sge.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208
  1. /*****************************************************************************
  2. * *
  3. * File: sge.c *
  4. * $Revision: 1.26 $ *
  5. * $Date: 2005/06/21 18:29:48 $ *
  6. * Description: *
  7. * DMA engine. *
  8. * part of the Chelsio 10Gb Ethernet Driver. *
  9. * *
  10. * This program is free software; you can redistribute it and/or modify *
  11. * it under the terms of the GNU General Public License, version 2, as *
  12. * published by the Free Software Foundation. *
  13. * *
  14. * You should have received a copy of the GNU General Public License along *
  15. * with this program; if not, write to the Free Software Foundation, Inc., *
  16. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  17. * *
  18. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
  19. * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
  20. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
  21. * *
  22. * http://www.chelsio.com *
  23. * *
  24. * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
  25. * All rights reserved. *
  26. * *
  27. * Maintainers: maintainers@chelsio.com *
  28. * *
  29. * Authors: Dimitrios Michailidis <dm@chelsio.com> *
  30. * Tina Yang <tainay@chelsio.com> *
  31. * Felix Marti <felix@chelsio.com> *
  32. * Scott Bardone <sbardone@chelsio.com> *
  33. * Kurt Ottaway <kottaway@chelsio.com> *
  34. * Frank DiMambro <frank@chelsio.com> *
  35. * *
  36. * History: *
  37. * *
  38. ****************************************************************************/
  39. #include "common.h"
  40. #include <linux/types.h>
  41. #include <linux/errno.h>
  42. #include <linux/pci.h>
  43. #include <linux/ktime.h>
  44. #include <linux/netdevice.h>
  45. #include <linux/etherdevice.h>
  46. #include <linux/if_vlan.h>
  47. #include <linux/skbuff.h>
  48. #include <linux/init.h>
  49. #include <linux/mm.h>
  50. #include <linux/tcp.h>
  51. #include <linux/ip.h>
  52. #include <linux/in.h>
  53. #include <linux/if_arp.h>
  54. #include "cpl5_cmd.h"
  55. #include "sge.h"
  56. #include "regs.h"
  57. #include "espi.h"
  58. /* This belongs in if_ether.h */
  59. #define ETH_P_CPL5 0xf
  60. #define SGE_CMDQ_N 2
  61. #define SGE_FREELQ_N 2
  62. #define SGE_CMDQ0_E_N 1024
  63. #define SGE_CMDQ1_E_N 128
  64. #define SGE_FREEL_SIZE 4096
  65. #define SGE_JUMBO_FREEL_SIZE 512
  66. #define SGE_FREEL_REFILL_THRESH 16
  67. #define SGE_RESPQ_E_N 1024
  68. #define SGE_INTRTIMER_NRES 1000
  69. #define SGE_RX_SM_BUF_SIZE 1536
  70. #define SGE_TX_DESC_MAX_PLEN 16384
  71. #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
  72. /*
  73. * Period of the TX buffer reclaim timer. This timer does not need to run
  74. * frequently as TX buffers are usually reclaimed by new TX packets.
  75. */
  76. #define TX_RECLAIM_PERIOD (HZ / 4)
  77. #define M_CMD_LEN 0x7fffffff
  78. #define V_CMD_LEN(v) (v)
  79. #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
  80. #define V_CMD_GEN1(v) ((v) << 31)
  81. #define V_CMD_GEN2(v) (v)
  82. #define F_CMD_DATAVALID (1 << 1)
  83. #define F_CMD_SOP (1 << 2)
  84. #define V_CMD_EOP(v) ((v) << 3)
  85. /*
  86. * Command queue, receive buffer list, and response queue descriptors.
  87. */
  88. #if defined(__BIG_ENDIAN_BITFIELD)
  89. struct cmdQ_e {
  90. u32 addr_lo;
  91. u32 len_gen;
  92. u32 flags;
  93. u32 addr_hi;
  94. };
  95. struct freelQ_e {
  96. u32 addr_lo;
  97. u32 len_gen;
  98. u32 gen2;
  99. u32 addr_hi;
  100. };
  101. struct respQ_e {
  102. u32 Qsleeping : 4;
  103. u32 Cmdq1CreditReturn : 5;
  104. u32 Cmdq1DmaComplete : 5;
  105. u32 Cmdq0CreditReturn : 5;
  106. u32 Cmdq0DmaComplete : 5;
  107. u32 FreelistQid : 2;
  108. u32 CreditValid : 1;
  109. u32 DataValid : 1;
  110. u32 Offload : 1;
  111. u32 Eop : 1;
  112. u32 Sop : 1;
  113. u32 GenerationBit : 1;
  114. u32 BufferLength;
  115. };
  116. #elif defined(__LITTLE_ENDIAN_BITFIELD)
  117. struct cmdQ_e {
  118. u32 len_gen;
  119. u32 addr_lo;
  120. u32 addr_hi;
  121. u32 flags;
  122. };
  123. struct freelQ_e {
  124. u32 len_gen;
  125. u32 addr_lo;
  126. u32 addr_hi;
  127. u32 gen2;
  128. };
  129. struct respQ_e {
  130. u32 BufferLength;
  131. u32 GenerationBit : 1;
  132. u32 Sop : 1;
  133. u32 Eop : 1;
  134. u32 Offload : 1;
  135. u32 DataValid : 1;
  136. u32 CreditValid : 1;
  137. u32 FreelistQid : 2;
  138. u32 Cmdq0DmaComplete : 5;
  139. u32 Cmdq0CreditReturn : 5;
  140. u32 Cmdq1DmaComplete : 5;
  141. u32 Cmdq1CreditReturn : 5;
  142. u32 Qsleeping : 4;
  143. } ;
  144. #endif
  145. /*
  146. * SW Context Command and Freelist Queue Descriptors
  147. */
  148. struct cmdQ_ce {
  149. struct sk_buff *skb;
  150. DECLARE_PCI_UNMAP_ADDR(dma_addr);
  151. DECLARE_PCI_UNMAP_LEN(dma_len);
  152. };
  153. struct freelQ_ce {
  154. struct sk_buff *skb;
  155. DECLARE_PCI_UNMAP_ADDR(dma_addr);
  156. DECLARE_PCI_UNMAP_LEN(dma_len);
  157. };
  158. /*
  159. * SW command, freelist and response rings
  160. */
  161. struct cmdQ {
  162. unsigned long status; /* HW DMA fetch status */
  163. unsigned int in_use; /* # of in-use command descriptors */
  164. unsigned int size; /* # of descriptors */
  165. unsigned int processed; /* total # of descs HW has processed */
  166. unsigned int cleaned; /* total # of descs SW has reclaimed */
  167. unsigned int stop_thres; /* SW TX queue suspend threshold */
  168. u16 pidx; /* producer index (SW) */
  169. u16 cidx; /* consumer index (HW) */
  170. u8 genbit; /* current generation (=valid) bit */
  171. u8 sop; /* is next entry start of packet? */
  172. struct cmdQ_e *entries; /* HW command descriptor Q */
  173. struct cmdQ_ce *centries; /* SW command context descriptor Q */
  174. dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
  175. spinlock_t lock; /* Lock to protect cmdQ enqueuing */
  176. };
  177. struct freelQ {
  178. unsigned int credits; /* # of available RX buffers */
  179. unsigned int size; /* free list capacity */
  180. u16 pidx; /* producer index (SW) */
  181. u16 cidx; /* consumer index (HW) */
  182. u16 rx_buffer_size; /* Buffer size on this free list */
  183. u16 dma_offset; /* DMA offset to align IP headers */
  184. u16 recycleq_idx; /* skb recycle q to use */
  185. u8 genbit; /* current generation (=valid) bit */
  186. struct freelQ_e *entries; /* HW freelist descriptor Q */
  187. struct freelQ_ce *centries; /* SW freelist context descriptor Q */
  188. dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
  189. };
  190. struct respQ {
  191. unsigned int credits; /* credits to be returned to SGE */
  192. unsigned int size; /* # of response Q descriptors */
  193. u16 cidx; /* consumer index (SW) */
  194. u8 genbit; /* current generation(=valid) bit */
  195. struct respQ_e *entries; /* HW response descriptor Q */
  196. dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
  197. };
  198. /* Bit flags for cmdQ.status */
  199. enum {
  200. CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
  201. CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
  202. };
  203. /* T204 TX SW scheduler */
  204. /* Per T204 TX port */
  205. struct sched_port {
  206. unsigned int avail; /* available bits - quota */
  207. unsigned int drain_bits_per_1024ns; /* drain rate */
  208. unsigned int speed; /* drain rate, mbps */
  209. unsigned int mtu; /* mtu size */
  210. struct sk_buff_head skbq; /* pending skbs */
  211. };
  212. /* Per T204 device */
  213. struct sched {
  214. ktime_t last_updated; /* last time quotas were computed */
  215. unsigned int max_avail; /* max bits to be sent to any port */
  216. unsigned int port; /* port index (round robin ports) */
  217. unsigned int num; /* num skbs in per port queues */
  218. struct sched_port p[MAX_NPORTS];
  219. struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
  220. };
  221. static void restart_sched(unsigned long);
  222. /*
  223. * Main SGE data structure
  224. *
  225. * Interrupts are handled by a single CPU and it is likely that on a MP system
  226. * the application is migrated to another CPU. In that scenario, we try to
  227. * seperate the RX(in irq context) and TX state in order to decrease memory
  228. * contention.
  229. */
  230. struct sge {
  231. struct adapter *adapter; /* adapter backpointer */
  232. struct net_device *netdev; /* netdevice backpointer */
  233. struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
  234. struct respQ respQ; /* response Q */
  235. unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
  236. unsigned int rx_pkt_pad; /* RX padding for L2 packets */
  237. unsigned int jumbo_fl; /* jumbo freelist Q index */
  238. unsigned int intrtimer_nres; /* no-resource interrupt timer */
  239. unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
  240. struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
  241. struct timer_list espibug_timer;
  242. unsigned long espibug_timeout;
  243. struct sk_buff *espibug_skb[MAX_NPORTS];
  244. u32 sge_control; /* shadow value of sge control reg */
  245. struct sge_intr_counts stats;
  246. struct sge_port_stats *port_stats[MAX_NPORTS];
  247. struct sched *tx_sched;
  248. struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
  249. };
  250. /*
  251. * stop tasklet and free all pending skb's
  252. */
  253. static void tx_sched_stop(struct sge *sge)
  254. {
  255. struct sched *s = sge->tx_sched;
  256. int i;
  257. tasklet_kill(&s->sched_tsk);
  258. for (i = 0; i < MAX_NPORTS; i++)
  259. __skb_queue_purge(&s->p[s->port].skbq);
  260. }
  261. /*
  262. * t1_sched_update_parms() is called when the MTU or link speed changes. It
  263. * re-computes scheduler parameters to scope with the change.
  264. */
  265. unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
  266. unsigned int mtu, unsigned int speed)
  267. {
  268. struct sched *s = sge->tx_sched;
  269. struct sched_port *p = &s->p[port];
  270. unsigned int max_avail_segs;
  271. pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
  272. if (speed)
  273. p->speed = speed;
  274. if (mtu)
  275. p->mtu = mtu;
  276. if (speed || mtu) {
  277. unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
  278. do_div(drain, (p->mtu + 50) * 1000);
  279. p->drain_bits_per_1024ns = (unsigned int) drain;
  280. if (p->speed < 1000)
  281. p->drain_bits_per_1024ns =
  282. 90 * p->drain_bits_per_1024ns / 100;
  283. }
  284. if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
  285. p->drain_bits_per_1024ns -= 16;
  286. s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
  287. max_avail_segs = max(1U, 4096 / (p->mtu - 40));
  288. } else {
  289. s->max_avail = 16384;
  290. max_avail_segs = max(1U, 9000 / (p->mtu - 40));
  291. }
  292. pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
  293. "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
  294. p->speed, s->max_avail, max_avail_segs,
  295. p->drain_bits_per_1024ns);
  296. return max_avail_segs * (p->mtu - 40);
  297. }
  298. /*
  299. * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
  300. * data that can be pushed per port.
  301. */
  302. void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
  303. {
  304. struct sched *s = sge->tx_sched;
  305. unsigned int i;
  306. s->max_avail = val;
  307. for (i = 0; i < MAX_NPORTS; i++)
  308. t1_sched_update_parms(sge, i, 0, 0);
  309. }
  310. /*
  311. * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
  312. * is draining.
  313. */
  314. void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
  315. unsigned int val)
  316. {
  317. struct sched *s = sge->tx_sched;
  318. struct sched_port *p = &s->p[port];
  319. p->drain_bits_per_1024ns = val * 1024 / 1000;
  320. t1_sched_update_parms(sge, port, 0, 0);
  321. }
  322. /*
  323. * get_clock() implements a ns clock (see ktime_get)
  324. */
  325. static inline ktime_t get_clock(void)
  326. {
  327. struct timespec ts;
  328. ktime_get_ts(&ts);
  329. return timespec_to_ktime(ts);
  330. }
  331. /*
  332. * tx_sched_init() allocates resources and does basic initialization.
  333. */
  334. static int tx_sched_init(struct sge *sge)
  335. {
  336. struct sched *s;
  337. int i;
  338. s = kzalloc(sizeof (struct sched), GFP_KERNEL);
  339. if (!s)
  340. return -ENOMEM;
  341. pr_debug("tx_sched_init\n");
  342. tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
  343. sge->tx_sched = s;
  344. for (i = 0; i < MAX_NPORTS; i++) {
  345. skb_queue_head_init(&s->p[i].skbq);
  346. t1_sched_update_parms(sge, i, 1500, 1000);
  347. }
  348. return 0;
  349. }
  350. /*
  351. * sched_update_avail() computes the delta since the last time it was called
  352. * and updates the per port quota (number of bits that can be sent to the any
  353. * port).
  354. */
  355. static inline int sched_update_avail(struct sge *sge)
  356. {
  357. struct sched *s = sge->tx_sched;
  358. ktime_t now = get_clock();
  359. unsigned int i;
  360. long long delta_time_ns;
  361. delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
  362. pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
  363. if (delta_time_ns < 15000)
  364. return 0;
  365. for (i = 0; i < MAX_NPORTS; i++) {
  366. struct sched_port *p = &s->p[i];
  367. unsigned int delta_avail;
  368. delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
  369. p->avail = min(p->avail + delta_avail, s->max_avail);
  370. }
  371. s->last_updated = now;
  372. return 1;
  373. }
  374. /*
  375. * sched_skb() is called from two different places. In the tx path, any
  376. * packet generating load on an output port will call sched_skb()
  377. * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
  378. * context (skb == NULL).
  379. * The scheduler only returns a skb (which will then be sent) if the
  380. * length of the skb is <= the current quota of the output port.
  381. */
  382. static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
  383. unsigned int credits)
  384. {
  385. struct sched *s = sge->tx_sched;
  386. struct sk_buff_head *skbq;
  387. unsigned int i, len, update = 1;
  388. pr_debug("sched_skb %p\n", skb);
  389. if (!skb) {
  390. if (!s->num)
  391. return NULL;
  392. } else {
  393. skbq = &s->p[skb->dev->if_port].skbq;
  394. __skb_queue_tail(skbq, skb);
  395. s->num++;
  396. skb = NULL;
  397. }
  398. if (credits < MAX_SKB_FRAGS + 1)
  399. goto out;
  400. again:
  401. for (i = 0; i < MAX_NPORTS; i++) {
  402. s->port = ++s->port & (MAX_NPORTS - 1);
  403. skbq = &s->p[s->port].skbq;
  404. skb = skb_peek(skbq);
  405. if (!skb)
  406. continue;
  407. len = skb->len;
  408. if (len <= s->p[s->port].avail) {
  409. s->p[s->port].avail -= len;
  410. s->num--;
  411. __skb_unlink(skb, skbq);
  412. goto out;
  413. }
  414. skb = NULL;
  415. }
  416. if (update-- && sched_update_avail(sge))
  417. goto again;
  418. out:
  419. /* If there are more pending skbs, we use the hardware to schedule us
  420. * again.
  421. */
  422. if (s->num && !skb) {
  423. struct cmdQ *q = &sge->cmdQ[0];
  424. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  425. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  426. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  427. writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
  428. }
  429. }
  430. pr_debug("sched_skb ret %p\n", skb);
  431. return skb;
  432. }
  433. /*
  434. * PIO to indicate that memory mapped Q contains valid descriptor(s).
  435. */
  436. static inline void doorbell_pio(struct adapter *adapter, u32 val)
  437. {
  438. wmb();
  439. writel(val, adapter->regs + A_SG_DOORBELL);
  440. }
  441. /*
  442. * Frees all RX buffers on the freelist Q. The caller must make sure that
  443. * the SGE is turned off before calling this function.
  444. */
  445. static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
  446. {
  447. unsigned int cidx = q->cidx;
  448. while (q->credits--) {
  449. struct freelQ_ce *ce = &q->centries[cidx];
  450. pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
  451. pci_unmap_len(ce, dma_len),
  452. PCI_DMA_FROMDEVICE);
  453. dev_kfree_skb(ce->skb);
  454. ce->skb = NULL;
  455. if (++cidx == q->size)
  456. cidx = 0;
  457. }
  458. }
  459. /*
  460. * Free RX free list and response queue resources.
  461. */
  462. static void free_rx_resources(struct sge *sge)
  463. {
  464. struct pci_dev *pdev = sge->adapter->pdev;
  465. unsigned int size, i;
  466. if (sge->respQ.entries) {
  467. size = sizeof(struct respQ_e) * sge->respQ.size;
  468. pci_free_consistent(pdev, size, sge->respQ.entries,
  469. sge->respQ.dma_addr);
  470. }
  471. for (i = 0; i < SGE_FREELQ_N; i++) {
  472. struct freelQ *q = &sge->freelQ[i];
  473. if (q->centries) {
  474. free_freelQ_buffers(pdev, q);
  475. kfree(q->centries);
  476. }
  477. if (q->entries) {
  478. size = sizeof(struct freelQ_e) * q->size;
  479. pci_free_consistent(pdev, size, q->entries,
  480. q->dma_addr);
  481. }
  482. }
  483. }
  484. /*
  485. * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
  486. * response queue.
  487. */
  488. static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
  489. {
  490. struct pci_dev *pdev = sge->adapter->pdev;
  491. unsigned int size, i;
  492. for (i = 0; i < SGE_FREELQ_N; i++) {
  493. struct freelQ *q = &sge->freelQ[i];
  494. q->genbit = 1;
  495. q->size = p->freelQ_size[i];
  496. q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
  497. size = sizeof(struct freelQ_e) * q->size;
  498. q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
  499. if (!q->entries)
  500. goto err_no_mem;
  501. size = sizeof(struct freelQ_ce) * q->size;
  502. q->centries = kzalloc(size, GFP_KERNEL);
  503. if (!q->centries)
  504. goto err_no_mem;
  505. }
  506. /*
  507. * Calculate the buffer sizes for the two free lists. FL0 accommodates
  508. * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
  509. * including all the sk_buff overhead.
  510. *
  511. * Note: For T2 FL0 and FL1 are reversed.
  512. */
  513. sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
  514. sizeof(struct cpl_rx_data) +
  515. sge->freelQ[!sge->jumbo_fl].dma_offset;
  516. size = (16 * 1024) -
  517. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  518. sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
  519. /*
  520. * Setup which skb recycle Q should be used when recycling buffers from
  521. * each free list.
  522. */
  523. sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
  524. sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
  525. sge->respQ.genbit = 1;
  526. sge->respQ.size = SGE_RESPQ_E_N;
  527. sge->respQ.credits = 0;
  528. size = sizeof(struct respQ_e) * sge->respQ.size;
  529. sge->respQ.entries =
  530. pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
  531. if (!sge->respQ.entries)
  532. goto err_no_mem;
  533. return 0;
  534. err_no_mem:
  535. free_rx_resources(sge);
  536. return -ENOMEM;
  537. }
  538. /*
  539. * Reclaims n TX descriptors and frees the buffers associated with them.
  540. */
  541. static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
  542. {
  543. struct cmdQ_ce *ce;
  544. struct pci_dev *pdev = sge->adapter->pdev;
  545. unsigned int cidx = q->cidx;
  546. q->in_use -= n;
  547. ce = &q->centries[cidx];
  548. while (n--) {
  549. if (likely(pci_unmap_len(ce, dma_len))) {
  550. pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
  551. pci_unmap_len(ce, dma_len),
  552. PCI_DMA_TODEVICE);
  553. if (q->sop)
  554. q->sop = 0;
  555. }
  556. if (ce->skb) {
  557. dev_kfree_skb_any(ce->skb);
  558. q->sop = 1;
  559. }
  560. ce++;
  561. if (++cidx == q->size) {
  562. cidx = 0;
  563. ce = q->centries;
  564. }
  565. }
  566. q->cidx = cidx;
  567. }
  568. /*
  569. * Free TX resources.
  570. *
  571. * Assumes that SGE is stopped and all interrupts are disabled.
  572. */
  573. static void free_tx_resources(struct sge *sge)
  574. {
  575. struct pci_dev *pdev = sge->adapter->pdev;
  576. unsigned int size, i;
  577. for (i = 0; i < SGE_CMDQ_N; i++) {
  578. struct cmdQ *q = &sge->cmdQ[i];
  579. if (q->centries) {
  580. if (q->in_use)
  581. free_cmdQ_buffers(sge, q, q->in_use);
  582. kfree(q->centries);
  583. }
  584. if (q->entries) {
  585. size = sizeof(struct cmdQ_e) * q->size;
  586. pci_free_consistent(pdev, size, q->entries,
  587. q->dma_addr);
  588. }
  589. }
  590. }
  591. /*
  592. * Allocates basic TX resources, consisting of memory mapped command Qs.
  593. */
  594. static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
  595. {
  596. struct pci_dev *pdev = sge->adapter->pdev;
  597. unsigned int size, i;
  598. for (i = 0; i < SGE_CMDQ_N; i++) {
  599. struct cmdQ *q = &sge->cmdQ[i];
  600. q->genbit = 1;
  601. q->sop = 1;
  602. q->size = p->cmdQ_size[i];
  603. q->in_use = 0;
  604. q->status = 0;
  605. q->processed = q->cleaned = 0;
  606. q->stop_thres = 0;
  607. spin_lock_init(&q->lock);
  608. size = sizeof(struct cmdQ_e) * q->size;
  609. q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
  610. if (!q->entries)
  611. goto err_no_mem;
  612. size = sizeof(struct cmdQ_ce) * q->size;
  613. q->centries = kzalloc(size, GFP_KERNEL);
  614. if (!q->centries)
  615. goto err_no_mem;
  616. }
  617. /*
  618. * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
  619. * only. For queue 0 set the stop threshold so we can handle one more
  620. * packet from each port, plus reserve an additional 24 entries for
  621. * Ethernet packets only. Queue 1 never suspends nor do we reserve
  622. * space for Ethernet packets.
  623. */
  624. sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
  625. (MAX_SKB_FRAGS + 1);
  626. return 0;
  627. err_no_mem:
  628. free_tx_resources(sge);
  629. return -ENOMEM;
  630. }
  631. static inline void setup_ring_params(struct adapter *adapter, u64 addr,
  632. u32 size, int base_reg_lo,
  633. int base_reg_hi, int size_reg)
  634. {
  635. writel((u32)addr, adapter->regs + base_reg_lo);
  636. writel(addr >> 32, adapter->regs + base_reg_hi);
  637. writel(size, adapter->regs + size_reg);
  638. }
  639. /*
  640. * Enable/disable VLAN acceleration.
  641. */
  642. void t1_set_vlan_accel(struct adapter *adapter, int on_off)
  643. {
  644. struct sge *sge = adapter->sge;
  645. sge->sge_control &= ~F_VLAN_XTRACT;
  646. if (on_off)
  647. sge->sge_control |= F_VLAN_XTRACT;
  648. if (adapter->open_device_map) {
  649. writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
  650. readl(adapter->regs + A_SG_CONTROL); /* flush */
  651. }
  652. }
  653. /*
  654. * Programs the various SGE registers. However, the engine is not yet enabled,
  655. * but sge->sge_control is setup and ready to go.
  656. */
  657. static void configure_sge(struct sge *sge, struct sge_params *p)
  658. {
  659. struct adapter *ap = sge->adapter;
  660. writel(0, ap->regs + A_SG_CONTROL);
  661. setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
  662. A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
  663. setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
  664. A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
  665. setup_ring_params(ap, sge->freelQ[0].dma_addr,
  666. sge->freelQ[0].size, A_SG_FL0BASELWR,
  667. A_SG_FL0BASEUPR, A_SG_FL0SIZE);
  668. setup_ring_params(ap, sge->freelQ[1].dma_addr,
  669. sge->freelQ[1].size, A_SG_FL1BASELWR,
  670. A_SG_FL1BASEUPR, A_SG_FL1SIZE);
  671. /* The threshold comparison uses <. */
  672. writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
  673. setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
  674. A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
  675. writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
  676. sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
  677. F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
  678. V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
  679. V_RX_PKT_OFFSET(sge->rx_pkt_pad);
  680. #if defined(__BIG_ENDIAN_BITFIELD)
  681. sge->sge_control |= F_ENABLE_BIG_ENDIAN;
  682. #endif
  683. /* Initialize no-resource timer */
  684. sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
  685. t1_sge_set_coalesce_params(sge, p);
  686. }
  687. /*
  688. * Return the payload capacity of the jumbo free-list buffers.
  689. */
  690. static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
  691. {
  692. return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
  693. sge->freelQ[sge->jumbo_fl].dma_offset -
  694. sizeof(struct cpl_rx_data);
  695. }
  696. /*
  697. * Frees all SGE related resources and the sge structure itself
  698. */
  699. void t1_sge_destroy(struct sge *sge)
  700. {
  701. int i;
  702. for_each_port(sge->adapter, i)
  703. free_percpu(sge->port_stats[i]);
  704. kfree(sge->tx_sched);
  705. free_tx_resources(sge);
  706. free_rx_resources(sge);
  707. kfree(sge);
  708. }
  709. /*
  710. * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
  711. * context Q) until the Q is full or alloc_skb fails.
  712. *
  713. * It is possible that the generation bits already match, indicating that the
  714. * buffer is already valid and nothing needs to be done. This happens when we
  715. * copied a received buffer into a new sk_buff during the interrupt processing.
  716. *
  717. * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
  718. * we specify a RX_OFFSET in order to make sure that the IP header is 4B
  719. * aligned.
  720. */
  721. static void refill_free_list(struct sge *sge, struct freelQ *q)
  722. {
  723. struct pci_dev *pdev = sge->adapter->pdev;
  724. struct freelQ_ce *ce = &q->centries[q->pidx];
  725. struct freelQ_e *e = &q->entries[q->pidx];
  726. unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
  727. while (q->credits < q->size) {
  728. struct sk_buff *skb;
  729. dma_addr_t mapping;
  730. skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
  731. if (!skb)
  732. break;
  733. skb_reserve(skb, q->dma_offset);
  734. mapping = pci_map_single(pdev, skb->data, dma_len,
  735. PCI_DMA_FROMDEVICE);
  736. skb_reserve(skb, sge->rx_pkt_pad);
  737. ce->skb = skb;
  738. pci_unmap_addr_set(ce, dma_addr, mapping);
  739. pci_unmap_len_set(ce, dma_len, dma_len);
  740. e->addr_lo = (u32)mapping;
  741. e->addr_hi = (u64)mapping >> 32;
  742. e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
  743. wmb();
  744. e->gen2 = V_CMD_GEN2(q->genbit);
  745. e++;
  746. ce++;
  747. if (++q->pidx == q->size) {
  748. q->pidx = 0;
  749. q->genbit ^= 1;
  750. ce = q->centries;
  751. e = q->entries;
  752. }
  753. q->credits++;
  754. }
  755. }
  756. /*
  757. * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
  758. * of both rings, we go into 'few interrupt mode' in order to give the system
  759. * time to free up resources.
  760. */
  761. static void freelQs_empty(struct sge *sge)
  762. {
  763. struct adapter *adapter = sge->adapter;
  764. u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
  765. u32 irqholdoff_reg;
  766. refill_free_list(sge, &sge->freelQ[0]);
  767. refill_free_list(sge, &sge->freelQ[1]);
  768. if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
  769. sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
  770. irq_reg |= F_FL_EXHAUSTED;
  771. irqholdoff_reg = sge->fixed_intrtimer;
  772. } else {
  773. /* Clear the F_FL_EXHAUSTED interrupts for now */
  774. irq_reg &= ~F_FL_EXHAUSTED;
  775. irqholdoff_reg = sge->intrtimer_nres;
  776. }
  777. writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
  778. writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
  779. /* We reenable the Qs to force a freelist GTS interrupt later */
  780. doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
  781. }
  782. #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
  783. #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
  784. #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
  785. F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
  786. /*
  787. * Disable SGE Interrupts
  788. */
  789. void t1_sge_intr_disable(struct sge *sge)
  790. {
  791. u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
  792. writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
  793. writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
  794. }
  795. /*
  796. * Enable SGE interrupts.
  797. */
  798. void t1_sge_intr_enable(struct sge *sge)
  799. {
  800. u32 en = SGE_INT_ENABLE;
  801. u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
  802. if (sge->adapter->flags & TSO_CAPABLE)
  803. en &= ~F_PACKET_TOO_BIG;
  804. writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
  805. writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
  806. }
  807. /*
  808. * Clear SGE interrupts.
  809. */
  810. void t1_sge_intr_clear(struct sge *sge)
  811. {
  812. writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
  813. writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
  814. }
  815. /*
  816. * SGE 'Error' interrupt handler
  817. */
  818. int t1_sge_intr_error_handler(struct sge *sge)
  819. {
  820. struct adapter *adapter = sge->adapter;
  821. u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
  822. if (adapter->flags & TSO_CAPABLE)
  823. cause &= ~F_PACKET_TOO_BIG;
  824. if (cause & F_RESPQ_EXHAUSTED)
  825. sge->stats.respQ_empty++;
  826. if (cause & F_RESPQ_OVERFLOW) {
  827. sge->stats.respQ_overflow++;
  828. CH_ALERT("%s: SGE response queue overflow\n",
  829. adapter->name);
  830. }
  831. if (cause & F_FL_EXHAUSTED) {
  832. sge->stats.freelistQ_empty++;
  833. freelQs_empty(sge);
  834. }
  835. if (cause & F_PACKET_TOO_BIG) {
  836. sge->stats.pkt_too_big++;
  837. CH_ALERT("%s: SGE max packet size exceeded\n",
  838. adapter->name);
  839. }
  840. if (cause & F_PACKET_MISMATCH) {
  841. sge->stats.pkt_mismatch++;
  842. CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
  843. }
  844. if (cause & SGE_INT_FATAL)
  845. t1_fatal_err(adapter);
  846. writel(cause, adapter->regs + A_SG_INT_CAUSE);
  847. return 0;
  848. }
  849. const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
  850. {
  851. return &sge->stats;
  852. }
  853. void t1_sge_get_port_stats(const struct sge *sge, int port,
  854. struct sge_port_stats *ss)
  855. {
  856. int cpu;
  857. memset(ss, 0, sizeof(*ss));
  858. for_each_possible_cpu(cpu) {
  859. struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
  860. ss->rx_cso_good += st->rx_cso_good;
  861. ss->tx_cso += st->tx_cso;
  862. ss->tx_tso += st->tx_tso;
  863. ss->tx_need_hdrroom += st->tx_need_hdrroom;
  864. ss->vlan_xtract += st->vlan_xtract;
  865. ss->vlan_insert += st->vlan_insert;
  866. }
  867. }
  868. /**
  869. * recycle_fl_buf - recycle a free list buffer
  870. * @fl: the free list
  871. * @idx: index of buffer to recycle
  872. *
  873. * Recycles the specified buffer on the given free list by adding it at
  874. * the next available slot on the list.
  875. */
  876. static void recycle_fl_buf(struct freelQ *fl, int idx)
  877. {
  878. struct freelQ_e *from = &fl->entries[idx];
  879. struct freelQ_e *to = &fl->entries[fl->pidx];
  880. fl->centries[fl->pidx] = fl->centries[idx];
  881. to->addr_lo = from->addr_lo;
  882. to->addr_hi = from->addr_hi;
  883. to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
  884. wmb();
  885. to->gen2 = V_CMD_GEN2(fl->genbit);
  886. fl->credits++;
  887. if (++fl->pidx == fl->size) {
  888. fl->pidx = 0;
  889. fl->genbit ^= 1;
  890. }
  891. }
  892. static int copybreak __read_mostly = 256;
  893. module_param(copybreak, int, 0);
  894. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  895. /**
  896. * get_packet - return the next ingress packet buffer
  897. * @pdev: the PCI device that received the packet
  898. * @fl: the SGE free list holding the packet
  899. * @len: the actual packet length, excluding any SGE padding
  900. * @dma_pad: padding at beginning of buffer left by SGE DMA
  901. * @skb_pad: padding to be used if the packet is copied
  902. * @copy_thres: length threshold under which a packet should be copied
  903. * @drop_thres: # of remaining buffers before we start dropping packets
  904. *
  905. * Get the next packet from a free list and complete setup of the
  906. * sk_buff. If the packet is small we make a copy and recycle the
  907. * original buffer, otherwise we use the original buffer itself. If a
  908. * positive drop threshold is supplied packets are dropped and their
  909. * buffers recycled if (a) the number of remaining buffers is under the
  910. * threshold and the packet is too big to copy, or (b) the packet should
  911. * be copied but there is no memory for the copy.
  912. */
  913. static inline struct sk_buff *get_packet(struct pci_dev *pdev,
  914. struct freelQ *fl, unsigned int len)
  915. {
  916. struct sk_buff *skb;
  917. const struct freelQ_ce *ce = &fl->centries[fl->cidx];
  918. if (len < copybreak) {
  919. skb = alloc_skb(len + 2, GFP_ATOMIC);
  920. if (!skb)
  921. goto use_orig_buf;
  922. skb_reserve(skb, 2); /* align IP header */
  923. skb_put(skb, len);
  924. pci_dma_sync_single_for_cpu(pdev,
  925. pci_unmap_addr(ce, dma_addr),
  926. pci_unmap_len(ce, dma_len),
  927. PCI_DMA_FROMDEVICE);
  928. skb_copy_from_linear_data(ce->skb, skb->data, len);
  929. pci_dma_sync_single_for_device(pdev,
  930. pci_unmap_addr(ce, dma_addr),
  931. pci_unmap_len(ce, dma_len),
  932. PCI_DMA_FROMDEVICE);
  933. recycle_fl_buf(fl, fl->cidx);
  934. return skb;
  935. }
  936. use_orig_buf:
  937. if (fl->credits < 2) {
  938. recycle_fl_buf(fl, fl->cidx);
  939. return NULL;
  940. }
  941. pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
  942. pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
  943. skb = ce->skb;
  944. prefetch(skb->data);
  945. skb_put(skb, len);
  946. return skb;
  947. }
  948. /**
  949. * unexpected_offload - handle an unexpected offload packet
  950. * @adapter: the adapter
  951. * @fl: the free list that received the packet
  952. *
  953. * Called when we receive an unexpected offload packet (e.g., the TOE
  954. * function is disabled or the card is a NIC). Prints a message and
  955. * recycles the buffer.
  956. */
  957. static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
  958. {
  959. struct freelQ_ce *ce = &fl->centries[fl->cidx];
  960. struct sk_buff *skb = ce->skb;
  961. pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
  962. pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
  963. CH_ERR("%s: unexpected offload packet, cmd %u\n",
  964. adapter->name, *skb->data);
  965. recycle_fl_buf(fl, fl->cidx);
  966. }
  967. /*
  968. * T1/T2 SGE limits the maximum DMA size per TX descriptor to
  969. * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
  970. * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
  971. * Note that the *_large_page_tx_descs stuff will be optimized out when
  972. * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
  973. *
  974. * compute_large_page_descs() computes how many additional descriptors are
  975. * required to break down the stack's request.
  976. */
  977. static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
  978. {
  979. unsigned int count = 0;
  980. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
  981. unsigned int nfrags = skb_shinfo(skb)->nr_frags;
  982. unsigned int i, len = skb->len - skb->data_len;
  983. while (len > SGE_TX_DESC_MAX_PLEN) {
  984. count++;
  985. len -= SGE_TX_DESC_MAX_PLEN;
  986. }
  987. for (i = 0; nfrags--; i++) {
  988. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  989. len = frag->size;
  990. while (len > SGE_TX_DESC_MAX_PLEN) {
  991. count++;
  992. len -= SGE_TX_DESC_MAX_PLEN;
  993. }
  994. }
  995. }
  996. return count;
  997. }
  998. /*
  999. * Write a cmdQ entry.
  1000. *
  1001. * Since this function writes the 'flags' field, it must not be used to
  1002. * write the first cmdQ entry.
  1003. */
  1004. static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
  1005. unsigned int len, unsigned int gen,
  1006. unsigned int eop)
  1007. {
  1008. if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
  1009. BUG();
  1010. e->addr_lo = (u32)mapping;
  1011. e->addr_hi = (u64)mapping >> 32;
  1012. e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
  1013. e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
  1014. }
  1015. /*
  1016. * See comment for previous function.
  1017. *
  1018. * write_tx_descs_large_page() writes additional SGE tx descriptors if
  1019. * *desc_len exceeds HW's capability.
  1020. */
  1021. static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
  1022. struct cmdQ_e **e,
  1023. struct cmdQ_ce **ce,
  1024. unsigned int *gen,
  1025. dma_addr_t *desc_mapping,
  1026. unsigned int *desc_len,
  1027. unsigned int nfrags,
  1028. struct cmdQ *q)
  1029. {
  1030. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
  1031. struct cmdQ_e *e1 = *e;
  1032. struct cmdQ_ce *ce1 = *ce;
  1033. while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
  1034. *desc_len -= SGE_TX_DESC_MAX_PLEN;
  1035. write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
  1036. *gen, nfrags == 0 && *desc_len == 0);
  1037. ce1->skb = NULL;
  1038. pci_unmap_len_set(ce1, dma_len, 0);
  1039. *desc_mapping += SGE_TX_DESC_MAX_PLEN;
  1040. if (*desc_len) {
  1041. ce1++;
  1042. e1++;
  1043. if (++pidx == q->size) {
  1044. pidx = 0;
  1045. *gen ^= 1;
  1046. ce1 = q->centries;
  1047. e1 = q->entries;
  1048. }
  1049. }
  1050. }
  1051. *e = e1;
  1052. *ce = ce1;
  1053. }
  1054. return pidx;
  1055. }
  1056. /*
  1057. * Write the command descriptors to transmit the given skb starting at
  1058. * descriptor pidx with the given generation.
  1059. */
  1060. static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
  1061. unsigned int pidx, unsigned int gen,
  1062. struct cmdQ *q)
  1063. {
  1064. dma_addr_t mapping, desc_mapping;
  1065. struct cmdQ_e *e, *e1;
  1066. struct cmdQ_ce *ce;
  1067. unsigned int i, flags, first_desc_len, desc_len,
  1068. nfrags = skb_shinfo(skb)->nr_frags;
  1069. e = e1 = &q->entries[pidx];
  1070. ce = &q->centries[pidx];
  1071. mapping = pci_map_single(adapter->pdev, skb->data,
  1072. skb->len - skb->data_len, PCI_DMA_TODEVICE);
  1073. desc_mapping = mapping;
  1074. desc_len = skb->len - skb->data_len;
  1075. flags = F_CMD_DATAVALID | F_CMD_SOP |
  1076. V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
  1077. V_CMD_GEN2(gen);
  1078. first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
  1079. desc_len : SGE_TX_DESC_MAX_PLEN;
  1080. e->addr_lo = (u32)desc_mapping;
  1081. e->addr_hi = (u64)desc_mapping >> 32;
  1082. e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
  1083. ce->skb = NULL;
  1084. pci_unmap_len_set(ce, dma_len, 0);
  1085. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
  1086. desc_len > SGE_TX_DESC_MAX_PLEN) {
  1087. desc_mapping += first_desc_len;
  1088. desc_len -= first_desc_len;
  1089. e1++;
  1090. ce++;
  1091. if (++pidx == q->size) {
  1092. pidx = 0;
  1093. gen ^= 1;
  1094. e1 = q->entries;
  1095. ce = q->centries;
  1096. }
  1097. pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
  1098. &desc_mapping, &desc_len,
  1099. nfrags, q);
  1100. if (likely(desc_len))
  1101. write_tx_desc(e1, desc_mapping, desc_len, gen,
  1102. nfrags == 0);
  1103. }
  1104. ce->skb = NULL;
  1105. pci_unmap_addr_set(ce, dma_addr, mapping);
  1106. pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
  1107. for (i = 0; nfrags--; i++) {
  1108. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1109. e1++;
  1110. ce++;
  1111. if (++pidx == q->size) {
  1112. pidx = 0;
  1113. gen ^= 1;
  1114. e1 = q->entries;
  1115. ce = q->centries;
  1116. }
  1117. mapping = pci_map_page(adapter->pdev, frag->page,
  1118. frag->page_offset, frag->size,
  1119. PCI_DMA_TODEVICE);
  1120. desc_mapping = mapping;
  1121. desc_len = frag->size;
  1122. pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
  1123. &desc_mapping, &desc_len,
  1124. nfrags, q);
  1125. if (likely(desc_len))
  1126. write_tx_desc(e1, desc_mapping, desc_len, gen,
  1127. nfrags == 0);
  1128. ce->skb = NULL;
  1129. pci_unmap_addr_set(ce, dma_addr, mapping);
  1130. pci_unmap_len_set(ce, dma_len, frag->size);
  1131. }
  1132. ce->skb = skb;
  1133. wmb();
  1134. e->flags = flags;
  1135. }
  1136. /*
  1137. * Clean up completed Tx buffers.
  1138. */
  1139. static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
  1140. {
  1141. unsigned int reclaim = q->processed - q->cleaned;
  1142. if (reclaim) {
  1143. pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
  1144. q->processed, q->cleaned);
  1145. free_cmdQ_buffers(sge, q, reclaim);
  1146. q->cleaned += reclaim;
  1147. }
  1148. }
  1149. /*
  1150. * Called from tasklet. Checks the scheduler for any
  1151. * pending skbs that can be sent.
  1152. */
  1153. static void restart_sched(unsigned long arg)
  1154. {
  1155. struct sge *sge = (struct sge *) arg;
  1156. struct adapter *adapter = sge->adapter;
  1157. struct cmdQ *q = &sge->cmdQ[0];
  1158. struct sk_buff *skb;
  1159. unsigned int credits, queued_skb = 0;
  1160. spin_lock(&q->lock);
  1161. reclaim_completed_tx(sge, q);
  1162. credits = q->size - q->in_use;
  1163. pr_debug("restart_sched credits=%d\n", credits);
  1164. while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
  1165. unsigned int genbit, pidx, count;
  1166. count = 1 + skb_shinfo(skb)->nr_frags;
  1167. count += compute_large_page_tx_descs(skb);
  1168. q->in_use += count;
  1169. genbit = q->genbit;
  1170. pidx = q->pidx;
  1171. q->pidx += count;
  1172. if (q->pidx >= q->size) {
  1173. q->pidx -= q->size;
  1174. q->genbit ^= 1;
  1175. }
  1176. write_tx_descs(adapter, skb, pidx, genbit, q);
  1177. credits = q->size - q->in_use;
  1178. queued_skb = 1;
  1179. }
  1180. if (queued_skb) {
  1181. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1182. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  1183. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1184. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1185. }
  1186. }
  1187. spin_unlock(&q->lock);
  1188. }
  1189. /**
  1190. * sge_rx - process an ingress ethernet packet
  1191. * @sge: the sge structure
  1192. * @fl: the free list that contains the packet buffer
  1193. * @len: the packet length
  1194. *
  1195. * Process an ingress ethernet pakcet and deliver it to the stack.
  1196. */
  1197. static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
  1198. {
  1199. struct sk_buff *skb;
  1200. const struct cpl_rx_pkt *p;
  1201. struct adapter *adapter = sge->adapter;
  1202. struct sge_port_stats *st;
  1203. skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
  1204. if (unlikely(!skb)) {
  1205. sge->stats.rx_drops++;
  1206. return;
  1207. }
  1208. p = (const struct cpl_rx_pkt *) skb->data;
  1209. if (p->iff >= adapter->params.nports) {
  1210. kfree_skb(skb);
  1211. return;
  1212. }
  1213. __skb_pull(skb, sizeof(*p));
  1214. st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
  1215. skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
  1216. skb->dev->last_rx = jiffies;
  1217. if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
  1218. skb->protocol == htons(ETH_P_IP) &&
  1219. (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
  1220. ++st->rx_cso_good;
  1221. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1222. } else
  1223. skb->ip_summed = CHECKSUM_NONE;
  1224. if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
  1225. st->vlan_xtract++;
  1226. #ifdef CONFIG_CHELSIO_T1_NAPI
  1227. vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
  1228. ntohs(p->vlan));
  1229. #else
  1230. vlan_hwaccel_rx(skb, adapter->vlan_grp,
  1231. ntohs(p->vlan));
  1232. #endif
  1233. } else {
  1234. #ifdef CONFIG_CHELSIO_T1_NAPI
  1235. netif_receive_skb(skb);
  1236. #else
  1237. netif_rx(skb);
  1238. #endif
  1239. }
  1240. }
  1241. /*
  1242. * Returns true if a command queue has enough available descriptors that
  1243. * we can resume Tx operation after temporarily disabling its packet queue.
  1244. */
  1245. static inline int enough_free_Tx_descs(const struct cmdQ *q)
  1246. {
  1247. unsigned int r = q->processed - q->cleaned;
  1248. return q->in_use - r < (q->size >> 1);
  1249. }
  1250. /*
  1251. * Called when sufficient space has become available in the SGE command queues
  1252. * after the Tx packet schedulers have been suspended to restart the Tx path.
  1253. */
  1254. static void restart_tx_queues(struct sge *sge)
  1255. {
  1256. struct adapter *adap = sge->adapter;
  1257. int i;
  1258. if (!enough_free_Tx_descs(&sge->cmdQ[0]))
  1259. return;
  1260. for_each_port(adap, i) {
  1261. struct net_device *nd = adap->port[i].dev;
  1262. if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
  1263. netif_running(nd)) {
  1264. sge->stats.cmdQ_restarted[2]++;
  1265. netif_wake_queue(nd);
  1266. }
  1267. }
  1268. }
  1269. /*
  1270. * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
  1271. * information.
  1272. */
  1273. static unsigned int update_tx_info(struct adapter *adapter,
  1274. unsigned int flags,
  1275. unsigned int pr0)
  1276. {
  1277. struct sge *sge = adapter->sge;
  1278. struct cmdQ *cmdq = &sge->cmdQ[0];
  1279. cmdq->processed += pr0;
  1280. if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
  1281. freelQs_empty(sge);
  1282. flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
  1283. }
  1284. if (flags & F_CMDQ0_ENABLE) {
  1285. clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
  1286. if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
  1287. !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
  1288. set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
  1289. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1290. }
  1291. if (sge->tx_sched)
  1292. tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
  1293. flags &= ~F_CMDQ0_ENABLE;
  1294. }
  1295. if (unlikely(sge->stopped_tx_queues != 0))
  1296. restart_tx_queues(sge);
  1297. return flags;
  1298. }
  1299. /*
  1300. * Process SGE responses, up to the supplied budget. Returns the number of
  1301. * responses processed. A negative budget is effectively unlimited.
  1302. */
  1303. static int process_responses(struct adapter *adapter, int budget)
  1304. {
  1305. struct sge *sge = adapter->sge;
  1306. struct respQ *q = &sge->respQ;
  1307. struct respQ_e *e = &q->entries[q->cidx];
  1308. int done = 0;
  1309. unsigned int flags = 0;
  1310. unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
  1311. while (done < budget && e->GenerationBit == q->genbit) {
  1312. flags |= e->Qsleeping;
  1313. cmdq_processed[0] += e->Cmdq0CreditReturn;
  1314. cmdq_processed[1] += e->Cmdq1CreditReturn;
  1315. /* We batch updates to the TX side to avoid cacheline
  1316. * ping-pong of TX state information on MP where the sender
  1317. * might run on a different CPU than this function...
  1318. */
  1319. if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
  1320. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1321. cmdq_processed[0] = 0;
  1322. }
  1323. if (unlikely(cmdq_processed[1] > 16)) {
  1324. sge->cmdQ[1].processed += cmdq_processed[1];
  1325. cmdq_processed[1] = 0;
  1326. }
  1327. if (likely(e->DataValid)) {
  1328. struct freelQ *fl = &sge->freelQ[e->FreelistQid];
  1329. BUG_ON(!e->Sop || !e->Eop);
  1330. if (unlikely(e->Offload))
  1331. unexpected_offload(adapter, fl);
  1332. else
  1333. sge_rx(sge, fl, e->BufferLength);
  1334. ++done;
  1335. /*
  1336. * Note: this depends on each packet consuming a
  1337. * single free-list buffer; cf. the BUG above.
  1338. */
  1339. if (++fl->cidx == fl->size)
  1340. fl->cidx = 0;
  1341. prefetch(fl->centries[fl->cidx].skb);
  1342. if (unlikely(--fl->credits <
  1343. fl->size - SGE_FREEL_REFILL_THRESH))
  1344. refill_free_list(sge, fl);
  1345. } else
  1346. sge->stats.pure_rsps++;
  1347. e++;
  1348. if (unlikely(++q->cidx == q->size)) {
  1349. q->cidx = 0;
  1350. q->genbit ^= 1;
  1351. e = q->entries;
  1352. }
  1353. prefetch(e);
  1354. if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
  1355. writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
  1356. q->credits = 0;
  1357. }
  1358. }
  1359. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1360. sge->cmdQ[1].processed += cmdq_processed[1];
  1361. return done;
  1362. }
  1363. static inline int responses_pending(const struct adapter *adapter)
  1364. {
  1365. const struct respQ *Q = &adapter->sge->respQ;
  1366. const struct respQ_e *e = &Q->entries[Q->cidx];
  1367. return (e->GenerationBit == Q->genbit);
  1368. }
  1369. #ifdef CONFIG_CHELSIO_T1_NAPI
  1370. /*
  1371. * A simpler version of process_responses() that handles only pure (i.e.,
  1372. * non data-carrying) responses. Such respones are too light-weight to justify
  1373. * calling a softirq when using NAPI, so we handle them specially in hard
  1374. * interrupt context. The function is called with a pointer to a response,
  1375. * which the caller must ensure is a valid pure response. Returns 1 if it
  1376. * encounters a valid data-carrying response, 0 otherwise.
  1377. */
  1378. static int process_pure_responses(struct adapter *adapter)
  1379. {
  1380. struct sge *sge = adapter->sge;
  1381. struct respQ *q = &sge->respQ;
  1382. struct respQ_e *e = &q->entries[q->cidx];
  1383. const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
  1384. unsigned int flags = 0;
  1385. unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
  1386. prefetch(fl->centries[fl->cidx].skb);
  1387. if (e->DataValid)
  1388. return 1;
  1389. do {
  1390. flags |= e->Qsleeping;
  1391. cmdq_processed[0] += e->Cmdq0CreditReturn;
  1392. cmdq_processed[1] += e->Cmdq1CreditReturn;
  1393. e++;
  1394. if (unlikely(++q->cidx == q->size)) {
  1395. q->cidx = 0;
  1396. q->genbit ^= 1;
  1397. e = q->entries;
  1398. }
  1399. prefetch(e);
  1400. if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
  1401. writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
  1402. q->credits = 0;
  1403. }
  1404. sge->stats.pure_rsps++;
  1405. } while (e->GenerationBit == q->genbit && !e->DataValid);
  1406. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1407. sge->cmdQ[1].processed += cmdq_processed[1];
  1408. return e->GenerationBit == q->genbit;
  1409. }
  1410. /*
  1411. * Handler for new data events when using NAPI. This does not need any locking
  1412. * or protection from interrupts as data interrupts are off at this point and
  1413. * other adapter interrupts do not interfere.
  1414. */
  1415. int t1_poll(struct napi_struct *napi, int budget)
  1416. {
  1417. struct adapter *adapter = container_of(napi, struct adapter, napi);
  1418. struct net_device *dev = adapter->port[0].dev;
  1419. int work_done = process_responses(adapter, budget);
  1420. if (likely(work_done < budget)) {
  1421. netif_rx_complete(dev, napi);
  1422. writel(adapter->sge->respQ.cidx,
  1423. adapter->regs + A_SG_SLEEPING);
  1424. }
  1425. return work_done;
  1426. }
  1427. /*
  1428. * NAPI version of the main interrupt handler.
  1429. */
  1430. irqreturn_t t1_interrupt(int irq, void *data)
  1431. {
  1432. struct adapter *adapter = data;
  1433. struct sge *sge = adapter->sge;
  1434. int handled;
  1435. if (likely(responses_pending(adapter))) {
  1436. struct net_device *dev = sge->netdev;
  1437. writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
  1438. if (napi_schedule_prep(&adapter->napi)) {
  1439. if (process_pure_responses(adapter))
  1440. __netif_rx_schedule(dev, &adapter->napi);
  1441. else {
  1442. /* no data, no NAPI needed */
  1443. writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
  1444. napi_enable(&adapter->napi); /* undo schedule_prep */
  1445. }
  1446. }
  1447. return IRQ_HANDLED;
  1448. }
  1449. spin_lock(&adapter->async_lock);
  1450. handled = t1_slow_intr_handler(adapter);
  1451. spin_unlock(&adapter->async_lock);
  1452. if (!handled)
  1453. sge->stats.unhandled_irqs++;
  1454. return IRQ_RETVAL(handled != 0);
  1455. }
  1456. #else
  1457. /*
  1458. * Main interrupt handler, optimized assuming that we took a 'DATA'
  1459. * interrupt.
  1460. *
  1461. * 1. Clear the interrupt
  1462. * 2. Loop while we find valid descriptors and process them; accumulate
  1463. * information that can be processed after the loop
  1464. * 3. Tell the SGE at which index we stopped processing descriptors
  1465. * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
  1466. * outstanding TX buffers waiting, replenish RX buffers, potentially
  1467. * reenable upper layers if they were turned off due to lack of TX
  1468. * resources which are available again.
  1469. * 5. If we took an interrupt, but no valid respQ descriptors was found we
  1470. * let the slow_intr_handler run and do error handling.
  1471. */
  1472. irqreturn_t t1_interrupt(int irq, void *cookie)
  1473. {
  1474. int work_done;
  1475. struct adapter *adapter = cookie;
  1476. struct respQ *Q = &adapter->sge->respQ;
  1477. spin_lock(&adapter->async_lock);
  1478. writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
  1479. if (likely(responses_pending(adapter)))
  1480. work_done = process_responses(adapter, -1);
  1481. else
  1482. work_done = t1_slow_intr_handler(adapter);
  1483. /*
  1484. * The unconditional clearing of the PL_CAUSE above may have raced
  1485. * with DMA completion and the corresponding generation of a response
  1486. * to cause us to miss the resulting data interrupt. The next write
  1487. * is also unconditional to recover the missed interrupt and render
  1488. * this race harmless.
  1489. */
  1490. writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
  1491. if (!work_done)
  1492. adapter->sge->stats.unhandled_irqs++;
  1493. spin_unlock(&adapter->async_lock);
  1494. return IRQ_RETVAL(work_done != 0);
  1495. }
  1496. #endif
  1497. /*
  1498. * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
  1499. *
  1500. * The code figures out how many entries the sk_buff will require in the
  1501. * cmdQ and updates the cmdQ data structure with the state once the enqueue
  1502. * has complete. Then, it doesn't access the global structure anymore, but
  1503. * uses the corresponding fields on the stack. In conjuction with a spinlock
  1504. * around that code, we can make the function reentrant without holding the
  1505. * lock when we actually enqueue (which might be expensive, especially on
  1506. * architectures with IO MMUs).
  1507. *
  1508. * This runs with softirqs disabled.
  1509. */
  1510. static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
  1511. unsigned int qid, struct net_device *dev)
  1512. {
  1513. struct sge *sge = adapter->sge;
  1514. struct cmdQ *q = &sge->cmdQ[qid];
  1515. unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
  1516. if (!spin_trylock(&q->lock))
  1517. return NETDEV_TX_LOCKED;
  1518. reclaim_completed_tx(sge, q);
  1519. pidx = q->pidx;
  1520. credits = q->size - q->in_use;
  1521. count = 1 + skb_shinfo(skb)->nr_frags;
  1522. count += compute_large_page_tx_descs(skb);
  1523. /* Ethernet packet */
  1524. if (unlikely(credits < count)) {
  1525. if (!netif_queue_stopped(dev)) {
  1526. netif_stop_queue(dev);
  1527. set_bit(dev->if_port, &sge->stopped_tx_queues);
  1528. sge->stats.cmdQ_full[2]++;
  1529. CH_ERR("%s: Tx ring full while queue awake!\n",
  1530. adapter->name);
  1531. }
  1532. spin_unlock(&q->lock);
  1533. return NETDEV_TX_BUSY;
  1534. }
  1535. if (unlikely(credits - count < q->stop_thres)) {
  1536. netif_stop_queue(dev);
  1537. set_bit(dev->if_port, &sge->stopped_tx_queues);
  1538. sge->stats.cmdQ_full[2]++;
  1539. }
  1540. /* T204 cmdQ0 skbs that are destined for a certain port have to go
  1541. * through the scheduler.
  1542. */
  1543. if (sge->tx_sched && !qid && skb->dev) {
  1544. use_sched:
  1545. use_sched_skb = 1;
  1546. /* Note that the scheduler might return a different skb than
  1547. * the one passed in.
  1548. */
  1549. skb = sched_skb(sge, skb, credits);
  1550. if (!skb) {
  1551. spin_unlock(&q->lock);
  1552. return NETDEV_TX_OK;
  1553. }
  1554. pidx = q->pidx;
  1555. count = 1 + skb_shinfo(skb)->nr_frags;
  1556. count += compute_large_page_tx_descs(skb);
  1557. }
  1558. q->in_use += count;
  1559. genbit = q->genbit;
  1560. pidx = q->pidx;
  1561. q->pidx += count;
  1562. if (q->pidx >= q->size) {
  1563. q->pidx -= q->size;
  1564. q->genbit ^= 1;
  1565. }
  1566. spin_unlock(&q->lock);
  1567. write_tx_descs(adapter, skb, pidx, genbit, q);
  1568. /*
  1569. * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
  1570. * the doorbell if the Q is asleep. There is a natural race, where
  1571. * the hardware is going to sleep just after we checked, however,
  1572. * then the interrupt handler will detect the outstanding TX packet
  1573. * and ring the doorbell for us.
  1574. */
  1575. if (qid)
  1576. doorbell_pio(adapter, F_CMDQ1_ENABLE);
  1577. else {
  1578. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1579. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  1580. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1581. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1582. }
  1583. }
  1584. if (use_sched_skb) {
  1585. if (spin_trylock(&q->lock)) {
  1586. credits = q->size - q->in_use;
  1587. skb = NULL;
  1588. goto use_sched;
  1589. }
  1590. }
  1591. return NETDEV_TX_OK;
  1592. }
  1593. #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
  1594. /*
  1595. * eth_hdr_len - return the length of an Ethernet header
  1596. * @data: pointer to the start of the Ethernet header
  1597. *
  1598. * Returns the length of an Ethernet header, including optional VLAN tag.
  1599. */
  1600. static inline int eth_hdr_len(const void *data)
  1601. {
  1602. const struct ethhdr *e = data;
  1603. return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
  1604. }
  1605. /*
  1606. * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
  1607. */
  1608. int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1609. {
  1610. struct adapter *adapter = dev->priv;
  1611. struct sge *sge = adapter->sge;
  1612. struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port],
  1613. smp_processor_id());
  1614. struct cpl_tx_pkt *cpl;
  1615. struct sk_buff *orig_skb = skb;
  1616. int ret;
  1617. if (skb->protocol == htons(ETH_P_CPL5))
  1618. goto send;
  1619. /*
  1620. * We are using a non-standard hard_header_len.
  1621. * Allocate more header room in the rare cases it is not big enough.
  1622. */
  1623. if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
  1624. skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
  1625. ++st->tx_need_hdrroom;
  1626. dev_kfree_skb_any(orig_skb);
  1627. if (!skb)
  1628. return NETDEV_TX_OK;
  1629. }
  1630. if (skb_shinfo(skb)->gso_size) {
  1631. int eth_type;
  1632. struct cpl_tx_pkt_lso *hdr;
  1633. ++st->tx_tso;
  1634. eth_type = skb_network_offset(skb) == ETH_HLEN ?
  1635. CPL_ETH_II : CPL_ETH_II_VLAN;
  1636. hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
  1637. hdr->opcode = CPL_TX_PKT_LSO;
  1638. hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
  1639. hdr->ip_hdr_words = ip_hdr(skb)->ihl;
  1640. hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
  1641. hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
  1642. skb_shinfo(skb)->gso_size));
  1643. hdr->len = htonl(skb->len - sizeof(*hdr));
  1644. cpl = (struct cpl_tx_pkt *)hdr;
  1645. } else {
  1646. /*
  1647. * Packets shorter than ETH_HLEN can break the MAC, drop them
  1648. * early. Also, we may get oversized packets because some
  1649. * parts of the kernel don't handle our unusual hard_header_len
  1650. * right, drop those too.
  1651. */
  1652. if (unlikely(skb->len < ETH_HLEN ||
  1653. skb->len > dev->mtu + eth_hdr_len(skb->data))) {
  1654. pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
  1655. skb->len, eth_hdr_len(skb->data), dev->mtu);
  1656. dev_kfree_skb_any(skb);
  1657. return NETDEV_TX_OK;
  1658. }
  1659. if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
  1660. skb->ip_summed == CHECKSUM_PARTIAL &&
  1661. ip_hdr(skb)->protocol == IPPROTO_UDP) {
  1662. if (unlikely(skb_checksum_help(skb))) {
  1663. pr_debug("%s: unable to do udp checksum\n", dev->name);
  1664. dev_kfree_skb_any(skb);
  1665. return NETDEV_TX_OK;
  1666. }
  1667. }
  1668. /* Hmmm, assuming to catch the gratious arp... and we'll use
  1669. * it to flush out stuck espi packets...
  1670. */
  1671. if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
  1672. if (skb->protocol == htons(ETH_P_ARP) &&
  1673. arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
  1674. adapter->sge->espibug_skb[dev->if_port] = skb;
  1675. /* We want to re-use this skb later. We
  1676. * simply bump the reference count and it
  1677. * will not be freed...
  1678. */
  1679. skb = skb_get(skb);
  1680. }
  1681. }
  1682. cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
  1683. cpl->opcode = CPL_TX_PKT;
  1684. cpl->ip_csum_dis = 1; /* SW calculates IP csum */
  1685. cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
  1686. /* the length field isn't used so don't bother setting it */
  1687. st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
  1688. }
  1689. cpl->iff = dev->if_port;
  1690. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  1691. if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
  1692. cpl->vlan_valid = 1;
  1693. cpl->vlan = htons(vlan_tx_tag_get(skb));
  1694. st->vlan_insert++;
  1695. } else
  1696. #endif
  1697. cpl->vlan_valid = 0;
  1698. send:
  1699. dev->trans_start = jiffies;
  1700. ret = t1_sge_tx(skb, adapter, 0, dev);
  1701. /* If transmit busy, and we reallocated skb's due to headroom limit,
  1702. * then silently discard to avoid leak.
  1703. */
  1704. if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
  1705. dev_kfree_skb_any(skb);
  1706. ret = NETDEV_TX_OK;
  1707. }
  1708. return ret;
  1709. }
  1710. /*
  1711. * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
  1712. */
  1713. static void sge_tx_reclaim_cb(unsigned long data)
  1714. {
  1715. int i;
  1716. struct sge *sge = (struct sge *)data;
  1717. for (i = 0; i < SGE_CMDQ_N; ++i) {
  1718. struct cmdQ *q = &sge->cmdQ[i];
  1719. if (!spin_trylock(&q->lock))
  1720. continue;
  1721. reclaim_completed_tx(sge, q);
  1722. if (i == 0 && q->in_use) { /* flush pending credits */
  1723. writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
  1724. }
  1725. spin_unlock(&q->lock);
  1726. }
  1727. mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  1728. }
  1729. /*
  1730. * Propagate changes of the SGE coalescing parameters to the HW.
  1731. */
  1732. int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
  1733. {
  1734. sge->fixed_intrtimer = p->rx_coalesce_usecs *
  1735. core_ticks_per_usec(sge->adapter);
  1736. writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
  1737. return 0;
  1738. }
  1739. /*
  1740. * Allocates both RX and TX resources and configures the SGE. However,
  1741. * the hardware is not enabled yet.
  1742. */
  1743. int t1_sge_configure(struct sge *sge, struct sge_params *p)
  1744. {
  1745. if (alloc_rx_resources(sge, p))
  1746. return -ENOMEM;
  1747. if (alloc_tx_resources(sge, p)) {
  1748. free_rx_resources(sge);
  1749. return -ENOMEM;
  1750. }
  1751. configure_sge(sge, p);
  1752. /*
  1753. * Now that we have sized the free lists calculate the payload
  1754. * capacity of the large buffers. Other parts of the driver use
  1755. * this to set the max offload coalescing size so that RX packets
  1756. * do not overflow our large buffers.
  1757. */
  1758. p->large_buf_capacity = jumbo_payload_capacity(sge);
  1759. return 0;
  1760. }
  1761. /*
  1762. * Disables the DMA engine.
  1763. */
  1764. void t1_sge_stop(struct sge *sge)
  1765. {
  1766. int i;
  1767. writel(0, sge->adapter->regs + A_SG_CONTROL);
  1768. readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
  1769. if (is_T2(sge->adapter))
  1770. del_timer_sync(&sge->espibug_timer);
  1771. del_timer_sync(&sge->tx_reclaim_timer);
  1772. if (sge->tx_sched)
  1773. tx_sched_stop(sge);
  1774. for (i = 0; i < MAX_NPORTS; i++)
  1775. if (sge->espibug_skb[i])
  1776. kfree_skb(sge->espibug_skb[i]);
  1777. }
  1778. /*
  1779. * Enables the DMA engine.
  1780. */
  1781. void t1_sge_start(struct sge *sge)
  1782. {
  1783. refill_free_list(sge, &sge->freelQ[0]);
  1784. refill_free_list(sge, &sge->freelQ[1]);
  1785. writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
  1786. doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
  1787. readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
  1788. mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  1789. if (is_T2(sge->adapter))
  1790. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1791. }
  1792. /*
  1793. * Callback for the T2 ESPI 'stuck packet feature' workaorund
  1794. */
  1795. static void espibug_workaround_t204(unsigned long data)
  1796. {
  1797. struct adapter *adapter = (struct adapter *)data;
  1798. struct sge *sge = adapter->sge;
  1799. unsigned int nports = adapter->params.nports;
  1800. u32 seop[MAX_NPORTS];
  1801. if (adapter->open_device_map & PORT_MASK) {
  1802. int i;
  1803. if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
  1804. return;
  1805. for (i = 0; i < nports; i++) {
  1806. struct sk_buff *skb = sge->espibug_skb[i];
  1807. if (!netif_running(adapter->port[i].dev) ||
  1808. netif_queue_stopped(adapter->port[i].dev) ||
  1809. !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
  1810. continue;
  1811. if (!skb->cb[0]) {
  1812. u8 ch_mac_addr[ETH_ALEN] = {
  1813. 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
  1814. };
  1815. skb_copy_to_linear_data_offset(skb,
  1816. sizeof(struct cpl_tx_pkt),
  1817. ch_mac_addr,
  1818. ETH_ALEN);
  1819. skb_copy_to_linear_data_offset(skb,
  1820. skb->len - 10,
  1821. ch_mac_addr,
  1822. ETH_ALEN);
  1823. skb->cb[0] = 0xff;
  1824. }
  1825. /* bump the reference count to avoid freeing of
  1826. * the skb once the DMA has completed.
  1827. */
  1828. skb = skb_get(skb);
  1829. t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
  1830. }
  1831. }
  1832. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1833. }
  1834. static void espibug_workaround(unsigned long data)
  1835. {
  1836. struct adapter *adapter = (struct adapter *)data;
  1837. struct sge *sge = adapter->sge;
  1838. if (netif_running(adapter->port[0].dev)) {
  1839. struct sk_buff *skb = sge->espibug_skb[0];
  1840. u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
  1841. if ((seop & 0xfff0fff) == 0xfff && skb) {
  1842. if (!skb->cb[0]) {
  1843. u8 ch_mac_addr[ETH_ALEN] =
  1844. {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
  1845. skb_copy_to_linear_data_offset(skb,
  1846. sizeof(struct cpl_tx_pkt),
  1847. ch_mac_addr,
  1848. ETH_ALEN);
  1849. skb_copy_to_linear_data_offset(skb,
  1850. skb->len - 10,
  1851. ch_mac_addr,
  1852. ETH_ALEN);
  1853. skb->cb[0] = 0xff;
  1854. }
  1855. /* bump the reference count to avoid freeing of the
  1856. * skb once the DMA has completed.
  1857. */
  1858. skb = skb_get(skb);
  1859. t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
  1860. }
  1861. }
  1862. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1863. }
  1864. /*
  1865. * Creates a t1_sge structure and returns suggested resource parameters.
  1866. */
  1867. struct sge * __devinit t1_sge_create(struct adapter *adapter,
  1868. struct sge_params *p)
  1869. {
  1870. struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
  1871. int i;
  1872. if (!sge)
  1873. return NULL;
  1874. sge->adapter = adapter;
  1875. sge->netdev = adapter->port[0].dev;
  1876. sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
  1877. sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
  1878. for_each_port(adapter, i) {
  1879. sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
  1880. if (!sge->port_stats[i])
  1881. goto nomem_port;
  1882. }
  1883. init_timer(&sge->tx_reclaim_timer);
  1884. sge->tx_reclaim_timer.data = (unsigned long)sge;
  1885. sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
  1886. if (is_T2(sge->adapter)) {
  1887. init_timer(&sge->espibug_timer);
  1888. if (adapter->params.nports > 1) {
  1889. tx_sched_init(sge);
  1890. sge->espibug_timer.function = espibug_workaround_t204;
  1891. } else
  1892. sge->espibug_timer.function = espibug_workaround;
  1893. sge->espibug_timer.data = (unsigned long)sge->adapter;
  1894. sge->espibug_timeout = 1;
  1895. /* for T204, every 10ms */
  1896. if (adapter->params.nports > 1)
  1897. sge->espibug_timeout = HZ/100;
  1898. }
  1899. p->cmdQ_size[0] = SGE_CMDQ0_E_N;
  1900. p->cmdQ_size[1] = SGE_CMDQ1_E_N;
  1901. p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
  1902. p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
  1903. if (sge->tx_sched) {
  1904. if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
  1905. p->rx_coalesce_usecs = 15;
  1906. else
  1907. p->rx_coalesce_usecs = 50;
  1908. } else
  1909. p->rx_coalesce_usecs = 50;
  1910. p->coalesce_enable = 0;
  1911. p->sample_interval_usecs = 0;
  1912. return sge;
  1913. nomem_port:
  1914. while (i >= 0) {
  1915. free_percpu(sge->port_stats[i]);
  1916. --i;
  1917. }
  1918. kfree(sge);
  1919. return NULL;
  1920. }