spi.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/autoconf.h>
  21. #include <linux/kernel.h>
  22. #include <linux/device.h>
  23. #include <linux/init.h>
  24. #include <linux/cache.h>
  25. #include <linux/mutex.h>
  26. #include <linux/spi/spi.h>
  27. /* SPI bustype and spi_master class are registered after board init code
  28. * provides the SPI device tables, ensuring that both are present by the
  29. * time controller driver registration causes spi_devices to "enumerate".
  30. */
  31. static void spidev_release(struct device *dev)
  32. {
  33. struct spi_device *spi = to_spi_device(dev);
  34. /* spi masters may cleanup for released devices */
  35. if (spi->master->cleanup)
  36. spi->master->cleanup(spi);
  37. spi_master_put(spi->master);
  38. kfree(dev);
  39. }
  40. static ssize_t
  41. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  42. {
  43. const struct spi_device *spi = to_spi_device(dev);
  44. return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
  45. }
  46. static struct device_attribute spi_dev_attrs[] = {
  47. __ATTR_RO(modalias),
  48. __ATTR_NULL,
  49. };
  50. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  51. * and the sysfs version makes coldplug work too.
  52. */
  53. static int spi_match_device(struct device *dev, struct device_driver *drv)
  54. {
  55. const struct spi_device *spi = to_spi_device(dev);
  56. return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
  57. }
  58. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  59. {
  60. const struct spi_device *spi = to_spi_device(dev);
  61. add_uevent_var(env, "MODALIAS=%s", spi->modalias);
  62. return 0;
  63. }
  64. #ifdef CONFIG_PM
  65. /*
  66. * NOTE: the suspend() method for an spi_master controller driver
  67. * should verify that all its child devices are marked as suspended;
  68. * suspend requests delivered through sysfs power/state files don't
  69. * enforce such constraints.
  70. */
  71. static int spi_suspend(struct device *dev, pm_message_t message)
  72. {
  73. int value;
  74. struct spi_driver *drv = to_spi_driver(dev->driver);
  75. if (!drv || !drv->suspend)
  76. return 0;
  77. /* suspend will stop irqs and dma; no more i/o */
  78. value = drv->suspend(to_spi_device(dev), message);
  79. if (value == 0)
  80. dev->power.power_state = message;
  81. return value;
  82. }
  83. static int spi_resume(struct device *dev)
  84. {
  85. int value;
  86. struct spi_driver *drv = to_spi_driver(dev->driver);
  87. if (!drv || !drv->resume)
  88. return 0;
  89. /* resume may restart the i/o queue */
  90. value = drv->resume(to_spi_device(dev));
  91. if (value == 0)
  92. dev->power.power_state = PMSG_ON;
  93. return value;
  94. }
  95. #else
  96. #define spi_suspend NULL
  97. #define spi_resume NULL
  98. #endif
  99. struct bus_type spi_bus_type = {
  100. .name = "spi",
  101. .dev_attrs = spi_dev_attrs,
  102. .match = spi_match_device,
  103. .uevent = spi_uevent,
  104. .suspend = spi_suspend,
  105. .resume = spi_resume,
  106. };
  107. EXPORT_SYMBOL_GPL(spi_bus_type);
  108. static int spi_drv_probe(struct device *dev)
  109. {
  110. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  111. return sdrv->probe(to_spi_device(dev));
  112. }
  113. static int spi_drv_remove(struct device *dev)
  114. {
  115. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  116. return sdrv->remove(to_spi_device(dev));
  117. }
  118. static void spi_drv_shutdown(struct device *dev)
  119. {
  120. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  121. sdrv->shutdown(to_spi_device(dev));
  122. }
  123. /**
  124. * spi_register_driver - register a SPI driver
  125. * @sdrv: the driver to register
  126. * Context: can sleep
  127. */
  128. int spi_register_driver(struct spi_driver *sdrv)
  129. {
  130. sdrv->driver.bus = &spi_bus_type;
  131. if (sdrv->probe)
  132. sdrv->driver.probe = spi_drv_probe;
  133. if (sdrv->remove)
  134. sdrv->driver.remove = spi_drv_remove;
  135. if (sdrv->shutdown)
  136. sdrv->driver.shutdown = spi_drv_shutdown;
  137. return driver_register(&sdrv->driver);
  138. }
  139. EXPORT_SYMBOL_GPL(spi_register_driver);
  140. /*-------------------------------------------------------------------------*/
  141. /* SPI devices should normally not be created by SPI device drivers; that
  142. * would make them board-specific. Similarly with SPI master drivers.
  143. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  144. * with other readonly (flashable) information about mainboard devices.
  145. */
  146. struct boardinfo {
  147. struct list_head list;
  148. unsigned n_board_info;
  149. struct spi_board_info board_info[0];
  150. };
  151. static LIST_HEAD(board_list);
  152. static DEFINE_MUTEX(board_lock);
  153. /**
  154. * spi_new_device - instantiate one new SPI device
  155. * @master: Controller to which device is connected
  156. * @chip: Describes the SPI device
  157. * Context: can sleep
  158. *
  159. * On typical mainboards, this is purely internal; and it's not needed
  160. * after board init creates the hard-wired devices. Some development
  161. * platforms may not be able to use spi_register_board_info though, and
  162. * this is exported so that for example a USB or parport based adapter
  163. * driver could add devices (which it would learn about out-of-band).
  164. *
  165. * Returns the new device, or NULL.
  166. */
  167. struct spi_device *spi_new_device(struct spi_master *master,
  168. struct spi_board_info *chip)
  169. {
  170. struct spi_device *proxy;
  171. struct device *dev = master->dev.parent;
  172. int status;
  173. /* NOTE: caller did any chip->bus_num checks necessary.
  174. *
  175. * Also, unless we change the return value convention to use
  176. * error-or-pointer (not NULL-or-pointer), troubleshootability
  177. * suggests syslogged diagnostics are best here (ugh).
  178. */
  179. /* Chipselects are numbered 0..max; validate. */
  180. if (chip->chip_select >= master->num_chipselect) {
  181. dev_err(dev, "cs%d > max %d\n",
  182. chip->chip_select,
  183. master->num_chipselect);
  184. return NULL;
  185. }
  186. if (!spi_master_get(master))
  187. return NULL;
  188. proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
  189. if (!proxy) {
  190. dev_err(dev, "can't alloc dev for cs%d\n",
  191. chip->chip_select);
  192. goto fail;
  193. }
  194. proxy->master = master;
  195. proxy->chip_select = chip->chip_select;
  196. proxy->max_speed_hz = chip->max_speed_hz;
  197. proxy->mode = chip->mode;
  198. proxy->irq = chip->irq;
  199. proxy->modalias = chip->modalias;
  200. snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
  201. "%s.%u", master->dev.bus_id,
  202. chip->chip_select);
  203. proxy->dev.parent = dev;
  204. proxy->dev.bus = &spi_bus_type;
  205. proxy->dev.platform_data = (void *) chip->platform_data;
  206. proxy->controller_data = chip->controller_data;
  207. proxy->controller_state = NULL;
  208. proxy->dev.release = spidev_release;
  209. /* drivers may modify this initial i/o setup */
  210. status = master->setup(proxy);
  211. if (status < 0) {
  212. dev_err(dev, "can't %s %s, status %d\n",
  213. "setup", proxy->dev.bus_id, status);
  214. goto fail;
  215. }
  216. /* driver core catches callers that misbehave by defining
  217. * devices that already exist.
  218. */
  219. status = device_register(&proxy->dev);
  220. if (status < 0) {
  221. dev_err(dev, "can't %s %s, status %d\n",
  222. "add", proxy->dev.bus_id, status);
  223. goto fail;
  224. }
  225. dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
  226. return proxy;
  227. fail:
  228. spi_master_put(master);
  229. kfree(proxy);
  230. return NULL;
  231. }
  232. EXPORT_SYMBOL_GPL(spi_new_device);
  233. /**
  234. * spi_register_board_info - register SPI devices for a given board
  235. * @info: array of chip descriptors
  236. * @n: how many descriptors are provided
  237. * Context: can sleep
  238. *
  239. * Board-specific early init code calls this (probably during arch_initcall)
  240. * with segments of the SPI device table. Any device nodes are created later,
  241. * after the relevant parent SPI controller (bus_num) is defined. We keep
  242. * this table of devices forever, so that reloading a controller driver will
  243. * not make Linux forget about these hard-wired devices.
  244. *
  245. * Other code can also call this, e.g. a particular add-on board might provide
  246. * SPI devices through its expansion connector, so code initializing that board
  247. * would naturally declare its SPI devices.
  248. *
  249. * The board info passed can safely be __initdata ... but be careful of
  250. * any embedded pointers (platform_data, etc), they're copied as-is.
  251. */
  252. int __init
  253. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  254. {
  255. struct boardinfo *bi;
  256. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  257. if (!bi)
  258. return -ENOMEM;
  259. bi->n_board_info = n;
  260. memcpy(bi->board_info, info, n * sizeof *info);
  261. mutex_lock(&board_lock);
  262. list_add_tail(&bi->list, &board_list);
  263. mutex_unlock(&board_lock);
  264. return 0;
  265. }
  266. /* FIXME someone should add support for a __setup("spi", ...) that
  267. * creates board info from kernel command lines
  268. */
  269. static void scan_boardinfo(struct spi_master *master)
  270. {
  271. struct boardinfo *bi;
  272. mutex_lock(&board_lock);
  273. list_for_each_entry(bi, &board_list, list) {
  274. struct spi_board_info *chip = bi->board_info;
  275. unsigned n;
  276. for (n = bi->n_board_info; n > 0; n--, chip++) {
  277. if (chip->bus_num != master->bus_num)
  278. continue;
  279. /* NOTE: this relies on spi_new_device to
  280. * issue diagnostics when given bogus inputs
  281. */
  282. (void) spi_new_device(master, chip);
  283. }
  284. }
  285. mutex_unlock(&board_lock);
  286. }
  287. /*-------------------------------------------------------------------------*/
  288. static void spi_master_release(struct device *dev)
  289. {
  290. struct spi_master *master;
  291. master = container_of(dev, struct spi_master, dev);
  292. kfree(master);
  293. }
  294. static struct class spi_master_class = {
  295. .name = "spi_master",
  296. .owner = THIS_MODULE,
  297. .dev_release = spi_master_release,
  298. };
  299. /**
  300. * spi_alloc_master - allocate SPI master controller
  301. * @dev: the controller, possibly using the platform_bus
  302. * @size: how much zeroed driver-private data to allocate; the pointer to this
  303. * memory is in the driver_data field of the returned device,
  304. * accessible with spi_master_get_devdata().
  305. * Context: can sleep
  306. *
  307. * This call is used only by SPI master controller drivers, which are the
  308. * only ones directly touching chip registers. It's how they allocate
  309. * an spi_master structure, prior to calling spi_register_master().
  310. *
  311. * This must be called from context that can sleep. It returns the SPI
  312. * master structure on success, else NULL.
  313. *
  314. * The caller is responsible for assigning the bus number and initializing
  315. * the master's methods before calling spi_register_master(); and (after errors
  316. * adding the device) calling spi_master_put() to prevent a memory leak.
  317. */
  318. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  319. {
  320. struct spi_master *master;
  321. if (!dev)
  322. return NULL;
  323. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  324. if (!master)
  325. return NULL;
  326. device_initialize(&master->dev);
  327. master->dev.class = &spi_master_class;
  328. master->dev.parent = get_device(dev);
  329. spi_master_set_devdata(master, &master[1]);
  330. return master;
  331. }
  332. EXPORT_SYMBOL_GPL(spi_alloc_master);
  333. /**
  334. * spi_register_master - register SPI master controller
  335. * @master: initialized master, originally from spi_alloc_master()
  336. * Context: can sleep
  337. *
  338. * SPI master controllers connect to their drivers using some non-SPI bus,
  339. * such as the platform bus. The final stage of probe() in that code
  340. * includes calling spi_register_master() to hook up to this SPI bus glue.
  341. *
  342. * SPI controllers use board specific (often SOC specific) bus numbers,
  343. * and board-specific addressing for SPI devices combines those numbers
  344. * with chip select numbers. Since SPI does not directly support dynamic
  345. * device identification, boards need configuration tables telling which
  346. * chip is at which address.
  347. *
  348. * This must be called from context that can sleep. It returns zero on
  349. * success, else a negative error code (dropping the master's refcount).
  350. * After a successful return, the caller is responsible for calling
  351. * spi_unregister_master().
  352. */
  353. int spi_register_master(struct spi_master *master)
  354. {
  355. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  356. struct device *dev = master->dev.parent;
  357. int status = -ENODEV;
  358. int dynamic = 0;
  359. if (!dev)
  360. return -ENODEV;
  361. /* even if it's just one always-selected device, there must
  362. * be at least one chipselect
  363. */
  364. if (master->num_chipselect == 0)
  365. return -EINVAL;
  366. /* convention: dynamically assigned bus IDs count down from the max */
  367. if (master->bus_num < 0) {
  368. /* FIXME switch to an IDR based scheme, something like
  369. * I2C now uses, so we can't run out of "dynamic" IDs
  370. */
  371. master->bus_num = atomic_dec_return(&dyn_bus_id);
  372. dynamic = 1;
  373. }
  374. /* register the device, then userspace will see it.
  375. * registration fails if the bus ID is in use.
  376. */
  377. snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
  378. "spi%u", master->bus_num);
  379. status = device_add(&master->dev);
  380. if (status < 0)
  381. goto done;
  382. dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
  383. dynamic ? " (dynamic)" : "");
  384. /* populate children from any spi device tables */
  385. scan_boardinfo(master);
  386. status = 0;
  387. done:
  388. return status;
  389. }
  390. EXPORT_SYMBOL_GPL(spi_register_master);
  391. static int __unregister(struct device *dev, void *master_dev)
  392. {
  393. /* note: before about 2.6.14-rc1 this would corrupt memory: */
  394. if (dev != master_dev)
  395. spi_unregister_device(to_spi_device(dev));
  396. return 0;
  397. }
  398. /**
  399. * spi_unregister_master - unregister SPI master controller
  400. * @master: the master being unregistered
  401. * Context: can sleep
  402. *
  403. * This call is used only by SPI master controller drivers, which are the
  404. * only ones directly touching chip registers.
  405. *
  406. * This must be called from context that can sleep.
  407. */
  408. void spi_unregister_master(struct spi_master *master)
  409. {
  410. int dummy;
  411. dummy = device_for_each_child(master->dev.parent, &master->dev,
  412. __unregister);
  413. device_unregister(&master->dev);
  414. }
  415. EXPORT_SYMBOL_GPL(spi_unregister_master);
  416. static int __spi_master_match(struct device *dev, void *data)
  417. {
  418. struct spi_master *m;
  419. u16 *bus_num = data;
  420. m = container_of(dev, struct spi_master, dev);
  421. return m->bus_num == *bus_num;
  422. }
  423. /**
  424. * spi_busnum_to_master - look up master associated with bus_num
  425. * @bus_num: the master's bus number
  426. * Context: can sleep
  427. *
  428. * This call may be used with devices that are registered after
  429. * arch init time. It returns a refcounted pointer to the relevant
  430. * spi_master (which the caller must release), or NULL if there is
  431. * no such master registered.
  432. */
  433. struct spi_master *spi_busnum_to_master(u16 bus_num)
  434. {
  435. struct device *dev;
  436. struct spi_master *master = NULL;
  437. dev = class_find_device(&spi_master_class, &bus_num,
  438. __spi_master_match);
  439. if (dev)
  440. master = container_of(dev, struct spi_master, dev);
  441. /* reference got in class_find_device */
  442. return master;
  443. }
  444. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  445. /*-------------------------------------------------------------------------*/
  446. static void spi_complete(void *arg)
  447. {
  448. complete(arg);
  449. }
  450. /**
  451. * spi_sync - blocking/synchronous SPI data transfers
  452. * @spi: device with which data will be exchanged
  453. * @message: describes the data transfers
  454. * Context: can sleep
  455. *
  456. * This call may only be used from a context that may sleep. The sleep
  457. * is non-interruptible, and has no timeout. Low-overhead controller
  458. * drivers may DMA directly into and out of the message buffers.
  459. *
  460. * Note that the SPI device's chip select is active during the message,
  461. * and then is normally disabled between messages. Drivers for some
  462. * frequently-used devices may want to minimize costs of selecting a chip,
  463. * by leaving it selected in anticipation that the next message will go
  464. * to the same chip. (That may increase power usage.)
  465. *
  466. * Also, the caller is guaranteeing that the memory associated with the
  467. * message will not be freed before this call returns.
  468. *
  469. * It returns zero on success, else a negative error code.
  470. */
  471. int spi_sync(struct spi_device *spi, struct spi_message *message)
  472. {
  473. DECLARE_COMPLETION_ONSTACK(done);
  474. int status;
  475. message->complete = spi_complete;
  476. message->context = &done;
  477. status = spi_async(spi, message);
  478. if (status == 0) {
  479. wait_for_completion(&done);
  480. status = message->status;
  481. }
  482. message->context = NULL;
  483. return status;
  484. }
  485. EXPORT_SYMBOL_GPL(spi_sync);
  486. /* portable code must never pass more than 32 bytes */
  487. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  488. static u8 *buf;
  489. /**
  490. * spi_write_then_read - SPI synchronous write followed by read
  491. * @spi: device with which data will be exchanged
  492. * @txbuf: data to be written (need not be dma-safe)
  493. * @n_tx: size of txbuf, in bytes
  494. * @rxbuf: buffer into which data will be read
  495. * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
  496. * Context: can sleep
  497. *
  498. * This performs a half duplex MicroWire style transaction with the
  499. * device, sending txbuf and then reading rxbuf. The return value
  500. * is zero for success, else a negative errno status code.
  501. * This call may only be used from a context that may sleep.
  502. *
  503. * Parameters to this routine are always copied using a small buffer;
  504. * portable code should never use this for more than 32 bytes.
  505. * Performance-sensitive or bulk transfer code should instead use
  506. * spi_{async,sync}() calls with dma-safe buffers.
  507. */
  508. int spi_write_then_read(struct spi_device *spi,
  509. const u8 *txbuf, unsigned n_tx,
  510. u8 *rxbuf, unsigned n_rx)
  511. {
  512. static DEFINE_MUTEX(lock);
  513. int status;
  514. struct spi_message message;
  515. struct spi_transfer x[2];
  516. u8 *local_buf;
  517. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  518. * (as a pure convenience thing), but we can keep heap costs
  519. * out of the hot path ...
  520. */
  521. if ((n_tx + n_rx) > SPI_BUFSIZ)
  522. return -EINVAL;
  523. spi_message_init(&message);
  524. memset(x, 0, sizeof x);
  525. if (n_tx) {
  526. x[0].len = n_tx;
  527. spi_message_add_tail(&x[0], &message);
  528. }
  529. if (n_rx) {
  530. x[1].len = n_rx;
  531. spi_message_add_tail(&x[1], &message);
  532. }
  533. /* ... unless someone else is using the pre-allocated buffer */
  534. if (!mutex_trylock(&lock)) {
  535. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  536. if (!local_buf)
  537. return -ENOMEM;
  538. } else
  539. local_buf = buf;
  540. memcpy(local_buf, txbuf, n_tx);
  541. x[0].tx_buf = local_buf;
  542. x[1].rx_buf = local_buf + n_tx;
  543. /* do the i/o */
  544. status = spi_sync(spi, &message);
  545. if (status == 0)
  546. memcpy(rxbuf, x[1].rx_buf, n_rx);
  547. if (x[0].tx_buf == buf)
  548. mutex_unlock(&lock);
  549. else
  550. kfree(local_buf);
  551. return status;
  552. }
  553. EXPORT_SYMBOL_GPL(spi_write_then_read);
  554. /*-------------------------------------------------------------------------*/
  555. static int __init spi_init(void)
  556. {
  557. int status;
  558. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  559. if (!buf) {
  560. status = -ENOMEM;
  561. goto err0;
  562. }
  563. status = bus_register(&spi_bus_type);
  564. if (status < 0)
  565. goto err1;
  566. status = class_register(&spi_master_class);
  567. if (status < 0)
  568. goto err2;
  569. return 0;
  570. err2:
  571. bus_unregister(&spi_bus_type);
  572. err1:
  573. kfree(buf);
  574. buf = NULL;
  575. err0:
  576. return status;
  577. }
  578. /* board_info is normally registered in arch_initcall(),
  579. * but even essential drivers wait till later
  580. *
  581. * REVISIT only boardinfo really needs static linking. the rest (device and
  582. * driver registration) _could_ be dynamically linked (modular) ... costs
  583. * include needing to have boardinfo data structures be much more public.
  584. */
  585. subsys_initcall(spi_init);