btree.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /*
  2. * linux/fs/hfsplus/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/log2.h>
  13. #include "hfsplus_fs.h"
  14. #include "hfsplus_raw.h"
  15. /* Get a reference to a B*Tree and do some initial checks */
  16. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
  17. {
  18. struct hfs_btree *tree;
  19. struct hfs_btree_header_rec *head;
  20. struct address_space *mapping;
  21. struct page *page;
  22. unsigned int size;
  23. tree = kzalloc(sizeof(*tree), GFP_KERNEL);
  24. if (!tree)
  25. return NULL;
  26. init_MUTEX(&tree->tree_lock);
  27. spin_lock_init(&tree->hash_lock);
  28. tree->sb = sb;
  29. tree->cnid = id;
  30. tree->inode = iget(sb, id);
  31. if (!tree->inode)
  32. goto free_tree;
  33. mapping = tree->inode->i_mapping;
  34. page = read_mapping_page(mapping, 0, NULL);
  35. if (IS_ERR(page))
  36. goto free_tree;
  37. /* Load the header */
  38. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  39. tree->root = be32_to_cpu(head->root);
  40. tree->leaf_count = be32_to_cpu(head->leaf_count);
  41. tree->leaf_head = be32_to_cpu(head->leaf_head);
  42. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  43. tree->node_count = be32_to_cpu(head->node_count);
  44. tree->free_nodes = be32_to_cpu(head->free_nodes);
  45. tree->attributes = be32_to_cpu(head->attributes);
  46. tree->node_size = be16_to_cpu(head->node_size);
  47. tree->max_key_len = be16_to_cpu(head->max_key_len);
  48. tree->depth = be16_to_cpu(head->depth);
  49. /* Set the correct compare function */
  50. if (id == HFSPLUS_EXT_CNID) {
  51. tree->keycmp = hfsplus_ext_cmp_key;
  52. } else if (id == HFSPLUS_CAT_CNID) {
  53. if ((HFSPLUS_SB(sb).flags & HFSPLUS_SB_HFSX) &&
  54. (head->key_type == HFSPLUS_KEY_BINARY))
  55. tree->keycmp = hfsplus_cat_bin_cmp_key;
  56. else {
  57. tree->keycmp = hfsplus_cat_case_cmp_key;
  58. HFSPLUS_SB(sb).flags |= HFSPLUS_SB_CASEFOLD;
  59. }
  60. } else {
  61. printk(KERN_ERR "hfs: unknown B*Tree requested\n");
  62. goto fail_page;
  63. }
  64. size = tree->node_size;
  65. if (!is_power_of_2(size))
  66. goto fail_page;
  67. if (!tree->node_count)
  68. goto fail_page;
  69. tree->node_size_shift = ffs(size) - 1;
  70. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  71. kunmap(page);
  72. page_cache_release(page);
  73. return tree;
  74. fail_page:
  75. tree->inode->i_mapping->a_ops = &hfsplus_aops;
  76. page_cache_release(page);
  77. free_tree:
  78. iput(tree->inode);
  79. kfree(tree);
  80. return NULL;
  81. }
  82. /* Release resources used by a btree */
  83. void hfs_btree_close(struct hfs_btree *tree)
  84. {
  85. struct hfs_bnode *node;
  86. int i;
  87. if (!tree)
  88. return;
  89. for (i = 0; i < NODE_HASH_SIZE; i++) {
  90. while ((node = tree->node_hash[i])) {
  91. tree->node_hash[i] = node->next_hash;
  92. if (atomic_read(&node->refcnt))
  93. printk(KERN_CRIT "hfs: node %d:%d still has %d user(s)!\n",
  94. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  95. hfs_bnode_free(node);
  96. tree->node_hash_cnt--;
  97. }
  98. }
  99. iput(tree->inode);
  100. kfree(tree);
  101. }
  102. void hfs_btree_write(struct hfs_btree *tree)
  103. {
  104. struct hfs_btree_header_rec *head;
  105. struct hfs_bnode *node;
  106. struct page *page;
  107. node = hfs_bnode_find(tree, 0);
  108. if (IS_ERR(node))
  109. /* panic? */
  110. return;
  111. /* Load the header */
  112. page = node->page[0];
  113. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  114. head->root = cpu_to_be32(tree->root);
  115. head->leaf_count = cpu_to_be32(tree->leaf_count);
  116. head->leaf_head = cpu_to_be32(tree->leaf_head);
  117. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  118. head->node_count = cpu_to_be32(tree->node_count);
  119. head->free_nodes = cpu_to_be32(tree->free_nodes);
  120. head->attributes = cpu_to_be32(tree->attributes);
  121. head->depth = cpu_to_be16(tree->depth);
  122. kunmap(page);
  123. set_page_dirty(page);
  124. hfs_bnode_put(node);
  125. }
  126. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  127. {
  128. struct hfs_btree *tree = prev->tree;
  129. struct hfs_bnode *node;
  130. struct hfs_bnode_desc desc;
  131. __be32 cnid;
  132. node = hfs_bnode_create(tree, idx);
  133. if (IS_ERR(node))
  134. return node;
  135. tree->free_nodes--;
  136. prev->next = idx;
  137. cnid = cpu_to_be32(idx);
  138. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  139. node->type = HFS_NODE_MAP;
  140. node->num_recs = 1;
  141. hfs_bnode_clear(node, 0, tree->node_size);
  142. desc.next = 0;
  143. desc.prev = 0;
  144. desc.type = HFS_NODE_MAP;
  145. desc.height = 0;
  146. desc.num_recs = cpu_to_be16(1);
  147. desc.reserved = 0;
  148. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  149. hfs_bnode_write_u16(node, 14, 0x8000);
  150. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  151. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  152. return node;
  153. }
  154. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  155. {
  156. struct hfs_bnode *node, *next_node;
  157. struct page **pagep;
  158. u32 nidx, idx;
  159. u16 off, len;
  160. u8 *data, byte, m;
  161. int i;
  162. while (!tree->free_nodes) {
  163. struct inode *inode = tree->inode;
  164. u32 count;
  165. int res;
  166. res = hfsplus_file_extend(inode);
  167. if (res)
  168. return ERR_PTR(res);
  169. HFSPLUS_I(inode).phys_size = inode->i_size =
  170. (loff_t)HFSPLUS_I(inode).alloc_blocks <<
  171. HFSPLUS_SB(tree->sb).alloc_blksz_shift;
  172. HFSPLUS_I(inode).fs_blocks = HFSPLUS_I(inode).alloc_blocks <<
  173. HFSPLUS_SB(tree->sb).fs_shift;
  174. inode_set_bytes(inode, inode->i_size);
  175. count = inode->i_size >> tree->node_size_shift;
  176. tree->free_nodes = count - tree->node_count;
  177. tree->node_count = count;
  178. }
  179. nidx = 0;
  180. node = hfs_bnode_find(tree, nidx);
  181. if (IS_ERR(node))
  182. return node;
  183. len = hfs_brec_lenoff(node, 2, &off);
  184. off += node->page_offset;
  185. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  186. data = kmap(*pagep);
  187. off &= ~PAGE_CACHE_MASK;
  188. idx = 0;
  189. for (;;) {
  190. while (len) {
  191. byte = data[off];
  192. if (byte != 0xff) {
  193. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  194. if (!(byte & m)) {
  195. idx += i;
  196. data[off] |= m;
  197. set_page_dirty(*pagep);
  198. kunmap(*pagep);
  199. tree->free_nodes--;
  200. mark_inode_dirty(tree->inode);
  201. hfs_bnode_put(node);
  202. return hfs_bnode_create(tree, idx);
  203. }
  204. }
  205. }
  206. if (++off >= PAGE_CACHE_SIZE) {
  207. kunmap(*pagep);
  208. data = kmap(*++pagep);
  209. off = 0;
  210. }
  211. idx += 8;
  212. len--;
  213. }
  214. kunmap(*pagep);
  215. nidx = node->next;
  216. if (!nidx) {
  217. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  218. next_node = hfs_bmap_new_bmap(node, idx);
  219. } else
  220. next_node = hfs_bnode_find(tree, nidx);
  221. hfs_bnode_put(node);
  222. if (IS_ERR(next_node))
  223. return next_node;
  224. node = next_node;
  225. len = hfs_brec_lenoff(node, 0, &off);
  226. off += node->page_offset;
  227. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  228. data = kmap(*pagep);
  229. off &= ~PAGE_CACHE_MASK;
  230. }
  231. }
  232. void hfs_bmap_free(struct hfs_bnode *node)
  233. {
  234. struct hfs_btree *tree;
  235. struct page *page;
  236. u16 off, len;
  237. u32 nidx;
  238. u8 *data, byte, m;
  239. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  240. BUG_ON(!node->this);
  241. tree = node->tree;
  242. nidx = node->this;
  243. node = hfs_bnode_find(tree, 0);
  244. if (IS_ERR(node))
  245. return;
  246. len = hfs_brec_lenoff(node, 2, &off);
  247. while (nidx >= len * 8) {
  248. u32 i;
  249. nidx -= len * 8;
  250. i = node->next;
  251. hfs_bnode_put(node);
  252. if (!i) {
  253. /* panic */;
  254. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  255. return;
  256. }
  257. node = hfs_bnode_find(tree, i);
  258. if (IS_ERR(node))
  259. return;
  260. if (node->type != HFS_NODE_MAP) {
  261. /* panic */;
  262. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  263. hfs_bnode_put(node);
  264. return;
  265. }
  266. len = hfs_brec_lenoff(node, 0, &off);
  267. }
  268. off += node->page_offset + nidx / 8;
  269. page = node->page[off >> PAGE_CACHE_SHIFT];
  270. data = kmap(page);
  271. off &= ~PAGE_CACHE_MASK;
  272. m = 1 << (~nidx & 7);
  273. byte = data[off];
  274. if (!(byte & m)) {
  275. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  276. kunmap(page);
  277. hfs_bnode_put(node);
  278. return;
  279. }
  280. data[off] = byte & ~m;
  281. set_page_dirty(page);
  282. kunmap(page);
  283. hfs_bnode_put(node);
  284. tree->free_nodes++;
  285. mark_inode_dirty(tree->inode);
  286. }