qla3xxx.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include "qla3xxx.h"
  36. #define DRV_NAME "qla3xxx"
  37. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  38. #define DRV_VERSION "v2.03.00-k4"
  39. #define PFX DRV_NAME " "
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. MODULE_AUTHOR("QLogic Corporation");
  43. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  44. MODULE_LICENSE("GPL");
  45. MODULE_VERSION(DRV_VERSION);
  46. static const u32 default_msg
  47. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  48. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  49. static int debug = -1; /* defaults above */
  50. module_param(debug, int, 0);
  51. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  52. static int msi;
  53. module_param(msi, int, 0);
  54. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  55. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  56. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  58. /* required last entry */
  59. {0,}
  60. };
  61. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  62. /*
  63. * These are the known PHY's which are used
  64. */
  65. typedef enum {
  66. PHY_TYPE_UNKNOWN = 0,
  67. PHY_VITESSE_VSC8211,
  68. PHY_AGERE_ET1011C,
  69. MAX_PHY_DEV_TYPES
  70. } PHY_DEVICE_et;
  71. typedef struct {
  72. PHY_DEVICE_et phyDevice;
  73. u32 phyIdOUI;
  74. u16 phyIdModel;
  75. char *name;
  76. } PHY_DEVICE_INFO_t;
  77. static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
  78. {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  79. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  80. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  81. };
  82. /*
  83. * Caller must take hw_lock.
  84. */
  85. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  86. u32 sem_mask, u32 sem_bits)
  87. {
  88. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  89. u32 value;
  90. unsigned int seconds = 3;
  91. do {
  92. writel((sem_mask | sem_bits),
  93. &port_regs->CommonRegs.semaphoreReg);
  94. value = readl(&port_regs->CommonRegs.semaphoreReg);
  95. if ((value & (sem_mask >> 16)) == sem_bits)
  96. return 0;
  97. ssleep(1);
  98. } while(--seconds);
  99. return -1;
  100. }
  101. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  102. {
  103. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  104. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  105. readl(&port_regs->CommonRegs.semaphoreReg);
  106. }
  107. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  108. {
  109. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  110. u32 value;
  111. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  112. value = readl(&port_regs->CommonRegs.semaphoreReg);
  113. return ((value & (sem_mask >> 16)) == sem_bits);
  114. }
  115. /*
  116. * Caller holds hw_lock.
  117. */
  118. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  119. {
  120. int i = 0;
  121. while (1) {
  122. if (!ql_sem_lock(qdev,
  123. QL_DRVR_SEM_MASK,
  124. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  125. * 2) << 1)) {
  126. if (i < 10) {
  127. ssleep(1);
  128. i++;
  129. } else {
  130. printk(KERN_ERR PFX "%s: Timed out waiting for "
  131. "driver lock...\n",
  132. qdev->ndev->name);
  133. return 0;
  134. }
  135. } else {
  136. printk(KERN_DEBUG PFX
  137. "%s: driver lock acquired.\n",
  138. qdev->ndev->name);
  139. return 1;
  140. }
  141. }
  142. }
  143. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  144. {
  145. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  146. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  147. &port_regs->CommonRegs.ispControlStatus);
  148. readl(&port_regs->CommonRegs.ispControlStatus);
  149. qdev->current_page = page;
  150. }
  151. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  152. u32 __iomem * reg)
  153. {
  154. u32 value;
  155. unsigned long hw_flags;
  156. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  157. value = readl(reg);
  158. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  159. return value;
  160. }
  161. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  162. u32 __iomem * reg)
  163. {
  164. return readl(reg);
  165. }
  166. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  167. {
  168. u32 value;
  169. unsigned long hw_flags;
  170. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  171. if (qdev->current_page != 0)
  172. ql_set_register_page(qdev,0);
  173. value = readl(reg);
  174. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  175. return value;
  176. }
  177. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  178. {
  179. if (qdev->current_page != 0)
  180. ql_set_register_page(qdev,0);
  181. return readl(reg);
  182. }
  183. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  184. u32 __iomem *reg, u32 value)
  185. {
  186. unsigned long hw_flags;
  187. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  188. writel(value, reg);
  189. readl(reg);
  190. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  191. return;
  192. }
  193. static void ql_write_common_reg(struct ql3_adapter *qdev,
  194. u32 __iomem *reg, u32 value)
  195. {
  196. writel(value, reg);
  197. readl(reg);
  198. return;
  199. }
  200. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  201. u32 __iomem *reg, u32 value)
  202. {
  203. writel(value, reg);
  204. readl(reg);
  205. udelay(1);
  206. return;
  207. }
  208. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  209. u32 __iomem *reg, u32 value)
  210. {
  211. if (qdev->current_page != 0)
  212. ql_set_register_page(qdev,0);
  213. writel(value, reg);
  214. readl(reg);
  215. return;
  216. }
  217. /*
  218. * Caller holds hw_lock. Only called during init.
  219. */
  220. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  221. u32 __iomem *reg, u32 value)
  222. {
  223. if (qdev->current_page != 1)
  224. ql_set_register_page(qdev,1);
  225. writel(value, reg);
  226. readl(reg);
  227. return;
  228. }
  229. /*
  230. * Caller holds hw_lock. Only called during init.
  231. */
  232. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  233. u32 __iomem *reg, u32 value)
  234. {
  235. if (qdev->current_page != 2)
  236. ql_set_register_page(qdev,2);
  237. writel(value, reg);
  238. readl(reg);
  239. return;
  240. }
  241. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  242. {
  243. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  244. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  245. (ISP_IMR_ENABLE_INT << 16));
  246. }
  247. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  248. {
  249. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  250. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  251. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  252. }
  253. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  254. struct ql_rcv_buf_cb *lrg_buf_cb)
  255. {
  256. dma_addr_t map;
  257. int err;
  258. lrg_buf_cb->next = NULL;
  259. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  260. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  261. } else {
  262. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  263. qdev->lrg_buf_free_tail = lrg_buf_cb;
  264. }
  265. if (!lrg_buf_cb->skb) {
  266. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  267. qdev->lrg_buffer_len);
  268. if (unlikely(!lrg_buf_cb->skb)) {
  269. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  270. qdev->ndev->name);
  271. qdev->lrg_buf_skb_check++;
  272. } else {
  273. /*
  274. * We save some space to copy the ethhdr from first
  275. * buffer
  276. */
  277. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  278. map = pci_map_single(qdev->pdev,
  279. lrg_buf_cb->skb->data,
  280. qdev->lrg_buffer_len -
  281. QL_HEADER_SPACE,
  282. PCI_DMA_FROMDEVICE);
  283. err = pci_dma_mapping_error(map);
  284. if(err) {
  285. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  286. qdev->ndev->name, err);
  287. dev_kfree_skb(lrg_buf_cb->skb);
  288. lrg_buf_cb->skb = NULL;
  289. qdev->lrg_buf_skb_check++;
  290. return;
  291. }
  292. lrg_buf_cb->buf_phy_addr_low =
  293. cpu_to_le32(LS_64BITS(map));
  294. lrg_buf_cb->buf_phy_addr_high =
  295. cpu_to_le32(MS_64BITS(map));
  296. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  297. pci_unmap_len_set(lrg_buf_cb, maplen,
  298. qdev->lrg_buffer_len -
  299. QL_HEADER_SPACE);
  300. }
  301. }
  302. qdev->lrg_buf_free_count++;
  303. }
  304. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  305. *qdev)
  306. {
  307. struct ql_rcv_buf_cb *lrg_buf_cb;
  308. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  309. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  310. qdev->lrg_buf_free_tail = NULL;
  311. qdev->lrg_buf_free_count--;
  312. }
  313. return lrg_buf_cb;
  314. }
  315. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  316. static u32 dataBits = EEPROM_NO_DATA_BITS;
  317. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  318. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  319. unsigned short *value);
  320. /*
  321. * Caller holds hw_lock.
  322. */
  323. static void fm93c56a_select(struct ql3_adapter *qdev)
  324. {
  325. struct ql3xxx_port_registers __iomem *port_regs =
  326. qdev->mem_map_registers;
  327. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  328. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  329. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  330. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  331. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  332. }
  333. /*
  334. * Caller holds hw_lock.
  335. */
  336. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  337. {
  338. int i;
  339. u32 mask;
  340. u32 dataBit;
  341. u32 previousBit;
  342. struct ql3xxx_port_registers __iomem *port_regs =
  343. qdev->mem_map_registers;
  344. /* Clock in a zero, then do the start bit */
  345. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  346. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  347. AUBURN_EEPROM_DO_1);
  348. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  349. ISP_NVRAM_MASK | qdev->
  350. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  351. AUBURN_EEPROM_CLK_RISE);
  352. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  353. ISP_NVRAM_MASK | qdev->
  354. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  355. AUBURN_EEPROM_CLK_FALL);
  356. mask = 1 << (FM93C56A_CMD_BITS - 1);
  357. /* Force the previous data bit to be different */
  358. previousBit = 0xffff;
  359. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  360. dataBit =
  361. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  362. if (previousBit != dataBit) {
  363. /*
  364. * If the bit changed, then change the DO state to
  365. * match
  366. */
  367. ql_write_nvram_reg(qdev,
  368. &port_regs->CommonRegs.
  369. serialPortInterfaceReg,
  370. ISP_NVRAM_MASK | qdev->
  371. eeprom_cmd_data | dataBit);
  372. previousBit = dataBit;
  373. }
  374. ql_write_nvram_reg(qdev,
  375. &port_regs->CommonRegs.
  376. serialPortInterfaceReg,
  377. ISP_NVRAM_MASK | qdev->
  378. eeprom_cmd_data | dataBit |
  379. AUBURN_EEPROM_CLK_RISE);
  380. ql_write_nvram_reg(qdev,
  381. &port_regs->CommonRegs.
  382. serialPortInterfaceReg,
  383. ISP_NVRAM_MASK | qdev->
  384. eeprom_cmd_data | dataBit |
  385. AUBURN_EEPROM_CLK_FALL);
  386. cmd = cmd << 1;
  387. }
  388. mask = 1 << (addrBits - 1);
  389. /* Force the previous data bit to be different */
  390. previousBit = 0xffff;
  391. for (i = 0; i < addrBits; i++) {
  392. dataBit =
  393. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  394. AUBURN_EEPROM_DO_0;
  395. if (previousBit != dataBit) {
  396. /*
  397. * If the bit changed, then change the DO state to
  398. * match
  399. */
  400. ql_write_nvram_reg(qdev,
  401. &port_regs->CommonRegs.
  402. serialPortInterfaceReg,
  403. ISP_NVRAM_MASK | qdev->
  404. eeprom_cmd_data | dataBit);
  405. previousBit = dataBit;
  406. }
  407. ql_write_nvram_reg(qdev,
  408. &port_regs->CommonRegs.
  409. serialPortInterfaceReg,
  410. ISP_NVRAM_MASK | qdev->
  411. eeprom_cmd_data | dataBit |
  412. AUBURN_EEPROM_CLK_RISE);
  413. ql_write_nvram_reg(qdev,
  414. &port_regs->CommonRegs.
  415. serialPortInterfaceReg,
  416. ISP_NVRAM_MASK | qdev->
  417. eeprom_cmd_data | dataBit |
  418. AUBURN_EEPROM_CLK_FALL);
  419. eepromAddr = eepromAddr << 1;
  420. }
  421. }
  422. /*
  423. * Caller holds hw_lock.
  424. */
  425. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  426. {
  427. struct ql3xxx_port_registers __iomem *port_regs =
  428. qdev->mem_map_registers;
  429. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  430. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  431. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  432. }
  433. /*
  434. * Caller holds hw_lock.
  435. */
  436. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  437. {
  438. int i;
  439. u32 data = 0;
  440. u32 dataBit;
  441. struct ql3xxx_port_registers __iomem *port_regs =
  442. qdev->mem_map_registers;
  443. /* Read the data bits */
  444. /* The first bit is a dummy. Clock right over it. */
  445. for (i = 0; i < dataBits; i++) {
  446. ql_write_nvram_reg(qdev,
  447. &port_regs->CommonRegs.
  448. serialPortInterfaceReg,
  449. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  450. AUBURN_EEPROM_CLK_RISE);
  451. ql_write_nvram_reg(qdev,
  452. &port_regs->CommonRegs.
  453. serialPortInterfaceReg,
  454. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  455. AUBURN_EEPROM_CLK_FALL);
  456. dataBit =
  457. (ql_read_common_reg
  458. (qdev,
  459. &port_regs->CommonRegs.
  460. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  461. data = (data << 1) | dataBit;
  462. }
  463. *value = (u16) data;
  464. }
  465. /*
  466. * Caller holds hw_lock.
  467. */
  468. static void eeprom_readword(struct ql3_adapter *qdev,
  469. u32 eepromAddr, unsigned short *value)
  470. {
  471. fm93c56a_select(qdev);
  472. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  473. fm93c56a_datain(qdev, value);
  474. fm93c56a_deselect(qdev);
  475. }
  476. static void ql_swap_mac_addr(u8 * macAddress)
  477. {
  478. #ifdef __BIG_ENDIAN
  479. u8 temp;
  480. temp = macAddress[0];
  481. macAddress[0] = macAddress[1];
  482. macAddress[1] = temp;
  483. temp = macAddress[2];
  484. macAddress[2] = macAddress[3];
  485. macAddress[3] = temp;
  486. temp = macAddress[4];
  487. macAddress[4] = macAddress[5];
  488. macAddress[5] = temp;
  489. #endif
  490. }
  491. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  492. {
  493. u16 *pEEPROMData;
  494. u16 checksum = 0;
  495. u32 index;
  496. unsigned long hw_flags;
  497. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  498. pEEPROMData = (u16 *) & qdev->nvram_data;
  499. qdev->eeprom_cmd_data = 0;
  500. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  501. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  502. 2) << 10)) {
  503. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  504. __func__);
  505. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  506. return -1;
  507. }
  508. for (index = 0; index < EEPROM_SIZE; index++) {
  509. eeprom_readword(qdev, index, pEEPROMData);
  510. checksum += *pEEPROMData;
  511. pEEPROMData++;
  512. }
  513. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  514. if (checksum != 0) {
  515. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  516. qdev->ndev->name, checksum);
  517. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  518. return -1;
  519. }
  520. /*
  521. * We have a problem with endianness for the MAC addresses
  522. * and the two 8-bit values version, and numPorts. We
  523. * have to swap them on big endian systems.
  524. */
  525. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  526. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  527. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  528. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  529. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  530. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  531. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  532. return checksum;
  533. }
  534. static const u32 PHYAddr[2] = {
  535. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  536. };
  537. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  538. {
  539. struct ql3xxx_port_registers __iomem *port_regs =
  540. qdev->mem_map_registers;
  541. u32 temp;
  542. int count = 1000;
  543. while (count) {
  544. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  545. if (!(temp & MAC_MII_STATUS_BSY))
  546. return 0;
  547. udelay(10);
  548. count--;
  549. }
  550. return -1;
  551. }
  552. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  553. {
  554. struct ql3xxx_port_registers __iomem *port_regs =
  555. qdev->mem_map_registers;
  556. u32 scanControl;
  557. if (qdev->numPorts > 1) {
  558. /* Auto scan will cycle through multiple ports */
  559. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  560. } else {
  561. scanControl = MAC_MII_CONTROL_SC;
  562. }
  563. /*
  564. * Scan register 1 of PHY/PETBI,
  565. * Set up to scan both devices
  566. * The autoscan starts from the first register, completes
  567. * the last one before rolling over to the first
  568. */
  569. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  570. PHYAddr[0] | MII_SCAN_REGISTER);
  571. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  572. (scanControl) |
  573. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  574. }
  575. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  576. {
  577. u8 ret;
  578. struct ql3xxx_port_registers __iomem *port_regs =
  579. qdev->mem_map_registers;
  580. /* See if scan mode is enabled before we turn it off */
  581. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  582. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  583. /* Scan is enabled */
  584. ret = 1;
  585. } else {
  586. /* Scan is disabled */
  587. ret = 0;
  588. }
  589. /*
  590. * When disabling scan mode you must first change the MII register
  591. * address
  592. */
  593. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  594. PHYAddr[0] | MII_SCAN_REGISTER);
  595. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  596. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  597. MAC_MII_CONTROL_RC) << 16));
  598. return ret;
  599. }
  600. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  601. u16 regAddr, u16 value, u32 phyAddr)
  602. {
  603. struct ql3xxx_port_registers __iomem *port_regs =
  604. qdev->mem_map_registers;
  605. u8 scanWasEnabled;
  606. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  607. if (ql_wait_for_mii_ready(qdev)) {
  608. if (netif_msg_link(qdev))
  609. printk(KERN_WARNING PFX
  610. "%s Timed out waiting for management port to "
  611. "get free before issuing command.\n",
  612. qdev->ndev->name);
  613. return -1;
  614. }
  615. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  616. phyAddr | regAddr);
  617. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  618. /* Wait for write to complete 9/10/04 SJP */
  619. if (ql_wait_for_mii_ready(qdev)) {
  620. if (netif_msg_link(qdev))
  621. printk(KERN_WARNING PFX
  622. "%s: Timed out waiting for management port to"
  623. "get free before issuing command.\n",
  624. qdev->ndev->name);
  625. return -1;
  626. }
  627. if (scanWasEnabled)
  628. ql_mii_enable_scan_mode(qdev);
  629. return 0;
  630. }
  631. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  632. u16 * value, u32 phyAddr)
  633. {
  634. struct ql3xxx_port_registers __iomem *port_regs =
  635. qdev->mem_map_registers;
  636. u8 scanWasEnabled;
  637. u32 temp;
  638. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  639. if (ql_wait_for_mii_ready(qdev)) {
  640. if (netif_msg_link(qdev))
  641. printk(KERN_WARNING PFX
  642. "%s: Timed out waiting for management port to "
  643. "get free before issuing command.\n",
  644. qdev->ndev->name);
  645. return -1;
  646. }
  647. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  648. phyAddr | regAddr);
  649. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  650. (MAC_MII_CONTROL_RC << 16));
  651. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  652. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  653. /* Wait for the read to complete */
  654. if (ql_wait_for_mii_ready(qdev)) {
  655. if (netif_msg_link(qdev))
  656. printk(KERN_WARNING PFX
  657. "%s: Timed out waiting for management port to "
  658. "get free after issuing command.\n",
  659. qdev->ndev->name);
  660. return -1;
  661. }
  662. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  663. *value = (u16) temp;
  664. if (scanWasEnabled)
  665. ql_mii_enable_scan_mode(qdev);
  666. return 0;
  667. }
  668. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  669. {
  670. struct ql3xxx_port_registers __iomem *port_regs =
  671. qdev->mem_map_registers;
  672. ql_mii_disable_scan_mode(qdev);
  673. if (ql_wait_for_mii_ready(qdev)) {
  674. if (netif_msg_link(qdev))
  675. printk(KERN_WARNING PFX
  676. "%s: Timed out waiting for management port to "
  677. "get free before issuing command.\n",
  678. qdev->ndev->name);
  679. return -1;
  680. }
  681. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  682. qdev->PHYAddr | regAddr);
  683. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  684. /* Wait for write to complete. */
  685. if (ql_wait_for_mii_ready(qdev)) {
  686. if (netif_msg_link(qdev))
  687. printk(KERN_WARNING PFX
  688. "%s: Timed out waiting for management port to "
  689. "get free before issuing command.\n",
  690. qdev->ndev->name);
  691. return -1;
  692. }
  693. ql_mii_enable_scan_mode(qdev);
  694. return 0;
  695. }
  696. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  697. {
  698. u32 temp;
  699. struct ql3xxx_port_registers __iomem *port_regs =
  700. qdev->mem_map_registers;
  701. ql_mii_disable_scan_mode(qdev);
  702. if (ql_wait_for_mii_ready(qdev)) {
  703. if (netif_msg_link(qdev))
  704. printk(KERN_WARNING PFX
  705. "%s: Timed out waiting for management port to "
  706. "get free before issuing command.\n",
  707. qdev->ndev->name);
  708. return -1;
  709. }
  710. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  711. qdev->PHYAddr | regAddr);
  712. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  713. (MAC_MII_CONTROL_RC << 16));
  714. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  715. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  716. /* Wait for the read to complete */
  717. if (ql_wait_for_mii_ready(qdev)) {
  718. if (netif_msg_link(qdev))
  719. printk(KERN_WARNING PFX
  720. "%s: Timed out waiting for management port to "
  721. "get free before issuing command.\n",
  722. qdev->ndev->name);
  723. return -1;
  724. }
  725. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  726. *value = (u16) temp;
  727. ql_mii_enable_scan_mode(qdev);
  728. return 0;
  729. }
  730. static void ql_petbi_reset(struct ql3_adapter *qdev)
  731. {
  732. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  733. }
  734. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  735. {
  736. u16 reg;
  737. /* Enable Auto-negotiation sense */
  738. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  739. reg |= PETBI_TBI_AUTO_SENSE;
  740. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  741. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  742. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  743. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  744. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  745. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  746. }
  747. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  748. {
  749. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  750. PHYAddr[qdev->mac_index]);
  751. }
  752. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  753. {
  754. u16 reg;
  755. /* Enable Auto-negotiation sense */
  756. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  757. PHYAddr[qdev->mac_index]);
  758. reg |= PETBI_TBI_AUTO_SENSE;
  759. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  760. PHYAddr[qdev->mac_index]);
  761. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  762. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  763. PHYAddr[qdev->mac_index]);
  764. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  765. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  766. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  767. PHYAddr[qdev->mac_index]);
  768. }
  769. static void ql_petbi_init(struct ql3_adapter *qdev)
  770. {
  771. ql_petbi_reset(qdev);
  772. ql_petbi_start_neg(qdev);
  773. }
  774. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  775. {
  776. ql_petbi_reset_ex(qdev);
  777. ql_petbi_start_neg_ex(qdev);
  778. }
  779. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  780. {
  781. u16 reg;
  782. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  783. return 0;
  784. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  785. }
  786. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  787. {
  788. printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
  789. /* power down device bit 11 = 1 */
  790. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  791. /* enable diagnostic mode bit 2 = 1 */
  792. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  793. /* 1000MB amplitude adjust (see Agere errata) */
  794. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  795. /* 1000MB amplitude adjust (see Agere errata) */
  796. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  797. /* 100MB amplitude adjust (see Agere errata) */
  798. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  799. /* 100MB amplitude adjust (see Agere errata) */
  800. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  801. /* 10MB amplitude adjust (see Agere errata) */
  802. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  803. /* 10MB amplitude adjust (see Agere errata) */
  804. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  805. /* point to hidden reg 0x2806 */
  806. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  807. /* Write new PHYAD w/bit 5 set */
  808. ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  809. /*
  810. * Disable diagnostic mode bit 2 = 0
  811. * Power up device bit 11 = 0
  812. * Link up (on) and activity (blink)
  813. */
  814. ql_mii_write_reg(qdev, 0x12, 0x840a);
  815. ql_mii_write_reg(qdev, 0x00, 0x1140);
  816. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  817. }
  818. static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
  819. u16 phyIdReg0, u16 phyIdReg1)
  820. {
  821. PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
  822. u32 oui;
  823. u16 model;
  824. int i;
  825. if (phyIdReg0 == 0xffff) {
  826. return result;
  827. }
  828. if (phyIdReg1 == 0xffff) {
  829. return result;
  830. }
  831. /* oui is split between two registers */
  832. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  833. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  834. /* Scan table for this PHY */
  835. for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  836. if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
  837. {
  838. result = PHY_DEVICES[i].phyDevice;
  839. printk(KERN_INFO "%s: Phy: %s\n",
  840. qdev->ndev->name, PHY_DEVICES[i].name);
  841. break;
  842. }
  843. }
  844. return result;
  845. }
  846. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  847. {
  848. u16 reg;
  849. switch(qdev->phyType) {
  850. case PHY_AGERE_ET1011C:
  851. {
  852. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  853. return 0;
  854. reg = (reg >> 8) & 3;
  855. break;
  856. }
  857. default:
  858. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  859. return 0;
  860. reg = (((reg & 0x18) >> 3) & 3);
  861. }
  862. switch(reg) {
  863. case 2:
  864. return SPEED_1000;
  865. case 1:
  866. return SPEED_100;
  867. case 0:
  868. return SPEED_10;
  869. default:
  870. return -1;
  871. }
  872. }
  873. static int ql_is_full_dup(struct ql3_adapter *qdev)
  874. {
  875. u16 reg;
  876. switch(qdev->phyType) {
  877. case PHY_AGERE_ET1011C:
  878. {
  879. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  880. return 0;
  881. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  882. }
  883. case PHY_VITESSE_VSC8211:
  884. default:
  885. {
  886. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  887. return 0;
  888. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  889. }
  890. }
  891. }
  892. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  893. {
  894. u16 reg;
  895. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  896. return 0;
  897. return (reg & PHY_NEG_PAUSE) != 0;
  898. }
  899. static int PHY_Setup(struct ql3_adapter *qdev)
  900. {
  901. u16 reg1;
  902. u16 reg2;
  903. bool agereAddrChangeNeeded = false;
  904. u32 miiAddr = 0;
  905. int err;
  906. /* Determine the PHY we are using by reading the ID's */
  907. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  908. if(err != 0) {
  909. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  910. qdev->ndev->name);
  911. return err;
  912. }
  913. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  914. if(err != 0) {
  915. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  916. qdev->ndev->name);
  917. return err;
  918. }
  919. /* Check if we have a Agere PHY */
  920. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  921. /* Determine which MII address we should be using
  922. determined by the index of the card */
  923. if (qdev->mac_index == 0) {
  924. miiAddr = MII_AGERE_ADDR_1;
  925. } else {
  926. miiAddr = MII_AGERE_ADDR_2;
  927. }
  928. err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  929. if(err != 0) {
  930. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  931. qdev->ndev->name);
  932. return err;
  933. }
  934. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  935. if(err != 0) {
  936. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  937. qdev->ndev->name);
  938. return err;
  939. }
  940. /* We need to remember to initialize the Agere PHY */
  941. agereAddrChangeNeeded = true;
  942. }
  943. /* Determine the particular PHY we have on board to apply
  944. PHY specific initializations */
  945. qdev->phyType = getPhyType(qdev, reg1, reg2);
  946. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  947. /* need this here so address gets changed */
  948. phyAgereSpecificInit(qdev, miiAddr);
  949. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  950. printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
  951. return -EIO;
  952. }
  953. return 0;
  954. }
  955. /*
  956. * Caller holds hw_lock.
  957. */
  958. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  959. {
  960. struct ql3xxx_port_registers __iomem *port_regs =
  961. qdev->mem_map_registers;
  962. u32 value;
  963. if (enable)
  964. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  965. else
  966. value = (MAC_CONFIG_REG_PE << 16);
  967. if (qdev->mac_index)
  968. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  969. else
  970. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  971. }
  972. /*
  973. * Caller holds hw_lock.
  974. */
  975. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  976. {
  977. struct ql3xxx_port_registers __iomem *port_regs =
  978. qdev->mem_map_registers;
  979. u32 value;
  980. if (enable)
  981. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  982. else
  983. value = (MAC_CONFIG_REG_SR << 16);
  984. if (qdev->mac_index)
  985. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  986. else
  987. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  988. }
  989. /*
  990. * Caller holds hw_lock.
  991. */
  992. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  993. {
  994. struct ql3xxx_port_registers __iomem *port_regs =
  995. qdev->mem_map_registers;
  996. u32 value;
  997. if (enable)
  998. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  999. else
  1000. value = (MAC_CONFIG_REG_GM << 16);
  1001. if (qdev->mac_index)
  1002. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1003. else
  1004. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1005. }
  1006. /*
  1007. * Caller holds hw_lock.
  1008. */
  1009. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  1010. {
  1011. struct ql3xxx_port_registers __iomem *port_regs =
  1012. qdev->mem_map_registers;
  1013. u32 value;
  1014. if (enable)
  1015. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  1016. else
  1017. value = (MAC_CONFIG_REG_FD << 16);
  1018. if (qdev->mac_index)
  1019. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1020. else
  1021. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1022. }
  1023. /*
  1024. * Caller holds hw_lock.
  1025. */
  1026. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  1027. {
  1028. struct ql3xxx_port_registers __iomem *port_regs =
  1029. qdev->mem_map_registers;
  1030. u32 value;
  1031. if (enable)
  1032. value =
  1033. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  1034. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  1035. else
  1036. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  1037. if (qdev->mac_index)
  1038. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1039. else
  1040. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1041. }
  1042. /*
  1043. * Caller holds hw_lock.
  1044. */
  1045. static int ql_is_fiber(struct ql3_adapter *qdev)
  1046. {
  1047. struct ql3xxx_port_registers __iomem *port_regs =
  1048. qdev->mem_map_registers;
  1049. u32 bitToCheck = 0;
  1050. u32 temp;
  1051. switch (qdev->mac_index) {
  1052. case 0:
  1053. bitToCheck = PORT_STATUS_SM0;
  1054. break;
  1055. case 1:
  1056. bitToCheck = PORT_STATUS_SM1;
  1057. break;
  1058. }
  1059. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1060. return (temp & bitToCheck) != 0;
  1061. }
  1062. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  1063. {
  1064. u16 reg;
  1065. ql_mii_read_reg(qdev, 0x00, &reg);
  1066. return (reg & 0x1000) != 0;
  1067. }
  1068. /*
  1069. * Caller holds hw_lock.
  1070. */
  1071. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  1072. {
  1073. struct ql3xxx_port_registers __iomem *port_regs =
  1074. qdev->mem_map_registers;
  1075. u32 bitToCheck = 0;
  1076. u32 temp;
  1077. switch (qdev->mac_index) {
  1078. case 0:
  1079. bitToCheck = PORT_STATUS_AC0;
  1080. break;
  1081. case 1:
  1082. bitToCheck = PORT_STATUS_AC1;
  1083. break;
  1084. }
  1085. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1086. if (temp & bitToCheck) {
  1087. if (netif_msg_link(qdev))
  1088. printk(KERN_INFO PFX
  1089. "%s: Auto-Negotiate complete.\n",
  1090. qdev->ndev->name);
  1091. return 1;
  1092. } else {
  1093. if (netif_msg_link(qdev))
  1094. printk(KERN_WARNING PFX
  1095. "%s: Auto-Negotiate incomplete.\n",
  1096. qdev->ndev->name);
  1097. return 0;
  1098. }
  1099. }
  1100. /*
  1101. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1102. */
  1103. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1104. {
  1105. if (ql_is_fiber(qdev))
  1106. return ql_is_petbi_neg_pause(qdev);
  1107. else
  1108. return ql_is_phy_neg_pause(qdev);
  1109. }
  1110. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1111. {
  1112. struct ql3xxx_port_registers __iomem *port_regs =
  1113. qdev->mem_map_registers;
  1114. u32 bitToCheck = 0;
  1115. u32 temp;
  1116. switch (qdev->mac_index) {
  1117. case 0:
  1118. bitToCheck = PORT_STATUS_AE0;
  1119. break;
  1120. case 1:
  1121. bitToCheck = PORT_STATUS_AE1;
  1122. break;
  1123. }
  1124. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1125. return (temp & bitToCheck) != 0;
  1126. }
  1127. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1128. {
  1129. if (ql_is_fiber(qdev))
  1130. return SPEED_1000;
  1131. else
  1132. return ql_phy_get_speed(qdev);
  1133. }
  1134. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1135. {
  1136. if (ql_is_fiber(qdev))
  1137. return 1;
  1138. else
  1139. return ql_is_full_dup(qdev);
  1140. }
  1141. /*
  1142. * Caller holds hw_lock.
  1143. */
  1144. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1145. {
  1146. struct ql3xxx_port_registers __iomem *port_regs =
  1147. qdev->mem_map_registers;
  1148. u32 bitToCheck = 0;
  1149. u32 temp;
  1150. switch (qdev->mac_index) {
  1151. case 0:
  1152. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1153. break;
  1154. case 1:
  1155. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1156. break;
  1157. }
  1158. temp =
  1159. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1160. return (temp & bitToCheck) != 0;
  1161. }
  1162. /*
  1163. * Caller holds hw_lock.
  1164. */
  1165. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1166. {
  1167. struct ql3xxx_port_registers __iomem *port_regs =
  1168. qdev->mem_map_registers;
  1169. switch (qdev->mac_index) {
  1170. case 0:
  1171. ql_write_common_reg(qdev,
  1172. &port_regs->CommonRegs.ispControlStatus,
  1173. (ISP_CONTROL_LINK_DN_0) |
  1174. (ISP_CONTROL_LINK_DN_0 << 16));
  1175. break;
  1176. case 1:
  1177. ql_write_common_reg(qdev,
  1178. &port_regs->CommonRegs.ispControlStatus,
  1179. (ISP_CONTROL_LINK_DN_1) |
  1180. (ISP_CONTROL_LINK_DN_1 << 16));
  1181. break;
  1182. default:
  1183. return 1;
  1184. }
  1185. return 0;
  1186. }
  1187. /*
  1188. * Caller holds hw_lock.
  1189. */
  1190. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1191. {
  1192. struct ql3xxx_port_registers __iomem *port_regs =
  1193. qdev->mem_map_registers;
  1194. u32 bitToCheck = 0;
  1195. u32 temp;
  1196. switch (qdev->mac_index) {
  1197. case 0:
  1198. bitToCheck = PORT_STATUS_F1_ENABLED;
  1199. break;
  1200. case 1:
  1201. bitToCheck = PORT_STATUS_F3_ENABLED;
  1202. break;
  1203. default:
  1204. break;
  1205. }
  1206. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1207. if (temp & bitToCheck) {
  1208. if (netif_msg_link(qdev))
  1209. printk(KERN_DEBUG PFX
  1210. "%s: is not link master.\n", qdev->ndev->name);
  1211. return 0;
  1212. } else {
  1213. if (netif_msg_link(qdev))
  1214. printk(KERN_DEBUG PFX
  1215. "%s: is link master.\n", qdev->ndev->name);
  1216. return 1;
  1217. }
  1218. }
  1219. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1220. {
  1221. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1222. PHYAddr[qdev->mac_index]);
  1223. }
  1224. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1225. {
  1226. u16 reg;
  1227. u16 portConfiguration;
  1228. if(qdev->phyType == PHY_AGERE_ET1011C) {
  1229. /* turn off external loopback */
  1230. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1231. }
  1232. if(qdev->mac_index == 0)
  1233. portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
  1234. else
  1235. portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
  1236. /* Some HBA's in the field are set to 0 and they need to
  1237. be reinterpreted with a default value */
  1238. if(portConfiguration == 0)
  1239. portConfiguration = PORT_CONFIG_DEFAULT;
  1240. /* Set the 1000 advertisements */
  1241. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1242. PHYAddr[qdev->mac_index]);
  1243. reg &= ~PHY_GIG_ALL_PARAMS;
  1244. if(portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1245. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1246. reg |= PHY_GIG_ADV_1000F;
  1247. else
  1248. reg |= PHY_GIG_ADV_1000H;
  1249. }
  1250. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1251. PHYAddr[qdev->mac_index]);
  1252. /* Set the 10/100 & pause negotiation advertisements */
  1253. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1254. PHYAddr[qdev->mac_index]);
  1255. reg &= ~PHY_NEG_ALL_PARAMS;
  1256. if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1257. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1258. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1259. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1260. reg |= PHY_NEG_ADV_100F;
  1261. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1262. reg |= PHY_NEG_ADV_10F;
  1263. }
  1264. if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1265. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1266. reg |= PHY_NEG_ADV_100H;
  1267. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1268. reg |= PHY_NEG_ADV_10H;
  1269. }
  1270. if(portConfiguration &
  1271. PORT_CONFIG_1000MB_SPEED) {
  1272. reg |= 1;
  1273. }
  1274. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1275. PHYAddr[qdev->mac_index]);
  1276. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1277. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1278. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1279. PHYAddr[qdev->mac_index]);
  1280. }
  1281. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1282. {
  1283. ql_phy_reset_ex(qdev);
  1284. PHY_Setup(qdev);
  1285. ql_phy_start_neg_ex(qdev);
  1286. }
  1287. /*
  1288. * Caller holds hw_lock.
  1289. */
  1290. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1291. {
  1292. struct ql3xxx_port_registers __iomem *port_regs =
  1293. qdev->mem_map_registers;
  1294. u32 bitToCheck = 0;
  1295. u32 temp, linkState;
  1296. switch (qdev->mac_index) {
  1297. case 0:
  1298. bitToCheck = PORT_STATUS_UP0;
  1299. break;
  1300. case 1:
  1301. bitToCheck = PORT_STATUS_UP1;
  1302. break;
  1303. }
  1304. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1305. if (temp & bitToCheck) {
  1306. linkState = LS_UP;
  1307. } else {
  1308. linkState = LS_DOWN;
  1309. if (netif_msg_link(qdev))
  1310. printk(KERN_WARNING PFX
  1311. "%s: Link is down.\n", qdev->ndev->name);
  1312. }
  1313. return linkState;
  1314. }
  1315. static int ql_port_start(struct ql3_adapter *qdev)
  1316. {
  1317. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1318. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1319. 2) << 7)) {
  1320. printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
  1321. qdev->ndev->name);
  1322. return -1;
  1323. }
  1324. if (ql_is_fiber(qdev)) {
  1325. ql_petbi_init(qdev);
  1326. } else {
  1327. /* Copper port */
  1328. ql_phy_init_ex(qdev);
  1329. }
  1330. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1331. return 0;
  1332. }
  1333. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1334. {
  1335. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1336. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1337. 2) << 7))
  1338. return -1;
  1339. if (!ql_auto_neg_error(qdev)) {
  1340. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1341. /* configure the MAC */
  1342. if (netif_msg_link(qdev))
  1343. printk(KERN_DEBUG PFX
  1344. "%s: Configuring link.\n",
  1345. qdev->ndev->
  1346. name);
  1347. ql_mac_cfg_soft_reset(qdev, 1);
  1348. ql_mac_cfg_gig(qdev,
  1349. (ql_get_link_speed
  1350. (qdev) ==
  1351. SPEED_1000));
  1352. ql_mac_cfg_full_dup(qdev,
  1353. ql_is_link_full_dup
  1354. (qdev));
  1355. ql_mac_cfg_pause(qdev,
  1356. ql_is_neg_pause
  1357. (qdev));
  1358. ql_mac_cfg_soft_reset(qdev, 0);
  1359. /* enable the MAC */
  1360. if (netif_msg_link(qdev))
  1361. printk(KERN_DEBUG PFX
  1362. "%s: Enabling mac.\n",
  1363. qdev->ndev->
  1364. name);
  1365. ql_mac_enable(qdev, 1);
  1366. }
  1367. if (netif_msg_link(qdev))
  1368. printk(KERN_DEBUG PFX
  1369. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1370. qdev->ndev->name);
  1371. qdev->port_link_state = LS_UP;
  1372. netif_start_queue(qdev->ndev);
  1373. netif_carrier_on(qdev->ndev);
  1374. if (netif_msg_link(qdev))
  1375. printk(KERN_INFO PFX
  1376. "%s: Link is up at %d Mbps, %s duplex.\n",
  1377. qdev->ndev->name,
  1378. ql_get_link_speed(qdev),
  1379. ql_is_link_full_dup(qdev)
  1380. ? "full" : "half");
  1381. } else { /* Remote error detected */
  1382. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1383. if (netif_msg_link(qdev))
  1384. printk(KERN_DEBUG PFX
  1385. "%s: Remote error detected. "
  1386. "Calling ql_port_start().\n",
  1387. qdev->ndev->
  1388. name);
  1389. /*
  1390. * ql_port_start() is shared code and needs
  1391. * to lock the PHY on it's own.
  1392. */
  1393. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1394. if(ql_port_start(qdev)) {/* Restart port */
  1395. return -1;
  1396. } else
  1397. return 0;
  1398. }
  1399. }
  1400. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1401. return 0;
  1402. }
  1403. static void ql_link_state_machine_work(struct work_struct *work)
  1404. {
  1405. struct ql3_adapter *qdev =
  1406. container_of(work, struct ql3_adapter, link_state_work.work);
  1407. u32 curr_link_state;
  1408. unsigned long hw_flags;
  1409. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1410. curr_link_state = ql_get_link_state(qdev);
  1411. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1412. if (netif_msg_link(qdev))
  1413. printk(KERN_INFO PFX
  1414. "%s: Reset in progress, skip processing link "
  1415. "state.\n", qdev->ndev->name);
  1416. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1417. /* Restart timer on 2 second interval. */
  1418. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
  1419. return;
  1420. }
  1421. switch (qdev->port_link_state) {
  1422. default:
  1423. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1424. ql_port_start(qdev);
  1425. }
  1426. qdev->port_link_state = LS_DOWN;
  1427. /* Fall Through */
  1428. case LS_DOWN:
  1429. if (netif_msg_link(qdev))
  1430. printk(KERN_DEBUG PFX
  1431. "%s: port_link_state = LS_DOWN.\n",
  1432. qdev->ndev->name);
  1433. if (curr_link_state == LS_UP) {
  1434. if (netif_msg_link(qdev))
  1435. printk(KERN_DEBUG PFX
  1436. "%s: curr_link_state = LS_UP.\n",
  1437. qdev->ndev->name);
  1438. if (ql_is_auto_neg_complete(qdev))
  1439. ql_finish_auto_neg(qdev);
  1440. if (qdev->port_link_state == LS_UP)
  1441. ql_link_down_detect_clear(qdev);
  1442. }
  1443. break;
  1444. case LS_UP:
  1445. /*
  1446. * See if the link is currently down or went down and came
  1447. * back up
  1448. */
  1449. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1450. if (netif_msg_link(qdev))
  1451. printk(KERN_INFO PFX "%s: Link is down.\n",
  1452. qdev->ndev->name);
  1453. qdev->port_link_state = LS_DOWN;
  1454. }
  1455. break;
  1456. }
  1457. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1458. /* Restart timer on 2 second interval. */
  1459. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1460. }
  1461. /*
  1462. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1463. */
  1464. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1465. {
  1466. if (ql_this_adapter_controls_port(qdev))
  1467. set_bit(QL_LINK_MASTER,&qdev->flags);
  1468. else
  1469. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1470. }
  1471. /*
  1472. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1473. */
  1474. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1475. {
  1476. ql_mii_enable_scan_mode(qdev);
  1477. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1478. if (ql_this_adapter_controls_port(qdev))
  1479. ql_petbi_init_ex(qdev);
  1480. } else {
  1481. if (ql_this_adapter_controls_port(qdev))
  1482. ql_phy_init_ex(qdev);
  1483. }
  1484. }
  1485. /*
  1486. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1487. * management interface clock speed can be set properly. It would be better if
  1488. * we had a way to disable MDC until after the PHY is out of reset, but we
  1489. * don't have that capability.
  1490. */
  1491. static int ql_mii_setup(struct ql3_adapter *qdev)
  1492. {
  1493. u32 reg;
  1494. struct ql3xxx_port_registers __iomem *port_regs =
  1495. qdev->mem_map_registers;
  1496. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1497. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1498. 2) << 7))
  1499. return -1;
  1500. if (qdev->device_id == QL3032_DEVICE_ID)
  1501. ql_write_page0_reg(qdev,
  1502. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1503. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1504. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1505. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1506. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1507. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1508. return 0;
  1509. }
  1510. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1511. {
  1512. u32 supported;
  1513. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1514. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1515. | SUPPORTED_Autoneg;
  1516. } else {
  1517. supported = SUPPORTED_10baseT_Half
  1518. | SUPPORTED_10baseT_Full
  1519. | SUPPORTED_100baseT_Half
  1520. | SUPPORTED_100baseT_Full
  1521. | SUPPORTED_1000baseT_Half
  1522. | SUPPORTED_1000baseT_Full
  1523. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1524. }
  1525. return supported;
  1526. }
  1527. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1528. {
  1529. int status;
  1530. unsigned long hw_flags;
  1531. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1532. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1533. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1534. 2) << 7)) {
  1535. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1536. return 0;
  1537. }
  1538. status = ql_is_auto_cfg(qdev);
  1539. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1540. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1541. return status;
  1542. }
  1543. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1544. {
  1545. u32 status;
  1546. unsigned long hw_flags;
  1547. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1548. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1549. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1550. 2) << 7)) {
  1551. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1552. return 0;
  1553. }
  1554. status = ql_get_link_speed(qdev);
  1555. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1556. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1557. return status;
  1558. }
  1559. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1560. {
  1561. int status;
  1562. unsigned long hw_flags;
  1563. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1564. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1565. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1566. 2) << 7)) {
  1567. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1568. return 0;
  1569. }
  1570. status = ql_is_link_full_dup(qdev);
  1571. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1572. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1573. return status;
  1574. }
  1575. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1576. {
  1577. struct ql3_adapter *qdev = netdev_priv(ndev);
  1578. ecmd->transceiver = XCVR_INTERNAL;
  1579. ecmd->supported = ql_supported_modes(qdev);
  1580. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1581. ecmd->port = PORT_FIBRE;
  1582. } else {
  1583. ecmd->port = PORT_TP;
  1584. ecmd->phy_address = qdev->PHYAddr;
  1585. }
  1586. ecmd->advertising = ql_supported_modes(qdev);
  1587. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1588. ecmd->speed = ql_get_speed(qdev);
  1589. ecmd->duplex = ql_get_full_dup(qdev);
  1590. return 0;
  1591. }
  1592. static void ql_get_drvinfo(struct net_device *ndev,
  1593. struct ethtool_drvinfo *drvinfo)
  1594. {
  1595. struct ql3_adapter *qdev = netdev_priv(ndev);
  1596. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1597. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1598. strncpy(drvinfo->fw_version, "N/A", 32);
  1599. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1600. drvinfo->regdump_len = 0;
  1601. drvinfo->eedump_len = 0;
  1602. }
  1603. static u32 ql_get_msglevel(struct net_device *ndev)
  1604. {
  1605. struct ql3_adapter *qdev = netdev_priv(ndev);
  1606. return qdev->msg_enable;
  1607. }
  1608. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1609. {
  1610. struct ql3_adapter *qdev = netdev_priv(ndev);
  1611. qdev->msg_enable = value;
  1612. }
  1613. static void ql_get_pauseparam(struct net_device *ndev,
  1614. struct ethtool_pauseparam *pause)
  1615. {
  1616. struct ql3_adapter *qdev = netdev_priv(ndev);
  1617. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1618. u32 reg;
  1619. if(qdev->mac_index == 0)
  1620. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1621. else
  1622. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1623. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1624. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1625. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1626. }
  1627. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1628. .get_settings = ql_get_settings,
  1629. .get_drvinfo = ql_get_drvinfo,
  1630. .get_link = ethtool_op_get_link,
  1631. .get_msglevel = ql_get_msglevel,
  1632. .set_msglevel = ql_set_msglevel,
  1633. .get_pauseparam = ql_get_pauseparam,
  1634. };
  1635. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1636. {
  1637. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1638. dma_addr_t map;
  1639. int err;
  1640. while (lrg_buf_cb) {
  1641. if (!lrg_buf_cb->skb) {
  1642. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1643. qdev->lrg_buffer_len);
  1644. if (unlikely(!lrg_buf_cb->skb)) {
  1645. printk(KERN_DEBUG PFX
  1646. "%s: Failed netdev_alloc_skb().\n",
  1647. qdev->ndev->name);
  1648. break;
  1649. } else {
  1650. /*
  1651. * We save some space to copy the ethhdr from
  1652. * first buffer
  1653. */
  1654. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1655. map = pci_map_single(qdev->pdev,
  1656. lrg_buf_cb->skb->data,
  1657. qdev->lrg_buffer_len -
  1658. QL_HEADER_SPACE,
  1659. PCI_DMA_FROMDEVICE);
  1660. err = pci_dma_mapping_error(map);
  1661. if(err) {
  1662. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1663. qdev->ndev->name, err);
  1664. dev_kfree_skb(lrg_buf_cb->skb);
  1665. lrg_buf_cb->skb = NULL;
  1666. break;
  1667. }
  1668. lrg_buf_cb->buf_phy_addr_low =
  1669. cpu_to_le32(LS_64BITS(map));
  1670. lrg_buf_cb->buf_phy_addr_high =
  1671. cpu_to_le32(MS_64BITS(map));
  1672. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1673. pci_unmap_len_set(lrg_buf_cb, maplen,
  1674. qdev->lrg_buffer_len -
  1675. QL_HEADER_SPACE);
  1676. --qdev->lrg_buf_skb_check;
  1677. if (!qdev->lrg_buf_skb_check)
  1678. return 1;
  1679. }
  1680. }
  1681. lrg_buf_cb = lrg_buf_cb->next;
  1682. }
  1683. return 0;
  1684. }
  1685. /*
  1686. * Caller holds hw_lock.
  1687. */
  1688. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1689. {
  1690. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1691. if (qdev->small_buf_release_cnt >= 16) {
  1692. while (qdev->small_buf_release_cnt >= 16) {
  1693. qdev->small_buf_q_producer_index++;
  1694. if (qdev->small_buf_q_producer_index ==
  1695. NUM_SBUFQ_ENTRIES)
  1696. qdev->small_buf_q_producer_index = 0;
  1697. qdev->small_buf_release_cnt -= 8;
  1698. }
  1699. wmb();
  1700. writel(qdev->small_buf_q_producer_index,
  1701. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1702. }
  1703. }
  1704. /*
  1705. * Caller holds hw_lock.
  1706. */
  1707. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1708. {
  1709. struct bufq_addr_element *lrg_buf_q_ele;
  1710. int i;
  1711. struct ql_rcv_buf_cb *lrg_buf_cb;
  1712. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1713. if ((qdev->lrg_buf_free_count >= 8)
  1714. && (qdev->lrg_buf_release_cnt >= 16)) {
  1715. if (qdev->lrg_buf_skb_check)
  1716. if (!ql_populate_free_queue(qdev))
  1717. return;
  1718. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1719. while ((qdev->lrg_buf_release_cnt >= 16)
  1720. && (qdev->lrg_buf_free_count >= 8)) {
  1721. for (i = 0; i < 8; i++) {
  1722. lrg_buf_cb =
  1723. ql_get_from_lrg_buf_free_list(qdev);
  1724. lrg_buf_q_ele->addr_high =
  1725. lrg_buf_cb->buf_phy_addr_high;
  1726. lrg_buf_q_ele->addr_low =
  1727. lrg_buf_cb->buf_phy_addr_low;
  1728. lrg_buf_q_ele++;
  1729. qdev->lrg_buf_release_cnt--;
  1730. }
  1731. qdev->lrg_buf_q_producer_index++;
  1732. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1733. qdev->lrg_buf_q_producer_index = 0;
  1734. if (qdev->lrg_buf_q_producer_index ==
  1735. (qdev->num_lbufq_entries - 1)) {
  1736. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1737. }
  1738. }
  1739. wmb();
  1740. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1741. writel(qdev->lrg_buf_q_producer_index,
  1742. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1743. }
  1744. }
  1745. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1746. struct ob_mac_iocb_rsp *mac_rsp)
  1747. {
  1748. struct ql_tx_buf_cb *tx_cb;
  1749. int i;
  1750. int retval = 0;
  1751. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1752. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1753. }
  1754. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1755. /* Check the transmit response flags for any errors */
  1756. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1757. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1758. qdev->ndev->stats.tx_errors++;
  1759. retval = -EIO;
  1760. goto frame_not_sent;
  1761. }
  1762. if(tx_cb->seg_count == 0) {
  1763. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1764. qdev->ndev->stats.tx_errors++;
  1765. retval = -EIO;
  1766. goto invalid_seg_count;
  1767. }
  1768. pci_unmap_single(qdev->pdev,
  1769. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1770. pci_unmap_len(&tx_cb->map[0], maplen),
  1771. PCI_DMA_TODEVICE);
  1772. tx_cb->seg_count--;
  1773. if (tx_cb->seg_count) {
  1774. for (i = 1; i < tx_cb->seg_count; i++) {
  1775. pci_unmap_page(qdev->pdev,
  1776. pci_unmap_addr(&tx_cb->map[i],
  1777. mapaddr),
  1778. pci_unmap_len(&tx_cb->map[i], maplen),
  1779. PCI_DMA_TODEVICE);
  1780. }
  1781. }
  1782. qdev->ndev->stats.tx_packets++;
  1783. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1784. frame_not_sent:
  1785. dev_kfree_skb_irq(tx_cb->skb);
  1786. tx_cb->skb = NULL;
  1787. invalid_seg_count:
  1788. atomic_inc(&qdev->tx_count);
  1789. }
  1790. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1791. {
  1792. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1793. qdev->small_buf_index = 0;
  1794. qdev->small_buf_release_cnt++;
  1795. }
  1796. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1797. {
  1798. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1799. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1800. qdev->lrg_buf_release_cnt++;
  1801. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1802. qdev->lrg_buf_index = 0;
  1803. return(lrg_buf_cb);
  1804. }
  1805. /*
  1806. * The difference between 3022 and 3032 for inbound completions:
  1807. * 3022 uses two buffers per completion. The first buffer contains
  1808. * (some) header info, the second the remainder of the headers plus
  1809. * the data. For this chip we reserve some space at the top of the
  1810. * receive buffer so that the header info in buffer one can be
  1811. * prepended to the buffer two. Buffer two is the sent up while
  1812. * buffer one is returned to the hardware to be reused.
  1813. * 3032 receives all of it's data and headers in one buffer for a
  1814. * simpler process. 3032 also supports checksum verification as
  1815. * can be seen in ql_process_macip_rx_intr().
  1816. */
  1817. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1818. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1819. {
  1820. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1821. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1822. struct sk_buff *skb;
  1823. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1824. /*
  1825. * Get the inbound address list (small buffer).
  1826. */
  1827. ql_get_sbuf(qdev);
  1828. if (qdev->device_id == QL3022_DEVICE_ID)
  1829. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1830. /* start of second buffer */
  1831. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1832. skb = lrg_buf_cb2->skb;
  1833. qdev->ndev->stats.rx_packets++;
  1834. qdev->ndev->stats.rx_bytes += length;
  1835. skb_put(skb, length);
  1836. pci_unmap_single(qdev->pdev,
  1837. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1838. pci_unmap_len(lrg_buf_cb2, maplen),
  1839. PCI_DMA_FROMDEVICE);
  1840. prefetch(skb->data);
  1841. skb->ip_summed = CHECKSUM_NONE;
  1842. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1843. netif_receive_skb(skb);
  1844. qdev->ndev->last_rx = jiffies;
  1845. lrg_buf_cb2->skb = NULL;
  1846. if (qdev->device_id == QL3022_DEVICE_ID)
  1847. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1848. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1849. }
  1850. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1851. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1852. {
  1853. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1854. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1855. struct sk_buff *skb1 = NULL, *skb2;
  1856. struct net_device *ndev = qdev->ndev;
  1857. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1858. u16 size = 0;
  1859. /*
  1860. * Get the inbound address list (small buffer).
  1861. */
  1862. ql_get_sbuf(qdev);
  1863. if (qdev->device_id == QL3022_DEVICE_ID) {
  1864. /* start of first buffer on 3022 */
  1865. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1866. skb1 = lrg_buf_cb1->skb;
  1867. size = ETH_HLEN;
  1868. if (*((u16 *) skb1->data) != 0xFFFF)
  1869. size += VLAN_ETH_HLEN - ETH_HLEN;
  1870. }
  1871. /* start of second buffer */
  1872. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1873. skb2 = lrg_buf_cb2->skb;
  1874. skb_put(skb2, length); /* Just the second buffer length here. */
  1875. pci_unmap_single(qdev->pdev,
  1876. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1877. pci_unmap_len(lrg_buf_cb2, maplen),
  1878. PCI_DMA_FROMDEVICE);
  1879. prefetch(skb2->data);
  1880. skb2->ip_summed = CHECKSUM_NONE;
  1881. if (qdev->device_id == QL3022_DEVICE_ID) {
  1882. /*
  1883. * Copy the ethhdr from first buffer to second. This
  1884. * is necessary for 3022 IP completions.
  1885. */
  1886. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1887. skb_push(skb2, size), size);
  1888. } else {
  1889. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1890. if (checksum &
  1891. (IB_IP_IOCB_RSP_3032_ICE |
  1892. IB_IP_IOCB_RSP_3032_CE)) {
  1893. printk(KERN_ERR
  1894. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1895. __func__,
  1896. ((checksum &
  1897. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1898. "UDP"),checksum);
  1899. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1900. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1901. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1902. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1903. }
  1904. }
  1905. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1906. netif_receive_skb(skb2);
  1907. ndev->stats.rx_packets++;
  1908. ndev->stats.rx_bytes += length;
  1909. ndev->last_rx = jiffies;
  1910. lrg_buf_cb2->skb = NULL;
  1911. if (qdev->device_id == QL3022_DEVICE_ID)
  1912. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1913. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1914. }
  1915. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1916. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1917. {
  1918. struct net_rsp_iocb *net_rsp;
  1919. struct net_device *ndev = qdev->ndev;
  1920. int work_done = 0;
  1921. /* While there are entries in the completion queue. */
  1922. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1923. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1924. net_rsp = qdev->rsp_current;
  1925. rmb();
  1926. /*
  1927. * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
  1928. * inbound completion is for a VLAN.
  1929. */
  1930. if (qdev->device_id == QL3032_DEVICE_ID)
  1931. net_rsp->opcode &= 0x7f;
  1932. switch (net_rsp->opcode) {
  1933. case OPCODE_OB_MAC_IOCB_FN0:
  1934. case OPCODE_OB_MAC_IOCB_FN2:
  1935. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1936. net_rsp);
  1937. (*tx_cleaned)++;
  1938. break;
  1939. case OPCODE_IB_MAC_IOCB:
  1940. case OPCODE_IB_3032_MAC_IOCB:
  1941. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1942. net_rsp);
  1943. (*rx_cleaned)++;
  1944. break;
  1945. case OPCODE_IB_IP_IOCB:
  1946. case OPCODE_IB_3032_IP_IOCB:
  1947. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1948. net_rsp);
  1949. (*rx_cleaned)++;
  1950. break;
  1951. default:
  1952. {
  1953. u32 *tmp = (u32 *) net_rsp;
  1954. printk(KERN_ERR PFX
  1955. "%s: Hit default case, not "
  1956. "handled!\n"
  1957. " dropping the packet, opcode = "
  1958. "%x.\n",
  1959. ndev->name, net_rsp->opcode);
  1960. printk(KERN_ERR PFX
  1961. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1962. (unsigned long int)tmp[0],
  1963. (unsigned long int)tmp[1],
  1964. (unsigned long int)tmp[2],
  1965. (unsigned long int)tmp[3]);
  1966. }
  1967. }
  1968. qdev->rsp_consumer_index++;
  1969. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1970. qdev->rsp_consumer_index = 0;
  1971. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1972. } else {
  1973. qdev->rsp_current++;
  1974. }
  1975. work_done = *tx_cleaned + *rx_cleaned;
  1976. }
  1977. return work_done;
  1978. }
  1979. static int ql_poll(struct napi_struct *napi, int budget)
  1980. {
  1981. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1982. struct net_device *ndev = qdev->ndev;
  1983. int rx_cleaned = 0, tx_cleaned = 0;
  1984. unsigned long hw_flags;
  1985. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1986. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1987. if (tx_cleaned + rx_cleaned != budget) {
  1988. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1989. __netif_rx_complete(ndev, napi);
  1990. ql_update_small_bufq_prod_index(qdev);
  1991. ql_update_lrg_bufq_prod_index(qdev);
  1992. writel(qdev->rsp_consumer_index,
  1993. &port_regs->CommonRegs.rspQConsumerIndex);
  1994. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1995. ql_enable_interrupts(qdev);
  1996. }
  1997. return tx_cleaned + rx_cleaned;
  1998. }
  1999. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  2000. {
  2001. struct net_device *ndev = dev_id;
  2002. struct ql3_adapter *qdev = netdev_priv(ndev);
  2003. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2004. u32 value;
  2005. int handled = 1;
  2006. u32 var;
  2007. port_regs = qdev->mem_map_registers;
  2008. value =
  2009. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2010. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  2011. spin_lock(&qdev->adapter_lock);
  2012. netif_stop_queue(qdev->ndev);
  2013. netif_carrier_off(qdev->ndev);
  2014. ql_disable_interrupts(qdev);
  2015. qdev->port_link_state = LS_DOWN;
  2016. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  2017. if (value & ISP_CONTROL_FE) {
  2018. /*
  2019. * Chip Fatal Error.
  2020. */
  2021. var =
  2022. ql_read_page0_reg_l(qdev,
  2023. &port_regs->PortFatalErrStatus);
  2024. printk(KERN_WARNING PFX
  2025. "%s: Resetting chip. PortFatalErrStatus "
  2026. "register = 0x%x\n", ndev->name, var);
  2027. set_bit(QL_RESET_START,&qdev->flags) ;
  2028. } else {
  2029. /*
  2030. * Soft Reset Requested.
  2031. */
  2032. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  2033. printk(KERN_ERR PFX
  2034. "%s: Another function issued a reset to the "
  2035. "chip. ISR value = %x.\n", ndev->name, value);
  2036. }
  2037. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  2038. spin_unlock(&qdev->adapter_lock);
  2039. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  2040. ql_disable_interrupts(qdev);
  2041. if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
  2042. __netif_rx_schedule(ndev, &qdev->napi);
  2043. }
  2044. } else {
  2045. return IRQ_NONE;
  2046. }
  2047. return IRQ_RETVAL(handled);
  2048. }
  2049. /*
  2050. * Get the total number of segments needed for the
  2051. * given number of fragments. This is necessary because
  2052. * outbound address lists (OAL) will be used when more than
  2053. * two frags are given. Each address list has 5 addr/len
  2054. * pairs. The 5th pair in each AOL is used to point to
  2055. * the next AOL if more frags are coming.
  2056. * That is why the frags:segment count ratio is not linear.
  2057. */
  2058. static int ql_get_seg_count(struct ql3_adapter *qdev,
  2059. unsigned short frags)
  2060. {
  2061. if (qdev->device_id == QL3022_DEVICE_ID)
  2062. return 1;
  2063. switch(frags) {
  2064. case 0: return 1; /* just the skb->data seg */
  2065. case 1: return 2; /* skb->data + 1 frag */
  2066. case 2: return 3; /* skb->data + 2 frags */
  2067. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  2068. case 4: return 6;
  2069. case 5: return 7;
  2070. case 6: return 8;
  2071. case 7: return 10;
  2072. case 8: return 11;
  2073. case 9: return 12;
  2074. case 10: return 13;
  2075. case 11: return 15;
  2076. case 12: return 16;
  2077. case 13: return 17;
  2078. case 14: return 18;
  2079. case 15: return 20;
  2080. case 16: return 21;
  2081. case 17: return 22;
  2082. case 18: return 23;
  2083. }
  2084. return -1;
  2085. }
  2086. static void ql_hw_csum_setup(const struct sk_buff *skb,
  2087. struct ob_mac_iocb_req *mac_iocb_ptr)
  2088. {
  2089. const struct iphdr *ip = ip_hdr(skb);
  2090. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  2091. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2092. if (ip->protocol == IPPROTO_TCP) {
  2093. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  2094. OB_3032MAC_IOCB_REQ_IC;
  2095. } else {
  2096. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  2097. OB_3032MAC_IOCB_REQ_IC;
  2098. }
  2099. }
  2100. /*
  2101. * Map the buffers for this transmit. This will return
  2102. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  2103. */
  2104. static int ql_send_map(struct ql3_adapter *qdev,
  2105. struct ob_mac_iocb_req *mac_iocb_ptr,
  2106. struct ql_tx_buf_cb *tx_cb,
  2107. struct sk_buff *skb)
  2108. {
  2109. struct oal *oal;
  2110. struct oal_entry *oal_entry;
  2111. int len = skb_headlen(skb);
  2112. dma_addr_t map;
  2113. int err;
  2114. int completed_segs, i;
  2115. int seg_cnt, seg = 0;
  2116. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  2117. seg_cnt = tx_cb->seg_count;
  2118. /*
  2119. * Map the skb buffer first.
  2120. */
  2121. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2122. err = pci_dma_mapping_error(map);
  2123. if(err) {
  2124. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2125. qdev->ndev->name, err);
  2126. return NETDEV_TX_BUSY;
  2127. }
  2128. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2129. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2130. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2131. oal_entry->len = cpu_to_le32(len);
  2132. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2133. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  2134. seg++;
  2135. if (seg_cnt == 1) {
  2136. /* Terminate the last segment. */
  2137. oal_entry->len =
  2138. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2139. } else {
  2140. oal = tx_cb->oal;
  2141. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  2142. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  2143. oal_entry++;
  2144. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2145. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2146. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2147. (seg == 17 && seg_cnt > 18)) {
  2148. /* Continuation entry points to outbound address list. */
  2149. map = pci_map_single(qdev->pdev, oal,
  2150. sizeof(struct oal),
  2151. PCI_DMA_TODEVICE);
  2152. err = pci_dma_mapping_error(map);
  2153. if(err) {
  2154. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  2155. qdev->ndev->name, err);
  2156. goto map_error;
  2157. }
  2158. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2159. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2160. oal_entry->len =
  2161. cpu_to_le32(sizeof(struct oal) |
  2162. OAL_CONT_ENTRY);
  2163. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  2164. map);
  2165. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2166. sizeof(struct oal));
  2167. oal_entry = (struct oal_entry *)oal;
  2168. oal++;
  2169. seg++;
  2170. }
  2171. map =
  2172. pci_map_page(qdev->pdev, frag->page,
  2173. frag->page_offset, frag->size,
  2174. PCI_DMA_TODEVICE);
  2175. err = pci_dma_mapping_error(map);
  2176. if(err) {
  2177. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  2178. qdev->ndev->name, err);
  2179. goto map_error;
  2180. }
  2181. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2182. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2183. oal_entry->len = cpu_to_le32(frag->size);
  2184. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2185. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2186. frag->size);
  2187. }
  2188. /* Terminate the last segment. */
  2189. oal_entry->len =
  2190. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2191. }
  2192. return NETDEV_TX_OK;
  2193. map_error:
  2194. /* A PCI mapping failed and now we will need to back out
  2195. * We need to traverse through the oal's and associated pages which
  2196. * have been mapped and now we must unmap them to clean up properly
  2197. */
  2198. seg = 1;
  2199. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2200. oal = tx_cb->oal;
  2201. for (i=0; i<completed_segs; i++,seg++) {
  2202. oal_entry++;
  2203. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2204. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2205. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2206. (seg == 17 && seg_cnt > 18)) {
  2207. pci_unmap_single(qdev->pdev,
  2208. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2209. pci_unmap_len(&tx_cb->map[seg], maplen),
  2210. PCI_DMA_TODEVICE);
  2211. oal++;
  2212. seg++;
  2213. }
  2214. pci_unmap_page(qdev->pdev,
  2215. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2216. pci_unmap_len(&tx_cb->map[seg], maplen),
  2217. PCI_DMA_TODEVICE);
  2218. }
  2219. pci_unmap_single(qdev->pdev,
  2220. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2221. pci_unmap_addr(&tx_cb->map[0], maplen),
  2222. PCI_DMA_TODEVICE);
  2223. return NETDEV_TX_BUSY;
  2224. }
  2225. /*
  2226. * The difference between 3022 and 3032 sends:
  2227. * 3022 only supports a simple single segment transmission.
  2228. * 3032 supports checksumming and scatter/gather lists (fragments).
  2229. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2230. * in the IOCB plus a chain of outbound address lists (OAL) that
  2231. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2232. * will used to point to an OAL when more ALP entries are required.
  2233. * The IOCB is always the top of the chain followed by one or more
  2234. * OALs (when necessary).
  2235. */
  2236. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2237. {
  2238. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2239. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2240. struct ql_tx_buf_cb *tx_cb;
  2241. u32 tot_len = skb->len;
  2242. struct ob_mac_iocb_req *mac_iocb_ptr;
  2243. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2244. return NETDEV_TX_BUSY;
  2245. }
  2246. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2247. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2248. (skb_shinfo(skb)->nr_frags))) == -1) {
  2249. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2250. return NETDEV_TX_OK;
  2251. }
  2252. mac_iocb_ptr = tx_cb->queue_entry;
  2253. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2254. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2255. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2256. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2257. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2258. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2259. tx_cb->skb = skb;
  2260. if (qdev->device_id == QL3032_DEVICE_ID &&
  2261. skb->ip_summed == CHECKSUM_PARTIAL)
  2262. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2263. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2264. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2265. return NETDEV_TX_BUSY;
  2266. }
  2267. wmb();
  2268. qdev->req_producer_index++;
  2269. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2270. qdev->req_producer_index = 0;
  2271. wmb();
  2272. ql_write_common_reg_l(qdev,
  2273. &port_regs->CommonRegs.reqQProducerIndex,
  2274. qdev->req_producer_index);
  2275. ndev->trans_start = jiffies;
  2276. if (netif_msg_tx_queued(qdev))
  2277. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2278. ndev->name, qdev->req_producer_index, skb->len);
  2279. atomic_dec(&qdev->tx_count);
  2280. return NETDEV_TX_OK;
  2281. }
  2282. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2283. {
  2284. qdev->req_q_size =
  2285. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2286. qdev->req_q_virt_addr =
  2287. pci_alloc_consistent(qdev->pdev,
  2288. (size_t) qdev->req_q_size,
  2289. &qdev->req_q_phy_addr);
  2290. if ((qdev->req_q_virt_addr == NULL) ||
  2291. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2292. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2293. qdev->ndev->name);
  2294. return -ENOMEM;
  2295. }
  2296. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2297. qdev->rsp_q_virt_addr =
  2298. pci_alloc_consistent(qdev->pdev,
  2299. (size_t) qdev->rsp_q_size,
  2300. &qdev->rsp_q_phy_addr);
  2301. if ((qdev->rsp_q_virt_addr == NULL) ||
  2302. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2303. printk(KERN_ERR PFX
  2304. "%s: rspQ allocation failed\n",
  2305. qdev->ndev->name);
  2306. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2307. qdev->req_q_virt_addr,
  2308. qdev->req_q_phy_addr);
  2309. return -ENOMEM;
  2310. }
  2311. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2312. return 0;
  2313. }
  2314. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2315. {
  2316. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2317. printk(KERN_INFO PFX
  2318. "%s: Already done.\n", qdev->ndev->name);
  2319. return;
  2320. }
  2321. pci_free_consistent(qdev->pdev,
  2322. qdev->req_q_size,
  2323. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2324. qdev->req_q_virt_addr = NULL;
  2325. pci_free_consistent(qdev->pdev,
  2326. qdev->rsp_q_size,
  2327. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2328. qdev->rsp_q_virt_addr = NULL;
  2329. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2330. }
  2331. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2332. {
  2333. /* Create Large Buffer Queue */
  2334. qdev->lrg_buf_q_size =
  2335. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2336. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2337. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2338. else
  2339. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2340. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2341. if (qdev->lrg_buf == NULL) {
  2342. printk(KERN_ERR PFX
  2343. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2344. return -ENOMEM;
  2345. }
  2346. qdev->lrg_buf_q_alloc_virt_addr =
  2347. pci_alloc_consistent(qdev->pdev,
  2348. qdev->lrg_buf_q_alloc_size,
  2349. &qdev->lrg_buf_q_alloc_phy_addr);
  2350. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2351. printk(KERN_ERR PFX
  2352. "%s: lBufQ failed\n", qdev->ndev->name);
  2353. return -ENOMEM;
  2354. }
  2355. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2356. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2357. /* Create Small Buffer Queue */
  2358. qdev->small_buf_q_size =
  2359. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2360. if (qdev->small_buf_q_size < PAGE_SIZE)
  2361. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2362. else
  2363. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2364. qdev->small_buf_q_alloc_virt_addr =
  2365. pci_alloc_consistent(qdev->pdev,
  2366. qdev->small_buf_q_alloc_size,
  2367. &qdev->small_buf_q_alloc_phy_addr);
  2368. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2369. printk(KERN_ERR PFX
  2370. "%s: Small Buffer Queue allocation failed.\n",
  2371. qdev->ndev->name);
  2372. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2373. qdev->lrg_buf_q_alloc_virt_addr,
  2374. qdev->lrg_buf_q_alloc_phy_addr);
  2375. return -ENOMEM;
  2376. }
  2377. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2378. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2379. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2380. return 0;
  2381. }
  2382. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2383. {
  2384. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2385. printk(KERN_INFO PFX
  2386. "%s: Already done.\n", qdev->ndev->name);
  2387. return;
  2388. }
  2389. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2390. pci_free_consistent(qdev->pdev,
  2391. qdev->lrg_buf_q_alloc_size,
  2392. qdev->lrg_buf_q_alloc_virt_addr,
  2393. qdev->lrg_buf_q_alloc_phy_addr);
  2394. qdev->lrg_buf_q_virt_addr = NULL;
  2395. pci_free_consistent(qdev->pdev,
  2396. qdev->small_buf_q_alloc_size,
  2397. qdev->small_buf_q_alloc_virt_addr,
  2398. qdev->small_buf_q_alloc_phy_addr);
  2399. qdev->small_buf_q_virt_addr = NULL;
  2400. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2401. }
  2402. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2403. {
  2404. int i;
  2405. struct bufq_addr_element *small_buf_q_entry;
  2406. /* Currently we allocate on one of memory and use it for smallbuffers */
  2407. qdev->small_buf_total_size =
  2408. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2409. QL_SMALL_BUFFER_SIZE);
  2410. qdev->small_buf_virt_addr =
  2411. pci_alloc_consistent(qdev->pdev,
  2412. qdev->small_buf_total_size,
  2413. &qdev->small_buf_phy_addr);
  2414. if (qdev->small_buf_virt_addr == NULL) {
  2415. printk(KERN_ERR PFX
  2416. "%s: Failed to get small buffer memory.\n",
  2417. qdev->ndev->name);
  2418. return -ENOMEM;
  2419. }
  2420. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2421. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2422. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2423. /* Initialize the small buffer queue. */
  2424. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2425. small_buf_q_entry->addr_high =
  2426. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2427. small_buf_q_entry->addr_low =
  2428. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2429. (i * QL_SMALL_BUFFER_SIZE));
  2430. small_buf_q_entry++;
  2431. }
  2432. qdev->small_buf_index = 0;
  2433. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2434. return 0;
  2435. }
  2436. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2437. {
  2438. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2439. printk(KERN_INFO PFX
  2440. "%s: Already done.\n", qdev->ndev->name);
  2441. return;
  2442. }
  2443. if (qdev->small_buf_virt_addr != NULL) {
  2444. pci_free_consistent(qdev->pdev,
  2445. qdev->small_buf_total_size,
  2446. qdev->small_buf_virt_addr,
  2447. qdev->small_buf_phy_addr);
  2448. qdev->small_buf_virt_addr = NULL;
  2449. }
  2450. }
  2451. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2452. {
  2453. int i = 0;
  2454. struct ql_rcv_buf_cb *lrg_buf_cb;
  2455. for (i = 0; i < qdev->num_large_buffers; i++) {
  2456. lrg_buf_cb = &qdev->lrg_buf[i];
  2457. if (lrg_buf_cb->skb) {
  2458. dev_kfree_skb(lrg_buf_cb->skb);
  2459. pci_unmap_single(qdev->pdev,
  2460. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2461. pci_unmap_len(lrg_buf_cb, maplen),
  2462. PCI_DMA_FROMDEVICE);
  2463. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2464. } else {
  2465. break;
  2466. }
  2467. }
  2468. }
  2469. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2470. {
  2471. int i;
  2472. struct ql_rcv_buf_cb *lrg_buf_cb;
  2473. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2474. for (i = 0; i < qdev->num_large_buffers; i++) {
  2475. lrg_buf_cb = &qdev->lrg_buf[i];
  2476. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2477. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2478. buf_addr_ele++;
  2479. }
  2480. qdev->lrg_buf_index = 0;
  2481. qdev->lrg_buf_skb_check = 0;
  2482. }
  2483. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2484. {
  2485. int i;
  2486. struct ql_rcv_buf_cb *lrg_buf_cb;
  2487. struct sk_buff *skb;
  2488. dma_addr_t map;
  2489. int err;
  2490. for (i = 0; i < qdev->num_large_buffers; i++) {
  2491. skb = netdev_alloc_skb(qdev->ndev,
  2492. qdev->lrg_buffer_len);
  2493. if (unlikely(!skb)) {
  2494. /* Better luck next round */
  2495. printk(KERN_ERR PFX
  2496. "%s: large buff alloc failed, "
  2497. "for %d bytes at index %d.\n",
  2498. qdev->ndev->name,
  2499. qdev->lrg_buffer_len * 2, i);
  2500. ql_free_large_buffers(qdev);
  2501. return -ENOMEM;
  2502. } else {
  2503. lrg_buf_cb = &qdev->lrg_buf[i];
  2504. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2505. lrg_buf_cb->index = i;
  2506. lrg_buf_cb->skb = skb;
  2507. /*
  2508. * We save some space to copy the ethhdr from first
  2509. * buffer
  2510. */
  2511. skb_reserve(skb, QL_HEADER_SPACE);
  2512. map = pci_map_single(qdev->pdev,
  2513. skb->data,
  2514. qdev->lrg_buffer_len -
  2515. QL_HEADER_SPACE,
  2516. PCI_DMA_FROMDEVICE);
  2517. err = pci_dma_mapping_error(map);
  2518. if(err) {
  2519. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2520. qdev->ndev->name, err);
  2521. ql_free_large_buffers(qdev);
  2522. return -ENOMEM;
  2523. }
  2524. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2525. pci_unmap_len_set(lrg_buf_cb, maplen,
  2526. qdev->lrg_buffer_len -
  2527. QL_HEADER_SPACE);
  2528. lrg_buf_cb->buf_phy_addr_low =
  2529. cpu_to_le32(LS_64BITS(map));
  2530. lrg_buf_cb->buf_phy_addr_high =
  2531. cpu_to_le32(MS_64BITS(map));
  2532. }
  2533. }
  2534. return 0;
  2535. }
  2536. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2537. {
  2538. struct ql_tx_buf_cb *tx_cb;
  2539. int i;
  2540. tx_cb = &qdev->tx_buf[0];
  2541. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2542. if (tx_cb->oal) {
  2543. kfree(tx_cb->oal);
  2544. tx_cb->oal = NULL;
  2545. }
  2546. tx_cb++;
  2547. }
  2548. }
  2549. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2550. {
  2551. struct ql_tx_buf_cb *tx_cb;
  2552. int i;
  2553. struct ob_mac_iocb_req *req_q_curr =
  2554. qdev->req_q_virt_addr;
  2555. /* Create free list of transmit buffers */
  2556. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2557. tx_cb = &qdev->tx_buf[i];
  2558. tx_cb->skb = NULL;
  2559. tx_cb->queue_entry = req_q_curr;
  2560. req_q_curr++;
  2561. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2562. if (tx_cb->oal == NULL)
  2563. return -1;
  2564. }
  2565. return 0;
  2566. }
  2567. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2568. {
  2569. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2570. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2571. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2572. }
  2573. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2574. /*
  2575. * Bigger buffers, so less of them.
  2576. */
  2577. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2578. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2579. } else {
  2580. printk(KERN_ERR PFX
  2581. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2582. qdev->ndev->name);
  2583. return -ENOMEM;
  2584. }
  2585. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2586. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2587. qdev->max_frame_size =
  2588. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2589. /*
  2590. * First allocate a page of shared memory and use it for shadow
  2591. * locations of Network Request Queue Consumer Address Register and
  2592. * Network Completion Queue Producer Index Register
  2593. */
  2594. qdev->shadow_reg_virt_addr =
  2595. pci_alloc_consistent(qdev->pdev,
  2596. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2597. if (qdev->shadow_reg_virt_addr != NULL) {
  2598. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2599. qdev->req_consumer_index_phy_addr_high =
  2600. MS_64BITS(qdev->shadow_reg_phy_addr);
  2601. qdev->req_consumer_index_phy_addr_low =
  2602. LS_64BITS(qdev->shadow_reg_phy_addr);
  2603. qdev->prsp_producer_index =
  2604. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2605. qdev->rsp_producer_index_phy_addr_high =
  2606. qdev->req_consumer_index_phy_addr_high;
  2607. qdev->rsp_producer_index_phy_addr_low =
  2608. qdev->req_consumer_index_phy_addr_low + 8;
  2609. } else {
  2610. printk(KERN_ERR PFX
  2611. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2612. return -ENOMEM;
  2613. }
  2614. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2615. printk(KERN_ERR PFX
  2616. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2617. qdev->ndev->name);
  2618. goto err_req_rsp;
  2619. }
  2620. if (ql_alloc_buffer_queues(qdev) != 0) {
  2621. printk(KERN_ERR PFX
  2622. "%s: ql_alloc_buffer_queues failed.\n",
  2623. qdev->ndev->name);
  2624. goto err_buffer_queues;
  2625. }
  2626. if (ql_alloc_small_buffers(qdev) != 0) {
  2627. printk(KERN_ERR PFX
  2628. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2629. goto err_small_buffers;
  2630. }
  2631. if (ql_alloc_large_buffers(qdev) != 0) {
  2632. printk(KERN_ERR PFX
  2633. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2634. goto err_small_buffers;
  2635. }
  2636. /* Initialize the large buffer queue. */
  2637. ql_init_large_buffers(qdev);
  2638. if (ql_create_send_free_list(qdev))
  2639. goto err_free_list;
  2640. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2641. return 0;
  2642. err_free_list:
  2643. ql_free_send_free_list(qdev);
  2644. err_small_buffers:
  2645. ql_free_buffer_queues(qdev);
  2646. err_buffer_queues:
  2647. ql_free_net_req_rsp_queues(qdev);
  2648. err_req_rsp:
  2649. pci_free_consistent(qdev->pdev,
  2650. PAGE_SIZE,
  2651. qdev->shadow_reg_virt_addr,
  2652. qdev->shadow_reg_phy_addr);
  2653. return -ENOMEM;
  2654. }
  2655. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2656. {
  2657. ql_free_send_free_list(qdev);
  2658. ql_free_large_buffers(qdev);
  2659. ql_free_small_buffers(qdev);
  2660. ql_free_buffer_queues(qdev);
  2661. ql_free_net_req_rsp_queues(qdev);
  2662. if (qdev->shadow_reg_virt_addr != NULL) {
  2663. pci_free_consistent(qdev->pdev,
  2664. PAGE_SIZE,
  2665. qdev->shadow_reg_virt_addr,
  2666. qdev->shadow_reg_phy_addr);
  2667. qdev->shadow_reg_virt_addr = NULL;
  2668. }
  2669. }
  2670. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2671. {
  2672. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2673. (void __iomem *)qdev->mem_map_registers;
  2674. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2675. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2676. 2) << 4))
  2677. return -1;
  2678. ql_write_page2_reg(qdev,
  2679. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2680. ql_write_page2_reg(qdev,
  2681. &local_ram->maxBufletCount,
  2682. qdev->nvram_data.bufletCount);
  2683. ql_write_page2_reg(qdev,
  2684. &local_ram->freeBufletThresholdLow,
  2685. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2686. (qdev->nvram_data.tcpWindowThreshold0));
  2687. ql_write_page2_reg(qdev,
  2688. &local_ram->freeBufletThresholdHigh,
  2689. qdev->nvram_data.tcpWindowThreshold50);
  2690. ql_write_page2_reg(qdev,
  2691. &local_ram->ipHashTableBase,
  2692. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2693. qdev->nvram_data.ipHashTableBaseLo);
  2694. ql_write_page2_reg(qdev,
  2695. &local_ram->ipHashTableCount,
  2696. qdev->nvram_data.ipHashTableSize);
  2697. ql_write_page2_reg(qdev,
  2698. &local_ram->tcpHashTableBase,
  2699. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2700. qdev->nvram_data.tcpHashTableBaseLo);
  2701. ql_write_page2_reg(qdev,
  2702. &local_ram->tcpHashTableCount,
  2703. qdev->nvram_data.tcpHashTableSize);
  2704. ql_write_page2_reg(qdev,
  2705. &local_ram->ncbBase,
  2706. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2707. qdev->nvram_data.ncbTableBaseLo);
  2708. ql_write_page2_reg(qdev,
  2709. &local_ram->maxNcbCount,
  2710. qdev->nvram_data.ncbTableSize);
  2711. ql_write_page2_reg(qdev,
  2712. &local_ram->drbBase,
  2713. (qdev->nvram_data.drbTableBaseHi << 16) |
  2714. qdev->nvram_data.drbTableBaseLo);
  2715. ql_write_page2_reg(qdev,
  2716. &local_ram->maxDrbCount,
  2717. qdev->nvram_data.drbTableSize);
  2718. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2719. return 0;
  2720. }
  2721. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2722. {
  2723. u32 value;
  2724. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2725. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2726. (void __iomem *)port_regs;
  2727. u32 delay = 10;
  2728. int status = 0;
  2729. if(ql_mii_setup(qdev))
  2730. return -1;
  2731. /* Bring out PHY out of reset */
  2732. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2733. (ISP_SERIAL_PORT_IF_WE |
  2734. (ISP_SERIAL_PORT_IF_WE << 16)));
  2735. qdev->port_link_state = LS_DOWN;
  2736. netif_carrier_off(qdev->ndev);
  2737. /* V2 chip fix for ARS-39168. */
  2738. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2739. (ISP_SERIAL_PORT_IF_SDE |
  2740. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2741. /* Request Queue Registers */
  2742. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2743. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2744. qdev->req_producer_index = 0;
  2745. ql_write_page1_reg(qdev,
  2746. &hmem_regs->reqConsumerIndexAddrHigh,
  2747. qdev->req_consumer_index_phy_addr_high);
  2748. ql_write_page1_reg(qdev,
  2749. &hmem_regs->reqConsumerIndexAddrLow,
  2750. qdev->req_consumer_index_phy_addr_low);
  2751. ql_write_page1_reg(qdev,
  2752. &hmem_regs->reqBaseAddrHigh,
  2753. MS_64BITS(qdev->req_q_phy_addr));
  2754. ql_write_page1_reg(qdev,
  2755. &hmem_regs->reqBaseAddrLow,
  2756. LS_64BITS(qdev->req_q_phy_addr));
  2757. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2758. /* Response Queue Registers */
  2759. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2760. qdev->rsp_consumer_index = 0;
  2761. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2762. ql_write_page1_reg(qdev,
  2763. &hmem_regs->rspProducerIndexAddrHigh,
  2764. qdev->rsp_producer_index_phy_addr_high);
  2765. ql_write_page1_reg(qdev,
  2766. &hmem_regs->rspProducerIndexAddrLow,
  2767. qdev->rsp_producer_index_phy_addr_low);
  2768. ql_write_page1_reg(qdev,
  2769. &hmem_regs->rspBaseAddrHigh,
  2770. MS_64BITS(qdev->rsp_q_phy_addr));
  2771. ql_write_page1_reg(qdev,
  2772. &hmem_regs->rspBaseAddrLow,
  2773. LS_64BITS(qdev->rsp_q_phy_addr));
  2774. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2775. /* Large Buffer Queue */
  2776. ql_write_page1_reg(qdev,
  2777. &hmem_regs->rxLargeQBaseAddrHigh,
  2778. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2779. ql_write_page1_reg(qdev,
  2780. &hmem_regs->rxLargeQBaseAddrLow,
  2781. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2782. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2783. ql_write_page1_reg(qdev,
  2784. &hmem_regs->rxLargeBufferLength,
  2785. qdev->lrg_buffer_len);
  2786. /* Small Buffer Queue */
  2787. ql_write_page1_reg(qdev,
  2788. &hmem_regs->rxSmallQBaseAddrHigh,
  2789. MS_64BITS(qdev->small_buf_q_phy_addr));
  2790. ql_write_page1_reg(qdev,
  2791. &hmem_regs->rxSmallQBaseAddrLow,
  2792. LS_64BITS(qdev->small_buf_q_phy_addr));
  2793. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2794. ql_write_page1_reg(qdev,
  2795. &hmem_regs->rxSmallBufferLength,
  2796. QL_SMALL_BUFFER_SIZE);
  2797. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2798. qdev->small_buf_release_cnt = 8;
  2799. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2800. qdev->lrg_buf_release_cnt = 8;
  2801. qdev->lrg_buf_next_free =
  2802. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2803. qdev->small_buf_index = 0;
  2804. qdev->lrg_buf_index = 0;
  2805. qdev->lrg_buf_free_count = 0;
  2806. qdev->lrg_buf_free_head = NULL;
  2807. qdev->lrg_buf_free_tail = NULL;
  2808. ql_write_common_reg(qdev,
  2809. &port_regs->CommonRegs.
  2810. rxSmallQProducerIndex,
  2811. qdev->small_buf_q_producer_index);
  2812. ql_write_common_reg(qdev,
  2813. &port_regs->CommonRegs.
  2814. rxLargeQProducerIndex,
  2815. qdev->lrg_buf_q_producer_index);
  2816. /*
  2817. * Find out if the chip has already been initialized. If it has, then
  2818. * we skip some of the initialization.
  2819. */
  2820. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2821. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2822. if ((value & PORT_STATUS_IC) == 0) {
  2823. /* Chip has not been configured yet, so let it rip. */
  2824. if(ql_init_misc_registers(qdev)) {
  2825. status = -1;
  2826. goto out;
  2827. }
  2828. value = qdev->nvram_data.tcpMaxWindowSize;
  2829. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2830. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2831. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2832. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2833. * 2) << 13)) {
  2834. status = -1;
  2835. goto out;
  2836. }
  2837. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2838. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2839. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2840. 16) | (INTERNAL_CHIP_SD |
  2841. INTERNAL_CHIP_WE)));
  2842. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2843. }
  2844. if (qdev->mac_index)
  2845. ql_write_page0_reg(qdev,
  2846. &port_regs->mac1MaxFrameLengthReg,
  2847. qdev->max_frame_size);
  2848. else
  2849. ql_write_page0_reg(qdev,
  2850. &port_regs->mac0MaxFrameLengthReg,
  2851. qdev->max_frame_size);
  2852. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2853. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2854. 2) << 7)) {
  2855. status = -1;
  2856. goto out;
  2857. }
  2858. PHY_Setup(qdev);
  2859. ql_init_scan_mode(qdev);
  2860. ql_get_phy_owner(qdev);
  2861. /* Load the MAC Configuration */
  2862. /* Program lower 32 bits of the MAC address */
  2863. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2864. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2865. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2866. ((qdev->ndev->dev_addr[2] << 24)
  2867. | (qdev->ndev->dev_addr[3] << 16)
  2868. | (qdev->ndev->dev_addr[4] << 8)
  2869. | qdev->ndev->dev_addr[5]));
  2870. /* Program top 16 bits of the MAC address */
  2871. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2872. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2873. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2874. ((qdev->ndev->dev_addr[0] << 8)
  2875. | qdev->ndev->dev_addr[1]));
  2876. /* Enable Primary MAC */
  2877. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2878. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2879. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2880. /* Clear Primary and Secondary IP addresses */
  2881. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2882. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2883. (qdev->mac_index << 2)));
  2884. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2885. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2886. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2887. ((qdev->mac_index << 2) + 1)));
  2888. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2889. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2890. /* Indicate Configuration Complete */
  2891. ql_write_page0_reg(qdev,
  2892. &port_regs->portControl,
  2893. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2894. do {
  2895. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2896. if (value & PORT_STATUS_IC)
  2897. break;
  2898. msleep(500);
  2899. } while (--delay);
  2900. if (delay == 0) {
  2901. printk(KERN_ERR PFX
  2902. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2903. status = -1;
  2904. goto out;
  2905. }
  2906. /* Enable Ethernet Function */
  2907. if (qdev->device_id == QL3032_DEVICE_ID) {
  2908. value =
  2909. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2910. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2911. QL3032_PORT_CONTROL_ET);
  2912. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2913. ((value << 16) | value));
  2914. } else {
  2915. value =
  2916. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2917. PORT_CONTROL_HH);
  2918. ql_write_page0_reg(qdev, &port_regs->portControl,
  2919. ((value << 16) | value));
  2920. }
  2921. out:
  2922. return status;
  2923. }
  2924. /*
  2925. * Caller holds hw_lock.
  2926. */
  2927. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2928. {
  2929. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2930. int status = 0;
  2931. u16 value;
  2932. int max_wait_time;
  2933. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2934. clear_bit(QL_RESET_DONE, &qdev->flags);
  2935. /*
  2936. * Issue soft reset to chip.
  2937. */
  2938. printk(KERN_DEBUG PFX
  2939. "%s: Issue soft reset to chip.\n",
  2940. qdev->ndev->name);
  2941. ql_write_common_reg(qdev,
  2942. &port_regs->CommonRegs.ispControlStatus,
  2943. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2944. /* Wait 3 seconds for reset to complete. */
  2945. printk(KERN_DEBUG PFX
  2946. "%s: Wait 10 milliseconds for reset to complete.\n",
  2947. qdev->ndev->name);
  2948. /* Wait until the firmware tells us the Soft Reset is done */
  2949. max_wait_time = 5;
  2950. do {
  2951. value =
  2952. ql_read_common_reg(qdev,
  2953. &port_regs->CommonRegs.ispControlStatus);
  2954. if ((value & ISP_CONTROL_SR) == 0)
  2955. break;
  2956. ssleep(1);
  2957. } while ((--max_wait_time));
  2958. /*
  2959. * Also, make sure that the Network Reset Interrupt bit has been
  2960. * cleared after the soft reset has taken place.
  2961. */
  2962. value =
  2963. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2964. if (value & ISP_CONTROL_RI) {
  2965. printk(KERN_DEBUG PFX
  2966. "ql_adapter_reset: clearing RI after reset.\n");
  2967. ql_write_common_reg(qdev,
  2968. &port_regs->CommonRegs.
  2969. ispControlStatus,
  2970. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2971. }
  2972. if (max_wait_time == 0) {
  2973. /* Issue Force Soft Reset */
  2974. ql_write_common_reg(qdev,
  2975. &port_regs->CommonRegs.
  2976. ispControlStatus,
  2977. ((ISP_CONTROL_FSR << 16) |
  2978. ISP_CONTROL_FSR));
  2979. /*
  2980. * Wait until the firmware tells us the Force Soft Reset is
  2981. * done
  2982. */
  2983. max_wait_time = 5;
  2984. do {
  2985. value =
  2986. ql_read_common_reg(qdev,
  2987. &port_regs->CommonRegs.
  2988. ispControlStatus);
  2989. if ((value & ISP_CONTROL_FSR) == 0) {
  2990. break;
  2991. }
  2992. ssleep(1);
  2993. } while ((--max_wait_time));
  2994. }
  2995. if (max_wait_time == 0)
  2996. status = 1;
  2997. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2998. set_bit(QL_RESET_DONE, &qdev->flags);
  2999. return status;
  3000. }
  3001. static void ql_set_mac_info(struct ql3_adapter *qdev)
  3002. {
  3003. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3004. u32 value, port_status;
  3005. u8 func_number;
  3006. /* Get the function number */
  3007. value =
  3008. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  3009. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  3010. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  3011. switch (value & ISP_CONTROL_FN_MASK) {
  3012. case ISP_CONTROL_FN0_NET:
  3013. qdev->mac_index = 0;
  3014. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3015. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3016. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3017. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  3018. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  3019. if (port_status & PORT_STATUS_SM0)
  3020. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3021. else
  3022. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3023. break;
  3024. case ISP_CONTROL_FN1_NET:
  3025. qdev->mac_index = 1;
  3026. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3027. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3028. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3029. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  3030. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  3031. if (port_status & PORT_STATUS_SM1)
  3032. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3033. else
  3034. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3035. break;
  3036. case ISP_CONTROL_FN0_SCSI:
  3037. case ISP_CONTROL_FN1_SCSI:
  3038. default:
  3039. printk(KERN_DEBUG PFX
  3040. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  3041. qdev->ndev->name,value);
  3042. break;
  3043. }
  3044. qdev->numPorts = qdev->nvram_data.numPorts;
  3045. }
  3046. static void ql_display_dev_info(struct net_device *ndev)
  3047. {
  3048. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3049. struct pci_dev *pdev = qdev->pdev;
  3050. DECLARE_MAC_BUF(mac);
  3051. printk(KERN_INFO PFX
  3052. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  3053. DRV_NAME, qdev->index, qdev->chip_rev_id,
  3054. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  3055. qdev->pci_slot);
  3056. printk(KERN_INFO PFX
  3057. "%s Interface.\n",
  3058. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  3059. /*
  3060. * Print PCI bus width/type.
  3061. */
  3062. printk(KERN_INFO PFX
  3063. "Bus interface is %s %s.\n",
  3064. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  3065. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  3066. printk(KERN_INFO PFX
  3067. "mem IO base address adjusted = 0x%p\n",
  3068. qdev->mem_map_registers);
  3069. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  3070. if (netif_msg_probe(qdev))
  3071. printk(KERN_INFO PFX
  3072. "%s: MAC address %s\n",
  3073. ndev->name, print_mac(mac, ndev->dev_addr));
  3074. }
  3075. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  3076. {
  3077. struct net_device *ndev = qdev->ndev;
  3078. int retval = 0;
  3079. netif_stop_queue(ndev);
  3080. netif_carrier_off(ndev);
  3081. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  3082. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3083. ql_disable_interrupts(qdev);
  3084. free_irq(qdev->pdev->irq, ndev);
  3085. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3086. printk(KERN_INFO PFX
  3087. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  3088. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3089. pci_disable_msi(qdev->pdev);
  3090. }
  3091. del_timer_sync(&qdev->adapter_timer);
  3092. napi_disable(&qdev->napi);
  3093. if (do_reset) {
  3094. int soft_reset;
  3095. unsigned long hw_flags;
  3096. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3097. if (ql_wait_for_drvr_lock(qdev)) {
  3098. if ((soft_reset = ql_adapter_reset(qdev))) {
  3099. printk(KERN_ERR PFX
  3100. "%s: ql_adapter_reset(%d) FAILED!\n",
  3101. ndev->name, qdev->index);
  3102. }
  3103. printk(KERN_ERR PFX
  3104. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  3105. } else {
  3106. printk(KERN_ERR PFX
  3107. "%s: Could not acquire driver lock to do "
  3108. "reset!\n", ndev->name);
  3109. retval = -1;
  3110. }
  3111. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3112. }
  3113. ql_free_mem_resources(qdev);
  3114. return retval;
  3115. }
  3116. static int ql_adapter_up(struct ql3_adapter *qdev)
  3117. {
  3118. struct net_device *ndev = qdev->ndev;
  3119. int err;
  3120. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  3121. unsigned long hw_flags;
  3122. if (ql_alloc_mem_resources(qdev)) {
  3123. printk(KERN_ERR PFX
  3124. "%s Unable to allocate buffers.\n", ndev->name);
  3125. return -ENOMEM;
  3126. }
  3127. if (qdev->msi) {
  3128. if (pci_enable_msi(qdev->pdev)) {
  3129. printk(KERN_ERR PFX
  3130. "%s: User requested MSI, but MSI failed to "
  3131. "initialize. Continuing without MSI.\n",
  3132. qdev->ndev->name);
  3133. qdev->msi = 0;
  3134. } else {
  3135. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  3136. set_bit(QL_MSI_ENABLED,&qdev->flags);
  3137. irq_flags &= ~IRQF_SHARED;
  3138. }
  3139. }
  3140. if ((err = request_irq(qdev->pdev->irq,
  3141. ql3xxx_isr,
  3142. irq_flags, ndev->name, ndev))) {
  3143. printk(KERN_ERR PFX
  3144. "%s: Failed to reserve interrupt %d already in use.\n",
  3145. ndev->name, qdev->pdev->irq);
  3146. goto err_irq;
  3147. }
  3148. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3149. if ((err = ql_wait_for_drvr_lock(qdev))) {
  3150. if ((err = ql_adapter_initialize(qdev))) {
  3151. printk(KERN_ERR PFX
  3152. "%s: Unable to initialize adapter.\n",
  3153. ndev->name);
  3154. goto err_init;
  3155. }
  3156. printk(KERN_ERR PFX
  3157. "%s: Releaseing driver lock.\n",ndev->name);
  3158. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3159. } else {
  3160. printk(KERN_ERR PFX
  3161. "%s: Could not aquire driver lock.\n",
  3162. ndev->name);
  3163. goto err_lock;
  3164. }
  3165. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3166. set_bit(QL_ADAPTER_UP,&qdev->flags);
  3167. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3168. napi_enable(&qdev->napi);
  3169. ql_enable_interrupts(qdev);
  3170. return 0;
  3171. err_init:
  3172. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3173. err_lock:
  3174. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3175. free_irq(qdev->pdev->irq, ndev);
  3176. err_irq:
  3177. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3178. printk(KERN_INFO PFX
  3179. "%s: calling pci_disable_msi().\n",
  3180. qdev->ndev->name);
  3181. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3182. pci_disable_msi(qdev->pdev);
  3183. }
  3184. return err;
  3185. }
  3186. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3187. {
  3188. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  3189. printk(KERN_ERR PFX
  3190. "%s: Driver up/down cycle failed, "
  3191. "closing device\n",qdev->ndev->name);
  3192. dev_close(qdev->ndev);
  3193. return -1;
  3194. }
  3195. return 0;
  3196. }
  3197. static int ql3xxx_close(struct net_device *ndev)
  3198. {
  3199. struct ql3_adapter *qdev = netdev_priv(ndev);
  3200. /*
  3201. * Wait for device to recover from a reset.
  3202. * (Rarely happens, but possible.)
  3203. */
  3204. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  3205. msleep(50);
  3206. ql_adapter_down(qdev,QL_DO_RESET);
  3207. return 0;
  3208. }
  3209. static int ql3xxx_open(struct net_device *ndev)
  3210. {
  3211. struct ql3_adapter *qdev = netdev_priv(ndev);
  3212. return (ql_adapter_up(qdev));
  3213. }
  3214. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3215. {
  3216. /*
  3217. * We are manually parsing the list in the net_device structure.
  3218. */
  3219. return;
  3220. }
  3221. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3222. {
  3223. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3224. struct ql3xxx_port_registers __iomem *port_regs =
  3225. qdev->mem_map_registers;
  3226. struct sockaddr *addr = p;
  3227. unsigned long hw_flags;
  3228. if (netif_running(ndev))
  3229. return -EBUSY;
  3230. if (!is_valid_ether_addr(addr->sa_data))
  3231. return -EADDRNOTAVAIL;
  3232. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3233. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3234. /* Program lower 32 bits of the MAC address */
  3235. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3236. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3237. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3238. ((ndev->dev_addr[2] << 24) | (ndev->
  3239. dev_addr[3] << 16) |
  3240. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3241. /* Program top 16 bits of the MAC address */
  3242. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3243. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3244. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3245. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3246. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3247. return 0;
  3248. }
  3249. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3250. {
  3251. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3252. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3253. /*
  3254. * Stop the queues, we've got a problem.
  3255. */
  3256. netif_stop_queue(ndev);
  3257. /*
  3258. * Wake up the worker to process this event.
  3259. */
  3260. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3261. }
  3262. static void ql_reset_work(struct work_struct *work)
  3263. {
  3264. struct ql3_adapter *qdev =
  3265. container_of(work, struct ql3_adapter, reset_work.work);
  3266. struct net_device *ndev = qdev->ndev;
  3267. u32 value;
  3268. struct ql_tx_buf_cb *tx_cb;
  3269. int max_wait_time, i;
  3270. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3271. unsigned long hw_flags;
  3272. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3273. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3274. /*
  3275. * Loop through the active list and return the skb.
  3276. */
  3277. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3278. int j;
  3279. tx_cb = &qdev->tx_buf[i];
  3280. if (tx_cb->skb) {
  3281. printk(KERN_DEBUG PFX
  3282. "%s: Freeing lost SKB.\n",
  3283. qdev->ndev->name);
  3284. pci_unmap_single(qdev->pdev,
  3285. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3286. pci_unmap_len(&tx_cb->map[0], maplen),
  3287. PCI_DMA_TODEVICE);
  3288. for(j=1;j<tx_cb->seg_count;j++) {
  3289. pci_unmap_page(qdev->pdev,
  3290. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3291. pci_unmap_len(&tx_cb->map[j],maplen),
  3292. PCI_DMA_TODEVICE);
  3293. }
  3294. dev_kfree_skb(tx_cb->skb);
  3295. tx_cb->skb = NULL;
  3296. }
  3297. }
  3298. printk(KERN_ERR PFX
  3299. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3300. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3301. ql_write_common_reg(qdev,
  3302. &port_regs->CommonRegs.
  3303. ispControlStatus,
  3304. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3305. /*
  3306. * Wait the for Soft Reset to Complete.
  3307. */
  3308. max_wait_time = 10;
  3309. do {
  3310. value = ql_read_common_reg(qdev,
  3311. &port_regs->CommonRegs.
  3312. ispControlStatus);
  3313. if ((value & ISP_CONTROL_SR) == 0) {
  3314. printk(KERN_DEBUG PFX
  3315. "%s: reset completed.\n",
  3316. qdev->ndev->name);
  3317. break;
  3318. }
  3319. if (value & ISP_CONTROL_RI) {
  3320. printk(KERN_DEBUG PFX
  3321. "%s: clearing NRI after reset.\n",
  3322. qdev->ndev->name);
  3323. ql_write_common_reg(qdev,
  3324. &port_regs->
  3325. CommonRegs.
  3326. ispControlStatus,
  3327. ((ISP_CONTROL_RI <<
  3328. 16) | ISP_CONTROL_RI));
  3329. }
  3330. ssleep(1);
  3331. } while (--max_wait_time);
  3332. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3333. if (value & ISP_CONTROL_SR) {
  3334. /*
  3335. * Set the reset flags and clear the board again.
  3336. * Nothing else to do...
  3337. */
  3338. printk(KERN_ERR PFX
  3339. "%s: Timed out waiting for reset to "
  3340. "complete.\n", ndev->name);
  3341. printk(KERN_ERR PFX
  3342. "%s: Do a reset.\n", ndev->name);
  3343. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3344. clear_bit(QL_RESET_START,&qdev->flags);
  3345. ql_cycle_adapter(qdev,QL_DO_RESET);
  3346. return;
  3347. }
  3348. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3349. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3350. clear_bit(QL_RESET_START,&qdev->flags);
  3351. ql_cycle_adapter(qdev,QL_NO_RESET);
  3352. }
  3353. }
  3354. static void ql_tx_timeout_work(struct work_struct *work)
  3355. {
  3356. struct ql3_adapter *qdev =
  3357. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3358. ql_cycle_adapter(qdev, QL_DO_RESET);
  3359. }
  3360. static void ql_get_board_info(struct ql3_adapter *qdev)
  3361. {
  3362. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3363. u32 value;
  3364. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3365. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3366. if (value & PORT_STATUS_64)
  3367. qdev->pci_width = 64;
  3368. else
  3369. qdev->pci_width = 32;
  3370. if (value & PORT_STATUS_X)
  3371. qdev->pci_x = 1;
  3372. else
  3373. qdev->pci_x = 0;
  3374. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3375. }
  3376. static void ql3xxx_timer(unsigned long ptr)
  3377. {
  3378. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3379. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3380. }
  3381. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3382. const struct pci_device_id *pci_entry)
  3383. {
  3384. struct net_device *ndev = NULL;
  3385. struct ql3_adapter *qdev = NULL;
  3386. static int cards_found = 0;
  3387. int pci_using_dac, err;
  3388. err = pci_enable_device(pdev);
  3389. if (err) {
  3390. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3391. pci_name(pdev));
  3392. goto err_out;
  3393. }
  3394. err = pci_request_regions(pdev, DRV_NAME);
  3395. if (err) {
  3396. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3397. pci_name(pdev));
  3398. goto err_out_disable_pdev;
  3399. }
  3400. pci_set_master(pdev);
  3401. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3402. pci_using_dac = 1;
  3403. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3404. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3405. pci_using_dac = 0;
  3406. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3407. }
  3408. if (err) {
  3409. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3410. pci_name(pdev));
  3411. goto err_out_free_regions;
  3412. }
  3413. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3414. if (!ndev) {
  3415. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3416. pci_name(pdev));
  3417. err = -ENOMEM;
  3418. goto err_out_free_regions;
  3419. }
  3420. SET_NETDEV_DEV(ndev, &pdev->dev);
  3421. pci_set_drvdata(pdev, ndev);
  3422. qdev = netdev_priv(ndev);
  3423. qdev->index = cards_found;
  3424. qdev->ndev = ndev;
  3425. qdev->pdev = pdev;
  3426. qdev->device_id = pci_entry->device;
  3427. qdev->port_link_state = LS_DOWN;
  3428. if (msi)
  3429. qdev->msi = 1;
  3430. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3431. if (pci_using_dac)
  3432. ndev->features |= NETIF_F_HIGHDMA;
  3433. if (qdev->device_id == QL3032_DEVICE_ID)
  3434. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3435. qdev->mem_map_registers =
  3436. ioremap_nocache(pci_resource_start(pdev, 1),
  3437. pci_resource_len(qdev->pdev, 1));
  3438. if (!qdev->mem_map_registers) {
  3439. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3440. pci_name(pdev));
  3441. err = -EIO;
  3442. goto err_out_free_ndev;
  3443. }
  3444. spin_lock_init(&qdev->adapter_lock);
  3445. spin_lock_init(&qdev->hw_lock);
  3446. /* Set driver entry points */
  3447. ndev->open = ql3xxx_open;
  3448. ndev->hard_start_xmit = ql3xxx_send;
  3449. ndev->stop = ql3xxx_close;
  3450. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3451. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3452. ndev->set_mac_address = ql3xxx_set_mac_address;
  3453. ndev->tx_timeout = ql3xxx_tx_timeout;
  3454. ndev->watchdog_timeo = 5 * HZ;
  3455. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3456. ndev->irq = pdev->irq;
  3457. /* make sure the EEPROM is good */
  3458. if (ql_get_nvram_params(qdev)) {
  3459. printk(KERN_ALERT PFX
  3460. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3461. qdev->index);
  3462. err = -EIO;
  3463. goto err_out_iounmap;
  3464. }
  3465. ql_set_mac_info(qdev);
  3466. /* Validate and set parameters */
  3467. if (qdev->mac_index) {
  3468. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3469. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3470. ETH_ALEN);
  3471. } else {
  3472. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3473. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3474. ETH_ALEN);
  3475. }
  3476. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3477. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3478. /* Turn off support for multicasting */
  3479. ndev->flags &= ~IFF_MULTICAST;
  3480. /* Record PCI bus information. */
  3481. ql_get_board_info(qdev);
  3482. /*
  3483. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3484. * jumbo frames.
  3485. */
  3486. if (qdev->pci_x) {
  3487. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3488. }
  3489. err = register_netdev(ndev);
  3490. if (err) {
  3491. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3492. pci_name(pdev));
  3493. goto err_out_iounmap;
  3494. }
  3495. /* we're going to reset, so assume we have no link for now */
  3496. netif_carrier_off(ndev);
  3497. netif_stop_queue(ndev);
  3498. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3499. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3500. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3501. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3502. init_timer(&qdev->adapter_timer);
  3503. qdev->adapter_timer.function = ql3xxx_timer;
  3504. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3505. qdev->adapter_timer.data = (unsigned long)qdev;
  3506. if(!cards_found) {
  3507. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3508. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3509. DRV_NAME, DRV_VERSION);
  3510. }
  3511. ql_display_dev_info(ndev);
  3512. cards_found++;
  3513. return 0;
  3514. err_out_iounmap:
  3515. iounmap(qdev->mem_map_registers);
  3516. err_out_free_ndev:
  3517. free_netdev(ndev);
  3518. err_out_free_regions:
  3519. pci_release_regions(pdev);
  3520. err_out_disable_pdev:
  3521. pci_disable_device(pdev);
  3522. pci_set_drvdata(pdev, NULL);
  3523. err_out:
  3524. return err;
  3525. }
  3526. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3527. {
  3528. struct net_device *ndev = pci_get_drvdata(pdev);
  3529. struct ql3_adapter *qdev = netdev_priv(ndev);
  3530. unregister_netdev(ndev);
  3531. qdev = netdev_priv(ndev);
  3532. ql_disable_interrupts(qdev);
  3533. if (qdev->workqueue) {
  3534. cancel_delayed_work(&qdev->reset_work);
  3535. cancel_delayed_work(&qdev->tx_timeout_work);
  3536. destroy_workqueue(qdev->workqueue);
  3537. qdev->workqueue = NULL;
  3538. }
  3539. iounmap(qdev->mem_map_registers);
  3540. pci_release_regions(pdev);
  3541. pci_set_drvdata(pdev, NULL);
  3542. free_netdev(ndev);
  3543. }
  3544. static struct pci_driver ql3xxx_driver = {
  3545. .name = DRV_NAME,
  3546. .id_table = ql3xxx_pci_tbl,
  3547. .probe = ql3xxx_probe,
  3548. .remove = __devexit_p(ql3xxx_remove),
  3549. };
  3550. static int __init ql3xxx_init_module(void)
  3551. {
  3552. return pci_register_driver(&ql3xxx_driver);
  3553. }
  3554. static void __exit ql3xxx_exit(void)
  3555. {
  3556. pci_unregister_driver(&ql3xxx_driver);
  3557. }
  3558. module_init(ql3xxx_init_module);
  3559. module_exit(ql3xxx_exit);