0)) {
  2816. ASSERT(ifp->if_broot != NULL);
  2817. ASSERT(ifp->if_broot_bytes <=
  2818. (XFS_IFORK_SIZE(ip, whichfork) +
  2819. XFS_BROOT_SIZE_ADJ));
  2820. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2821. (xfs_bmdr_block_t *)cp,
  2822. XFS_DFORK_SIZE(dip, mp, whichfork));
  2823. }
  2824. break;
  2825. case XFS_DINODE_FMT_DEV:
  2826. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2827. ASSERT(whichfork == XFS_DATA_FORK);
  2828. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2829. }
  2830. break;
  2831. case XFS_DINODE_FMT_UUID:
  2832. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2833. ASSERT(whichfork == XFS_DATA_FORK);
  2834. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2835. sizeof(uuid_t));
  2836. }
  2837. break;
  2838. default:
  2839. ASSERT(0);
  2840. break;
  2841. }
  2842. return 0;
  2843. }
  2844. /*
  2845. * xfs_iflush() will write a modified inode's changes out to the
  2846. * inode's on disk home. The caller must have the inode lock held
  2847. * in at least shared mode and the inode flush semaphore must be
  2848. * held as well. The inode lock will still be held upon return from
  2849. * the call and the caller is free to unlock it.
  2850. * The inode flush lock will be unlocked when the inode reaches the disk.
  2851. * The flags indicate how the inode's buffer should be written out.
  2852. */
  2853. int
  2854. xfs_iflush(
  2855. xfs_inode_t *ip,
  2856. uint flags)
  2857. {
  2858. xfs_inode_log_item_t *iip;
  2859. xfs_buf_t *bp;
  2860. xfs_dinode_t *dip;
  2861. xfs_mount_t *mp;
  2862. int error;
  2863. /* REFERENCED */
  2864. xfs_inode_t *iq;
  2865. int clcount; /* count of inodes clustered */
  2866. int bufwasdelwri;
  2867. struct hlist_node *entry;
  2868. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2869. XFS_STATS_INC(xs_iflush_count);
  2870. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2871. ASSERT(issemalocked(&(ip->i_flock)));
  2872. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2873. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2874. iip = ip->i_itemp;
  2875. mp = ip->i_mount;
  2876. /*
  2877. * If the inode isn't dirty, then just release the inode
  2878. * flush lock and do nothing.
  2879. */
  2880. if ((ip->i_update_core == 0) &&
  2881. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2882. ASSERT((iip != NULL) ?
  2883. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2884. xfs_ifunlock(ip);
  2885. return 0;
  2886. }
  2887. /*
  2888. * We can't flush the inode until it is unpinned, so
  2889. * wait for it. We know noone new can pin it, because
  2890. * we are holding the inode lock shared and you need
  2891. * to hold it exclusively to pin the inode.
  2892. */
  2893. xfs_iunpin_wait(ip);
  2894. /*
  2895. * This may have been unpinned because the filesystem is shutting
  2896. * down forcibly. If that's the case we must not write this inode
  2897. * to disk, because the log record didn't make it to disk!
  2898. */
  2899. if (XFS_FORCED_SHUTDOWN(mp)) {
  2900. ip->i_update_core = 0;
  2901. if (iip)
  2902. iip->ili_format.ilf_fields = 0;
  2903. xfs_ifunlock(ip);
  2904. return XFS_ERROR(EIO);
  2905. }
  2906. /*
  2907. * Get the buffer containing the on-disk inode.
  2908. */
  2909. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2910. if (error) {
  2911. xfs_ifunlock(ip);
  2912. return error;
  2913. }
  2914. /*
  2915. * Decide how buffer will be flushed out. This is done before
  2916. * the call to xfs_iflush_int because this field is zeroed by it.
  2917. */
  2918. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2919. /*
  2920. * Flush out the inode buffer according to the directions
  2921. * of the caller. In the cases where the caller has given
  2922. * us a choice choose the non-delwri case. This is because
  2923. * the inode is in the AIL and we need to get it out soon.
  2924. */
  2925. switch (flags) {
  2926. case XFS_IFLUSH_SYNC:
  2927. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2928. flags = 0;
  2929. break;
  2930. case XFS_IFLUSH_ASYNC:
  2931. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2932. flags = INT_ASYNC;
  2933. break;
  2934. case XFS_IFLUSH_DELWRI:
  2935. flags = INT_DELWRI;
  2936. break;
  2937. default:
  2938. ASSERT(0);
  2939. flags = 0;
  2940. break;
  2941. }
  2942. } else {
  2943. switch (flags) {
  2944. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2945. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2946. case XFS_IFLUSH_DELWRI:
  2947. flags = INT_DELWRI;
  2948. break;
  2949. case XFS_IFLUSH_ASYNC:
  2950. flags = INT_ASYNC;
  2951. break;
  2952. case XFS_IFLUSH_SYNC:
  2953. flags = 0;
  2954. break;
  2955. default:
  2956. ASSERT(0);
  2957. flags = 0;
  2958. break;
  2959. }
  2960. }
  2961. /*
  2962. * First flush out the inode that xfs_iflush was called with.
  2963. */
  2964. error = xfs_iflush_int(ip, bp);
  2965. if (error) {
  2966. goto corrupt_out;
  2967. }
  2968. /*
  2969. * inode clustering:
  2970. * see if other inodes can be gathered into this write
  2971. */
  2972. spin_lock(&ip->i_cluster->icl_lock);
  2973. ip->i_cluster->icl_buf = bp;
  2974. clcount = 0;
  2975. hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
  2976. if (iq == ip)
  2977. continue;
  2978. /*
  2979. * Do an un-protected check to see if the inode is dirty and
  2980. * is a candidate for flushing. These checks will be repeated
  2981. * later after the appropriate locks are acquired.
  2982. */
  2983. iip = iq->i_itemp;
  2984. if ((iq->i_update_core == 0) &&
  2985. ((iip == NULL) ||
  2986. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2987. xfs_ipincount(iq) == 0) {
  2988. continue;
  2989. }
  2990. /*
  2991. * Try to get locks. If any are unavailable,
  2992. * then this inode cannot be flushed and is skipped.
  2993. */
  2994. /* get inode locks (just i_lock) */
  2995. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2996. /* get inode flush lock */
  2997. if (xfs_iflock_nowait(iq)) {
  2998. /* check if pinned */
  2999. if (xfs_ipincount(iq) == 0) {
  3000. /* arriving here means that
  3001. * this inode can be flushed.
  3002. * first re-check that it's
  3003. * dirty
  3004. */
  3005. iip = iq->i_itemp;
  3006. if ((iq->i_update_core != 0)||
  3007. ((iip != NULL) &&
  3008. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3009. clcount++;
  3010. error = xfs_iflush_int(iq, bp);
  3011. if (error) {
  3012. xfs_iunlock(iq,
  3013. XFS_ILOCK_SHARED);
  3014. goto cluster_corrupt_out;
  3015. }
  3016. } else {
  3017. xfs_ifunlock(iq);
  3018. }
  3019. } else {
  3020. xfs_ifunlock(iq);
  3021. }
  3022. }
  3023. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  3024. }
  3025. }
  3026. spin_unlock(&ip->i_cluster->icl_lock);
  3027. if (clcount) {
  3028. XFS_STATS_INC(xs_icluster_flushcnt);
  3029. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3030. }
  3031. /*
  3032. * If the buffer is pinned then push on the log so we won't
  3033. * get stuck waiting in the write for too long.
  3034. */
  3035. if (XFS_BUF_ISPINNED(bp)){
  3036. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3037. }
  3038. if (flags & INT_DELWRI) {
  3039. xfs_bdwrite(mp, bp);
  3040. } else if (flags & INT_ASYNC) {
  3041. xfs_bawrite(mp, bp);
  3042. } else {
  3043. error = xfs_bwrite(mp, bp);
  3044. }
  3045. return error;
  3046. corrupt_out:
  3047. xfs_buf_relse(bp);
  3048. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3049. xfs_iflush_abort(ip);
  3050. /*
  3051. * Unlocks the flush lock
  3052. */
  3053. return XFS_ERROR(EFSCORRUPTED);
  3054. cluster_corrupt_out:
  3055. /* Corruption detected in the clustering loop. Invalidate the
  3056. * inode buffer and shut down the filesystem.
  3057. */
  3058. spin_unlock(&ip->i_cluster->icl_lock);
  3059. /*
  3060. * Clean up the buffer. If it was B_DELWRI, just release it --
  3061. * brelse can handle it with no problems. If not, shut down the
  3062. * filesystem before releasing the buffer.
  3063. */
  3064. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3065. xfs_buf_relse(bp);
  3066. }
  3067. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3068. if(!bufwasdelwri) {
  3069. /*
  3070. * Just like incore_relse: if we have b_iodone functions,
  3071. * mark the buffer as an error and call them. Otherwise
  3072. * mark it as stale and brelse.
  3073. */
  3074. if (XFS_BUF_IODONE_FUNC(bp)) {
  3075. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3076. XFS_BUF_UNDONE(bp);
  3077. XFS_BUF_STALE(bp);
  3078. XFS_BUF_SHUT(bp);
  3079. XFS_BUF_ERROR(bp,EIO);
  3080. xfs_biodone(bp);
  3081. } else {
  3082. XFS_BUF_STALE(bp);
  3083. xfs_buf_relse(bp);
  3084. }
  3085. }
  3086. xfs_iflush_abort(iq);
  3087. /*
  3088. * Unlocks the flush lock
  3089. */
  3090. return XFS_ERROR(EFSCORRUPTED);
  3091. }
  3092. STATIC int
  3093. xfs_iflush_int(
  3094. xfs_inode_t *ip,
  3095. xfs_buf_t *bp)
  3096. {
  3097. xfs_inode_log_item_t *iip;
  3098. xfs_dinode_t *dip;
  3099. xfs_mount_t *mp;
  3100. #ifdef XFS_TRANS_DEBUG
  3101. int first;
  3102. #endif
  3103. SPLDECL(s);
  3104. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3105. ASSERT(issemalocked(&(ip->i_flock)));
  3106. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3107. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3108. iip = ip->i_itemp;
  3109. mp = ip->i_mount;
  3110. /*
  3111. * If the inode isn't dirty, then just release the inode
  3112. * flush lock and do nothing.
  3113. */
  3114. if ((ip->i_update_core == 0) &&
  3115. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3116. xfs_ifunlock(ip);
  3117. return 0;
  3118. }
  3119. /* set *dip = inode's place in the buffer */
  3120. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3121. /*
  3122. * Clear i_update_core before copying out the data.
  3123. * This is for coordination with our timestamp updates
  3124. * that don't hold the inode lock. They will always
  3125. * update the timestamps BEFORE setting i_update_core,
  3126. * so if we clear i_update_core after they set it we
  3127. * are guaranteed to see their updates to the timestamps.
  3128. * I believe that this depends on strongly ordered memory
  3129. * semantics, but we have that. We use the SYNCHRONIZE
  3130. * macro to make sure that the compiler does not reorder
  3131. * the i_update_core access below the data copy below.
  3132. */
  3133. ip->i_update_core = 0;
  3134. SYNCHRONIZE();
  3135. /*
  3136. * Make sure to get the latest atime from the Linux inode.
  3137. */
  3138. xfs_synchronize_atime(ip);
  3139. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3140. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3141. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3142. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3143. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3144. goto corrupt_out;
  3145. }
  3146. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3147. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3148. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3149. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3150. ip->i_ino, ip, ip->i_d.di_magic);
  3151. goto corrupt_out;
  3152. }
  3153. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3154. if (XFS_TEST_ERROR(
  3155. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3156. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3157. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3158. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3159. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3160. ip->i_ino, ip);
  3161. goto corrupt_out;
  3162. }
  3163. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3164. if (XFS_TEST_ERROR(
  3165. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3166. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3167. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3168. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3169. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3170. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3171. ip->i_ino, ip);
  3172. goto corrupt_out;
  3173. }
  3174. }
  3175. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3176. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3177. XFS_RANDOM_IFLUSH_5)) {
  3178. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3179. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3180. ip->i_ino,
  3181. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3182. ip->i_d.di_nblocks,
  3183. ip);
  3184. goto corrupt_out;
  3185. }
  3186. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3187. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3188. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3189. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3190. ip->i_ino, ip->i_d.di_forkoff, ip);
  3191. goto corrupt_out;
  3192. }
  3193. /*
  3194. * bump the flush iteration count, used to detect flushes which
  3195. * postdate a log record during recovery.
  3196. */
  3197. ip->i_d.di_flushiter++;
  3198. /*
  3199. * Copy the dirty parts of the inode into the on-disk
  3200. * inode. We always copy out the core of the inode,
  3201. * because if the inode is dirty at all the core must
  3202. * be.
  3203. */
  3204. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3205. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3206. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3207. ip->i_d.di_flushiter = 0;
  3208. /*
  3209. * If this is really an old format inode and the superblock version
  3210. * has not been updated to support only new format inodes, then
  3211. * convert back to the old inode format. If the superblock version
  3212. * has been updated, then make the conversion permanent.
  3213. */
  3214. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3215. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3216. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3217. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3218. /*
  3219. * Convert it back.
  3220. */
  3221. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3222. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3223. } else {
  3224. /*
  3225. * The superblock version has already been bumped,
  3226. * so just make the conversion to the new inode
  3227. * format permanent.
  3228. */
  3229. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3230. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3231. ip->i_d.di_onlink = 0;
  3232. dip->di_core.di_onlink = 0;
  3233. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3234. memset(&(dip->di_core.di_pad[0]), 0,
  3235. sizeof(dip->di_core.di_pad));
  3236. ASSERT(ip->i_d.di_projid == 0);
  3237. }
  3238. }
  3239. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3240. goto corrupt_out;
  3241. }
  3242. if (XFS_IFORK_Q(ip)) {
  3243. /*
  3244. * The only error from xfs_iflush_fork is on the data fork.
  3245. */
  3246. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3247. }
  3248. xfs_inobp_check(mp, bp);
  3249. /*
  3250. * We've recorded everything logged in the inode, so we'd
  3251. * like to clear the ilf_fields bits so we don't log and
  3252. * flush things unnecessarily. However, we can't stop
  3253. * logging all this information until the data we've copied
  3254. * into the disk buffer is written to disk. If we did we might
  3255. * overwrite the copy of the inode in the log with all the
  3256. * data after re-logging only part of it, and in the face of
  3257. * a crash we wouldn't have all the data we need to recover.
  3258. *
  3259. * What we do is move the bits to the ili_last_fields field.
  3260. * When logging the inode, these bits are moved back to the
  3261. * ilf_fields field. In the xfs_iflush_done() routine we
  3262. * clear ili_last_fields, since we know that the information
  3263. * those bits represent is permanently on disk. As long as
  3264. * the flush completes before the inode is logged again, then
  3265. * both ilf_fields and ili_last_fields will be cleared.
  3266. *
  3267. * We can play with the ilf_fields bits here, because the inode
  3268. * lock must be held exclusively in order to set bits there
  3269. * and the flush lock protects the ili_last_fields bits.
  3270. * Set ili_logged so the flush done
  3271. * routine can tell whether or not to look in the AIL.
  3272. * Also, store the current LSN of the inode so that we can tell
  3273. * whether the item has moved in the AIL from xfs_iflush_done().
  3274. * In order to read the lsn we need the AIL lock, because
  3275. * it is a 64 bit value that cannot be read atomically.
  3276. */
  3277. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3278. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3279. iip->ili_format.ilf_fields = 0;
  3280. iip->ili_logged = 1;
  3281. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3282. AIL_LOCK(mp,s);
  3283. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3284. AIL_UNLOCK(mp, s);
  3285. /*
  3286. * Attach the function xfs_iflush_done to the inode's
  3287. * buffer. This will remove the inode from the AIL
  3288. * and unlock the inode's flush lock when the inode is
  3289. * completely written to disk.
  3290. */
  3291. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3292. xfs_iflush_done, (xfs_log_item_t *)iip);
  3293. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3294. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3295. } else {
  3296. /*
  3297. * We're flushing an inode which is not in the AIL and has
  3298. * not been logged but has i_update_core set. For this
  3299. * case we can use a B_DELWRI flush and immediately drop
  3300. * the inode flush lock because we can avoid the whole
  3301. * AIL state thing. It's OK to drop the flush lock now,
  3302. * because we've already locked the buffer and to do anything
  3303. * you really need both.
  3304. */
  3305. if (iip != NULL) {
  3306. ASSERT(iip->ili_logged == 0);
  3307. ASSERT(iip->ili_last_fields == 0);
  3308. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3309. }
  3310. xfs_ifunlock(ip);
  3311. }
  3312. return 0;
  3313. corrupt_out:
  3314. return XFS_ERROR(EFSCORRUPTED);
  3315. }
  3316. /*
  3317. * Flush all inactive inodes in mp.
  3318. */
  3319. void
  3320. xfs_iflush_all(
  3321. xfs_mount_t *mp)
  3322. {
  3323. xfs_inode_t *ip;
  3324. bhv_vnode_t *vp;
  3325. again:
  3326. XFS_MOUNT_ILOCK(mp);
  3327. ip = mp->m_inodes;
  3328. if (ip == NULL)
  3329. goto out;
  3330. do {
  3331. /* Make sure we skip markers inserted by sync */
  3332. if (ip->i_mount == NULL) {
  3333. ip = ip->i_mnext;
  3334. continue;
  3335. }
  3336. vp = XFS_ITOV_NULL(ip);
  3337. if (!vp) {
  3338. XFS_MOUNT_IUNLOCK(mp);
  3339. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3340. goto again;
  3341. }
  3342. ASSERT(vn_count(vp) == 0);
  3343. ip = ip->i_mnext;
  3344. } while (ip != mp->m_inodes);
  3345. out:
  3346. XFS_MOUNT_IUNLOCK(mp);
  3347. }
  3348. /*
  3349. * xfs_iaccess: check accessibility of inode for mode.
  3350. */
  3351. int
  3352. xfs_iaccess(
  3353. xfs_inode_t *ip,
  3354. mode_t mode,
  3355. cred_t *cr)
  3356. {
  3357. int error;
  3358. mode_t orgmode = mode;
  3359. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3360. if (mode & S_IWUSR) {
  3361. umode_t imode = inode->i_mode;
  3362. if (IS_RDONLY(inode) &&
  3363. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3364. return XFS_ERROR(EROFS);
  3365. if (IS_IMMUTABLE(inode))
  3366. return XFS_ERROR(EACCES);
  3367. }
  3368. /*
  3369. * If there's an Access Control List it's used instead of
  3370. * the mode bits.
  3371. */
  3372. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3373. return error ? XFS_ERROR(error) : 0;
  3374. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3375. mode >>= 3;
  3376. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3377. mode >>= 3;
  3378. }
  3379. /*
  3380. * If the DACs are ok we don't need any capability check.
  3381. */
  3382. if ((ip->i_d.di_mode & mode) == mode)
  3383. return 0;
  3384. /*
  3385. * Read/write DACs are always overridable.
  3386. * Executable DACs are overridable if at least one exec bit is set.
  3387. */
  3388. if (!(orgmode & S_IXUSR) ||
  3389. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3390. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3391. return 0;
  3392. if ((orgmode == S_IRUSR) ||
  3393. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3394. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3395. return 0;
  3396. #ifdef NOISE
  3397. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3398. #endif /* NOISE */
  3399. return XFS_ERROR(EACCES);
  3400. }
  3401. return XFS_ERROR(EACCES);
  3402. }
  3403. /*
  3404. * xfs_iroundup: round up argument to next power of two
  3405. */
  3406. uint
  3407. xfs_iroundup(
  3408. uint v)
  3409. {
  3410. int i;
  3411. uint m;
  3412. if ((v & (v - 1)) == 0)
  3413. return v;
  3414. ASSERT((v & 0x80000000) == 0);
  3415. if ((v & (v + 1)) == 0)
  3416. return v + 1;
  3417. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3418. if (v & m)
  3419. continue;
  3420. v |= m;
  3421. if ((v & (v + 1)) == 0)
  3422. return v + 1;
  3423. }
  3424. ASSERT(0);
  3425. return( 0 );
  3426. }
  3427. #ifdef XFS_ILOCK_TRACE
  3428. ktrace_t *xfs_ilock_trace_buf;
  3429. void
  3430. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3431. {
  3432. ktrace_enter(ip->i_lock_trace,
  3433. (void *)ip,
  3434. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3435. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3436. (void *)ra, /* caller of ilock */
  3437. (void *)(unsigned long)current_cpu(),
  3438. (void *)(unsigned long)current_pid(),
  3439. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3440. }
  3441. #endif
  3442. /*
  3443. * Return a pointer to the extent record at file index idx.
  3444. */
  3445. xfs_bmbt_rec_host_t *
  3446. xfs_iext_get_ext(
  3447. xfs_ifork_t *ifp, /* inode fork pointer */
  3448. xfs_extnum_t idx) /* index of target extent */
  3449. {
  3450. ASSERT(idx >= 0);
  3451. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3452. return ifp->if_u1.if_ext_irec->er_extbuf;
  3453. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3454. xfs_ext_irec_t *erp; /* irec pointer */
  3455. int erp_idx = 0; /* irec index */
  3456. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3457. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3458. return &erp->er_extbuf[page_idx];
  3459. } else if (ifp->if_bytes) {
  3460. return &ifp->if_u1.if_extents[idx];
  3461. } else {
  3462. return NULL;
  3463. }
  3464. }
  3465. /*
  3466. * Insert new item(s) into the extent records for incore inode
  3467. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3468. */
  3469. void
  3470. xfs_iext_insert(
  3471. xfs_ifork_t *ifp, /* inode fork pointer */
  3472. xfs_extnum_t idx, /* starting index of new items */
  3473. xfs_extnum_t count, /* number of inserted items */
  3474. xfs_bmbt_irec_t *new) /* items to insert */
  3475. {
  3476. xfs_extnum_t i; /* extent record index */
  3477. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3478. xfs_iext_add(ifp, idx, count);
  3479. for (i = idx; i < idx + count; i++, new++)
  3480. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3481. }
  3482. /*
  3483. * This is called when the amount of space required for incore file
  3484. * extents needs to be increased. The ext_diff parameter stores the
  3485. * number of new extents being added and the idx parameter contains
  3486. * the extent index where the new extents will be added. If the new
  3487. * extents are being appended, then we just need to (re)allocate and
  3488. * initialize the space. Otherwise, if the new extents are being
  3489. * inserted into the middle of the existing entries, a bit more work
  3490. * is required to make room for the new extents to be inserted. The
  3491. * caller is responsible for filling in the new extent entries upon
  3492. * return.
  3493. */
  3494. void
  3495. xfs_iext_add(
  3496. xfs_ifork_t *ifp, /* inode fork pointer */
  3497. xfs_extnum_t idx, /* index to begin adding exts */
  3498. int ext_diff) /* number of extents to add */
  3499. {
  3500. int byte_diff; /* new bytes being added */
  3501. int new_size; /* size of extents after adding */
  3502. xfs_extnum_t nextents; /* number of extents in file */
  3503. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3504. ASSERT((idx >= 0) && (idx <= nextents));
  3505. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3506. new_size = ifp->if_bytes + byte_diff;
  3507. /*
  3508. * If the new number of extents (nextents + ext_diff)
  3509. * fits inside the inode, then continue to use the inline
  3510. * extent buffer.
  3511. */
  3512. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3513. if (idx < nextents) {
  3514. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3515. &ifp->if_u2.if_inline_ext[idx],
  3516. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3517. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3518. }
  3519. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3520. ifp->if_real_bytes = 0;
  3521. ifp->if_lastex = nextents + ext_diff;
  3522. }
  3523. /*
  3524. * Otherwise use a linear (direct) extent list.
  3525. * If the extents are currently inside the inode,
  3526. * xfs_iext_realloc_direct will switch us from
  3527. * inline to direct extent allocation mode.
  3528. */
  3529. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3530. xfs_iext_realloc_direct(ifp, new_size);
  3531. if (idx < nextents) {
  3532. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3533. &ifp->if_u1.if_extents[idx],
  3534. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3535. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3536. }
  3537. }
  3538. /* Indirection array */
  3539. else {
  3540. xfs_ext_irec_t *erp;
  3541. int erp_idx = 0;
  3542. int page_idx = idx;
  3543. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3544. if (ifp->if_flags & XFS_IFEXTIREC) {
  3545. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3546. } else {
  3547. xfs_iext_irec_init(ifp);
  3548. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3549. erp = ifp->if_u1.if_ext_irec;
  3550. }
  3551. /* Extents fit in target extent page */
  3552. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3553. if (page_idx < erp->er_extcount) {
  3554. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3555. &erp->er_extbuf[page_idx],
  3556. (erp->er_extcount - page_idx) *
  3557. sizeof(xfs_bmbt_rec_t));
  3558. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3559. }
  3560. erp->er_extcount += ext_diff;
  3561. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3562. }
  3563. /* Insert a new extent page */
  3564. else if (erp) {
  3565. xfs_iext_add_indirect_multi(ifp,
  3566. erp_idx, page_idx, ext_diff);
  3567. }
  3568. /*
  3569. * If extent(s) are being appended to the last page in
  3570. * the indirection array and the new extent(s) don't fit
  3571. * in the page, then erp is NULL and erp_idx is set to
  3572. * the next index needed in the indirection array.
  3573. */
  3574. else {
  3575. int count = ext_diff;
  3576. while (count) {
  3577. erp = xfs_iext_irec_new(ifp, erp_idx);
  3578. erp->er_extcount = count;
  3579. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3580. if (count) {
  3581. erp_idx++;
  3582. }
  3583. }
  3584. }
  3585. }
  3586. ifp->if_bytes = new_size;
  3587. }
  3588. /*
  3589. * This is called when incore extents are being added to the indirection
  3590. * array and the new extents do not fit in the target extent list. The
  3591. * erp_idx parameter contains the irec index for the target extent list
  3592. * in the indirection array, and the idx parameter contains the extent
  3593. * index within the list. The number of extents being added is stored
  3594. * in the count parameter.
  3595. *
  3596. * |-------| |-------|
  3597. * | | | | idx - number of extents before idx
  3598. * | idx | | count |
  3599. * | | | | count - number of extents being inserted at idx
  3600. * |-------| |-------|
  3601. * | count | | nex2 | nex2 - number of extents after idx + count
  3602. * |-------| |-------|
  3603. */
  3604. void
  3605. xfs_iext_add_indirect_multi(
  3606. xfs_ifork_t *ifp, /* inode fork pointer */
  3607. int erp_idx, /* target extent irec index */
  3608. xfs_extnum_t idx, /* index within target list */
  3609. int count) /* new extents being added */
  3610. {
  3611. int byte_diff; /* new bytes being added */
  3612. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3613. xfs_extnum_t ext_diff; /* number of extents to add */
  3614. xfs_extnum_t ext_cnt; /* new extents still needed */
  3615. xfs_extnum_t nex2; /* extents after idx + count */
  3616. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3617. int nlists; /* number of irec's (lists) */
  3618. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3619. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3620. nex2 = erp->er_extcount - idx;
  3621. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3622. /*
  3623. * Save second part of target extent list
  3624. * (all extents past */
  3625. if (nex2) {
  3626. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3627. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3628. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3629. erp->er_extcount -= nex2;
  3630. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3631. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3632. }
  3633. /*
  3634. * Add the new extents to the end of the target
  3635. * list, then allocate new irec record(s) and
  3636. * extent buffer(s) as needed to store the rest
  3637. * of the new extents.
  3638. */
  3639. ext_cnt = count;
  3640. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3641. if (ext_diff) {
  3642. erp->er_extcount += ext_diff;
  3643. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3644. ext_cnt -= ext_diff;
  3645. }
  3646. while (ext_cnt) {
  3647. erp_idx++;
  3648. erp = xfs_iext_irec_new(ifp, erp_idx);
  3649. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3650. erp->er_extcount = ext_diff;
  3651. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3652. ext_cnt -= ext_diff;
  3653. }
  3654. /* Add nex2 extents back to indirection array */
  3655. if (nex2) {
  3656. xfs_extnum_t ext_avail;
  3657. int i;
  3658. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3659. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3660. i = 0;
  3661. /*
  3662. * If nex2 extents fit in the current page, append
  3663. * nex2_ep after the new extents.
  3664. */
  3665. if (nex2 <= ext_avail) {
  3666. i = erp->er_extcount;
  3667. }
  3668. /*
  3669. * Otherwise, check if space is available in the
  3670. * next page.
  3671. */
  3672. else if ((erp_idx < nlists - 1) &&
  3673. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3674. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3675. erp_idx++;
  3676. erp++;
  3677. /* Create a hole for nex2 extents */
  3678. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3679. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3680. }
  3681. /*
  3682. * Final choice, create a new extent page for
  3683. * nex2 extents.
  3684. */
  3685. else {
  3686. erp_idx++;
  3687. erp = xfs_iext_irec_new(ifp, erp_idx);
  3688. }
  3689. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3690. kmem_free(nex2_ep, byte_diff);
  3691. erp->er_extcount += nex2;
  3692. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3693. }
  3694. }
  3695. /*
  3696. * This is called when the amount of space required for incore file
  3697. * extents needs to be decreased. The ext_diff parameter stores the
  3698. * number of extents to be removed and the idx parameter contains
  3699. * the extent index where the extents will be removed from.
  3700. *
  3701. * If the amount of space needed has decreased below the linear
  3702. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3703. * extent array. Otherwise, use kmem_realloc() to adjust the
  3704. * size to what is needed.
  3705. */
  3706. void
  3707. xfs_iext_remove(
  3708. xfs_ifork_t *ifp, /* inode fork pointer */
  3709. xfs_extnum_t idx, /* index to begin removing exts */
  3710. int ext_diff) /* number of extents to remove */
  3711. {
  3712. xfs_extnum_t nextents; /* number of extents in file */
  3713. int new_size; /* size of extents after removal */
  3714. ASSERT(ext_diff > 0);
  3715. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3716. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3717. if (new_size == 0) {
  3718. xfs_iext_destroy(ifp);
  3719. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3720. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3721. } else if (ifp->if_real_bytes) {
  3722. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3723. } else {
  3724. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3725. }
  3726. ifp->if_bytes = new_size;
  3727. }
  3728. /*
  3729. * This removes ext_diff extents from the inline buffer, beginning
  3730. * at extent index idx.
  3731. */
  3732. void
  3733. xfs_iext_remove_inline(
  3734. xfs_ifork_t *ifp, /* inode fork pointer */
  3735. xfs_extnum_t idx, /* index to begin removing exts */
  3736. int ext_diff) /* number of extents to remove */
  3737. {
  3738. int nextents; /* number of extents in file */
  3739. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3740. ASSERT(idx < XFS_INLINE_EXTS);
  3741. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3742. ASSERT(((nextents - ext_diff) > 0) &&
  3743. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3744. if (idx + ext_diff < nextents) {
  3745. memmove(&ifp->if_u2.if_inline_ext[idx],
  3746. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3747. (nextents - (idx + ext_diff)) *
  3748. sizeof(xfs_bmbt_rec_t));
  3749. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3750. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3751. } else {
  3752. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3753. ext_diff * sizeof(xfs_bmbt_rec_t));
  3754. }
  3755. }
  3756. /*
  3757. * This removes ext_diff extents from a linear (direct) extent list,
  3758. * beginning at extent index idx. If the extents are being removed
  3759. * from the end of the list (ie. truncate) then we just need to re-
  3760. * allocate the list to remove the extra space. Otherwise, if the
  3761. * extents are being removed from the middle of the existing extent
  3762. * entries, then we first need to move the extent records beginning
  3763. * at idx + ext_diff up in the list to overwrite the records being
  3764. * removed, then remove the extra space via kmem_realloc.
  3765. */
  3766. void
  3767. xfs_iext_remove_direct(
  3768. xfs_ifork_t *ifp, /* inode fork pointer */
  3769. xfs_extnum_t idx, /* index to begin removing exts */
  3770. int ext_diff) /* number of extents to remove */
  3771. {
  3772. xfs_extnum_t nextents; /* number of extents in file */
  3773. int new_size; /* size of extents after removal */
  3774. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3775. new_size = ifp->if_bytes -
  3776. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3777. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3778. if (new_size == 0) {
  3779. xfs_iext_destroy(ifp);
  3780. return;
  3781. }
  3782. /* Move extents up in the list (if needed) */
  3783. if (idx + ext_diff < nextents) {
  3784. memmove(&ifp->if_u1.if_extents[idx],
  3785. &ifp->if_u1.if_extents[idx + ext_diff],
  3786. (nextents - (idx + ext_diff)) *
  3787. sizeof(xfs_bmbt_rec_t));
  3788. }
  3789. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3790. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3791. /*
  3792. * Reallocate the direct extent list. If the extents
  3793. * will fit inside the inode then xfs_iext_realloc_direct
  3794. * will switch from direct to inline extent allocation
  3795. * mode for us.
  3796. */
  3797. xfs_iext_realloc_direct(ifp, new_size);
  3798. ifp->if_bytes = new_size;
  3799. }
  3800. /*
  3801. * This is called when incore extents are being removed from the
  3802. * indirection array and the extents being removed span multiple extent
  3803. * buffers. The idx parameter contains the file extent index where we
  3804. * want to begin removing extents, and the count parameter contains
  3805. * how many extents need to be removed.
  3806. *
  3807. * |-------| |-------|
  3808. * | nex1 | | | nex1 - number of extents before idx
  3809. * |-------| | count |
  3810. * | | | | count - number of extents being removed at idx
  3811. * | count | |-------|
  3812. * | | | nex2 | nex2 - number of extents after idx + count
  3813. * |-------| |-------|
  3814. */
  3815. void
  3816. xfs_iext_remove_indirect(
  3817. xfs_ifork_t *ifp, /* inode fork pointer */
  3818. xfs_extnum_t idx, /* index to begin removing extents */
  3819. int count) /* number of extents to remove */
  3820. {
  3821. xfs_ext_irec_t *erp; /* indirection array pointer */
  3822. int erp_idx = 0; /* indirection array index */
  3823. xfs_extnum_t ext_cnt; /* extents left to remove */
  3824. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3825. xfs_extnum_t nex1; /* number of extents before idx */
  3826. xfs_extnum_t nex2; /* extents after idx + count */
  3827. int nlists; /* entries in indirection array */
  3828. int page_idx = idx; /* index in target extent list */
  3829. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3830. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3831. ASSERT(erp != NULL);
  3832. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3833. nex1 = page_idx;
  3834. ext_cnt = count;
  3835. while (ext_cnt) {
  3836. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3837. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3838. /*
  3839. * Check for deletion of entire list;
  3840. * xfs_iext_irec_remove() updates extent offsets.
  3841. */
  3842. if (ext_diff == erp->er_extcount) {
  3843. xfs_iext_irec_remove(ifp, erp_idx);
  3844. ext_cnt -= ext_diff;
  3845. nex1 = 0;
  3846. if (ext_cnt) {
  3847. ASSERT(erp_idx < ifp->if_real_bytes /
  3848. XFS_IEXT_BUFSZ);
  3849. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3850. nex1 = 0;
  3851. continue;
  3852. } else {
  3853. break;
  3854. }
  3855. }
  3856. /* Move extents up (if needed) */
  3857. if (nex2) {
  3858. memmove(&erp->er_extbuf[nex1],
  3859. &erp->er_extbuf[nex1 + ext_diff],
  3860. nex2 * sizeof(xfs_bmbt_rec_t));
  3861. }
  3862. /* Zero out rest of page */
  3863. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3864. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3865. /* Update remaining counters */
  3866. erp->er_extcount -= ext_diff;
  3867. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3868. ext_cnt -= ext_diff;
  3869. nex1 = 0;
  3870. erp_idx++;
  3871. erp++;
  3872. }
  3873. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3874. xfs_iext_irec_compact(ifp);
  3875. }
  3876. /*
  3877. * Create, destroy, or resize a linear (direct) block of extents.
  3878. */
  3879. void
  3880. xfs_iext_realloc_direct(
  3881. xfs_ifork_t *ifp, /* inode fork pointer */
  3882. int new_size) /* new size of extents */
  3883. {
  3884. int rnew_size; /* real new size of extents */
  3885. rnew_size = new_size;
  3886. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3887. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3888. (new_size != ifp->if_real_bytes)));
  3889. /* Free extent records */
  3890. if (new_size == 0) {
  3891. xfs_iext_destroy(ifp);
  3892. }
  3893. /* Resize direct extent list and zero any new bytes */
  3894. else if (ifp->if_real_bytes) {
  3895. /* Check if extents will fit inside the inode */
  3896. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3897. xfs_iext_direct_to_inline(ifp, new_size /
  3898. (uint)sizeof(xfs_bmbt_rec_t));
  3899. ifp->if_bytes = new_size;
  3900. return;
  3901. }
  3902. if (!is_power_of_2(new_size)){
  3903. rnew_size = xfs_iroundup(new_size);
  3904. }
  3905. if (rnew_size != ifp->if_real_bytes) {
  3906. ifp->if_u1.if_extents =
  3907. kmem_realloc(ifp->if_u1.if_extents,
  3908. rnew_size,
  3909. ifp->if_real_bytes,
  3910. KM_SLEEP);
  3911. }
  3912. if (rnew_size > ifp->if_real_bytes) {
  3913. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3914. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3915. rnew_size - ifp->if_real_bytes);
  3916. }
  3917. }
  3918. /*
  3919. * Switch from the inline extent buffer to a direct
  3920. * extent list. Be sure to include the inline extent
  3921. * bytes in new_size.
  3922. */
  3923. else {
  3924. new_size += ifp->if_bytes;
  3925. if (!is_power_of_2(new_size)) {
  3926. rnew_size = xfs_iroundup(new_size);
  3927. }
  3928. xfs_iext_inline_to_direct(ifp, rnew_size);
  3929. }
  3930. ifp->if_real_bytes = rnew_size;
  3931. ifp->if_bytes = new_size;
  3932. }
  3933. /*
  3934. * Switch from linear (direct) extent records to inline buffer.
  3935. */
  3936. void
  3937. xfs_iext_direct_to_inline(
  3938. xfs_ifork_t *ifp, /* inode fork pointer */
  3939. xfs_extnum_t nextents) /* number of extents in file */
  3940. {
  3941. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3942. ASSERT(nextents <= XFS_INLINE_EXTS);
  3943. /*
  3944. * The inline buffer was zeroed when we switched
  3945. * from inline to direct extent allocation mode,
  3946. * so we don't need to clear it here.
  3947. */
  3948. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3949. nextents * sizeof(xfs_bmbt_rec_t));
  3950. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3951. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3952. ifp->if_real_bytes = 0;
  3953. }
  3954. /*
  3955. * Switch from inline buffer to linear (direct) extent records.
  3956. * new_size should already be rounded up to the next power of 2
  3957. * by the caller (when appropriate), so use new_size as it is.
  3958. * However, since new_size may be rounded up, we can't update
  3959. * if_bytes here. It is the caller's responsibility to update
  3960. * if_bytes upon return.
  3961. */
  3962. void
  3963. xfs_iext_inline_to_direct(
  3964. xfs_ifork_t *ifp, /* inode fork pointer */
  3965. int new_size) /* number of extents in file */
  3966. {
  3967. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3968. memset(ifp->if_u1.if_extents, 0, new_size);
  3969. if (ifp->if_bytes) {
  3970. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3971. ifp->if_bytes);
  3972. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3973. sizeof(xfs_bmbt_rec_t));
  3974. }
  3975. ifp->if_real_bytes = new_size;
  3976. }
  3977. /*
  3978. * Resize an extent indirection array to new_size bytes.
  3979. */
  3980. void
  3981. xfs_iext_realloc_indirect(
  3982. xfs_ifork_t *ifp, /* inode fork pointer */
  3983. int new_size) /* new indirection array size */
  3984. {
  3985. int nlists; /* number of irec's (ex lists) */
  3986. int size; /* current indirection array size */
  3987. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3988. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3989. size = nlists * sizeof(xfs_ext_irec_t);
  3990. ASSERT(ifp->if_real_bytes);
  3991. ASSERT((new_size >= 0) && (new_size != size));
  3992. if (new_size == 0) {
  3993. xfs_iext_destroy(ifp);
  3994. } else {
  3995. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3996. kmem_realloc(ifp->if_u1.if_ext_irec,
  3997. new_size, size, KM_SLEEP);
  3998. }
  3999. }
  4000. /*
  4001. * Switch from indirection array to linear (direct) extent allocations.
  4002. */
  4003. void
  4004. xfs_iext_indirect_to_direct(
  4005. xfs_ifork_t *ifp) /* inode fork pointer */
  4006. {
  4007. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  4008. xfs_extnum_t nextents; /* number of extents in file */
  4009. int size; /* size of file extents */
  4010. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4011. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4012. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4013. size = nextents * sizeof(xfs_bmbt_rec_t);
  4014. xfs_iext_irec_compact_full(ifp);
  4015. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  4016. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  4017. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  4018. ifp->if_flags &= ~XFS_IFEXTIREC;
  4019. ifp->if_u1.if_extents = ep;
  4020. ifp->if_bytes = size;
  4021. if (nextents < XFS_LINEAR_EXTS) {
  4022. xfs_iext_realloc_direct(ifp, size);
  4023. }
  4024. }
  4025. /*
  4026. * Free incore file extents.
  4027. */
  4028. void
  4029. xfs_iext_destroy(
  4030. xfs_ifork_t *ifp) /* inode fork pointer */
  4031. {
  4032. if (ifp->if_flags & XFS_IFEXTIREC) {
  4033. int erp_idx;
  4034. int nlists;
  4035. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4036. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4037. xfs_iext_irec_remove(ifp, erp_idx);
  4038. }
  4039. ifp->if_flags &= ~XFS_IFEXTIREC;
  4040. } else if (ifp->if_real_bytes) {
  4041. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4042. } else if (ifp->if_bytes) {
  4043. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4044. sizeof(xfs_bmbt_rec_t));
  4045. }
  4046. ifp->if_u1.if_extents = NULL;
  4047. ifp->if_real_bytes = 0;
  4048. ifp->if_bytes = 0;
  4049. }
  4050. /*
  4051. * Return a pointer to the extent record for file system block bno.
  4052. */
  4053. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  4054. xfs_iext_bno_to_ext(
  4055. xfs_ifork_t *ifp, /* inode fork pointer */
  4056. xfs_fileoff_t bno, /* block number to search for */
  4057. xfs_extnum_t *idxp) /* index of target extent */
  4058. {
  4059. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  4060. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4061. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  4062. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4063. int high; /* upper boundary in search */
  4064. xfs_extnum_t idx = 0; /* index of target extent */
  4065. int low; /* lower boundary in search */
  4066. xfs_extnum_t nextents; /* number of file extents */
  4067. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4068. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4069. if (nextents == 0) {
  4070. *idxp = 0;
  4071. return NULL;
  4072. }
  4073. low = 0;
  4074. if (ifp->if_flags & XFS_IFEXTIREC) {
  4075. /* Find target extent list */
  4076. int erp_idx = 0;
  4077. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4078. base = erp->er_extbuf;
  4079. high = erp->er_extcount - 1;
  4080. } else {
  4081. base = ifp->if_u1.if_extents;
  4082. high = nextents - 1;
  4083. }
  4084. /* Binary search extent records */
  4085. while (low <= high) {
  4086. idx = (low + high) >> 1;
  4087. ep = base + idx;
  4088. startoff = xfs_bmbt_get_startoff(ep);
  4089. blockcount = xfs_bmbt_get_blockcount(ep);
  4090. if (bno < startoff) {
  4091. high = idx - 1;
  4092. } else if (bno >= startoff + blockcount) {
  4093. low = idx + 1;
  4094. } else {
  4095. /* Convert back to file-based extent index */
  4096. if (ifp->if_flags & XFS_IFEXTIREC) {
  4097. idx += erp->er_extoff;
  4098. }
  4099. *idxp = idx;
  4100. return ep;
  4101. }
  4102. }
  4103. /* Convert back to file-based extent index */
  4104. if (ifp->if_flags & XFS_IFEXTIREC) {
  4105. idx += erp->er_extoff;
  4106. }
  4107. if (bno >= startoff + blockcount) {
  4108. if (++idx == nextents) {
  4109. ep = NULL;
  4110. } else {
  4111. ep = xfs_iext_get_ext(ifp, idx);
  4112. }
  4113. }
  4114. *idxp = idx;
  4115. return ep;
  4116. }
  4117. /*
  4118. * Return a pointer to the indirection array entry containing the
  4119. * extent record for filesystem block bno. Store the index of the
  4120. * target irec in *erp_idxp.
  4121. */
  4122. xfs_ext_irec_t * /* pointer to found extent record */
  4123. xfs_iext_bno_to_irec(
  4124. xfs_ifork_t *ifp, /* inode fork pointer */
  4125. xfs_fileoff_t bno, /* block number to search for */
  4126. int *erp_idxp) /* irec index of target ext list */
  4127. {
  4128. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4129. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4130. int erp_idx; /* indirection array index */
  4131. int nlists; /* number of extent irec's (lists) */
  4132. int high; /* binary search upper limit */
  4133. int low; /* binary search lower limit */
  4134. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4135. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4136. erp_idx = 0;
  4137. low = 0;
  4138. high = nlists - 1;
  4139. while (low <= high) {
  4140. erp_idx = (low + high) >> 1;
  4141. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4142. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4143. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4144. high = erp_idx - 1;
  4145. } else if (erp_next && bno >=
  4146. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4147. low = erp_idx + 1;
  4148. } else {
  4149. break;
  4150. }
  4151. }
  4152. *erp_idxp = erp_idx;
  4153. return erp;
  4154. }
  4155. /*
  4156. * Return a pointer to the indirection array entry containing the
  4157. * extent record at file extent index *idxp. Store the index of the
  4158. * target irec in *erp_idxp and store the page index of the target
  4159. * extent record in *idxp.
  4160. */
  4161. xfs_ext_irec_t *
  4162. xfs_iext_idx_to_irec(
  4163. xfs_ifork_t *ifp, /* inode fork pointer */
  4164. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4165. int *erp_idxp, /* pointer to target irec */
  4166. int realloc) /* new bytes were just added */
  4167. {
  4168. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4169. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4170. int erp_idx; /* indirection array index */
  4171. int nlists; /* number of irec's (ex lists) */
  4172. int high; /* binary search upper limit */
  4173. int low; /* binary search lower limit */
  4174. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4175. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4176. ASSERT(page_idx >= 0 && page_idx <=
  4177. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4178. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4179. erp_idx = 0;
  4180. low = 0;
  4181. high = nlists - 1;
  4182. /* Binary search extent irec's */
  4183. while (low <= high) {
  4184. erp_idx = (low + high) >> 1;
  4185. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4186. prev = erp_idx > 0 ? erp - 1 : NULL;
  4187. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4188. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4189. high = erp_idx - 1;
  4190. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4191. (page_idx == erp->er_extoff + erp->er_extcount &&
  4192. !realloc)) {
  4193. low = erp_idx + 1;
  4194. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4195. erp->er_extcount == XFS_LINEAR_EXTS) {
  4196. ASSERT(realloc);
  4197. page_idx = 0;
  4198. erp_idx++;
  4199. erp = erp_idx < nlists ? erp + 1 : NULL;
  4200. break;
  4201. } else {
  4202. page_idx -= erp->er_extoff;
  4203. break;
  4204. }
  4205. }
  4206. *idxp = page_idx;
  4207. *erp_idxp = erp_idx;
  4208. return(erp);
  4209. }
  4210. /*
  4211. * Allocate and initialize an indirection array once the space needed
  4212. * for incore extents increases above XFS_IEXT_BUFSZ.
  4213. */
  4214. void
  4215. xfs_iext_irec_init(
  4216. xfs_ifork_t *ifp) /* inode fork pointer */
  4217. {
  4218. xfs_ext_irec_t *erp; /* indirection array pointer */
  4219. xfs_extnum_t nextents; /* number of extents in file */
  4220. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4221. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4222. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4223. erp = (xfs_ext_irec_t *)
  4224. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4225. if (nextents == 0) {
  4226. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4227. } else if (!ifp->if_real_bytes) {
  4228. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4229. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4230. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4231. }
  4232. erp->er_extbuf = ifp->if_u1.if_extents;
  4233. erp->er_extcount = nextents;
  4234. erp->er_extoff = 0;
  4235. ifp->if_flags |= XFS_IFEXTIREC;
  4236. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4237. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4238. ifp->if_u1.if_ext_irec = erp;
  4239. return;
  4240. }
  4241. /*
  4242. * Allocate and initialize a new entry in the indirection array.
  4243. */
  4244. xfs_ext_irec_t *
  4245. xfs_iext_irec_new(
  4246. xfs_ifork_t *ifp, /* inode fork pointer */
  4247. int erp_idx) /* index for new irec */
  4248. {
  4249. xfs_ext_irec_t *erp; /* indirection array pointer */
  4250. int i; /* loop counter */
  4251. int nlists; /* number of irec's (ex lists) */
  4252. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4253. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4254. /* Resize indirection array */
  4255. xfs_iext_realloc_indirect(ifp, ++nlists *
  4256. sizeof(xfs_ext_irec_t));
  4257. /*
  4258. * Move records down in the array so the
  4259. * new page can use erp_idx.
  4260. */
  4261. erp = ifp->if_u1.if_ext_irec;
  4262. for (i = nlists - 1; i > erp_idx; i--) {
  4263. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4264. }
  4265. ASSERT(i == erp_idx);
  4266. /* Initialize new extent record */
  4267. erp = ifp->if_u1.if_ext_irec;
  4268. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4269. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4270. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4271. erp[erp_idx].er_extcount = 0;
  4272. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4273. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4274. return (&erp[erp_idx]);
  4275. }
  4276. /*
  4277. * Remove a record from the indirection array.
  4278. */
  4279. void
  4280. xfs_iext_irec_remove(
  4281. xfs_ifork_t *ifp, /* inode fork pointer */
  4282. int erp_idx) /* irec index to remove */
  4283. {
  4284. xfs_ext_irec_t *erp; /* indirection array pointer */
  4285. int i; /* loop counter */
  4286. int nlists; /* number of irec's (ex lists) */
  4287. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4288. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4289. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4290. if (erp->er_extbuf) {
  4291. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4292. -erp->er_extcount);
  4293. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4294. }
  4295. /* Compact extent records */
  4296. erp = ifp->if_u1.if_ext_irec;
  4297. for (i = erp_idx; i < nlists - 1; i++) {
  4298. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4299. }
  4300. /*
  4301. * Manually free the last extent record from the indirection
  4302. * array. A call to xfs_iext_realloc_indirect() with a size
  4303. * of zero would result in a call to xfs_iext_destroy() which
  4304. * would in turn call this function again, creating a nasty
  4305. * infinite loop.
  4306. */
  4307. if (--nlists) {
  4308. xfs_iext_realloc_indirect(ifp,
  4309. nlists * sizeof(xfs_ext_irec_t));
  4310. } else {
  4311. kmem_free(ifp->if_u1.if_ext_irec,
  4312. sizeof(xfs_ext_irec_t));
  4313. }
  4314. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4315. }
  4316. /*
  4317. * This is called to clean up large amounts of unused memory allocated
  4318. * by the indirection array. Before compacting anything though, verify
  4319. * that the indirection array is still needed and switch back to the
  4320. * linear extent list (or even the inline buffer) if possible. The
  4321. * compaction policy is as follows:
  4322. *
  4323. * Full Compaction: Extents fit into a single page (or inline buffer)
  4324. * Full Compaction: Extents occupy less than 10% of allocated space
  4325. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4326. * No Compaction: Extents occupy at least 50% of allocated space
  4327. */
  4328. void
  4329. xfs_iext_irec_compact(
  4330. xfs_ifork_t *ifp) /* inode fork pointer */
  4331. {
  4332. xfs_extnum_t nextents; /* number of extents in file */
  4333. int nlists; /* number of irec's (ex lists) */
  4334. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4335. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4336. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4337. if (nextents == 0) {
  4338. xfs_iext_destroy(ifp);
  4339. } else if (nextents <= XFS_INLINE_EXTS) {
  4340. xfs_iext_indirect_to_direct(ifp);
  4341. xfs_iext_direct_to_inline(ifp, nextents);
  4342. } else if (nextents <= XFS_LINEAR_EXTS) {
  4343. xfs_iext_indirect_to_direct(ifp);
  4344. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4345. xfs_iext_irec_compact_full(ifp);
  4346. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4347. xfs_iext_irec_compact_pages(ifp);
  4348. }
  4349. }
  4350. /*
  4351. * Combine extents from neighboring extent pages.
  4352. */
  4353. void
  4354. xfs_iext_irec_compact_pages(
  4355. xfs_ifork_t *ifp) /* inode fork pointer */
  4356. {
  4357. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4358. int erp_idx = 0; /* indirection array index */
  4359. int nlists; /* number of irec's (ex lists) */
  4360. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4361. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4362. while (erp_idx < nlists - 1) {
  4363. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4364. erp_next = erp + 1;
  4365. if (erp_next->er_extcount <=
  4366. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4367. memmove(&erp->er_extbuf[erp->er_extcount],
  4368. erp_next->er_extbuf, erp_next->er_extcount *
  4369. sizeof(xfs_bmbt_rec_t));
  4370. erp->er_extcount += erp_next->er_extcount;
  4371. /*
  4372. * Free page before removing extent record
  4373. * so er_extoffs don't get modified in
  4374. * xfs_iext_irec_remove.
  4375. */
  4376. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4377. erp_next->er_extbuf = NULL;
  4378. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4379. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4380. } else {
  4381. erp_idx++;
  4382. }
  4383. }
  4384. }
  4385. /*
  4386. * Fully compact the extent records managed by the indirection array.
  4387. */
  4388. void
  4389. xfs_iext_irec_compact_full(
  4390. xfs_ifork_t *ifp) /* inode fork pointer */
  4391. {
  4392. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4393. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4394. int erp_idx = 0; /* extent irec index */
  4395. int ext_avail; /* empty entries in ex list */
  4396. int ext_diff; /* number of exts to add */
  4397. int nlists; /* number of irec's (ex lists) */
  4398. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4399. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4400. erp = ifp->if_u1.if_ext_irec;
  4401. ep = &erp->er_extbuf[erp->er_extcount];
  4402. erp_next = erp + 1;
  4403. ep_next = erp_next->er_extbuf;
  4404. while (erp_idx < nlists - 1) {
  4405. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4406. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4407. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4408. erp->er_extcount += ext_diff;
  4409. erp_next->er_extcount -= ext_diff;
  4410. /* Remove next page */
  4411. if (erp_next->er_extcount == 0) {
  4412. /*
  4413. * Free page before removing extent record
  4414. * so er_extoffs don't get modified in
  4415. * xfs_iext_irec_remove.
  4416. */
  4417. kmem_free(erp_next->er_extbuf,
  4418. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4419. erp_next->er_extbuf = NULL;
  4420. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4421. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4422. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4423. /* Update next page */
  4424. } else {
  4425. /* Move rest of page up to become next new page */
  4426. memmove(erp_next->er_extbuf, ep_next,
  4427. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4428. ep_next = erp_next->er_extbuf;
  4429. memset(&ep_next[erp_next->er_extcount], 0,
  4430. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4431. sizeof(xfs_bmbt_rec_t));
  4432. }
  4433. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4434. erp_idx++;
  4435. if (erp_idx < nlists)
  4436. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4437. else
  4438. break;
  4439. }
  4440. ep = &erp->er_extbuf[erp->er_extcount];
  4441. erp_next = erp + 1;
  4442. ep_next = erp_next->er_extbuf;
  4443. }
  4444. }
  4445. /*
  4446. * This is called to update the er_extoff field in the indirection
  4447. * array when extents have been added or removed from one of the
  4448. * extent lists. erp_idx contains the irec index to begin updating
  4449. * at and ext_diff contains the number of extents that were added
  4450. * or removed.
  4451. */
  4452. void
  4453. xfs_iext_irec_update_extoffs(
  4454. xfs_ifork_t *ifp, /* inode fork pointer */
  4455. int erp_idx, /* irec index to update */
  4456. int ext_diff) /* number of new extents */
  4457. {
  4458. int i; /* loop counter */
  4459. int nlists; /* number of irec's (ex lists */
  4460. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4461. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4462. for (i = erp_idx; i < nlists; i++) {
  4463. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4464. }
  4465. }