rt2500pci.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971
  1. /*
  2. Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. /*
  23. * Set enviroment defines for rt2x00.h
  24. */
  25. #define DRV_NAME "rt2500pci"
  26. #include <linux/delay.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/init.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/pci.h>
  32. #include <linux/eeprom_93cx6.h>
  33. #include "rt2x00.h"
  34. #include "rt2x00pci.h"
  35. #include "rt2500pci.h"
  36. /*
  37. * Register access.
  38. * All access to the CSR registers will go through the methods
  39. * rt2x00pci_register_read and rt2x00pci_register_write.
  40. * BBP and RF register require indirect register access,
  41. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  42. * These indirect registers work with busy bits,
  43. * and we will try maximal REGISTER_BUSY_COUNT times to access
  44. * the register while taking a REGISTER_BUSY_DELAY us delay
  45. * between each attampt. When the busy bit is still set at that time,
  46. * the access attempt is considered to have failed,
  47. * and we will print an error.
  48. */
  49. static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
  50. {
  51. u32 reg;
  52. unsigned int i;
  53. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  54. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  55. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  56. break;
  57. udelay(REGISTER_BUSY_DELAY);
  58. }
  59. return reg;
  60. }
  61. static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
  62. const unsigned int word, const u8 value)
  63. {
  64. u32 reg;
  65. /*
  66. * Wait until the BBP becomes ready.
  67. */
  68. reg = rt2500pci_bbp_check(rt2x00dev);
  69. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  70. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  71. return;
  72. }
  73. /*
  74. * Write the data into the BBP.
  75. */
  76. reg = 0;
  77. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  78. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  79. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  80. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  81. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  82. }
  83. static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
  84. const unsigned int word, u8 *value)
  85. {
  86. u32 reg;
  87. /*
  88. * Wait until the BBP becomes ready.
  89. */
  90. reg = rt2500pci_bbp_check(rt2x00dev);
  91. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  92. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  93. return;
  94. }
  95. /*
  96. * Write the request into the BBP.
  97. */
  98. reg = 0;
  99. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  100. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  101. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  102. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  103. /*
  104. * Wait until the BBP becomes ready.
  105. */
  106. reg = rt2500pci_bbp_check(rt2x00dev);
  107. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  108. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  109. *value = 0xff;
  110. return;
  111. }
  112. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  113. }
  114. static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
  115. const unsigned int word, const u32 value)
  116. {
  117. u32 reg;
  118. unsigned int i;
  119. if (!word)
  120. return;
  121. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  122. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  123. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  124. goto rf_write;
  125. udelay(REGISTER_BUSY_DELAY);
  126. }
  127. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  128. return;
  129. rf_write:
  130. reg = 0;
  131. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  132. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  133. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  134. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  135. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  136. rt2x00_rf_write(rt2x00dev, word, value);
  137. }
  138. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  139. {
  140. struct rt2x00_dev *rt2x00dev = eeprom->data;
  141. u32 reg;
  142. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  143. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  144. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  145. eeprom->reg_data_clock =
  146. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  147. eeprom->reg_chip_select =
  148. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  149. }
  150. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  151. {
  152. struct rt2x00_dev *rt2x00dev = eeprom->data;
  153. u32 reg = 0;
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  155. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  156. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  157. !!eeprom->reg_data_clock);
  158. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  159. !!eeprom->reg_chip_select);
  160. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  161. }
  162. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  163. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  164. static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
  165. const unsigned int word, u32 *data)
  166. {
  167. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  168. }
  169. static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
  170. const unsigned int word, u32 data)
  171. {
  172. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  173. }
  174. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  175. .owner = THIS_MODULE,
  176. .csr = {
  177. .read = rt2500pci_read_csr,
  178. .write = rt2500pci_write_csr,
  179. .word_size = sizeof(u32),
  180. .word_count = CSR_REG_SIZE / sizeof(u32),
  181. },
  182. .eeprom = {
  183. .read = rt2x00_eeprom_read,
  184. .write = rt2x00_eeprom_write,
  185. .word_size = sizeof(u16),
  186. .word_count = EEPROM_SIZE / sizeof(u16),
  187. },
  188. .bbp = {
  189. .read = rt2500pci_bbp_read,
  190. .write = rt2500pci_bbp_write,
  191. .word_size = sizeof(u8),
  192. .word_count = BBP_SIZE / sizeof(u8),
  193. },
  194. .rf = {
  195. .read = rt2x00_rf_read,
  196. .write = rt2500pci_rf_write,
  197. .word_size = sizeof(u32),
  198. .word_count = RF_SIZE / sizeof(u32),
  199. },
  200. };
  201. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  202. #ifdef CONFIG_RT2500PCI_RFKILL
  203. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  204. {
  205. u32 reg;
  206. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  207. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  208. }
  209. #else
  210. #define rt2500pci_rfkill_poll NULL
  211. #endif /* CONFIG_RT2500PCI_RFKILL */
  212. /*
  213. * Configuration handlers.
  214. */
  215. static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
  216. __le32 *mac)
  217. {
  218. rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
  219. (2 * sizeof(__le32)));
  220. }
  221. static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
  222. __le32 *bssid)
  223. {
  224. rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
  225. (2 * sizeof(__le32)));
  226. }
  227. static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
  228. const int tsf_sync)
  229. {
  230. u32 reg;
  231. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  232. /*
  233. * Enable beacon config
  234. */
  235. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  236. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
  237. PREAMBLE + get_duration(IEEE80211_HEADER, 20));
  238. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
  239. rt2x00lib_get_ring(rt2x00dev,
  240. IEEE80211_TX_QUEUE_BEACON)
  241. ->tx_params.cw_min);
  242. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  243. /*
  244. * Enable synchronisation.
  245. */
  246. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  247. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  248. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  249. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  250. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
  251. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  252. }
  253. static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  254. const int short_preamble,
  255. const int ack_timeout,
  256. const int ack_consume_time)
  257. {
  258. int preamble_mask;
  259. u32 reg;
  260. /*
  261. * When short preamble is enabled, we should set bit 0x08
  262. */
  263. preamble_mask = short_preamble << 3;
  264. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  265. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  266. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  267. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  268. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  269. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  270. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  271. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  272. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  273. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  274. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  275. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  276. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  277. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  278. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  279. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  280. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  281. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  282. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  283. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  284. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  285. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  286. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  287. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  288. }
  289. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  290. const int basic_rate_mask)
  291. {
  292. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  293. }
  294. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  295. struct rf_channel *rf, const int txpower)
  296. {
  297. u8 r70;
  298. /*
  299. * Set TXpower.
  300. */
  301. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  302. /*
  303. * Switch on tuning bits.
  304. * For RT2523 devices we do not need to update the R1 register.
  305. */
  306. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  307. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  308. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  309. /*
  310. * For RT2525 we should first set the channel to half band higher.
  311. */
  312. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  313. static const u32 vals[] = {
  314. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  315. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  316. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  317. 0x00080d2e, 0x00080d3a
  318. };
  319. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  320. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  321. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  322. if (rf->rf4)
  323. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  324. }
  325. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  326. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  327. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  328. if (rf->rf4)
  329. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  330. /*
  331. * Channel 14 requires the Japan filter bit to be set.
  332. */
  333. r70 = 0x46;
  334. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  335. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  336. msleep(1);
  337. /*
  338. * Switch off tuning bits.
  339. * For RT2523 devices we do not need to update the R1 register.
  340. */
  341. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  342. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  343. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  344. }
  345. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  346. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  347. /*
  348. * Clear false CRC during channel switch.
  349. */
  350. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  351. }
  352. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  353. const int txpower)
  354. {
  355. u32 rf3;
  356. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  357. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  358. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  359. }
  360. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  361. const int antenna_tx, const int antenna_rx)
  362. {
  363. u32 reg;
  364. u8 r14;
  365. u8 r2;
  366. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  367. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  368. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  369. /*
  370. * Configure the TX antenna.
  371. */
  372. switch (antenna_tx) {
  373. case ANTENNA_SW_DIVERSITY:
  374. case ANTENNA_HW_DIVERSITY:
  375. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  376. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  377. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  378. break;
  379. case ANTENNA_A:
  380. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  381. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  382. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  383. break;
  384. case ANTENNA_B:
  385. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  386. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  387. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  388. break;
  389. }
  390. /*
  391. * Configure the RX antenna.
  392. */
  393. switch (antenna_rx) {
  394. case ANTENNA_SW_DIVERSITY:
  395. case ANTENNA_HW_DIVERSITY:
  396. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  397. break;
  398. case ANTENNA_A:
  399. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  400. break;
  401. case ANTENNA_B:
  402. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  403. break;
  404. }
  405. /*
  406. * RT2525E and RT5222 need to flip TX I/Q
  407. */
  408. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  409. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  410. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  411. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  412. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  413. /*
  414. * RT2525E does not need RX I/Q Flip.
  415. */
  416. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  417. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  418. } else {
  419. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  420. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  421. }
  422. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  423. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  424. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  425. }
  426. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  427. struct rt2x00lib_conf *libconf)
  428. {
  429. u32 reg;
  430. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  431. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  432. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  433. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  434. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  435. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  436. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  437. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  438. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  439. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  440. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  441. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  442. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  443. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  444. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  445. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  446. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  447. libconf->conf->beacon_int * 16);
  448. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  449. libconf->conf->beacon_int * 16);
  450. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  451. }
  452. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  453. const unsigned int flags,
  454. struct rt2x00lib_conf *libconf)
  455. {
  456. if (flags & CONFIG_UPDATE_PHYMODE)
  457. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  458. if (flags & CONFIG_UPDATE_CHANNEL)
  459. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  460. libconf->conf->power_level);
  461. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  462. rt2500pci_config_txpower(rt2x00dev,
  463. libconf->conf->power_level);
  464. if (flags & CONFIG_UPDATE_ANTENNA)
  465. rt2500pci_config_antenna(rt2x00dev,
  466. libconf->conf->antenna_sel_tx,
  467. libconf->conf->antenna_sel_rx);
  468. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  469. rt2500pci_config_duration(rt2x00dev, libconf);
  470. }
  471. /*
  472. * LED functions.
  473. */
  474. static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
  475. {
  476. u32 reg;
  477. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  478. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  479. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  480. if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
  481. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  482. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  483. } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
  484. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  485. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  486. } else {
  487. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  488. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  489. }
  490. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  491. }
  492. static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
  493. {
  494. u32 reg;
  495. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  496. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  497. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  498. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  499. }
  500. /*
  501. * Link tuning
  502. */
  503. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev)
  504. {
  505. u32 reg;
  506. /*
  507. * Update FCS error count from register.
  508. */
  509. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  510. rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  511. /*
  512. * Update False CCA count from register.
  513. */
  514. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  515. rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  516. }
  517. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  518. {
  519. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  520. rt2x00dev->link.vgc_level = 0x48;
  521. }
  522. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  523. {
  524. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  525. u8 r17;
  526. /*
  527. * To prevent collisions with MAC ASIC on chipsets
  528. * up to version C the link tuning should halt after 20
  529. * seconds.
  530. */
  531. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  532. rt2x00dev->link.count > 20)
  533. return;
  534. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  535. /*
  536. * Chipset versions C and lower should directly continue
  537. * to the dynamic CCA tuning.
  538. */
  539. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
  540. goto dynamic_cca_tune;
  541. /*
  542. * A too low RSSI will cause too much false CCA which will
  543. * then corrupt the R17 tuning. To remidy this the tuning should
  544. * be stopped (While making sure the R17 value will not exceed limits)
  545. */
  546. if (rssi < -80 && rt2x00dev->link.count > 20) {
  547. if (r17 >= 0x41) {
  548. r17 = rt2x00dev->link.vgc_level;
  549. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  550. }
  551. return;
  552. }
  553. /*
  554. * Special big-R17 for short distance
  555. */
  556. if (rssi >= -58) {
  557. if (r17 != 0x50)
  558. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  559. return;
  560. }
  561. /*
  562. * Special mid-R17 for middle distance
  563. */
  564. if (rssi >= -74) {
  565. if (r17 != 0x41)
  566. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  567. return;
  568. }
  569. /*
  570. * Leave short or middle distance condition, restore r17
  571. * to the dynamic tuning range.
  572. */
  573. if (r17 >= 0x41) {
  574. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  575. return;
  576. }
  577. dynamic_cca_tune:
  578. /*
  579. * R17 is inside the dynamic tuning range,
  580. * start tuning the link based on the false cca counter.
  581. */
  582. if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
  583. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  584. rt2x00dev->link.vgc_level = r17;
  585. } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
  586. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  587. rt2x00dev->link.vgc_level = r17;
  588. }
  589. }
  590. /*
  591. * Initialization functions.
  592. */
  593. static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
  594. {
  595. struct data_ring *ring = rt2x00dev->rx;
  596. struct data_desc *rxd;
  597. unsigned int i;
  598. u32 word;
  599. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  600. for (i = 0; i < ring->stats.limit; i++) {
  601. rxd = ring->entry[i].priv;
  602. rt2x00_desc_read(rxd, 1, &word);
  603. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
  604. ring->entry[i].data_dma);
  605. rt2x00_desc_write(rxd, 1, word);
  606. rt2x00_desc_read(rxd, 0, &word);
  607. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  608. rt2x00_desc_write(rxd, 0, word);
  609. }
  610. rt2x00_ring_index_clear(rt2x00dev->rx);
  611. }
  612. static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
  613. {
  614. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  615. struct data_desc *txd;
  616. unsigned int i;
  617. u32 word;
  618. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  619. for (i = 0; i < ring->stats.limit; i++) {
  620. txd = ring->entry[i].priv;
  621. rt2x00_desc_read(txd, 1, &word);
  622. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
  623. ring->entry[i].data_dma);
  624. rt2x00_desc_write(txd, 1, word);
  625. rt2x00_desc_read(txd, 0, &word);
  626. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  627. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  628. rt2x00_desc_write(txd, 0, word);
  629. }
  630. rt2x00_ring_index_clear(ring);
  631. }
  632. static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
  633. {
  634. u32 reg;
  635. /*
  636. * Initialize rings.
  637. */
  638. rt2500pci_init_rxring(rt2x00dev);
  639. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  640. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  641. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  642. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
  643. /*
  644. * Initialize registers.
  645. */
  646. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  647. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
  648. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
  649. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
  650. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
  651. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
  652. rt2x00dev->bcn[1].stats.limit);
  653. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
  654. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
  655. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  656. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  657. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  658. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
  659. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  660. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  661. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  662. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
  663. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  664. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  665. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  666. rt2x00dev->bcn[1].data_dma);
  667. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  668. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  669. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  670. rt2x00dev->bcn[0].data_dma);
  671. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  672. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  673. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  674. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
  675. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  676. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  677. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  678. rt2x00dev->rx->data_dma);
  679. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  680. return 0;
  681. }
  682. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  683. {
  684. u32 reg;
  685. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  686. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  687. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  688. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  689. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  690. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  691. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  692. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  693. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  694. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  695. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  696. rt2x00dev->rx->data_size / 128);
  697. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  698. /*
  699. * Always use CWmin and CWmax set in descriptor.
  700. */
  701. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  702. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  703. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  704. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  705. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  706. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  707. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  708. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  709. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  710. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  711. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  712. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  713. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  714. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  715. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  716. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  717. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  718. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  719. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  720. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  721. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  722. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  723. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  724. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  725. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  726. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  727. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  728. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  729. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  730. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  731. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  732. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  733. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  734. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  739. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  740. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  741. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  742. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  743. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  744. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  745. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  746. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  747. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  748. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  749. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  750. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  751. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  752. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  753. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  754. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  755. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  756. return -EBUSY;
  757. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  758. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  759. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  760. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  761. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  762. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  763. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  764. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  765. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  766. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  767. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  768. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  769. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  770. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  771. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  772. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  773. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  774. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  775. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  776. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  777. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  778. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  779. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  780. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  781. /*
  782. * We must clear the FCS and FIFO error count.
  783. * These registers are cleared on read,
  784. * so we may pass a useless variable to store the value.
  785. */
  786. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  787. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  788. return 0;
  789. }
  790. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  791. {
  792. unsigned int i;
  793. u16 eeprom;
  794. u8 reg_id;
  795. u8 value;
  796. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  797. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  798. if ((value != 0xff) && (value != 0x00))
  799. goto continue_csr_init;
  800. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  801. udelay(REGISTER_BUSY_DELAY);
  802. }
  803. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  804. return -EACCES;
  805. continue_csr_init:
  806. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  807. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  808. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  809. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  810. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  811. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  812. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  813. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  814. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  815. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  816. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  817. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  818. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  819. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  820. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  821. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  822. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  823. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  824. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  825. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  826. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  827. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  828. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  829. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  830. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  831. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  832. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  833. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  834. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  835. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  836. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  837. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  838. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  839. if (eeprom != 0xffff && eeprom != 0x0000) {
  840. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  841. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  842. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  843. reg_id, value);
  844. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  845. }
  846. }
  847. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  848. return 0;
  849. }
  850. /*
  851. * Device state switch handlers.
  852. */
  853. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  854. enum dev_state state)
  855. {
  856. u32 reg;
  857. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  858. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  859. state == STATE_RADIO_RX_OFF);
  860. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  861. }
  862. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  863. enum dev_state state)
  864. {
  865. int mask = (state == STATE_RADIO_IRQ_OFF);
  866. u32 reg;
  867. /*
  868. * When interrupts are being enabled, the interrupt registers
  869. * should clear the register to assure a clean state.
  870. */
  871. if (state == STATE_RADIO_IRQ_ON) {
  872. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  873. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  874. }
  875. /*
  876. * Only toggle the interrupts bits we are going to use.
  877. * Non-checked interrupt bits are disabled by default.
  878. */
  879. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  880. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  881. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  882. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  883. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  884. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  885. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  886. }
  887. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  888. {
  889. /*
  890. * Initialize all registers.
  891. */
  892. if (rt2500pci_init_rings(rt2x00dev) ||
  893. rt2500pci_init_registers(rt2x00dev) ||
  894. rt2500pci_init_bbp(rt2x00dev)) {
  895. ERROR(rt2x00dev, "Register initialization failed.\n");
  896. return -EIO;
  897. }
  898. /*
  899. * Enable interrupts.
  900. */
  901. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  902. /*
  903. * Enable LED
  904. */
  905. rt2500pci_enable_led(rt2x00dev);
  906. return 0;
  907. }
  908. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  909. {
  910. u32 reg;
  911. /*
  912. * Disable LED
  913. */
  914. rt2500pci_disable_led(rt2x00dev);
  915. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  916. /*
  917. * Disable synchronisation.
  918. */
  919. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  920. /*
  921. * Cancel RX and TX.
  922. */
  923. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  924. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  925. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  926. /*
  927. * Disable interrupts.
  928. */
  929. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  930. }
  931. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  932. enum dev_state state)
  933. {
  934. u32 reg;
  935. unsigned int i;
  936. char put_to_sleep;
  937. char bbp_state;
  938. char rf_state;
  939. put_to_sleep = (state != STATE_AWAKE);
  940. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  941. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  942. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  943. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  944. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  945. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  946. /*
  947. * Device is not guaranteed to be in the requested state yet.
  948. * We must wait until the register indicates that the
  949. * device has entered the correct state.
  950. */
  951. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  952. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  953. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  954. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  955. if (bbp_state == state && rf_state == state)
  956. return 0;
  957. msleep(10);
  958. }
  959. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  960. "current device state: bbp %d and rf %d.\n",
  961. state, bbp_state, rf_state);
  962. return -EBUSY;
  963. }
  964. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  965. enum dev_state state)
  966. {
  967. int retval = 0;
  968. switch (state) {
  969. case STATE_RADIO_ON:
  970. retval = rt2500pci_enable_radio(rt2x00dev);
  971. break;
  972. case STATE_RADIO_OFF:
  973. rt2500pci_disable_radio(rt2x00dev);
  974. break;
  975. case STATE_RADIO_RX_ON:
  976. case STATE_RADIO_RX_OFF:
  977. rt2500pci_toggle_rx(rt2x00dev, state);
  978. break;
  979. case STATE_DEEP_SLEEP:
  980. case STATE_SLEEP:
  981. case STATE_STANDBY:
  982. case STATE_AWAKE:
  983. retval = rt2500pci_set_state(rt2x00dev, state);
  984. break;
  985. default:
  986. retval = -ENOTSUPP;
  987. break;
  988. }
  989. return retval;
  990. }
  991. /*
  992. * TX descriptor initialization
  993. */
  994. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  995. struct data_desc *txd,
  996. struct txdata_entry_desc *desc,
  997. struct ieee80211_hdr *ieee80211hdr,
  998. unsigned int length,
  999. struct ieee80211_tx_control *control)
  1000. {
  1001. u32 word;
  1002. /*
  1003. * Start writing the descriptor words.
  1004. */
  1005. rt2x00_desc_read(txd, 2, &word);
  1006. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1007. rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
  1008. rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
  1009. rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
  1010. rt2x00_desc_write(txd, 2, word);
  1011. rt2x00_desc_read(txd, 3, &word);
  1012. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
  1013. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
  1014. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
  1015. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
  1016. rt2x00_desc_write(txd, 3, word);
  1017. rt2x00_desc_read(txd, 10, &word);
  1018. rt2x00_set_field32(&word, TXD_W10_RTS,
  1019. test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
  1020. rt2x00_desc_write(txd, 10, word);
  1021. rt2x00_desc_read(txd, 0, &word);
  1022. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1023. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1024. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1025. test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
  1026. rt2x00_set_field32(&word, TXD_W0_ACK,
  1027. !(control->flags & IEEE80211_TXCTL_NO_ACK));
  1028. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1029. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
  1030. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1031. test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
  1032. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1033. rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
  1034. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1035. !!(control->flags &
  1036. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1037. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
  1038. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1039. rt2x00_desc_write(txd, 0, word);
  1040. }
  1041. /*
  1042. * TX data initialization
  1043. */
  1044. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1045. unsigned int queue)
  1046. {
  1047. u32 reg;
  1048. if (queue == IEEE80211_TX_QUEUE_BEACON) {
  1049. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1050. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1051. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1052. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1053. }
  1054. return;
  1055. }
  1056. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1057. if (queue == IEEE80211_TX_QUEUE_DATA0)
  1058. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  1059. else if (queue == IEEE80211_TX_QUEUE_DATA1)
  1060. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  1061. else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
  1062. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  1063. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1064. }
  1065. /*
  1066. * RX control handlers
  1067. */
  1068. static void rt2500pci_fill_rxdone(struct data_entry *entry,
  1069. struct rxdata_entry_desc *desc)
  1070. {
  1071. struct data_desc *rxd = entry->priv;
  1072. u32 word0;
  1073. u32 word2;
  1074. rt2x00_desc_read(rxd, 0, &word0);
  1075. rt2x00_desc_read(rxd, 2, &word2);
  1076. desc->flags = 0;
  1077. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1078. desc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1079. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1080. desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1081. desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1082. desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1083. entry->ring->rt2x00dev->rssi_offset;
  1084. desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  1085. desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1086. }
  1087. /*
  1088. * Interrupt functions.
  1089. */
  1090. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
  1091. {
  1092. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  1093. struct data_entry *entry;
  1094. struct data_desc *txd;
  1095. u32 word;
  1096. int tx_status;
  1097. int retry;
  1098. while (!rt2x00_ring_empty(ring)) {
  1099. entry = rt2x00_get_data_entry_done(ring);
  1100. txd = entry->priv;
  1101. rt2x00_desc_read(txd, 0, &word);
  1102. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1103. !rt2x00_get_field32(word, TXD_W0_VALID))
  1104. break;
  1105. /*
  1106. * Obtain the status about this packet.
  1107. */
  1108. tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1109. retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1110. rt2x00lib_txdone(entry, tx_status, retry);
  1111. /*
  1112. * Make this entry available for reuse.
  1113. */
  1114. entry->flags = 0;
  1115. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  1116. rt2x00_desc_write(txd, 0, word);
  1117. rt2x00_ring_index_done_inc(ring);
  1118. }
  1119. /*
  1120. * If the data ring was full before the txdone handler
  1121. * we must make sure the packet queue in the mac80211 stack
  1122. * is reenabled when the txdone handler has finished.
  1123. */
  1124. entry = ring->entry;
  1125. if (!rt2x00_ring_full(ring))
  1126. ieee80211_wake_queue(rt2x00dev->hw,
  1127. entry->tx_status.control.queue);
  1128. }
  1129. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1130. {
  1131. struct rt2x00_dev *rt2x00dev = dev_instance;
  1132. u32 reg;
  1133. /*
  1134. * Get the interrupt sources & saved to local variable.
  1135. * Write register value back to clear pending interrupts.
  1136. */
  1137. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1138. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1139. if (!reg)
  1140. return IRQ_NONE;
  1141. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1142. return IRQ_HANDLED;
  1143. /*
  1144. * Handle interrupts, walk through all bits
  1145. * and run the tasks, the bits are checked in order of
  1146. * priority.
  1147. */
  1148. /*
  1149. * 1 - Beacon timer expired interrupt.
  1150. */
  1151. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1152. rt2x00lib_beacondone(rt2x00dev);
  1153. /*
  1154. * 2 - Rx ring done interrupt.
  1155. */
  1156. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1157. rt2x00pci_rxdone(rt2x00dev);
  1158. /*
  1159. * 3 - Atim ring transmit done interrupt.
  1160. */
  1161. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1162. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  1163. /*
  1164. * 4 - Priority ring transmit done interrupt.
  1165. */
  1166. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1167. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1168. /*
  1169. * 5 - Tx ring transmit done interrupt.
  1170. */
  1171. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1172. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1173. return IRQ_HANDLED;
  1174. }
  1175. /*
  1176. * Device probe functions.
  1177. */
  1178. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1179. {
  1180. struct eeprom_93cx6 eeprom;
  1181. u32 reg;
  1182. u16 word;
  1183. u8 *mac;
  1184. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1185. eeprom.data = rt2x00dev;
  1186. eeprom.register_read = rt2500pci_eepromregister_read;
  1187. eeprom.register_write = rt2500pci_eepromregister_write;
  1188. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1189. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1190. eeprom.reg_data_in = 0;
  1191. eeprom.reg_data_out = 0;
  1192. eeprom.reg_data_clock = 0;
  1193. eeprom.reg_chip_select = 0;
  1194. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1195. EEPROM_SIZE / sizeof(u16));
  1196. /*
  1197. * Start validation of the data that has been read.
  1198. */
  1199. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1200. if (!is_valid_ether_addr(mac)) {
  1201. DECLARE_MAC_BUF(macbuf);
  1202. random_ether_addr(mac);
  1203. EEPROM(rt2x00dev, "MAC: %s\n",
  1204. print_mac(macbuf, mac));
  1205. }
  1206. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1207. if (word == 0xffff) {
  1208. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1209. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
  1210. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
  1211. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
  1212. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1213. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1214. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1215. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1216. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1217. }
  1218. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1219. if (word == 0xffff) {
  1220. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1221. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1222. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1223. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1224. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1225. }
  1226. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1227. if (word == 0xffff) {
  1228. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1229. DEFAULT_RSSI_OFFSET);
  1230. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1231. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1232. }
  1233. return 0;
  1234. }
  1235. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1236. {
  1237. u32 reg;
  1238. u16 value;
  1239. u16 eeprom;
  1240. /*
  1241. * Read EEPROM word for configuration.
  1242. */
  1243. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1244. /*
  1245. * Identify RF chipset.
  1246. */
  1247. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1248. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1249. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1250. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1251. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1252. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1253. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1254. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1255. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1256. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1257. return -ENODEV;
  1258. }
  1259. /*
  1260. * Identify default antenna configuration.
  1261. */
  1262. rt2x00dev->hw->conf.antenna_sel_tx =
  1263. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1264. rt2x00dev->hw->conf.antenna_sel_rx =
  1265. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1266. /*
  1267. * Store led mode, for correct led behaviour.
  1268. */
  1269. rt2x00dev->led_mode =
  1270. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1271. /*
  1272. * Detect if this device has an hardware controlled radio.
  1273. */
  1274. #ifdef CONFIG_RT2500PCI_RFKILL
  1275. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1276. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1277. #endif /* CONFIG_RT2500PCI_RFKILL */
  1278. /*
  1279. * Check if the BBP tuning should be enabled.
  1280. */
  1281. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1282. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1283. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1284. /*
  1285. * Read the RSSI <-> dBm offset information.
  1286. */
  1287. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1288. rt2x00dev->rssi_offset =
  1289. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1290. return 0;
  1291. }
  1292. /*
  1293. * RF value list for RF2522
  1294. * Supports: 2.4 GHz
  1295. */
  1296. static const struct rf_channel rf_vals_bg_2522[] = {
  1297. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1298. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1299. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1300. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1301. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1302. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1303. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1304. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1305. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1306. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1307. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1308. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1309. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1310. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1311. };
  1312. /*
  1313. * RF value list for RF2523
  1314. * Supports: 2.4 GHz
  1315. */
  1316. static const struct rf_channel rf_vals_bg_2523[] = {
  1317. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1318. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1319. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1320. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1321. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1322. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1323. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1324. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1325. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1326. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1327. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1328. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1329. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1330. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1331. };
  1332. /*
  1333. * RF value list for RF2524
  1334. * Supports: 2.4 GHz
  1335. */
  1336. static const struct rf_channel rf_vals_bg_2524[] = {
  1337. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1338. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1339. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1340. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1341. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1342. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1343. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1344. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1345. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1346. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1347. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1348. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1349. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1350. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1351. };
  1352. /*
  1353. * RF value list for RF2525
  1354. * Supports: 2.4 GHz
  1355. */
  1356. static const struct rf_channel rf_vals_bg_2525[] = {
  1357. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1358. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1359. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1360. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1361. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1362. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1363. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1364. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1365. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1366. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1367. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1368. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1369. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1370. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1371. };
  1372. /*
  1373. * RF value list for RF2525e
  1374. * Supports: 2.4 GHz
  1375. */
  1376. static const struct rf_channel rf_vals_bg_2525e[] = {
  1377. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1378. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1379. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1380. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1381. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1382. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1383. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1384. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1385. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1386. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1387. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1388. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1389. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1390. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1391. };
  1392. /*
  1393. * RF value list for RF5222
  1394. * Supports: 2.4 GHz & 5.2 GHz
  1395. */
  1396. static const struct rf_channel rf_vals_5222[] = {
  1397. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1398. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1399. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1400. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1401. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1402. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1403. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1404. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1405. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1406. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1407. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1408. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1409. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1410. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1411. /* 802.11 UNI / HyperLan 2 */
  1412. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1413. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1414. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1415. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1416. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1417. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1418. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1419. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1420. /* 802.11 HyperLan 2 */
  1421. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1422. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1423. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1424. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1425. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1426. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1427. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1428. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1429. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1430. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1431. /* 802.11 UNII */
  1432. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1433. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1434. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1435. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1436. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1437. };
  1438. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1439. {
  1440. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1441. u8 *txpower;
  1442. unsigned int i;
  1443. /*
  1444. * Initialize all hw fields.
  1445. */
  1446. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1447. rt2x00dev->hw->extra_tx_headroom = 0;
  1448. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1449. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1450. rt2x00dev->hw->queues = 2;
  1451. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1452. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1453. rt2x00_eeprom_addr(rt2x00dev,
  1454. EEPROM_MAC_ADDR_0));
  1455. /*
  1456. * Convert tx_power array in eeprom.
  1457. */
  1458. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1459. for (i = 0; i < 14; i++)
  1460. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1461. /*
  1462. * Initialize hw_mode information.
  1463. */
  1464. spec->num_modes = 2;
  1465. spec->num_rates = 12;
  1466. spec->tx_power_a = NULL;
  1467. spec->tx_power_bg = txpower;
  1468. spec->tx_power_default = DEFAULT_TXPOWER;
  1469. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1470. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1471. spec->channels = rf_vals_bg_2522;
  1472. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1473. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1474. spec->channels = rf_vals_bg_2523;
  1475. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1476. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1477. spec->channels = rf_vals_bg_2524;
  1478. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1479. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1480. spec->channels = rf_vals_bg_2525;
  1481. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1482. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1483. spec->channels = rf_vals_bg_2525e;
  1484. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1485. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1486. spec->channels = rf_vals_5222;
  1487. spec->num_modes = 3;
  1488. }
  1489. }
  1490. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1491. {
  1492. int retval;
  1493. /*
  1494. * Allocate eeprom data.
  1495. */
  1496. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1497. if (retval)
  1498. return retval;
  1499. retval = rt2500pci_init_eeprom(rt2x00dev);
  1500. if (retval)
  1501. return retval;
  1502. /*
  1503. * Initialize hw specifications.
  1504. */
  1505. rt2500pci_probe_hw_mode(rt2x00dev);
  1506. /*
  1507. * This device requires the beacon ring
  1508. */
  1509. __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
  1510. /*
  1511. * Set the rssi offset.
  1512. */
  1513. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1514. return 0;
  1515. }
  1516. /*
  1517. * IEEE80211 stack callback functions.
  1518. */
  1519. static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
  1520. unsigned int changed_flags,
  1521. unsigned int *total_flags,
  1522. int mc_count,
  1523. struct dev_addr_list *mc_list)
  1524. {
  1525. struct rt2x00_dev *rt2x00dev = hw->priv;
  1526. struct interface *intf = &rt2x00dev->interface;
  1527. u32 reg;
  1528. /*
  1529. * Mask off any flags we are going to ignore from
  1530. * the total_flags field.
  1531. */
  1532. *total_flags &=
  1533. FIF_ALLMULTI |
  1534. FIF_FCSFAIL |
  1535. FIF_PLCPFAIL |
  1536. FIF_CONTROL |
  1537. FIF_OTHER_BSS |
  1538. FIF_PROMISC_IN_BSS;
  1539. /*
  1540. * Apply some rules to the filters:
  1541. * - Some filters imply different filters to be set.
  1542. * - Some things we can't filter out at all.
  1543. * - Some filters are set based on interface type.
  1544. */
  1545. if (mc_count)
  1546. *total_flags |= FIF_ALLMULTI;
  1547. if (*total_flags & FIF_OTHER_BSS ||
  1548. *total_flags & FIF_PROMISC_IN_BSS)
  1549. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1550. if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
  1551. *total_flags |= FIF_PROMISC_IN_BSS;
  1552. /*
  1553. * Check if there is any work left for us.
  1554. */
  1555. if (intf->filter == *total_flags)
  1556. return;
  1557. intf->filter = *total_flags;
  1558. /*
  1559. * Start configuration steps.
  1560. * Note that the version error will always be dropped
  1561. * and broadcast frames will always be accepted since
  1562. * there is no filter for it at this time.
  1563. */
  1564. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1565. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1566. !(*total_flags & FIF_FCSFAIL));
  1567. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1568. !(*total_flags & FIF_PLCPFAIL));
  1569. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1570. !(*total_flags & FIF_CONTROL));
  1571. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1572. !(*total_flags & FIF_PROMISC_IN_BSS));
  1573. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1574. !(*total_flags & FIF_PROMISC_IN_BSS));
  1575. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1576. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  1577. !(*total_flags & FIF_ALLMULTI));
  1578. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  1579. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1580. }
  1581. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1582. u32 short_retry, u32 long_retry)
  1583. {
  1584. struct rt2x00_dev *rt2x00dev = hw->priv;
  1585. u32 reg;
  1586. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1587. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1588. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1589. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1590. return 0;
  1591. }
  1592. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1593. {
  1594. struct rt2x00_dev *rt2x00dev = hw->priv;
  1595. u64 tsf;
  1596. u32 reg;
  1597. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1598. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1599. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1600. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1601. return tsf;
  1602. }
  1603. static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
  1604. {
  1605. struct rt2x00_dev *rt2x00dev = hw->priv;
  1606. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1607. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1608. }
  1609. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1610. {
  1611. struct rt2x00_dev *rt2x00dev = hw->priv;
  1612. u32 reg;
  1613. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1614. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1615. }
  1616. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1617. .tx = rt2x00mac_tx,
  1618. .start = rt2x00mac_start,
  1619. .stop = rt2x00mac_stop,
  1620. .add_interface = rt2x00mac_add_interface,
  1621. .remove_interface = rt2x00mac_remove_interface,
  1622. .config = rt2x00mac_config,
  1623. .config_interface = rt2x00mac_config_interface,
  1624. .configure_filter = rt2500pci_configure_filter,
  1625. .get_stats = rt2x00mac_get_stats,
  1626. .set_retry_limit = rt2500pci_set_retry_limit,
  1627. .erp_ie_changed = rt2x00mac_erp_ie_changed,
  1628. .conf_tx = rt2x00mac_conf_tx,
  1629. .get_tx_stats = rt2x00mac_get_tx_stats,
  1630. .get_tsf = rt2500pci_get_tsf,
  1631. .reset_tsf = rt2500pci_reset_tsf,
  1632. .beacon_update = rt2x00pci_beacon_update,
  1633. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1634. };
  1635. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1636. .irq_handler = rt2500pci_interrupt,
  1637. .probe_hw = rt2500pci_probe_hw,
  1638. .initialize = rt2x00pci_initialize,
  1639. .uninitialize = rt2x00pci_uninitialize,
  1640. .set_device_state = rt2500pci_set_device_state,
  1641. .rfkill_poll = rt2500pci_rfkill_poll,
  1642. .link_stats = rt2500pci_link_stats,
  1643. .reset_tuner = rt2500pci_reset_tuner,
  1644. .link_tuner = rt2500pci_link_tuner,
  1645. .write_tx_desc = rt2500pci_write_tx_desc,
  1646. .write_tx_data = rt2x00pci_write_tx_data,
  1647. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1648. .fill_rxdone = rt2500pci_fill_rxdone,
  1649. .config_mac_addr = rt2500pci_config_mac_addr,
  1650. .config_bssid = rt2500pci_config_bssid,
  1651. .config_type = rt2500pci_config_type,
  1652. .config_preamble = rt2500pci_config_preamble,
  1653. .config = rt2500pci_config,
  1654. };
  1655. static const struct rt2x00_ops rt2500pci_ops = {
  1656. .name = DRV_NAME,
  1657. .rxd_size = RXD_DESC_SIZE,
  1658. .txd_size = TXD_DESC_SIZE,
  1659. .eeprom_size = EEPROM_SIZE,
  1660. .rf_size = RF_SIZE,
  1661. .lib = &rt2500pci_rt2x00_ops,
  1662. .hw = &rt2500pci_mac80211_ops,
  1663. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1664. .debugfs = &rt2500pci_rt2x00debug,
  1665. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1666. };
  1667. /*
  1668. * RT2500pci module information.
  1669. */
  1670. static struct pci_device_id rt2500pci_device_table[] = {
  1671. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1672. { 0, }
  1673. };
  1674. MODULE_AUTHOR(DRV_PROJECT);
  1675. MODULE_VERSION(DRV_VERSION);
  1676. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1677. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1678. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1679. MODULE_LICENSE("GPL");
  1680. static struct pci_driver rt2500pci_driver = {
  1681. .name = DRV_NAME,
  1682. .id_table = rt2500pci_device_table,
  1683. .probe = rt2x00pci_probe,
  1684. .remove = __devexit_p(rt2x00pci_remove),
  1685. .suspend = rt2x00pci_suspend,
  1686. .resume = rt2x00pci_resume,
  1687. };
  1688. static int __init rt2500pci_init(void)
  1689. {
  1690. return pci_register_driver(&rt2500pci_driver);
  1691. }
  1692. static void __exit rt2500pci_exit(void)
  1693. {
  1694. pci_unregister_driver(&rt2500pci_driver);
  1695. }
  1696. module_init(rt2500pci_init);
  1697. module_exit(rt2500pci_exit);