dm-crypt.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108
  1. /*
  2. * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
  3. * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
  4. * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include <linux/err.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/kernel.h>
  12. #include <linux/bio.h>
  13. #include <linux/blkdev.h>
  14. #include <linux/mempool.h>
  15. #include <linux/slab.h>
  16. #include <linux/crypto.h>
  17. #include <linux/workqueue.h>
  18. #include <linux/backing-dev.h>
  19. #include <asm/atomic.h>
  20. #include <linux/scatterlist.h>
  21. #include <asm/page.h>
  22. #include <asm/unaligned.h>
  23. #include "dm.h"
  24. #define DM_MSG_PREFIX "crypt"
  25. #define MESG_STR(x) x, sizeof(x)
  26. /*
  27. * per bio private data
  28. */
  29. struct dm_crypt_io {
  30. struct dm_target *target;
  31. struct bio *base_bio;
  32. struct work_struct work;
  33. atomic_t pending;
  34. int error;
  35. };
  36. /*
  37. * context holding the current state of a multi-part conversion
  38. */
  39. struct convert_context {
  40. struct bio *bio_in;
  41. struct bio *bio_out;
  42. unsigned int offset_in;
  43. unsigned int offset_out;
  44. unsigned int idx_in;
  45. unsigned int idx_out;
  46. sector_t sector;
  47. int write;
  48. };
  49. struct crypt_config;
  50. struct crypt_iv_operations {
  51. int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  52. const char *opts);
  53. void (*dtr)(struct crypt_config *cc);
  54. const char *(*status)(struct crypt_config *cc);
  55. int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
  56. };
  57. /*
  58. * Crypt: maps a linear range of a block device
  59. * and encrypts / decrypts at the same time.
  60. */
  61. enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
  62. struct crypt_config {
  63. struct dm_dev *dev;
  64. sector_t start;
  65. /*
  66. * pool for per bio private data and
  67. * for encryption buffer pages
  68. */
  69. mempool_t *io_pool;
  70. mempool_t *page_pool;
  71. struct bio_set *bs;
  72. struct workqueue_struct *io_queue;
  73. struct workqueue_struct *crypt_queue;
  74. /*
  75. * crypto related data
  76. */
  77. struct crypt_iv_operations *iv_gen_ops;
  78. char *iv_mode;
  79. union {
  80. struct crypto_cipher *essiv_tfm;
  81. int benbi_shift;
  82. } iv_gen_private;
  83. sector_t iv_offset;
  84. unsigned int iv_size;
  85. char cipher[CRYPTO_MAX_ALG_NAME];
  86. char chainmode[CRYPTO_MAX_ALG_NAME];
  87. struct crypto_blkcipher *tfm;
  88. unsigned long flags;
  89. unsigned int key_size;
  90. u8 key[0];
  91. };
  92. #define MIN_IOS 16
  93. #define MIN_POOL_PAGES 32
  94. #define MIN_BIO_PAGES 8
  95. static struct kmem_cache *_crypt_io_pool;
  96. static void clone_init(struct dm_crypt_io *, struct bio *);
  97. /*
  98. * Different IV generation algorithms:
  99. *
  100. * plain: the initial vector is the 32-bit little-endian version of the sector
  101. * number, padded with zeros if necessary.
  102. *
  103. * essiv: "encrypted sector|salt initial vector", the sector number is
  104. * encrypted with the bulk cipher using a salt as key. The salt
  105. * should be derived from the bulk cipher's key via hashing.
  106. *
  107. * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
  108. * (needed for LRW-32-AES and possible other narrow block modes)
  109. *
  110. * null: the initial vector is always zero. Provides compatibility with
  111. * obsolete loop_fish2 devices. Do not use for new devices.
  112. *
  113. * plumb: unimplemented, see:
  114. * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
  115. */
  116. static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  117. {
  118. memset(iv, 0, cc->iv_size);
  119. *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
  120. return 0;
  121. }
  122. static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
  123. const char *opts)
  124. {
  125. struct crypto_cipher *essiv_tfm;
  126. struct crypto_hash *hash_tfm;
  127. struct hash_desc desc;
  128. struct scatterlist sg;
  129. unsigned int saltsize;
  130. u8 *salt;
  131. int err;
  132. if (opts == NULL) {
  133. ti->error = "Digest algorithm missing for ESSIV mode";
  134. return -EINVAL;
  135. }
  136. /* Hash the cipher key with the given hash algorithm */
  137. hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
  138. if (IS_ERR(hash_tfm)) {
  139. ti->error = "Error initializing ESSIV hash";
  140. return PTR_ERR(hash_tfm);
  141. }
  142. saltsize = crypto_hash_digestsize(hash_tfm);
  143. salt = kmalloc(saltsize, GFP_KERNEL);
  144. if (salt == NULL) {
  145. ti->error = "Error kmallocing salt storage in ESSIV";
  146. crypto_free_hash(hash_tfm);
  147. return -ENOMEM;
  148. }
  149. sg_init_one(&sg, cc->key, cc->key_size);
  150. desc.tfm = hash_tfm;
  151. desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  152. err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
  153. crypto_free_hash(hash_tfm);
  154. if (err) {
  155. ti->error = "Error calculating hash in ESSIV";
  156. kfree(salt);
  157. return err;
  158. }
  159. /* Setup the essiv_tfm with the given salt */
  160. essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
  161. if (IS_ERR(essiv_tfm)) {
  162. ti->error = "Error allocating crypto tfm for ESSIV";
  163. kfree(salt);
  164. return PTR_ERR(essiv_tfm);
  165. }
  166. if (crypto_cipher_blocksize(essiv_tfm) !=
  167. crypto_blkcipher_ivsize(cc->tfm)) {
  168. ti->error = "Block size of ESSIV cipher does "
  169. "not match IV size of block cipher";
  170. crypto_free_cipher(essiv_tfm);
  171. kfree(salt);
  172. return -EINVAL;
  173. }
  174. err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
  175. if (err) {
  176. ti->error = "Failed to set key for ESSIV cipher";
  177. crypto_free_cipher(essiv_tfm);
  178. kfree(salt);
  179. return err;
  180. }
  181. kfree(salt);
  182. cc->iv_gen_private.essiv_tfm = essiv_tfm;
  183. return 0;
  184. }
  185. static void crypt_iv_essiv_dtr(struct crypt_config *cc)
  186. {
  187. crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
  188. cc->iv_gen_private.essiv_tfm = NULL;
  189. }
  190. static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  191. {
  192. memset(iv, 0, cc->iv_size);
  193. *(u64 *)iv = cpu_to_le64(sector);
  194. crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
  195. return 0;
  196. }
  197. static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
  198. const char *opts)
  199. {
  200. unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
  201. int log = ilog2(bs);
  202. /* we need to calculate how far we must shift the sector count
  203. * to get the cipher block count, we use this shift in _gen */
  204. if (1 << log != bs) {
  205. ti->error = "cypher blocksize is not a power of 2";
  206. return -EINVAL;
  207. }
  208. if (log > 9) {
  209. ti->error = "cypher blocksize is > 512";
  210. return -EINVAL;
  211. }
  212. cc->iv_gen_private.benbi_shift = 9 - log;
  213. return 0;
  214. }
  215. static void crypt_iv_benbi_dtr(struct crypt_config *cc)
  216. {
  217. }
  218. static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  219. {
  220. __be64 val;
  221. memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
  222. val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
  223. put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
  224. return 0;
  225. }
  226. static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  227. {
  228. memset(iv, 0, cc->iv_size);
  229. return 0;
  230. }
  231. static struct crypt_iv_operations crypt_iv_plain_ops = {
  232. .generator = crypt_iv_plain_gen
  233. };
  234. static struct crypt_iv_operations crypt_iv_essiv_ops = {
  235. .ctr = crypt_iv_essiv_ctr,
  236. .dtr = crypt_iv_essiv_dtr,
  237. .generator = crypt_iv_essiv_gen
  238. };
  239. static struct crypt_iv_operations crypt_iv_benbi_ops = {
  240. .ctr = crypt_iv_benbi_ctr,
  241. .dtr = crypt_iv_benbi_dtr,
  242. .generator = crypt_iv_benbi_gen
  243. };
  244. static struct crypt_iv_operations crypt_iv_null_ops = {
  245. .generator = crypt_iv_null_gen
  246. };
  247. static int
  248. crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
  249. struct scatterlist *in, unsigned int length,
  250. int write, sector_t sector)
  251. {
  252. u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
  253. struct blkcipher_desc desc = {
  254. .tfm = cc->tfm,
  255. .info = iv,
  256. .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
  257. };
  258. int r;
  259. if (cc->iv_gen_ops) {
  260. r = cc->iv_gen_ops->generator(cc, iv, sector);
  261. if (r < 0)
  262. return r;
  263. if (write)
  264. r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
  265. else
  266. r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
  267. } else {
  268. if (write)
  269. r = crypto_blkcipher_encrypt(&desc, out, in, length);
  270. else
  271. r = crypto_blkcipher_decrypt(&desc, out, in, length);
  272. }
  273. return r;
  274. }
  275. static void crypt_convert_init(struct crypt_config *cc,
  276. struct convert_context *ctx,
  277. struct bio *bio_out, struct bio *bio_in,
  278. sector_t sector, int write)
  279. {
  280. ctx->bio_in = bio_in;
  281. ctx->bio_out = bio_out;
  282. ctx->offset_in = 0;
  283. ctx->offset_out = 0;
  284. ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
  285. ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
  286. ctx->sector = sector + cc->iv_offset;
  287. ctx->write = write;
  288. }
  289. /*
  290. * Encrypt / decrypt data from one bio to another one (can be the same one)
  291. */
  292. static int crypt_convert(struct crypt_config *cc,
  293. struct convert_context *ctx)
  294. {
  295. int r = 0;
  296. while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
  297. ctx->idx_out < ctx->bio_out->bi_vcnt) {
  298. struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
  299. struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
  300. struct scatterlist sg_in, sg_out;
  301. sg_init_table(&sg_in, 1);
  302. sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
  303. sg_init_table(&sg_out, 1);
  304. sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
  305. ctx->offset_in += sg_in.length;
  306. if (ctx->offset_in >= bv_in->bv_len) {
  307. ctx->offset_in = 0;
  308. ctx->idx_in++;
  309. }
  310. ctx->offset_out += sg_out.length;
  311. if (ctx->offset_out >= bv_out->bv_len) {
  312. ctx->offset_out = 0;
  313. ctx->idx_out++;
  314. }
  315. r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
  316. ctx->write, ctx->sector);
  317. if (r < 0)
  318. break;
  319. ctx->sector++;
  320. }
  321. return r;
  322. }
  323. static void dm_crypt_bio_destructor(struct bio *bio)
  324. {
  325. struct dm_crypt_io *io = bio->bi_private;
  326. struct crypt_config *cc = io->target->private;
  327. bio_free(bio, cc->bs);
  328. }
  329. /*
  330. * Generate a new unfragmented bio with the given size
  331. * This should never violate the device limitations
  332. * May return a smaller bio when running out of pages
  333. */
  334. static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
  335. {
  336. struct crypt_config *cc = io->target->private;
  337. struct bio *clone;
  338. unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  339. gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
  340. unsigned i, len;
  341. struct page *page;
  342. clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
  343. if (!clone)
  344. return NULL;
  345. clone_init(io, clone);
  346. for (i = 0; i < nr_iovecs; i++) {
  347. page = mempool_alloc(cc->page_pool, gfp_mask);
  348. if (!page)
  349. break;
  350. /*
  351. * if additional pages cannot be allocated without waiting,
  352. * return a partially allocated bio, the caller will then try
  353. * to allocate additional bios while submitting this partial bio
  354. */
  355. if (i == (MIN_BIO_PAGES - 1))
  356. gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
  357. len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
  358. if (!bio_add_page(clone, page, len, 0)) {
  359. mempool_free(page, cc->page_pool);
  360. break;
  361. }
  362. size -= len;
  363. }
  364. if (!clone->bi_size) {
  365. bio_put(clone);
  366. return NULL;
  367. }
  368. return clone;
  369. }
  370. static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
  371. {
  372. unsigned int i;
  373. struct bio_vec *bv;
  374. for (i = 0; i < clone->bi_vcnt; i++) {
  375. bv = bio_iovec_idx(clone, i);
  376. BUG_ON(!bv->bv_page);
  377. mempool_free(bv->bv_page, cc->page_pool);
  378. bv->bv_page = NULL;
  379. }
  380. }
  381. /*
  382. * One of the bios was finished. Check for completion of
  383. * the whole request and correctly clean up the buffer.
  384. */
  385. static void crypt_dec_pending(struct dm_crypt_io *io, int error)
  386. {
  387. struct crypt_config *cc = (struct crypt_config *) io->target->private;
  388. if (error < 0)
  389. io->error = error;
  390. if (!atomic_dec_and_test(&io->pending))
  391. return;
  392. bio_endio(io->base_bio, io->error);
  393. mempool_free(io, cc->io_pool);
  394. }
  395. /*
  396. * kcryptd/kcryptd_io:
  397. *
  398. * Needed because it would be very unwise to do decryption in an
  399. * interrupt context.
  400. *
  401. * kcryptd performs the actual encryption or decryption.
  402. *
  403. * kcryptd_io performs the IO submission.
  404. *
  405. * They must be separated as otherwise the final stages could be
  406. * starved by new requests which can block in the first stages due
  407. * to memory allocation.
  408. */
  409. static void kcryptd_do_work(struct work_struct *work);
  410. static void kcryptd_do_crypt(struct work_struct *work);
  411. static void kcryptd_queue_io(struct dm_crypt_io *io)
  412. {
  413. struct crypt_config *cc = io->target->private;
  414. INIT_WORK(&io->work, kcryptd_do_work);
  415. queue_work(cc->io_queue, &io->work);
  416. }
  417. static void kcryptd_queue_crypt(struct dm_crypt_io *io)
  418. {
  419. struct crypt_config *cc = io->target->private;
  420. INIT_WORK(&io->work, kcryptd_do_crypt);
  421. queue_work(cc->crypt_queue, &io->work);
  422. }
  423. static void crypt_endio(struct bio *clone, int error)
  424. {
  425. struct dm_crypt_io *io = clone->bi_private;
  426. struct crypt_config *cc = io->target->private;
  427. unsigned read_io = bio_data_dir(clone) == READ;
  428. if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
  429. error = -EIO;
  430. /*
  431. * free the processed pages
  432. */
  433. if (!read_io) {
  434. crypt_free_buffer_pages(cc, clone);
  435. goto out;
  436. }
  437. if (unlikely(error))
  438. goto out;
  439. bio_put(clone);
  440. kcryptd_queue_crypt(io);
  441. return;
  442. out:
  443. bio_put(clone);
  444. crypt_dec_pending(io, error);
  445. }
  446. static void clone_init(struct dm_crypt_io *io, struct bio *clone)
  447. {
  448. struct crypt_config *cc = io->target->private;
  449. clone->bi_private = io;
  450. clone->bi_end_io = crypt_endio;
  451. clone->bi_bdev = cc->dev->bdev;
  452. clone->bi_rw = io->base_bio->bi_rw;
  453. clone->bi_destructor = dm_crypt_bio_destructor;
  454. }
  455. static void process_read(struct dm_crypt_io *io)
  456. {
  457. struct crypt_config *cc = io->target->private;
  458. struct bio *base_bio = io->base_bio;
  459. struct bio *clone;
  460. sector_t sector = base_bio->bi_sector - io->target->begin;
  461. atomic_inc(&io->pending);
  462. /*
  463. * The block layer might modify the bvec array, so always
  464. * copy the required bvecs because we need the original
  465. * one in order to decrypt the whole bio data *afterwards*.
  466. */
  467. clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
  468. if (unlikely(!clone)) {
  469. crypt_dec_pending(io, -ENOMEM);
  470. return;
  471. }
  472. clone_init(io, clone);
  473. clone->bi_idx = 0;
  474. clone->bi_vcnt = bio_segments(base_bio);
  475. clone->bi_size = base_bio->bi_size;
  476. clone->bi_sector = cc->start + sector;
  477. memcpy(clone->bi_io_vec, bio_iovec(base_bio),
  478. sizeof(struct bio_vec) * clone->bi_vcnt);
  479. generic_make_request(clone);
  480. }
  481. static void process_write(struct dm_crypt_io *io)
  482. {
  483. struct crypt_config *cc = io->target->private;
  484. struct bio *base_bio = io->base_bio;
  485. struct bio *clone;
  486. struct convert_context ctx;
  487. unsigned remaining = base_bio->bi_size;
  488. sector_t sector = base_bio->bi_sector - io->target->begin;
  489. atomic_inc(&io->pending);
  490. crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
  491. /*
  492. * The allocated buffers can be smaller than the whole bio,
  493. * so repeat the whole process until all the data can be handled.
  494. */
  495. while (remaining) {
  496. clone = crypt_alloc_buffer(io, remaining);
  497. if (unlikely(!clone)) {
  498. crypt_dec_pending(io, -ENOMEM);
  499. return;
  500. }
  501. ctx.bio_out = clone;
  502. ctx.idx_out = 0;
  503. if (unlikely(crypt_convert(cc, &ctx) < 0)) {
  504. crypt_free_buffer_pages(cc, clone);
  505. bio_put(clone);
  506. crypt_dec_pending(io, -EIO);
  507. return;
  508. }
  509. /* crypt_convert should have filled the clone bio */
  510. BUG_ON(ctx.idx_out < clone->bi_vcnt);
  511. clone->bi_sector = cc->start + sector;
  512. remaining -= clone->bi_size;
  513. sector += bio_sectors(clone);
  514. /* Grab another reference to the io struct
  515. * before we kick off the request */
  516. if (remaining)
  517. atomic_inc(&io->pending);
  518. generic_make_request(clone);
  519. /* Do not reference clone after this - it
  520. * may be gone already. */
  521. /* out of memory -> run queues */
  522. if (remaining)
  523. congestion_wait(WRITE, HZ/100);
  524. }
  525. }
  526. static void process_read_endio(struct dm_crypt_io *io)
  527. {
  528. struct crypt_config *cc = io->target->private;
  529. struct convert_context ctx;
  530. crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
  531. io->base_bio->bi_sector - io->target->begin, 0);
  532. crypt_dec_pending(io, crypt_convert(cc, &ctx));
  533. }
  534. static void kcryptd_do_work(struct work_struct *work)
  535. {
  536. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  537. if (bio_data_dir(io->base_bio) == READ)
  538. process_read(io);
  539. }
  540. static void kcryptd_do_crypt(struct work_struct *work)
  541. {
  542. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  543. if (bio_data_dir(io->base_bio) == READ)
  544. process_read_endio(io);
  545. else
  546. process_write(io);
  547. }
  548. /*
  549. * Decode key from its hex representation
  550. */
  551. static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
  552. {
  553. char buffer[3];
  554. char *endp;
  555. unsigned int i;
  556. buffer[2] = '\0';
  557. for (i = 0; i < size; i++) {
  558. buffer[0] = *hex++;
  559. buffer[1] = *hex++;
  560. key[i] = (u8)simple_strtoul(buffer, &endp, 16);
  561. if (endp != &buffer[2])
  562. return -EINVAL;
  563. }
  564. if (*hex != '\0')
  565. return -EINVAL;
  566. return 0;
  567. }
  568. /*
  569. * Encode key into its hex representation
  570. */
  571. static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
  572. {
  573. unsigned int i;
  574. for (i = 0; i < size; i++) {
  575. sprintf(hex, "%02x", *key);
  576. hex += 2;
  577. key++;
  578. }
  579. }
  580. static int crypt_set_key(struct crypt_config *cc, char *key)
  581. {
  582. unsigned key_size = strlen(key) >> 1;
  583. if (cc->key_size && cc->key_size != key_size)
  584. return -EINVAL;
  585. cc->key_size = key_size; /* initial settings */
  586. if ((!key_size && strcmp(key, "-")) ||
  587. (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
  588. return -EINVAL;
  589. set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  590. return 0;
  591. }
  592. static int crypt_wipe_key(struct crypt_config *cc)
  593. {
  594. clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  595. memset(&cc->key, 0, cc->key_size * sizeof(u8));
  596. return 0;
  597. }
  598. /*
  599. * Construct an encryption mapping:
  600. * <cipher> <key> <iv_offset> <dev_path> <start>
  601. */
  602. static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  603. {
  604. struct crypt_config *cc;
  605. struct crypto_blkcipher *tfm;
  606. char *tmp;
  607. char *cipher;
  608. char *chainmode;
  609. char *ivmode;
  610. char *ivopts;
  611. unsigned int key_size;
  612. unsigned long long tmpll;
  613. if (argc != 5) {
  614. ti->error = "Not enough arguments";
  615. return -EINVAL;
  616. }
  617. tmp = argv[0];
  618. cipher = strsep(&tmp, "-");
  619. chainmode = strsep(&tmp, "-");
  620. ivopts = strsep(&tmp, "-");
  621. ivmode = strsep(&ivopts, ":");
  622. if (tmp)
  623. DMWARN("Unexpected additional cipher options");
  624. key_size = strlen(argv[1]) >> 1;
  625. cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
  626. if (cc == NULL) {
  627. ti->error =
  628. "Cannot allocate transparent encryption context";
  629. return -ENOMEM;
  630. }
  631. if (crypt_set_key(cc, argv[1])) {
  632. ti->error = "Error decoding key";
  633. goto bad_cipher;
  634. }
  635. /* Compatiblity mode for old dm-crypt cipher strings */
  636. if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
  637. chainmode = "cbc";
  638. ivmode = "plain";
  639. }
  640. if (strcmp(chainmode, "ecb") && !ivmode) {
  641. ti->error = "This chaining mode requires an IV mechanism";
  642. goto bad_cipher;
  643. }
  644. if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
  645. chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
  646. ti->error = "Chain mode + cipher name is too long";
  647. goto bad_cipher;
  648. }
  649. tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
  650. if (IS_ERR(tfm)) {
  651. ti->error = "Error allocating crypto tfm";
  652. goto bad_cipher;
  653. }
  654. strcpy(cc->cipher, cipher);
  655. strcpy(cc->chainmode, chainmode);
  656. cc->tfm = tfm;
  657. /*
  658. * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
  659. * See comments at iv code
  660. */
  661. if (ivmode == NULL)
  662. cc->iv_gen_ops = NULL;
  663. else if (strcmp(ivmode, "plain") == 0)
  664. cc->iv_gen_ops = &crypt_iv_plain_ops;
  665. else if (strcmp(ivmode, "essiv") == 0)
  666. cc->iv_gen_ops = &crypt_iv_essiv_ops;
  667. else if (strcmp(ivmode, "benbi") == 0)
  668. cc->iv_gen_ops = &crypt_iv_benbi_ops;
  669. else if (strcmp(ivmode, "null") == 0)
  670. cc->iv_gen_ops = &crypt_iv_null_ops;
  671. else {
  672. ti->error = "Invalid IV mode";
  673. goto bad_ivmode;
  674. }
  675. if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
  676. cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
  677. goto bad_ivmode;
  678. cc->iv_size = crypto_blkcipher_ivsize(tfm);
  679. if (cc->iv_size)
  680. /* at least a 64 bit sector number should fit in our buffer */
  681. cc->iv_size = max(cc->iv_size,
  682. (unsigned int)(sizeof(u64) / sizeof(u8)));
  683. else {
  684. if (cc->iv_gen_ops) {
  685. DMWARN("Selected cipher does not support IVs");
  686. if (cc->iv_gen_ops->dtr)
  687. cc->iv_gen_ops->dtr(cc);
  688. cc->iv_gen_ops = NULL;
  689. }
  690. }
  691. cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
  692. if (!cc->io_pool) {
  693. ti->error = "Cannot allocate crypt io mempool";
  694. goto bad_slab_pool;
  695. }
  696. cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
  697. if (!cc->page_pool) {
  698. ti->error = "Cannot allocate page mempool";
  699. goto bad_page_pool;
  700. }
  701. cc->bs = bioset_create(MIN_IOS, MIN_IOS);
  702. if (!cc->bs) {
  703. ti->error = "Cannot allocate crypt bioset";
  704. goto bad_bs;
  705. }
  706. if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
  707. ti->error = "Error setting key";
  708. goto bad_device;
  709. }
  710. if (sscanf(argv[2], "%llu", &tmpll) != 1) {
  711. ti->error = "Invalid iv_offset sector";
  712. goto bad_device;
  713. }
  714. cc->iv_offset = tmpll;
  715. if (sscanf(argv[4], "%llu", &tmpll) != 1) {
  716. ti->error = "Invalid device sector";
  717. goto bad_device;
  718. }
  719. cc->start = tmpll;
  720. if (dm_get_device(ti, argv[3], cc->start, ti->len,
  721. dm_table_get_mode(ti->table), &cc->dev)) {
  722. ti->error = "Device lookup failed";
  723. goto bad_device;
  724. }
  725. if (ivmode && cc->iv_gen_ops) {
  726. if (ivopts)
  727. *(ivopts - 1) = ':';
  728. cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
  729. if (!cc->iv_mode) {
  730. ti->error = "Error kmallocing iv_mode string";
  731. goto bad_ivmode_string;
  732. }
  733. strcpy(cc->iv_mode, ivmode);
  734. } else
  735. cc->iv_mode = NULL;
  736. cc->io_queue = create_singlethread_workqueue("kcryptd_io");
  737. if (!cc->io_queue) {
  738. ti->error = "Couldn't create kcryptd io queue";
  739. goto bad_io_queue;
  740. }
  741. cc->crypt_queue = create_singlethread_workqueue("kcryptd");
  742. if (!cc->crypt_queue) {
  743. ti->error = "Couldn't create kcryptd queue";
  744. goto bad_crypt_queue;
  745. }
  746. ti->private = cc;
  747. return 0;
  748. bad_crypt_queue:
  749. destroy_workqueue(cc->io_queue);
  750. bad_io_queue:
  751. kfree(cc->iv_mode);
  752. bad_ivmode_string:
  753. dm_put_device(ti, cc->dev);
  754. bad_device:
  755. bioset_free(cc->bs);
  756. bad_bs:
  757. mempool_destroy(cc->page_pool);
  758. bad_page_pool:
  759. mempool_destroy(cc->io_pool);
  760. bad_slab_pool:
  761. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  762. cc->iv_gen_ops->dtr(cc);
  763. bad_ivmode:
  764. crypto_free_blkcipher(tfm);
  765. bad_cipher:
  766. /* Must zero key material before freeing */
  767. memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
  768. kfree(cc);
  769. return -EINVAL;
  770. }
  771. static void crypt_dtr(struct dm_target *ti)
  772. {
  773. struct crypt_config *cc = (struct crypt_config *) ti->private;
  774. destroy_workqueue(cc->io_queue);
  775. destroy_workqueue(cc->crypt_queue);
  776. bioset_free(cc->bs);
  777. mempool_destroy(cc->page_pool);
  778. mempool_destroy(cc->io_pool);
  779. kfree(cc->iv_mode);
  780. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  781. cc->iv_gen_ops->dtr(cc);
  782. crypto_free_blkcipher(cc->tfm);
  783. dm_put_device(ti, cc->dev);
  784. /* Must zero key material before freeing */
  785. memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
  786. kfree(cc);
  787. }
  788. static int crypt_map(struct dm_target *ti, struct bio *bio,
  789. union map_info *map_context)
  790. {
  791. struct crypt_config *cc = ti->private;
  792. struct dm_crypt_io *io;
  793. io = mempool_alloc(cc->io_pool, GFP_NOIO);
  794. io->target = ti;
  795. io->base_bio = bio;
  796. io->error = 0;
  797. atomic_set(&io->pending, 0);
  798. if (bio_data_dir(io->base_bio) == READ)
  799. kcryptd_queue_io(io);
  800. else
  801. kcryptd_queue_crypt(io);
  802. return DM_MAPIO_SUBMITTED;
  803. }
  804. static int crypt_status(struct dm_target *ti, status_type_t type,
  805. char *result, unsigned int maxlen)
  806. {
  807. struct crypt_config *cc = (struct crypt_config *) ti->private;
  808. unsigned int sz = 0;
  809. switch (type) {
  810. case STATUSTYPE_INFO:
  811. result[0] = '\0';
  812. break;
  813. case STATUSTYPE_TABLE:
  814. if (cc->iv_mode)
  815. DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
  816. cc->iv_mode);
  817. else
  818. DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
  819. if (cc->key_size > 0) {
  820. if ((maxlen - sz) < ((cc->key_size << 1) + 1))
  821. return -ENOMEM;
  822. crypt_encode_key(result + sz, cc->key, cc->key_size);
  823. sz += cc->key_size << 1;
  824. } else {
  825. if (sz >= maxlen)
  826. return -ENOMEM;
  827. result[sz++] = '-';
  828. }
  829. DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
  830. cc->dev->name, (unsigned long long)cc->start);
  831. break;
  832. }
  833. return 0;
  834. }
  835. static void crypt_postsuspend(struct dm_target *ti)
  836. {
  837. struct crypt_config *cc = ti->private;
  838. set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  839. }
  840. static int crypt_preresume(struct dm_target *ti)
  841. {
  842. struct crypt_config *cc = ti->private;
  843. if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
  844. DMERR("aborting resume - crypt key is not set.");
  845. return -EAGAIN;
  846. }
  847. return 0;
  848. }
  849. static void crypt_resume(struct dm_target *ti)
  850. {
  851. struct crypt_config *cc = ti->private;
  852. clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  853. }
  854. /* Message interface
  855. * key set <key>
  856. * key wipe
  857. */
  858. static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
  859. {
  860. struct crypt_config *cc = ti->private;
  861. if (argc < 2)
  862. goto error;
  863. if (!strnicmp(argv[0], MESG_STR("key"))) {
  864. if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
  865. DMWARN("not suspended during key manipulation.");
  866. return -EINVAL;
  867. }
  868. if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
  869. return crypt_set_key(cc, argv[2]);
  870. if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
  871. return crypt_wipe_key(cc);
  872. }
  873. error:
  874. DMWARN("unrecognised message received.");
  875. return -EINVAL;
  876. }
  877. static struct target_type crypt_target = {
  878. .name = "crypt",
  879. .version= {1, 5, 0},
  880. .module = THIS_MODULE,
  881. .ctr = crypt_ctr,
  882. .dtr = crypt_dtr,
  883. .map = crypt_map,
  884. .status = crypt_status,
  885. .postsuspend = crypt_postsuspend,
  886. .preresume = crypt_preresume,
  887. .resume = crypt_resume,
  888. .message = crypt_message,
  889. };
  890. static int __init dm_crypt_init(void)
  891. {
  892. int r;
  893. _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
  894. if (!_crypt_io_pool)
  895. return -ENOMEM;
  896. r = dm_register_target(&crypt_target);
  897. if (r < 0) {
  898. DMERR("register failed %d", r);
  899. kmem_cache_destroy(_crypt_io_pool);
  900. }
  901. return r;
  902. }
  903. static void __exit dm_crypt_exit(void)
  904. {
  905. int r = dm_unregister_target(&crypt_target);
  906. if (r < 0)
  907. DMERR("unregister failed %d", r);
  908. kmem_cache_destroy(_crypt_io_pool);
  909. }
  910. module_init(dm_crypt_init);
  911. module_exit(dm_crypt_exit);
  912. MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
  913. MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
  914. MODULE_LICENSE("GPL");