input.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  23. MODULE_DESCRIPTION("Input core");
  24. MODULE_LICENSE("GPL");
  25. #define INPUT_DEVICES 256
  26. static LIST_HEAD(input_dev_list);
  27. static LIST_HEAD(input_handler_list);
  28. /*
  29. * input_mutex protects access to both input_dev_list and input_handler_list.
  30. * This also causes input_[un]register_device and input_[un]register_handler
  31. * be mutually exclusive which simplifies locking in drivers implementing
  32. * input handlers.
  33. */
  34. static DEFINE_MUTEX(input_mutex);
  35. static struct input_handler *input_table[8];
  36. static inline int is_event_supported(unsigned int code,
  37. unsigned long *bm, unsigned int max)
  38. {
  39. return code <= max && test_bit(code, bm);
  40. }
  41. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  42. {
  43. if (fuzz) {
  44. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  45. return old_val;
  46. if (value > old_val - fuzz && value < old_val + fuzz)
  47. return (old_val * 3 + value) / 4;
  48. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  49. return (old_val + value) / 2;
  50. }
  51. return value;
  52. }
  53. /*
  54. * Pass event through all open handles. This function is called with
  55. * dev->event_lock held and interrupts disabled.
  56. */
  57. static void input_pass_event(struct input_dev *dev,
  58. unsigned int type, unsigned int code, int value)
  59. {
  60. struct input_handle *handle;
  61. rcu_read_lock();
  62. handle = rcu_dereference(dev->grab);
  63. if (handle)
  64. handle->handler->event(handle, type, code, value);
  65. else
  66. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  67. if (handle->open)
  68. handle->handler->event(handle,
  69. type, code, value);
  70. rcu_read_unlock();
  71. }
  72. /*
  73. * Generate software autorepeat event. Note that we take
  74. * dev->event_lock here to avoid racing with input_event
  75. * which may cause keys get "stuck".
  76. */
  77. static void input_repeat_key(unsigned long data)
  78. {
  79. struct input_dev *dev = (void *) data;
  80. unsigned long flags;
  81. spin_lock_irqsave(&dev->event_lock, flags);
  82. if (test_bit(dev->repeat_key, dev->key) &&
  83. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  84. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  85. if (dev->sync) {
  86. /*
  87. * Only send SYN_REPORT if we are not in a middle
  88. * of driver parsing a new hardware packet.
  89. * Otherwise assume that the driver will send
  90. * SYN_REPORT once it's done.
  91. */
  92. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  93. }
  94. if (dev->rep[REP_PERIOD])
  95. mod_timer(&dev->timer, jiffies +
  96. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  97. }
  98. spin_unlock_irqrestore(&dev->event_lock, flags);
  99. }
  100. static void input_start_autorepeat(struct input_dev *dev, int code)
  101. {
  102. if (test_bit(EV_REP, dev->evbit) &&
  103. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  104. dev->timer.data) {
  105. dev->repeat_key = code;
  106. mod_timer(&dev->timer,
  107. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  108. }
  109. }
  110. #define INPUT_IGNORE_EVENT 0
  111. #define INPUT_PASS_TO_HANDLERS 1
  112. #define INPUT_PASS_TO_DEVICE 2
  113. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  114. static void input_handle_event(struct input_dev *dev,
  115. unsigned int type, unsigned int code, int value)
  116. {
  117. int disposition = INPUT_IGNORE_EVENT;
  118. switch (type) {
  119. case EV_SYN:
  120. switch (code) {
  121. case SYN_CONFIG:
  122. disposition = INPUT_PASS_TO_ALL;
  123. break;
  124. case SYN_REPORT:
  125. if (!dev->sync) {
  126. dev->sync = 1;
  127. disposition = INPUT_PASS_TO_HANDLERS;
  128. }
  129. break;
  130. }
  131. break;
  132. case EV_KEY:
  133. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  134. !!test_bit(code, dev->key) != value) {
  135. if (value != 2) {
  136. __change_bit(code, dev->key);
  137. if (value)
  138. input_start_autorepeat(dev, code);
  139. }
  140. disposition = INPUT_PASS_TO_HANDLERS;
  141. }
  142. break;
  143. case EV_SW:
  144. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  145. !!test_bit(code, dev->sw) != value) {
  146. __change_bit(code, dev->sw);
  147. disposition = INPUT_PASS_TO_HANDLERS;
  148. }
  149. break;
  150. case EV_ABS:
  151. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  152. value = input_defuzz_abs_event(value,
  153. dev->abs[code], dev->absfuzz[code]);
  154. if (dev->abs[code] != value) {
  155. dev->abs[code] = value;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. }
  158. }
  159. break;
  160. case EV_REL:
  161. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  162. disposition = INPUT_PASS_TO_HANDLERS;
  163. break;
  164. case EV_MSC:
  165. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  166. disposition = INPUT_PASS_TO_ALL;
  167. break;
  168. case EV_LED:
  169. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  170. !!test_bit(code, dev->led) != value) {
  171. __change_bit(code, dev->led);
  172. disposition = INPUT_PASS_TO_ALL;
  173. }
  174. break;
  175. case EV_SND:
  176. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  177. if (!!test_bit(code, dev->snd) != !!value)
  178. __change_bit(code, dev->snd);
  179. disposition = INPUT_PASS_TO_ALL;
  180. }
  181. break;
  182. case EV_REP:
  183. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  184. dev->rep[code] = value;
  185. disposition = INPUT_PASS_TO_ALL;
  186. }
  187. break;
  188. case EV_FF:
  189. if (value >= 0)
  190. disposition = INPUT_PASS_TO_ALL;
  191. break;
  192. case EV_PWR:
  193. disposition = INPUT_PASS_TO_ALL;
  194. break;
  195. }
  196. if (type != EV_SYN)
  197. dev->sync = 0;
  198. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  199. dev->event(dev, type, code, value);
  200. if (disposition & INPUT_PASS_TO_HANDLERS)
  201. input_pass_event(dev, type, code, value);
  202. }
  203. /**
  204. * input_event() - report new input event
  205. * @dev: device that generated the event
  206. * @type: type of the event
  207. * @code: event code
  208. * @value: value of the event
  209. *
  210. * This function should be used by drivers implementing various input
  211. * devices. See also input_inject_event().
  212. */
  213. void input_event(struct input_dev *dev,
  214. unsigned int type, unsigned int code, int value)
  215. {
  216. unsigned long flags;
  217. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  218. spin_lock_irqsave(&dev->event_lock, flags);
  219. add_input_randomness(type, code, value);
  220. input_handle_event(dev, type, code, value);
  221. spin_unlock_irqrestore(&dev->event_lock, flags);
  222. }
  223. }
  224. EXPORT_SYMBOL(input_event);
  225. /**
  226. * input_inject_event() - send input event from input handler
  227. * @handle: input handle to send event through
  228. * @type: type of the event
  229. * @code: event code
  230. * @value: value of the event
  231. *
  232. * Similar to input_event() but will ignore event if device is
  233. * "grabbed" and handle injecting event is not the one that owns
  234. * the device.
  235. */
  236. void input_inject_event(struct input_handle *handle,
  237. unsigned int type, unsigned int code, int value)
  238. {
  239. struct input_dev *dev = handle->dev;
  240. struct input_handle *grab;
  241. unsigned long flags;
  242. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  243. spin_lock_irqsave(&dev->event_lock, flags);
  244. rcu_read_lock();
  245. grab = rcu_dereference(dev->grab);
  246. if (!grab || grab == handle)
  247. input_handle_event(dev, type, code, value);
  248. rcu_read_unlock();
  249. spin_unlock_irqrestore(&dev->event_lock, flags);
  250. }
  251. }
  252. EXPORT_SYMBOL(input_inject_event);
  253. /**
  254. * input_grab_device - grabs device for exclusive use
  255. * @handle: input handle that wants to own the device
  256. *
  257. * When a device is grabbed by an input handle all events generated by
  258. * the device are delivered only to this handle. Also events injected
  259. * by other input handles are ignored while device is grabbed.
  260. */
  261. int input_grab_device(struct input_handle *handle)
  262. {
  263. struct input_dev *dev = handle->dev;
  264. int retval;
  265. retval = mutex_lock_interruptible(&dev->mutex);
  266. if (retval)
  267. return retval;
  268. if (dev->grab) {
  269. retval = -EBUSY;
  270. goto out;
  271. }
  272. rcu_assign_pointer(dev->grab, handle);
  273. synchronize_rcu();
  274. out:
  275. mutex_unlock(&dev->mutex);
  276. return retval;
  277. }
  278. EXPORT_SYMBOL(input_grab_device);
  279. static void __input_release_device(struct input_handle *handle)
  280. {
  281. struct input_dev *dev = handle->dev;
  282. if (dev->grab == handle) {
  283. rcu_assign_pointer(dev->grab, NULL);
  284. /* Make sure input_pass_event() notices that grab is gone */
  285. synchronize_rcu();
  286. list_for_each_entry(handle, &dev->h_list, d_node)
  287. if (handle->open && handle->handler->start)
  288. handle->handler->start(handle);
  289. }
  290. }
  291. /**
  292. * input_release_device - release previously grabbed device
  293. * @handle: input handle that owns the device
  294. *
  295. * Releases previously grabbed device so that other input handles can
  296. * start receiving input events. Upon release all handlers attached
  297. * to the device have their start() method called so they have a change
  298. * to synchronize device state with the rest of the system.
  299. */
  300. void input_release_device(struct input_handle *handle)
  301. {
  302. struct input_dev *dev = handle->dev;
  303. mutex_lock(&dev->mutex);
  304. __input_release_device(handle);
  305. mutex_unlock(&dev->mutex);
  306. }
  307. EXPORT_SYMBOL(input_release_device);
  308. /**
  309. * input_open_device - open input device
  310. * @handle: handle through which device is being accessed
  311. *
  312. * This function should be called by input handlers when they
  313. * want to start receive events from given input device.
  314. */
  315. int input_open_device(struct input_handle *handle)
  316. {
  317. struct input_dev *dev = handle->dev;
  318. int retval;
  319. retval = mutex_lock_interruptible(&dev->mutex);
  320. if (retval)
  321. return retval;
  322. if (dev->going_away) {
  323. retval = -ENODEV;
  324. goto out;
  325. }
  326. handle->open++;
  327. if (!dev->users++ && dev->open)
  328. retval = dev->open(dev);
  329. if (retval) {
  330. dev->users--;
  331. if (!--handle->open) {
  332. /*
  333. * Make sure we are not delivering any more events
  334. * through this handle
  335. */
  336. synchronize_rcu();
  337. }
  338. }
  339. out:
  340. mutex_unlock(&dev->mutex);
  341. return retval;
  342. }
  343. EXPORT_SYMBOL(input_open_device);
  344. int input_flush_device(struct input_handle *handle, struct file *file)
  345. {
  346. struct input_dev *dev = handle->dev;
  347. int retval;
  348. retval = mutex_lock_interruptible(&dev->mutex);
  349. if (retval)
  350. return retval;
  351. if (dev->flush)
  352. retval = dev->flush(dev, file);
  353. mutex_unlock(&dev->mutex);
  354. return retval;
  355. }
  356. EXPORT_SYMBOL(input_flush_device);
  357. /**
  358. * input_close_device - close input device
  359. * @handle: handle through which device is being accessed
  360. *
  361. * This function should be called by input handlers when they
  362. * want to stop receive events from given input device.
  363. */
  364. void input_close_device(struct input_handle *handle)
  365. {
  366. struct input_dev *dev = handle->dev;
  367. mutex_lock(&dev->mutex);
  368. __input_release_device(handle);
  369. if (!--dev->users && dev->close)
  370. dev->close(dev);
  371. if (!--handle->open) {
  372. /*
  373. * synchronize_rcu() makes sure that input_pass_event()
  374. * completed and that no more input events are delivered
  375. * through this handle
  376. */
  377. synchronize_rcu();
  378. }
  379. mutex_unlock(&dev->mutex);
  380. }
  381. EXPORT_SYMBOL(input_close_device);
  382. /*
  383. * Prepare device for unregistering
  384. */
  385. static void input_disconnect_device(struct input_dev *dev)
  386. {
  387. struct input_handle *handle;
  388. int code;
  389. /*
  390. * Mark device as going away. Note that we take dev->mutex here
  391. * not to protect access to dev->going_away but rather to ensure
  392. * that there are no threads in the middle of input_open_device()
  393. */
  394. mutex_lock(&dev->mutex);
  395. dev->going_away = 1;
  396. mutex_unlock(&dev->mutex);
  397. spin_lock_irq(&dev->event_lock);
  398. /*
  399. * Simulate keyup events for all pressed keys so that handlers
  400. * are not left with "stuck" keys. The driver may continue
  401. * generate events even after we done here but they will not
  402. * reach any handlers.
  403. */
  404. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  405. for (code = 0; code <= KEY_MAX; code++) {
  406. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  407. test_bit(code, dev->key)) {
  408. input_pass_event(dev, EV_KEY, code, 0);
  409. }
  410. }
  411. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  412. }
  413. list_for_each_entry(handle, &dev->h_list, d_node)
  414. handle->open = 0;
  415. spin_unlock_irq(&dev->event_lock);
  416. }
  417. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  418. {
  419. switch (dev->keycodesize) {
  420. case 1:
  421. return ((u8 *)dev->keycode)[scancode];
  422. case 2:
  423. return ((u16 *)dev->keycode)[scancode];
  424. default:
  425. return ((u32 *)dev->keycode)[scancode];
  426. }
  427. }
  428. static int input_default_getkeycode(struct input_dev *dev,
  429. int scancode, int *keycode)
  430. {
  431. if (!dev->keycodesize)
  432. return -EINVAL;
  433. if (scancode < 0 || scancode >= dev->keycodemax)
  434. return -EINVAL;
  435. *keycode = input_fetch_keycode(dev, scancode);
  436. return 0;
  437. }
  438. static int input_default_setkeycode(struct input_dev *dev,
  439. int scancode, int keycode)
  440. {
  441. int old_keycode;
  442. int i;
  443. if (scancode < 0 || scancode >= dev->keycodemax)
  444. return -EINVAL;
  445. if (keycode < 0 || keycode > KEY_MAX)
  446. return -EINVAL;
  447. if (!dev->keycodesize)
  448. return -EINVAL;
  449. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  450. return -EINVAL;
  451. switch (dev->keycodesize) {
  452. case 1: {
  453. u8 *k = (u8 *)dev->keycode;
  454. old_keycode = k[scancode];
  455. k[scancode] = keycode;
  456. break;
  457. }
  458. case 2: {
  459. u16 *k = (u16 *)dev->keycode;
  460. old_keycode = k[scancode];
  461. k[scancode] = keycode;
  462. break;
  463. }
  464. default: {
  465. u32 *k = (u32 *)dev->keycode;
  466. old_keycode = k[scancode];
  467. k[scancode] = keycode;
  468. break;
  469. }
  470. }
  471. clear_bit(old_keycode, dev->keybit);
  472. set_bit(keycode, dev->keybit);
  473. for (i = 0; i < dev->keycodemax; i++) {
  474. if (input_fetch_keycode(dev, i) == old_keycode) {
  475. set_bit(old_keycode, dev->keybit);
  476. break; /* Setting the bit twice is useless, so break */
  477. }
  478. }
  479. return 0;
  480. }
  481. #define MATCH_BIT(bit, max) \
  482. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  483. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  484. break; \
  485. if (i != BITS_TO_LONGS(max)) \
  486. continue;
  487. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  488. struct input_dev *dev)
  489. {
  490. int i;
  491. for (; id->flags || id->driver_info; id++) {
  492. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  493. if (id->bustype != dev->id.bustype)
  494. continue;
  495. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  496. if (id->vendor != dev->id.vendor)
  497. continue;
  498. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  499. if (id->product != dev->id.product)
  500. continue;
  501. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  502. if (id->version != dev->id.version)
  503. continue;
  504. MATCH_BIT(evbit, EV_MAX);
  505. MATCH_BIT(keybit, KEY_MAX);
  506. MATCH_BIT(relbit, REL_MAX);
  507. MATCH_BIT(absbit, ABS_MAX);
  508. MATCH_BIT(mscbit, MSC_MAX);
  509. MATCH_BIT(ledbit, LED_MAX);
  510. MATCH_BIT(sndbit, SND_MAX);
  511. MATCH_BIT(ffbit, FF_MAX);
  512. MATCH_BIT(swbit, SW_MAX);
  513. return id;
  514. }
  515. return NULL;
  516. }
  517. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  518. {
  519. const struct input_device_id *id;
  520. int error;
  521. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  522. return -ENODEV;
  523. id = input_match_device(handler->id_table, dev);
  524. if (!id)
  525. return -ENODEV;
  526. error = handler->connect(handler, dev, id);
  527. if (error && error != -ENODEV)
  528. printk(KERN_ERR
  529. "input: failed to attach handler %s to device %s, "
  530. "error: %d\n",
  531. handler->name, kobject_name(&dev->dev.kobj), error);
  532. return error;
  533. }
  534. #ifdef CONFIG_PROC_FS
  535. static struct proc_dir_entry *proc_bus_input_dir;
  536. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  537. static int input_devices_state;
  538. static inline void input_wakeup_procfs_readers(void)
  539. {
  540. input_devices_state++;
  541. wake_up(&input_devices_poll_wait);
  542. }
  543. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  544. {
  545. int state = input_devices_state;
  546. poll_wait(file, &input_devices_poll_wait, wait);
  547. if (state != input_devices_state)
  548. return POLLIN | POLLRDNORM;
  549. return 0;
  550. }
  551. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  552. {
  553. if (mutex_lock_interruptible(&input_mutex))
  554. return NULL;
  555. return seq_list_start(&input_dev_list, *pos);
  556. }
  557. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  558. {
  559. return seq_list_next(v, &input_dev_list, pos);
  560. }
  561. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  562. {
  563. mutex_unlock(&input_mutex);
  564. }
  565. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  566. unsigned long *bitmap, int max)
  567. {
  568. int i;
  569. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  570. if (bitmap[i])
  571. break;
  572. seq_printf(seq, "B: %s=", name);
  573. for (; i >= 0; i--)
  574. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  575. seq_putc(seq, '\n');
  576. }
  577. static int input_devices_seq_show(struct seq_file *seq, void *v)
  578. {
  579. struct input_dev *dev = container_of(v, struct input_dev, node);
  580. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  581. struct input_handle *handle;
  582. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  583. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  584. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  585. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  586. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  587. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  588. seq_printf(seq, "H: Handlers=");
  589. list_for_each_entry(handle, &dev->h_list, d_node)
  590. seq_printf(seq, "%s ", handle->name);
  591. seq_putc(seq, '\n');
  592. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  593. if (test_bit(EV_KEY, dev->evbit))
  594. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  595. if (test_bit(EV_REL, dev->evbit))
  596. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  597. if (test_bit(EV_ABS, dev->evbit))
  598. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  599. if (test_bit(EV_MSC, dev->evbit))
  600. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  601. if (test_bit(EV_LED, dev->evbit))
  602. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  603. if (test_bit(EV_SND, dev->evbit))
  604. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  605. if (test_bit(EV_FF, dev->evbit))
  606. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  607. if (test_bit(EV_SW, dev->evbit))
  608. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  609. seq_putc(seq, '\n');
  610. kfree(path);
  611. return 0;
  612. }
  613. static struct seq_operations input_devices_seq_ops = {
  614. .start = input_devices_seq_start,
  615. .next = input_devices_seq_next,
  616. .stop = input_devices_seq_stop,
  617. .show = input_devices_seq_show,
  618. };
  619. static int input_proc_devices_open(struct inode *inode, struct file *file)
  620. {
  621. return seq_open(file, &input_devices_seq_ops);
  622. }
  623. static const struct file_operations input_devices_fileops = {
  624. .owner = THIS_MODULE,
  625. .open = input_proc_devices_open,
  626. .poll = input_proc_devices_poll,
  627. .read = seq_read,
  628. .llseek = seq_lseek,
  629. .release = seq_release,
  630. };
  631. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  632. {
  633. if (mutex_lock_interruptible(&input_mutex))
  634. return NULL;
  635. seq->private = (void *)(unsigned long)*pos;
  636. return seq_list_start(&input_handler_list, *pos);
  637. }
  638. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  639. {
  640. seq->private = (void *)(unsigned long)(*pos + 1);
  641. return seq_list_next(v, &input_handler_list, pos);
  642. }
  643. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  644. {
  645. mutex_unlock(&input_mutex);
  646. }
  647. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  648. {
  649. struct input_handler *handler = container_of(v, struct input_handler, node);
  650. seq_printf(seq, "N: Number=%ld Name=%s",
  651. (unsigned long)seq->private, handler->name);
  652. if (handler->fops)
  653. seq_printf(seq, " Minor=%d", handler->minor);
  654. seq_putc(seq, '\n');
  655. return 0;
  656. }
  657. static struct seq_operations input_handlers_seq_ops = {
  658. .start = input_handlers_seq_start,
  659. .next = input_handlers_seq_next,
  660. .stop = input_handlers_seq_stop,
  661. .show = input_handlers_seq_show,
  662. };
  663. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  664. {
  665. return seq_open(file, &input_handlers_seq_ops);
  666. }
  667. static const struct file_operations input_handlers_fileops = {
  668. .owner = THIS_MODULE,
  669. .open = input_proc_handlers_open,
  670. .read = seq_read,
  671. .llseek = seq_lseek,
  672. .release = seq_release,
  673. };
  674. static int __init input_proc_init(void)
  675. {
  676. struct proc_dir_entry *entry;
  677. proc_bus_input_dir = proc_mkdir("input", proc_bus);
  678. if (!proc_bus_input_dir)
  679. return -ENOMEM;
  680. proc_bus_input_dir->owner = THIS_MODULE;
  681. entry = create_proc_entry("devices", 0, proc_bus_input_dir);
  682. if (!entry)
  683. goto fail1;
  684. entry->owner = THIS_MODULE;
  685. entry->proc_fops = &input_devices_fileops;
  686. entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
  687. if (!entry)
  688. goto fail2;
  689. entry->owner = THIS_MODULE;
  690. entry->proc_fops = &input_handlers_fileops;
  691. return 0;
  692. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  693. fail1: remove_proc_entry("input", proc_bus);
  694. return -ENOMEM;
  695. }
  696. static void input_proc_exit(void)
  697. {
  698. remove_proc_entry("devices", proc_bus_input_dir);
  699. remove_proc_entry("handlers", proc_bus_input_dir);
  700. remove_proc_entry("input", proc_bus);
  701. }
  702. #else /* !CONFIG_PROC_FS */
  703. static inline void input_wakeup_procfs_readers(void) { }
  704. static inline int input_proc_init(void) { return 0; }
  705. static inline void input_proc_exit(void) { }
  706. #endif
  707. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  708. static ssize_t input_dev_show_##name(struct device *dev, \
  709. struct device_attribute *attr, \
  710. char *buf) \
  711. { \
  712. struct input_dev *input_dev = to_input_dev(dev); \
  713. \
  714. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  715. input_dev->name ? input_dev->name : ""); \
  716. } \
  717. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  718. INPUT_DEV_STRING_ATTR_SHOW(name);
  719. INPUT_DEV_STRING_ATTR_SHOW(phys);
  720. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  721. static int input_print_modalias_bits(char *buf, int size,
  722. char name, unsigned long *bm,
  723. unsigned int min_bit, unsigned int max_bit)
  724. {
  725. int len = 0, i;
  726. len += snprintf(buf, max(size, 0), "%c", name);
  727. for (i = min_bit; i < max_bit; i++)
  728. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  729. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  730. return len;
  731. }
  732. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  733. int add_cr)
  734. {
  735. int len;
  736. len = snprintf(buf, max(size, 0),
  737. "input:b%04Xv%04Xp%04Xe%04X-",
  738. id->id.bustype, id->id.vendor,
  739. id->id.product, id->id.version);
  740. len += input_print_modalias_bits(buf + len, size - len,
  741. 'e', id->evbit, 0, EV_MAX);
  742. len += input_print_modalias_bits(buf + len, size - len,
  743. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  744. len += input_print_modalias_bits(buf + len, size - len,
  745. 'r', id->relbit, 0, REL_MAX);
  746. len += input_print_modalias_bits(buf + len, size - len,
  747. 'a', id->absbit, 0, ABS_MAX);
  748. len += input_print_modalias_bits(buf + len, size - len,
  749. 'm', id->mscbit, 0, MSC_MAX);
  750. len += input_print_modalias_bits(buf + len, size - len,
  751. 'l', id->ledbit, 0, LED_MAX);
  752. len += input_print_modalias_bits(buf + len, size - len,
  753. 's', id->sndbit, 0, SND_MAX);
  754. len += input_print_modalias_bits(buf + len, size - len,
  755. 'f', id->ffbit, 0, FF_MAX);
  756. len += input_print_modalias_bits(buf + len, size - len,
  757. 'w', id->swbit, 0, SW_MAX);
  758. if (add_cr)
  759. len += snprintf(buf + len, max(size - len, 0), "\n");
  760. return len;
  761. }
  762. static ssize_t input_dev_show_modalias(struct device *dev,
  763. struct device_attribute *attr,
  764. char *buf)
  765. {
  766. struct input_dev *id = to_input_dev(dev);
  767. ssize_t len;
  768. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  769. return min_t(int, len, PAGE_SIZE);
  770. }
  771. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  772. static struct attribute *input_dev_attrs[] = {
  773. &dev_attr_name.attr,
  774. &dev_attr_phys.attr,
  775. &dev_attr_uniq.attr,
  776. &dev_attr_modalias.attr,
  777. NULL
  778. };
  779. static struct attribute_group input_dev_attr_group = {
  780. .attrs = input_dev_attrs,
  781. };
  782. #define INPUT_DEV_ID_ATTR(name) \
  783. static ssize_t input_dev_show_id_##name(struct device *dev, \
  784. struct device_attribute *attr, \
  785. char *buf) \
  786. { \
  787. struct input_dev *input_dev = to_input_dev(dev); \
  788. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  789. } \
  790. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  791. INPUT_DEV_ID_ATTR(bustype);
  792. INPUT_DEV_ID_ATTR(vendor);
  793. INPUT_DEV_ID_ATTR(product);
  794. INPUT_DEV_ID_ATTR(version);
  795. static struct attribute *input_dev_id_attrs[] = {
  796. &dev_attr_bustype.attr,
  797. &dev_attr_vendor.attr,
  798. &dev_attr_product.attr,
  799. &dev_attr_version.attr,
  800. NULL
  801. };
  802. static struct attribute_group input_dev_id_attr_group = {
  803. .name = "id",
  804. .attrs = input_dev_id_attrs,
  805. };
  806. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  807. int max, int add_cr)
  808. {
  809. int i;
  810. int len = 0;
  811. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  812. if (bitmap[i])
  813. break;
  814. for (; i >= 0; i--)
  815. len += snprintf(buf + len, max(buf_size - len, 0),
  816. "%lx%s", bitmap[i], i > 0 ? " " : "");
  817. if (add_cr)
  818. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  819. return len;
  820. }
  821. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  822. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  823. struct device_attribute *attr, \
  824. char *buf) \
  825. { \
  826. struct input_dev *input_dev = to_input_dev(dev); \
  827. int len = input_print_bitmap(buf, PAGE_SIZE, \
  828. input_dev->bm##bit, ev##_MAX, 1); \
  829. return min_t(int, len, PAGE_SIZE); \
  830. } \
  831. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  832. INPUT_DEV_CAP_ATTR(EV, ev);
  833. INPUT_DEV_CAP_ATTR(KEY, key);
  834. INPUT_DEV_CAP_ATTR(REL, rel);
  835. INPUT_DEV_CAP_ATTR(ABS, abs);
  836. INPUT_DEV_CAP_ATTR(MSC, msc);
  837. INPUT_DEV_CAP_ATTR(LED, led);
  838. INPUT_DEV_CAP_ATTR(SND, snd);
  839. INPUT_DEV_CAP_ATTR(FF, ff);
  840. INPUT_DEV_CAP_ATTR(SW, sw);
  841. static struct attribute *input_dev_caps_attrs[] = {
  842. &dev_attr_ev.attr,
  843. &dev_attr_key.attr,
  844. &dev_attr_rel.attr,
  845. &dev_attr_abs.attr,
  846. &dev_attr_msc.attr,
  847. &dev_attr_led.attr,
  848. &dev_attr_snd.attr,
  849. &dev_attr_ff.attr,
  850. &dev_attr_sw.attr,
  851. NULL
  852. };
  853. static struct attribute_group input_dev_caps_attr_group = {
  854. .name = "capabilities",
  855. .attrs = input_dev_caps_attrs,
  856. };
  857. static struct attribute_group *input_dev_attr_groups[] = {
  858. &input_dev_attr_group,
  859. &input_dev_id_attr_group,
  860. &input_dev_caps_attr_group,
  861. NULL
  862. };
  863. static void input_dev_release(struct device *device)
  864. {
  865. struct input_dev *dev = to_input_dev(device);
  866. input_ff_destroy(dev);
  867. kfree(dev);
  868. module_put(THIS_MODULE);
  869. }
  870. /*
  871. * Input uevent interface - loading event handlers based on
  872. * device bitfields.
  873. */
  874. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  875. const char *name, unsigned long *bitmap, int max)
  876. {
  877. int len;
  878. if (add_uevent_var(env, "%s=", name))
  879. return -ENOMEM;
  880. len = input_print_bitmap(&env->buf[env->buflen - 1],
  881. sizeof(env->buf) - env->buflen,
  882. bitmap, max, 0);
  883. if (len >= (sizeof(env->buf) - env->buflen))
  884. return -ENOMEM;
  885. env->buflen += len;
  886. return 0;
  887. }
  888. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  889. struct input_dev *dev)
  890. {
  891. int len;
  892. if (add_uevent_var(env, "MODALIAS="))
  893. return -ENOMEM;
  894. len = input_print_modalias(&env->buf[env->buflen - 1],
  895. sizeof(env->buf) - env->buflen,
  896. dev, 0);
  897. if (len >= (sizeof(env->buf) - env->buflen))
  898. return -ENOMEM;
  899. env->buflen += len;
  900. return 0;
  901. }
  902. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  903. do { \
  904. int err = add_uevent_var(env, fmt, val); \
  905. if (err) \
  906. return err; \
  907. } while (0)
  908. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  909. do { \
  910. int err = input_add_uevent_bm_var(env, name, bm, max); \
  911. if (err) \
  912. return err; \
  913. } while (0)
  914. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  915. do { \
  916. int err = input_add_uevent_modalias_var(env, dev); \
  917. if (err) \
  918. return err; \
  919. } while (0)
  920. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  921. {
  922. struct input_dev *dev = to_input_dev(device);
  923. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  924. dev->id.bustype, dev->id.vendor,
  925. dev->id.product, dev->id.version);
  926. if (dev->name)
  927. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  928. if (dev->phys)
  929. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  930. if (dev->uniq)
  931. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  932. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  933. if (test_bit(EV_KEY, dev->evbit))
  934. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  935. if (test_bit(EV_REL, dev->evbit))
  936. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  937. if (test_bit(EV_ABS, dev->evbit))
  938. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  939. if (test_bit(EV_MSC, dev->evbit))
  940. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  941. if (test_bit(EV_LED, dev->evbit))
  942. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  943. if (test_bit(EV_SND, dev->evbit))
  944. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  945. if (test_bit(EV_FF, dev->evbit))
  946. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  947. if (test_bit(EV_SW, dev->evbit))
  948. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  949. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  950. return 0;
  951. }
  952. static struct device_type input_dev_type = {
  953. .groups = input_dev_attr_groups,
  954. .release = input_dev_release,
  955. .uevent = input_dev_uevent,
  956. };
  957. struct class input_class = {
  958. .name = "input",
  959. };
  960. EXPORT_SYMBOL_GPL(input_class);
  961. /**
  962. * input_allocate_device - allocate memory for new input device
  963. *
  964. * Returns prepared struct input_dev or NULL.
  965. *
  966. * NOTE: Use input_free_device() to free devices that have not been
  967. * registered; input_unregister_device() should be used for already
  968. * registered devices.
  969. */
  970. struct input_dev *input_allocate_device(void)
  971. {
  972. struct input_dev *dev;
  973. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  974. if (dev) {
  975. dev->dev.type = &input_dev_type;
  976. dev->dev.class = &input_class;
  977. device_initialize(&dev->dev);
  978. mutex_init(&dev->mutex);
  979. spin_lock_init(&dev->event_lock);
  980. INIT_LIST_HEAD(&dev->h_list);
  981. INIT_LIST_HEAD(&dev->node);
  982. __module_get(THIS_MODULE);
  983. }
  984. return dev;
  985. }
  986. EXPORT_SYMBOL(input_allocate_device);
  987. /**
  988. * input_free_device - free memory occupied by input_dev structure
  989. * @dev: input device to free
  990. *
  991. * This function should only be used if input_register_device()
  992. * was not called yet or if it failed. Once device was registered
  993. * use input_unregister_device() and memory will be freed once last
  994. * reference to the device is dropped.
  995. *
  996. * Device should be allocated by input_allocate_device().
  997. *
  998. * NOTE: If there are references to the input device then memory
  999. * will not be freed until last reference is dropped.
  1000. */
  1001. void input_free_device(struct input_dev *dev)
  1002. {
  1003. if (dev)
  1004. input_put_device(dev);
  1005. }
  1006. EXPORT_SYMBOL(input_free_device);
  1007. /**
  1008. * input_set_capability - mark device as capable of a certain event
  1009. * @dev: device that is capable of emitting or accepting event
  1010. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1011. * @code: event code
  1012. *
  1013. * In addition to setting up corresponding bit in appropriate capability
  1014. * bitmap the function also adjusts dev->evbit.
  1015. */
  1016. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1017. {
  1018. switch (type) {
  1019. case EV_KEY:
  1020. __set_bit(code, dev->keybit);
  1021. break;
  1022. case EV_REL:
  1023. __set_bit(code, dev->relbit);
  1024. break;
  1025. case EV_ABS:
  1026. __set_bit(code, dev->absbit);
  1027. break;
  1028. case EV_MSC:
  1029. __set_bit(code, dev->mscbit);
  1030. break;
  1031. case EV_SW:
  1032. __set_bit(code, dev->swbit);
  1033. break;
  1034. case EV_LED:
  1035. __set_bit(code, dev->ledbit);
  1036. break;
  1037. case EV_SND:
  1038. __set_bit(code, dev->sndbit);
  1039. break;
  1040. case EV_FF:
  1041. __set_bit(code, dev->ffbit);
  1042. break;
  1043. case EV_PWR:
  1044. /* do nothing */
  1045. break;
  1046. default:
  1047. printk(KERN_ERR
  1048. "input_set_capability: unknown type %u (code %u)\n",
  1049. type, code);
  1050. dump_stack();
  1051. return;
  1052. }
  1053. __set_bit(type, dev->evbit);
  1054. }
  1055. EXPORT_SYMBOL(input_set_capability);
  1056. /**
  1057. * input_register_device - register device with input core
  1058. * @dev: device to be registered
  1059. *
  1060. * This function registers device with input core. The device must be
  1061. * allocated with input_allocate_device() and all it's capabilities
  1062. * set up before registering.
  1063. * If function fails the device must be freed with input_free_device().
  1064. * Once device has been successfully registered it can be unregistered
  1065. * with input_unregister_device(); input_free_device() should not be
  1066. * called in this case.
  1067. */
  1068. int input_register_device(struct input_dev *dev)
  1069. {
  1070. static atomic_t input_no = ATOMIC_INIT(0);
  1071. struct input_handler *handler;
  1072. const char *path;
  1073. int error;
  1074. __set_bit(EV_SYN, dev->evbit);
  1075. /*
  1076. * If delay and period are pre-set by the driver, then autorepeating
  1077. * is handled by the driver itself and we don't do it in input.c.
  1078. */
  1079. init_timer(&dev->timer);
  1080. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1081. dev->timer.data = (long) dev;
  1082. dev->timer.function = input_repeat_key;
  1083. dev->rep[REP_DELAY] = 250;
  1084. dev->rep[REP_PERIOD] = 33;
  1085. }
  1086. if (!dev->getkeycode)
  1087. dev->getkeycode = input_default_getkeycode;
  1088. if (!dev->setkeycode)
  1089. dev->setkeycode = input_default_setkeycode;
  1090. snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
  1091. "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
  1092. if (dev->cdev.dev)
  1093. dev->dev.parent = dev->cdev.dev;
  1094. error = device_add(&dev->dev);
  1095. if (error)
  1096. return error;
  1097. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1098. printk(KERN_INFO "input: %s as %s\n",
  1099. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1100. kfree(path);
  1101. error = mutex_lock_interruptible(&input_mutex);
  1102. if (error) {
  1103. device_del(&dev->dev);
  1104. return error;
  1105. }
  1106. list_add_tail(&dev->node, &input_dev_list);
  1107. list_for_each_entry(handler, &input_handler_list, node)
  1108. input_attach_handler(dev, handler);
  1109. input_wakeup_procfs_readers();
  1110. mutex_unlock(&input_mutex);
  1111. return 0;
  1112. }
  1113. EXPORT_SYMBOL(input_register_device);
  1114. /**
  1115. * input_unregister_device - unregister previously registered device
  1116. * @dev: device to be unregistered
  1117. *
  1118. * This function unregisters an input device. Once device is unregistered
  1119. * the caller should not try to access it as it may get freed at any moment.
  1120. */
  1121. void input_unregister_device(struct input_dev *dev)
  1122. {
  1123. struct input_handle *handle, *next;
  1124. input_disconnect_device(dev);
  1125. mutex_lock(&input_mutex);
  1126. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1127. handle->handler->disconnect(handle);
  1128. WARN_ON(!list_empty(&dev->h_list));
  1129. del_timer_sync(&dev->timer);
  1130. list_del_init(&dev->node);
  1131. input_wakeup_procfs_readers();
  1132. mutex_unlock(&input_mutex);
  1133. device_unregister(&dev->dev);
  1134. }
  1135. EXPORT_SYMBOL(input_unregister_device);
  1136. /**
  1137. * input_register_handler - register a new input handler
  1138. * @handler: handler to be registered
  1139. *
  1140. * This function registers a new input handler (interface) for input
  1141. * devices in the system and attaches it to all input devices that
  1142. * are compatible with the handler.
  1143. */
  1144. int input_register_handler(struct input_handler *handler)
  1145. {
  1146. struct input_dev *dev;
  1147. int retval;
  1148. retval = mutex_lock_interruptible(&input_mutex);
  1149. if (retval)
  1150. return retval;
  1151. INIT_LIST_HEAD(&handler->h_list);
  1152. if (handler->fops != NULL) {
  1153. if (input_table[handler->minor >> 5]) {
  1154. retval = -EBUSY;
  1155. goto out;
  1156. }
  1157. input_table[handler->minor >> 5] = handler;
  1158. }
  1159. list_add_tail(&handler->node, &input_handler_list);
  1160. list_for_each_entry(dev, &input_dev_list, node)
  1161. input_attach_handler(dev, handler);
  1162. input_wakeup_procfs_readers();
  1163. out:
  1164. mutex_unlock(&input_mutex);
  1165. return retval;
  1166. }
  1167. EXPORT_SYMBOL(input_register_handler);
  1168. /**
  1169. * input_unregister_handler - unregisters an input handler
  1170. * @handler: handler to be unregistered
  1171. *
  1172. * This function disconnects a handler from its input devices and
  1173. * removes it from lists of known handlers.
  1174. */
  1175. void input_unregister_handler(struct input_handler *handler)
  1176. {
  1177. struct input_handle *handle, *next;
  1178. mutex_lock(&input_mutex);
  1179. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1180. handler->disconnect(handle);
  1181. WARN_ON(!list_empty(&handler->h_list));
  1182. list_del_init(&handler->node);
  1183. if (handler->fops != NULL)
  1184. input_table[handler->minor >> 5] = NULL;
  1185. input_wakeup_procfs_readers();
  1186. mutex_unlock(&input_mutex);
  1187. }
  1188. EXPORT_SYMBOL(input_unregister_handler);
  1189. /**
  1190. * input_register_handle - register a new input handle
  1191. * @handle: handle to register
  1192. *
  1193. * This function puts a new input handle onto device's
  1194. * and handler's lists so that events can flow through
  1195. * it once it is opened using input_open_device().
  1196. *
  1197. * This function is supposed to be called from handler's
  1198. * connect() method.
  1199. */
  1200. int input_register_handle(struct input_handle *handle)
  1201. {
  1202. struct input_handler *handler = handle->handler;
  1203. struct input_dev *dev = handle->dev;
  1204. int error;
  1205. /*
  1206. * We take dev->mutex here to prevent race with
  1207. * input_release_device().
  1208. */
  1209. error = mutex_lock_interruptible(&dev->mutex);
  1210. if (error)
  1211. return error;
  1212. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1213. mutex_unlock(&dev->mutex);
  1214. synchronize_rcu();
  1215. /*
  1216. * Since we are supposed to be called from ->connect()
  1217. * which is mutually exclusive with ->disconnect()
  1218. * we can't be racing with input_unregister_handle()
  1219. * and so separate lock is not needed here.
  1220. */
  1221. list_add_tail(&handle->h_node, &handler->h_list);
  1222. if (handler->start)
  1223. handler->start(handle);
  1224. return 0;
  1225. }
  1226. EXPORT_SYMBOL(input_register_handle);
  1227. /**
  1228. * input_unregister_handle - unregister an input handle
  1229. * @handle: handle to unregister
  1230. *
  1231. * This function removes input handle from device's
  1232. * and handler's lists.
  1233. *
  1234. * This function is supposed to be called from handler's
  1235. * disconnect() method.
  1236. */
  1237. void input_unregister_handle(struct input_handle *handle)
  1238. {
  1239. struct input_dev *dev = handle->dev;
  1240. list_del_init(&handle->h_node);
  1241. /*
  1242. * Take dev->mutex to prevent race with input_release_device().
  1243. */
  1244. mutex_lock(&dev->mutex);
  1245. list_del_rcu(&handle->d_node);
  1246. mutex_unlock(&dev->mutex);
  1247. synchronize_rcu();
  1248. }
  1249. EXPORT_SYMBOL(input_unregister_handle);
  1250. static int input_open_file(struct inode *inode, struct file *file)
  1251. {
  1252. struct input_handler *handler = input_table[iminor(inode) >> 5];
  1253. const struct file_operations *old_fops, *new_fops = NULL;
  1254. int err;
  1255. /* No load-on-demand here? */
  1256. if (!handler || !(new_fops = fops_get(handler->fops)))
  1257. return -ENODEV;
  1258. /*
  1259. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1260. * not "no device". Oh, well...
  1261. */
  1262. if (!new_fops->open) {
  1263. fops_put(new_fops);
  1264. return -ENODEV;
  1265. }
  1266. old_fops = file->f_op;
  1267. file->f_op = new_fops;
  1268. err = new_fops->open(inode, file);
  1269. if (err) {
  1270. fops_put(file->f_op);
  1271. file->f_op = fops_get(old_fops);
  1272. }
  1273. fops_put(old_fops);
  1274. return err;
  1275. }
  1276. static const struct file_operations input_fops = {
  1277. .owner = THIS_MODULE,
  1278. .open = input_open_file,
  1279. };
  1280. static int __init input_init(void)
  1281. {
  1282. int err;
  1283. err = class_register(&input_class);
  1284. if (err) {
  1285. printk(KERN_ERR "input: unable to register input_dev class\n");
  1286. return err;
  1287. }
  1288. err = input_proc_init();
  1289. if (err)
  1290. goto fail1;
  1291. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1292. if (err) {
  1293. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1294. goto fail2;
  1295. }
  1296. return 0;
  1297. fail2: input_proc_exit();
  1298. fail1: class_unregister(&input_class);
  1299. return err;
  1300. }
  1301. static void __exit input_exit(void)
  1302. {
  1303. input_proc_exit();
  1304. unregister_chrdev(INPUT_MAJOR, "input");
  1305. class_unregister(&input_class);
  1306. }
  1307. subsys_initcall(input_init);
  1308. module_exit(input_exit);