direct.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/nfs_fs.h>
  47. #include <linux/nfs_page.h>
  48. #include <linux/sunrpc/clnt.h>
  49. #include <asm/system.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/atomic.h>
  52. #include "internal.h"
  53. #include "iostat.h"
  54. #define NFSDBG_FACILITY NFSDBG_VFS
  55. static struct kmem_cache *nfs_direct_cachep;
  56. /*
  57. * This represents a set of asynchronous requests that we're waiting on
  58. */
  59. struct nfs_direct_req {
  60. struct kref kref; /* release manager */
  61. /* I/O parameters */
  62. struct nfs_open_context *ctx; /* file open context info */
  63. struct kiocb * iocb; /* controlling i/o request */
  64. struct inode * inode; /* target file of i/o */
  65. /* completion state */
  66. atomic_t io_count; /* i/os we're waiting for */
  67. spinlock_t lock; /* protect completion state */
  68. ssize_t count, /* bytes actually processed */
  69. error; /* any reported error */
  70. struct completion completion; /* wait for i/o completion */
  71. /* commit state */
  72. struct list_head rewrite_list; /* saved nfs_write_data structs */
  73. struct nfs_write_data * commit_data; /* special write_data for commits */
  74. int flags;
  75. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  76. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  77. struct nfs_writeverf verf; /* unstable write verifier */
  78. };
  79. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  80. static const struct rpc_call_ops nfs_write_direct_ops;
  81. static inline void get_dreq(struct nfs_direct_req *dreq)
  82. {
  83. atomic_inc(&dreq->io_count);
  84. }
  85. static inline int put_dreq(struct nfs_direct_req *dreq)
  86. {
  87. return atomic_dec_and_test(&dreq->io_count);
  88. }
  89. /**
  90. * nfs_direct_IO - NFS address space operation for direct I/O
  91. * @rw: direction (read or write)
  92. * @iocb: target I/O control block
  93. * @iov: array of vectors that define I/O buffer
  94. * @pos: offset in file to begin the operation
  95. * @nr_segs: size of iovec array
  96. *
  97. * The presence of this routine in the address space ops vector means
  98. * the NFS client supports direct I/O. However, we shunt off direct
  99. * read and write requests before the VFS gets them, so this method
  100. * should never be called.
  101. */
  102. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  103. {
  104. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  105. iocb->ki_filp->f_path.dentry->d_name.name,
  106. (long long) pos, nr_segs);
  107. return -EINVAL;
  108. }
  109. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  110. {
  111. unsigned int npages;
  112. unsigned int i;
  113. if (count == 0)
  114. return;
  115. pages += (pgbase >> PAGE_SHIFT);
  116. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  117. for (i = 0; i < npages; i++) {
  118. struct page *page = pages[i];
  119. if (!PageCompound(page))
  120. set_page_dirty(page);
  121. }
  122. }
  123. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  124. {
  125. unsigned int i;
  126. for (i = 0; i < npages; i++)
  127. page_cache_release(pages[i]);
  128. }
  129. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  130. {
  131. struct nfs_direct_req *dreq;
  132. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  133. if (!dreq)
  134. return NULL;
  135. kref_init(&dreq->kref);
  136. kref_get(&dreq->kref);
  137. init_completion(&dreq->completion);
  138. INIT_LIST_HEAD(&dreq->rewrite_list);
  139. dreq->iocb = NULL;
  140. dreq->ctx = NULL;
  141. spin_lock_init(&dreq->lock);
  142. atomic_set(&dreq->io_count, 0);
  143. dreq->count = 0;
  144. dreq->error = 0;
  145. dreq->flags = 0;
  146. return dreq;
  147. }
  148. static void nfs_direct_req_free(struct kref *kref)
  149. {
  150. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  151. if (dreq->ctx != NULL)
  152. put_nfs_open_context(dreq->ctx);
  153. kmem_cache_free(nfs_direct_cachep, dreq);
  154. }
  155. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  156. {
  157. kref_put(&dreq->kref, nfs_direct_req_free);
  158. }
  159. /*
  160. * Collects and returns the final error value/byte-count.
  161. */
  162. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  163. {
  164. ssize_t result = -EIOCBQUEUED;
  165. /* Async requests don't wait here */
  166. if (dreq->iocb)
  167. goto out;
  168. result = wait_for_completion_interruptible(&dreq->completion);
  169. if (!result)
  170. result = dreq->error;
  171. if (!result)
  172. result = dreq->count;
  173. out:
  174. return (ssize_t) result;
  175. }
  176. /*
  177. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  178. * the iocb is still valid here if this is a synchronous request.
  179. */
  180. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  181. {
  182. if (dreq->iocb) {
  183. long res = (long) dreq->error;
  184. if (!res)
  185. res = (long) dreq->count;
  186. aio_complete(dreq->iocb, res, 0);
  187. }
  188. complete_all(&dreq->completion);
  189. nfs_direct_req_release(dreq);
  190. }
  191. /*
  192. * We must hold a reference to all the pages in this direct read request
  193. * until the RPCs complete. This could be long *after* we are woken up in
  194. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  195. */
  196. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  197. {
  198. struct nfs_read_data *data = calldata;
  199. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  200. if (nfs_readpage_result(task, data) != 0)
  201. return;
  202. spin_lock(&dreq->lock);
  203. if (unlikely(task->tk_status < 0)) {
  204. dreq->error = task->tk_status;
  205. spin_unlock(&dreq->lock);
  206. } else {
  207. dreq->count += data->res.count;
  208. spin_unlock(&dreq->lock);
  209. nfs_direct_dirty_pages(data->pagevec,
  210. data->args.pgbase,
  211. data->res.count);
  212. }
  213. nfs_direct_release_pages(data->pagevec, data->npages);
  214. if (put_dreq(dreq))
  215. nfs_direct_complete(dreq);
  216. }
  217. static const struct rpc_call_ops nfs_read_direct_ops = {
  218. .rpc_call_done = nfs_direct_read_result,
  219. .rpc_release = nfs_readdata_release,
  220. };
  221. /*
  222. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  223. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  224. * bail and stop sending more reads. Read length accounting is
  225. * handled automatically by nfs_direct_read_result(). Otherwise, if
  226. * no requests have been sent, just return an error.
  227. */
  228. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  229. const struct iovec *iov,
  230. loff_t pos)
  231. {
  232. struct nfs_open_context *ctx = dreq->ctx;
  233. struct inode *inode = ctx->path.dentry->d_inode;
  234. unsigned long user_addr = (unsigned long)iov->iov_base;
  235. size_t count = iov->iov_len;
  236. size_t rsize = NFS_SERVER(inode)->rsize;
  237. unsigned int pgbase;
  238. int result;
  239. ssize_t started = 0;
  240. do {
  241. struct nfs_read_data *data;
  242. size_t bytes;
  243. pgbase = user_addr & ~PAGE_MASK;
  244. bytes = min(rsize,count);
  245. result = -ENOMEM;
  246. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  247. if (unlikely(!data))
  248. break;
  249. down_read(&current->mm->mmap_sem);
  250. result = get_user_pages(current, current->mm, user_addr,
  251. data->npages, 1, 0, data->pagevec, NULL);
  252. up_read(&current->mm->mmap_sem);
  253. if (result < 0) {
  254. nfs_readdata_release(data);
  255. break;
  256. }
  257. if ((unsigned)result < data->npages) {
  258. bytes = result * PAGE_SIZE;
  259. if (bytes <= pgbase) {
  260. nfs_direct_release_pages(data->pagevec, result);
  261. nfs_readdata_release(data);
  262. break;
  263. }
  264. bytes -= pgbase;
  265. data->npages = result;
  266. }
  267. get_dreq(dreq);
  268. data->req = (struct nfs_page *) dreq;
  269. data->inode = inode;
  270. data->cred = ctx->cred;
  271. data->args.fh = NFS_FH(inode);
  272. data->args.context = ctx;
  273. data->args.offset = pos;
  274. data->args.pgbase = pgbase;
  275. data->args.pages = data->pagevec;
  276. data->args.count = bytes;
  277. data->res.fattr = &data->fattr;
  278. data->res.eof = 0;
  279. data->res.count = bytes;
  280. rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
  281. &nfs_read_direct_ops, data);
  282. NFS_PROTO(inode)->read_setup(data);
  283. data->task.tk_cookie = (unsigned long) inode;
  284. rpc_execute(&data->task);
  285. dprintk("NFS: %5u initiated direct read call "
  286. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  287. data->task.tk_pid,
  288. inode->i_sb->s_id,
  289. (long long)NFS_FILEID(inode),
  290. bytes,
  291. (unsigned long long)data->args.offset);
  292. started += bytes;
  293. user_addr += bytes;
  294. pos += bytes;
  295. /* FIXME: Remove this unnecessary math from final patch */
  296. pgbase += bytes;
  297. pgbase &= ~PAGE_MASK;
  298. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  299. count -= bytes;
  300. } while (count != 0);
  301. if (started)
  302. return started;
  303. return result < 0 ? (ssize_t) result : -EFAULT;
  304. }
  305. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  306. const struct iovec *iov,
  307. unsigned long nr_segs,
  308. loff_t pos)
  309. {
  310. ssize_t result = -EINVAL;
  311. size_t requested_bytes = 0;
  312. unsigned long seg;
  313. get_dreq(dreq);
  314. for (seg = 0; seg < nr_segs; seg++) {
  315. const struct iovec *vec = &iov[seg];
  316. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  317. if (result < 0)
  318. break;
  319. requested_bytes += result;
  320. if ((size_t)result < vec->iov_len)
  321. break;
  322. pos += vec->iov_len;
  323. }
  324. if (put_dreq(dreq))
  325. nfs_direct_complete(dreq);
  326. if (requested_bytes != 0)
  327. return 0;
  328. if (result < 0)
  329. return result;
  330. return -EIO;
  331. }
  332. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  333. unsigned long nr_segs, loff_t pos)
  334. {
  335. ssize_t result = 0;
  336. sigset_t oldset;
  337. struct inode *inode = iocb->ki_filp->f_mapping->host;
  338. struct rpc_clnt *clnt = NFS_CLIENT(inode);
  339. struct nfs_direct_req *dreq;
  340. dreq = nfs_direct_req_alloc();
  341. if (!dreq)
  342. return -ENOMEM;
  343. dreq->inode = inode;
  344. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  345. if (!is_sync_kiocb(iocb))
  346. dreq->iocb = iocb;
  347. rpc_clnt_sigmask(clnt, &oldset);
  348. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  349. if (!result)
  350. result = nfs_direct_wait(dreq);
  351. rpc_clnt_sigunmask(clnt, &oldset);
  352. nfs_direct_req_release(dreq);
  353. return result;
  354. }
  355. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  356. {
  357. while (!list_empty(&dreq->rewrite_list)) {
  358. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  359. list_del(&data->pages);
  360. nfs_direct_release_pages(data->pagevec, data->npages);
  361. nfs_writedata_release(data);
  362. }
  363. }
  364. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  365. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  366. {
  367. struct inode *inode = dreq->inode;
  368. struct list_head *p;
  369. struct nfs_write_data *data;
  370. dreq->count = 0;
  371. get_dreq(dreq);
  372. list_for_each(p, &dreq->rewrite_list) {
  373. data = list_entry(p, struct nfs_write_data, pages);
  374. get_dreq(dreq);
  375. /*
  376. * Reset data->res.
  377. */
  378. nfs_fattr_init(&data->fattr);
  379. data->res.count = data->args.count;
  380. memset(&data->verf, 0, sizeof(data->verf));
  381. /*
  382. * Reuse data->task; data->args should not have changed
  383. * since the original request was sent.
  384. */
  385. rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
  386. &nfs_write_direct_ops, data);
  387. NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
  388. data->task.tk_priority = RPC_PRIORITY_NORMAL;
  389. data->task.tk_cookie = (unsigned long) inode;
  390. /*
  391. * We're called via an RPC callback, so BKL is already held.
  392. */
  393. rpc_execute(&data->task);
  394. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  395. data->task.tk_pid,
  396. inode->i_sb->s_id,
  397. (long long)NFS_FILEID(inode),
  398. data->args.count,
  399. (unsigned long long)data->args.offset);
  400. }
  401. if (put_dreq(dreq))
  402. nfs_direct_write_complete(dreq, inode);
  403. }
  404. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  405. {
  406. struct nfs_write_data *data = calldata;
  407. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  408. /* Call the NFS version-specific code */
  409. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  410. return;
  411. if (unlikely(task->tk_status < 0)) {
  412. dprintk("NFS: %5u commit failed with error %d.\n",
  413. task->tk_pid, task->tk_status);
  414. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  415. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  416. dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
  417. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  418. }
  419. dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
  420. nfs_direct_write_complete(dreq, data->inode);
  421. }
  422. static const struct rpc_call_ops nfs_commit_direct_ops = {
  423. .rpc_call_done = nfs_direct_commit_result,
  424. .rpc_release = nfs_commit_release,
  425. };
  426. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  427. {
  428. struct nfs_write_data *data = dreq->commit_data;
  429. data->inode = dreq->inode;
  430. data->cred = dreq->ctx->cred;
  431. data->args.fh = NFS_FH(data->inode);
  432. data->args.offset = 0;
  433. data->args.count = 0;
  434. data->res.count = 0;
  435. data->res.fattr = &data->fattr;
  436. data->res.verf = &data->verf;
  437. rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
  438. &nfs_commit_direct_ops, data);
  439. NFS_PROTO(data->inode)->commit_setup(data, 0);
  440. data->task.tk_priority = RPC_PRIORITY_NORMAL;
  441. data->task.tk_cookie = (unsigned long)data->inode;
  442. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  443. dreq->commit_data = NULL;
  444. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  445. rpc_execute(&data->task);
  446. }
  447. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  448. {
  449. int flags = dreq->flags;
  450. dreq->flags = 0;
  451. switch (flags) {
  452. case NFS_ODIRECT_DO_COMMIT:
  453. nfs_direct_commit_schedule(dreq);
  454. break;
  455. case NFS_ODIRECT_RESCHED_WRITES:
  456. nfs_direct_write_reschedule(dreq);
  457. break;
  458. default:
  459. if (dreq->commit_data != NULL)
  460. nfs_commit_free(dreq->commit_data);
  461. nfs_direct_free_writedata(dreq);
  462. nfs_zap_mapping(inode, inode->i_mapping);
  463. nfs_direct_complete(dreq);
  464. }
  465. }
  466. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  467. {
  468. dreq->commit_data = nfs_commit_alloc();
  469. if (dreq->commit_data != NULL)
  470. dreq->commit_data->req = (struct nfs_page *) dreq;
  471. }
  472. #else
  473. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  474. {
  475. dreq->commit_data = NULL;
  476. }
  477. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  478. {
  479. nfs_direct_free_writedata(dreq);
  480. nfs_zap_mapping(inode, inode->i_mapping);
  481. nfs_direct_complete(dreq);
  482. }
  483. #endif
  484. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  485. {
  486. struct nfs_write_data *data = calldata;
  487. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  488. int status = task->tk_status;
  489. if (nfs_writeback_done(task, data) != 0)
  490. return;
  491. spin_lock(&dreq->lock);
  492. if (unlikely(status < 0)) {
  493. /* An error has occurred, so we should not commit */
  494. dreq->flags = 0;
  495. dreq->error = status;
  496. }
  497. if (unlikely(dreq->error != 0))
  498. goto out_unlock;
  499. dreq->count += data->res.count;
  500. if (data->res.verf->committed != NFS_FILE_SYNC) {
  501. switch (dreq->flags) {
  502. case 0:
  503. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  504. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  505. break;
  506. case NFS_ODIRECT_DO_COMMIT:
  507. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  508. dprintk("NFS: %5u write verify failed\n", task->tk_pid);
  509. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  510. }
  511. }
  512. }
  513. out_unlock:
  514. spin_unlock(&dreq->lock);
  515. }
  516. /*
  517. * NB: Return the value of the first error return code. Subsequent
  518. * errors after the first one are ignored.
  519. */
  520. static void nfs_direct_write_release(void *calldata)
  521. {
  522. struct nfs_write_data *data = calldata;
  523. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  524. if (put_dreq(dreq))
  525. nfs_direct_write_complete(dreq, data->inode);
  526. }
  527. static const struct rpc_call_ops nfs_write_direct_ops = {
  528. .rpc_call_done = nfs_direct_write_result,
  529. .rpc_release = nfs_direct_write_release,
  530. };
  531. /*
  532. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  533. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  534. * bail and stop sending more writes. Write length accounting is
  535. * handled automatically by nfs_direct_write_result(). Otherwise, if
  536. * no requests have been sent, just return an error.
  537. */
  538. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  539. const struct iovec *iov,
  540. loff_t pos, int sync)
  541. {
  542. struct nfs_open_context *ctx = dreq->ctx;
  543. struct inode *inode = ctx->path.dentry->d_inode;
  544. unsigned long user_addr = (unsigned long)iov->iov_base;
  545. size_t count = iov->iov_len;
  546. size_t wsize = NFS_SERVER(inode)->wsize;
  547. unsigned int pgbase;
  548. int result;
  549. ssize_t started = 0;
  550. do {
  551. struct nfs_write_data *data;
  552. size_t bytes;
  553. pgbase = user_addr & ~PAGE_MASK;
  554. bytes = min(wsize,count);
  555. result = -ENOMEM;
  556. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  557. if (unlikely(!data))
  558. break;
  559. down_read(&current->mm->mmap_sem);
  560. result = get_user_pages(current, current->mm, user_addr,
  561. data->npages, 0, 0, data->pagevec, NULL);
  562. up_read(&current->mm->mmap_sem);
  563. if (result < 0) {
  564. nfs_writedata_release(data);
  565. break;
  566. }
  567. if ((unsigned)result < data->npages) {
  568. bytes = result * PAGE_SIZE;
  569. if (bytes <= pgbase) {
  570. nfs_direct_release_pages(data->pagevec, result);
  571. nfs_writedata_release(data);
  572. break;
  573. }
  574. bytes -= pgbase;
  575. data->npages = result;
  576. }
  577. get_dreq(dreq);
  578. list_move_tail(&data->pages, &dreq->rewrite_list);
  579. data->req = (struct nfs_page *) dreq;
  580. data->inode = inode;
  581. data->cred = ctx->cred;
  582. data->args.fh = NFS_FH(inode);
  583. data->args.context = ctx;
  584. data->args.offset = pos;
  585. data->args.pgbase = pgbase;
  586. data->args.pages = data->pagevec;
  587. data->args.count = bytes;
  588. data->res.fattr = &data->fattr;
  589. data->res.count = bytes;
  590. data->res.verf = &data->verf;
  591. rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
  592. &nfs_write_direct_ops, data);
  593. NFS_PROTO(inode)->write_setup(data, sync);
  594. data->task.tk_priority = RPC_PRIORITY_NORMAL;
  595. data->task.tk_cookie = (unsigned long) inode;
  596. rpc_execute(&data->task);
  597. dprintk("NFS: %5u initiated direct write call "
  598. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  599. data->task.tk_pid,
  600. inode->i_sb->s_id,
  601. (long long)NFS_FILEID(inode),
  602. bytes,
  603. (unsigned long long)data->args.offset);
  604. started += bytes;
  605. user_addr += bytes;
  606. pos += bytes;
  607. /* FIXME: Remove this useless math from the final patch */
  608. pgbase += bytes;
  609. pgbase &= ~PAGE_MASK;
  610. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  611. count -= bytes;
  612. } while (count != 0);
  613. if (started)
  614. return started;
  615. return result < 0 ? (ssize_t) result : -EFAULT;
  616. }
  617. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  618. const struct iovec *iov,
  619. unsigned long nr_segs,
  620. loff_t pos, int sync)
  621. {
  622. ssize_t result = 0;
  623. size_t requested_bytes = 0;
  624. unsigned long seg;
  625. get_dreq(dreq);
  626. for (seg = 0; seg < nr_segs; seg++) {
  627. const struct iovec *vec = &iov[seg];
  628. result = nfs_direct_write_schedule_segment(dreq, vec,
  629. pos, sync);
  630. if (result < 0)
  631. break;
  632. requested_bytes += result;
  633. if ((size_t)result < vec->iov_len)
  634. break;
  635. pos += vec->iov_len;
  636. }
  637. if (put_dreq(dreq))
  638. nfs_direct_write_complete(dreq, dreq->inode);
  639. if (requested_bytes != 0)
  640. return 0;
  641. if (result < 0)
  642. return result;
  643. return -EIO;
  644. }
  645. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  646. unsigned long nr_segs, loff_t pos,
  647. size_t count)
  648. {
  649. ssize_t result = 0;
  650. sigset_t oldset;
  651. struct inode *inode = iocb->ki_filp->f_mapping->host;
  652. struct rpc_clnt *clnt = NFS_CLIENT(inode);
  653. struct nfs_direct_req *dreq;
  654. size_t wsize = NFS_SERVER(inode)->wsize;
  655. int sync = 0;
  656. dreq = nfs_direct_req_alloc();
  657. if (!dreq)
  658. return -ENOMEM;
  659. nfs_alloc_commit_data(dreq);
  660. if (dreq->commit_data == NULL || count < wsize)
  661. sync = FLUSH_STABLE;
  662. dreq->inode = inode;
  663. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  664. if (!is_sync_kiocb(iocb))
  665. dreq->iocb = iocb;
  666. rpc_clnt_sigmask(clnt, &oldset);
  667. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  668. if (!result)
  669. result = nfs_direct_wait(dreq);
  670. rpc_clnt_sigunmask(clnt, &oldset);
  671. nfs_direct_req_release(dreq);
  672. return result;
  673. }
  674. /**
  675. * nfs_file_direct_read - file direct read operation for NFS files
  676. * @iocb: target I/O control block
  677. * @iov: vector of user buffers into which to read data
  678. * @nr_segs: size of iov vector
  679. * @pos: byte offset in file where reading starts
  680. *
  681. * We use this function for direct reads instead of calling
  682. * generic_file_aio_read() in order to avoid gfar's check to see if
  683. * the request starts before the end of the file. For that check
  684. * to work, we must generate a GETATTR before each direct read, and
  685. * even then there is a window between the GETATTR and the subsequent
  686. * READ where the file size could change. Our preference is simply
  687. * to do all reads the application wants, and the server will take
  688. * care of managing the end of file boundary.
  689. *
  690. * This function also eliminates unnecessarily updating the file's
  691. * atime locally, as the NFS server sets the file's atime, and this
  692. * client must read the updated atime from the server back into its
  693. * cache.
  694. */
  695. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  696. unsigned long nr_segs, loff_t pos)
  697. {
  698. ssize_t retval = -EINVAL;
  699. struct file *file = iocb->ki_filp;
  700. struct address_space *mapping = file->f_mapping;
  701. size_t count;
  702. count = iov_length(iov, nr_segs);
  703. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  704. dprintk("nfs: direct read(%s/%s, %zd@%Ld)\n",
  705. file->f_path.dentry->d_parent->d_name.name,
  706. file->f_path.dentry->d_name.name,
  707. count, (long long) pos);
  708. retval = 0;
  709. if (!count)
  710. goto out;
  711. retval = nfs_sync_mapping(mapping);
  712. if (retval)
  713. goto out;
  714. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  715. if (retval > 0)
  716. iocb->ki_pos = pos + retval;
  717. out:
  718. return retval;
  719. }
  720. /**
  721. * nfs_file_direct_write - file direct write operation for NFS files
  722. * @iocb: target I/O control block
  723. * @iov: vector of user buffers from which to write data
  724. * @nr_segs: size of iov vector
  725. * @pos: byte offset in file where writing starts
  726. *
  727. * We use this function for direct writes instead of calling
  728. * generic_file_aio_write() in order to avoid taking the inode
  729. * semaphore and updating the i_size. The NFS server will set
  730. * the new i_size and this client must read the updated size
  731. * back into its cache. We let the server do generic write
  732. * parameter checking and report problems.
  733. *
  734. * We also avoid an unnecessary invocation of generic_osync_inode(),
  735. * as it is fairly meaningless to sync the metadata of an NFS file.
  736. *
  737. * We eliminate local atime updates, see direct read above.
  738. *
  739. * We avoid unnecessary page cache invalidations for normal cached
  740. * readers of this file.
  741. *
  742. * Note that O_APPEND is not supported for NFS direct writes, as there
  743. * is no atomic O_APPEND write facility in the NFS protocol.
  744. */
  745. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  746. unsigned long nr_segs, loff_t pos)
  747. {
  748. ssize_t retval = -EINVAL;
  749. struct file *file = iocb->ki_filp;
  750. struct address_space *mapping = file->f_mapping;
  751. size_t count;
  752. count = iov_length(iov, nr_segs);
  753. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  754. dfprintk(VFS, "nfs: direct write(%s/%s, %zd@%Ld)\n",
  755. file->f_path.dentry->d_parent->d_name.name,
  756. file->f_path.dentry->d_name.name,
  757. count, (long long) pos);
  758. retval = generic_write_checks(file, &pos, &count, 0);
  759. if (retval)
  760. goto out;
  761. retval = -EINVAL;
  762. if ((ssize_t) count < 0)
  763. goto out;
  764. retval = 0;
  765. if (!count)
  766. goto out;
  767. retval = nfs_sync_mapping(mapping);
  768. if (retval)
  769. goto out;
  770. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  771. if (retval > 0)
  772. iocb->ki_pos = pos + retval;
  773. out:
  774. return retval;
  775. }
  776. /**
  777. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  778. *
  779. */
  780. int __init nfs_init_directcache(void)
  781. {
  782. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  783. sizeof(struct nfs_direct_req),
  784. 0, (SLAB_RECLAIM_ACCOUNT|
  785. SLAB_MEM_SPREAD),
  786. NULL);
  787. if (nfs_direct_cachep == NULL)
  788. return -ENOMEM;
  789. return 0;
  790. }
  791. /**
  792. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  793. *
  794. */
  795. void nfs_destroy_directcache(void)
  796. {
  797. kmem_cache_destroy(nfs_direct_cachep);
  798. }