lguest_user.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. /*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
  2. * controls and communicates with the Guest. For example, the first write will
  3. * tell us the Guest's memory layout, pagetable, entry point and kernel address
  4. * offset. A read will run the Guest until something happens, such as a signal
  5. * or the Guest doing a NOTIFY out to the Launcher. :*/
  6. #include <linux/uaccess.h>
  7. #include <linux/miscdevice.h>
  8. #include <linux/fs.h>
  9. #include "lg.h"
  10. /*L:055 When something happens, the Waker process needs a way to stop the
  11. * kernel running the Guest and return to the Launcher. So the Waker writes
  12. * LHREQ_BREAK and the value "1" to /dev/lguest to do this. Once the Launcher
  13. * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
  14. * the Waker. */
  15. static int break_guest_out(struct lguest *lg, const unsigned long __user *input)
  16. {
  17. unsigned long on;
  18. /* Fetch whether they're turning break on or off. */
  19. if (get_user(on, input) != 0)
  20. return -EFAULT;
  21. if (on) {
  22. lg->break_out = 1;
  23. /* Pop it out of the Guest (may be running on different CPU) */
  24. wake_up_process(lg->tsk);
  25. /* Wait for them to reset it */
  26. return wait_event_interruptible(lg->break_wq, !lg->break_out);
  27. } else {
  28. lg->break_out = 0;
  29. wake_up(&lg->break_wq);
  30. return 0;
  31. }
  32. }
  33. /*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
  34. * number to /dev/lguest. */
  35. static int user_send_irq(struct lguest *lg, const unsigned long __user *input)
  36. {
  37. unsigned long irq;
  38. if (get_user(irq, input) != 0)
  39. return -EFAULT;
  40. if (irq >= LGUEST_IRQS)
  41. return -EINVAL;
  42. /* Next time the Guest runs, the core code will see if it can deliver
  43. * this interrupt. */
  44. set_bit(irq, lg->irqs_pending);
  45. return 0;
  46. }
  47. /*L:040 Once our Guest is initialized, the Launcher makes it run by reading
  48. * from /dev/lguest. */
  49. static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
  50. {
  51. struct lguest *lg = file->private_data;
  52. /* You must write LHREQ_INITIALIZE first! */
  53. if (!lg)
  54. return -EINVAL;
  55. /* If you're not the task which owns the Guest, go away. */
  56. if (current != lg->tsk)
  57. return -EPERM;
  58. /* If the guest is already dead, we indicate why */
  59. if (lg->dead) {
  60. size_t len;
  61. /* lg->dead either contains an error code, or a string. */
  62. if (IS_ERR(lg->dead))
  63. return PTR_ERR(lg->dead);
  64. /* We can only return as much as the buffer they read with. */
  65. len = min(size, strlen(lg->dead)+1);
  66. if (copy_to_user(user, lg->dead, len) != 0)
  67. return -EFAULT;
  68. return len;
  69. }
  70. /* If we returned from read() last time because the Guest notified,
  71. * clear the flag. */
  72. if (lg->pending_notify)
  73. lg->pending_notify = 0;
  74. /* Run the Guest until something interesting happens. */
  75. return run_guest(lg, (unsigned long __user *)user);
  76. }
  77. /*L:020 The initialization write supplies 4 pointer sized (32 or 64 bit)
  78. * values (in addition to the LHREQ_INITIALIZE value). These are:
  79. *
  80. * base: The start of the Guest-physical memory inside the Launcher memory.
  81. *
  82. * pfnlimit: The highest (Guest-physical) page number the Guest should be
  83. * allowed to access. The Guest memory lives inside the Launcher, so it sets
  84. * this to ensure the Guest can only reach its own memory.
  85. *
  86. * pgdir: The (Guest-physical) address of the top of the initial Guest
  87. * pagetables (which are set up by the Launcher).
  88. *
  89. * start: The first instruction to execute ("eip" in x86-speak).
  90. */
  91. static int initialize(struct file *file, const unsigned long __user *input)
  92. {
  93. /* "struct lguest" contains everything we (the Host) know about a
  94. * Guest. */
  95. struct lguest *lg;
  96. int err;
  97. unsigned long args[4];
  98. /* We grab the Big Lguest lock, which protects against multiple
  99. * simultaneous initializations. */
  100. mutex_lock(&lguest_lock);
  101. /* You can't initialize twice! Close the device and start again... */
  102. if (file->private_data) {
  103. err = -EBUSY;
  104. goto unlock;
  105. }
  106. if (copy_from_user(args, input, sizeof(args)) != 0) {
  107. err = -EFAULT;
  108. goto unlock;
  109. }
  110. lg = kzalloc(sizeof(*lg), GFP_KERNEL);
  111. if (!lg) {
  112. err = -ENOMEM;
  113. goto unlock;
  114. }
  115. /* Populate the easy fields of our "struct lguest" */
  116. lg->mem_base = (void __user *)(long)args[0];
  117. lg->pfn_limit = args[1];
  118. /* We need a complete page for the Guest registers: they are accessible
  119. * to the Guest and we can only grant it access to whole pages. */
  120. lg->regs_page = get_zeroed_page(GFP_KERNEL);
  121. if (!lg->regs_page) {
  122. err = -ENOMEM;
  123. goto release_guest;
  124. }
  125. /* We actually put the registers at the bottom of the page. */
  126. lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs);
  127. /* Initialize the Guest's shadow page tables, using the toplevel
  128. * address the Launcher gave us. This allocates memory, so can
  129. * fail. */
  130. err = init_guest_pagetable(lg, args[2]);
  131. if (err)
  132. goto free_regs;
  133. /* Now we initialize the Guest's registers, handing it the start
  134. * address. */
  135. lguest_arch_setup_regs(lg, args[3]);
  136. /* The timer for lguest's clock needs initialization. */
  137. init_clockdev(lg);
  138. /* We keep a pointer to the Launcher task (ie. current task) for when
  139. * other Guests want to wake this one (inter-Guest I/O). */
  140. lg->tsk = current;
  141. /* We need to keep a pointer to the Launcher's memory map, because if
  142. * the Launcher dies we need to clean it up. If we don't keep a
  143. * reference, it is destroyed before close() is called. */
  144. lg->mm = get_task_mm(lg->tsk);
  145. /* Initialize the queue for the waker to wait on */
  146. init_waitqueue_head(&lg->break_wq);
  147. /* We remember which CPU's pages this Guest used last, for optimization
  148. * when the same Guest runs on the same CPU twice. */
  149. lg->last_pages = NULL;
  150. /* We keep our "struct lguest" in the file's private_data. */
  151. file->private_data = lg;
  152. mutex_unlock(&lguest_lock);
  153. /* And because this is a write() call, we return the length used. */
  154. return sizeof(args);
  155. free_regs:
  156. free_page(lg->regs_page);
  157. release_guest:
  158. kfree(lg);
  159. unlock:
  160. mutex_unlock(&lguest_lock);
  161. return err;
  162. }
  163. /*L:010 The first operation the Launcher does must be a write. All writes
  164. * start with an unsigned long number: for the first write this must be
  165. * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
  166. * writes of other values to send interrupts. */
  167. static ssize_t write(struct file *file, const char __user *in,
  168. size_t size, loff_t *off)
  169. {
  170. /* Once the guest is initialized, we hold the "struct lguest" in the
  171. * file private data. */
  172. struct lguest *lg = file->private_data;
  173. const unsigned long __user *input = (const unsigned long __user *)in;
  174. unsigned long req;
  175. if (get_user(req, input) != 0)
  176. return -EFAULT;
  177. input++;
  178. /* If you haven't initialized, you must do that first. */
  179. if (req != LHREQ_INITIALIZE && !lg)
  180. return -EINVAL;
  181. /* Once the Guest is dead, all you can do is read() why it died. */
  182. if (lg && lg->dead)
  183. return -ENOENT;
  184. /* If you're not the task which owns the Guest, you can only break */
  185. if (lg && current != lg->tsk && req != LHREQ_BREAK)
  186. return -EPERM;
  187. switch (req) {
  188. case LHREQ_INITIALIZE:
  189. return initialize(file, input);
  190. case LHREQ_IRQ:
  191. return user_send_irq(lg, input);
  192. case LHREQ_BREAK:
  193. return break_guest_out(lg, input);
  194. default:
  195. return -EINVAL;
  196. }
  197. }
  198. /*L:060 The final piece of interface code is the close() routine. It reverses
  199. * everything done in initialize(). This is usually called because the
  200. * Launcher exited.
  201. *
  202. * Note that the close routine returns 0 or a negative error number: it can't
  203. * really fail, but it can whine. I blame Sun for this wart, and K&R C for
  204. * letting them do it. :*/
  205. static int close(struct inode *inode, struct file *file)
  206. {
  207. struct lguest *lg = file->private_data;
  208. /* If we never successfully initialized, there's nothing to clean up */
  209. if (!lg)
  210. return 0;
  211. /* We need the big lock, to protect from inter-guest I/O and other
  212. * Launchers initializing guests. */
  213. mutex_lock(&lguest_lock);
  214. /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
  215. hrtimer_cancel(&lg->hrt);
  216. /* Free up the shadow page tables for the Guest. */
  217. free_guest_pagetable(lg);
  218. /* Now all the memory cleanups are done, it's safe to release the
  219. * Launcher's memory management structure. */
  220. mmput(lg->mm);
  221. /* If lg->dead doesn't contain an error code it will be NULL or a
  222. * kmalloc()ed string, either of which is ok to hand to kfree(). */
  223. if (!IS_ERR(lg->dead))
  224. kfree(lg->dead);
  225. /* We can free up the register page we allocated. */
  226. free_page(lg->regs_page);
  227. /* We clear the entire structure, which also marks it as free for the
  228. * next user. */
  229. memset(lg, 0, sizeof(*lg));
  230. /* Release lock and exit. */
  231. mutex_unlock(&lguest_lock);
  232. return 0;
  233. }
  234. /*L:000
  235. * Welcome to our journey through the Launcher!
  236. *
  237. * The Launcher is the Host userspace program which sets up, runs and services
  238. * the Guest. In fact, many comments in the Drivers which refer to "the Host"
  239. * doing things are inaccurate: the Launcher does all the device handling for
  240. * the Guest, but the Guest can't know that.
  241. *
  242. * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
  243. * shall see more of that later.
  244. *
  245. * We begin our understanding with the Host kernel interface which the Launcher
  246. * uses: reading and writing a character device called /dev/lguest. All the
  247. * work happens in the read(), write() and close() routines: */
  248. static struct file_operations lguest_fops = {
  249. .owner = THIS_MODULE,
  250. .release = close,
  251. .write = write,
  252. .read = read,
  253. };
  254. /* This is a textbook example of a "misc" character device. Populate a "struct
  255. * miscdevice" and register it with misc_register(). */
  256. static struct miscdevice lguest_dev = {
  257. .minor = MISC_DYNAMIC_MINOR,
  258. .name = "lguest",
  259. .fops = &lguest_fops,
  260. };
  261. int __init lguest_device_init(void)
  262. {
  263. return misc_register(&lguest_dev);
  264. }
  265. void __exit lguest_device_remove(void)
  266. {
  267. misc_deregister(&lguest_dev);
  268. }