pmac.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781
  1. /*
  2. * linux/drivers/ide/ppc/pmac.c
  3. *
  4. * Support for IDE interfaces on PowerMacs.
  5. * These IDE interfaces are memory-mapped and have a DBDMA channel
  6. * for doing DMA.
  7. *
  8. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  9. * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. *
  16. * Some code taken from drivers/ide/ide-dma.c:
  17. *
  18. * Copyright (c) 1995-1998 Mark Lord
  19. *
  20. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  21. * get rid of the "rounded" tables used previously, so we have the
  22. * same table format for all controllers and can then just have one
  23. * big table
  24. *
  25. */
  26. #include <linux/types.h>
  27. #include <linux/kernel.h>
  28. #include <linux/init.h>
  29. #include <linux/delay.h>
  30. #include <linux/ide.h>
  31. #include <linux/notifier.h>
  32. #include <linux/reboot.h>
  33. #include <linux/pci.h>
  34. #include <linux/adb.h>
  35. #include <linux/pmu.h>
  36. #include <linux/scatterlist.h>
  37. #include <asm/prom.h>
  38. #include <asm/io.h>
  39. #include <asm/dbdma.h>
  40. #include <asm/ide.h>
  41. #include <asm/pci-bridge.h>
  42. #include <asm/machdep.h>
  43. #include <asm/pmac_feature.h>
  44. #include <asm/sections.h>
  45. #include <asm/irq.h>
  46. #ifndef CONFIG_PPC64
  47. #include <asm/mediabay.h>
  48. #endif
  49. #include "../ide-timing.h"
  50. #undef IDE_PMAC_DEBUG
  51. #define DMA_WAIT_TIMEOUT 50
  52. typedef struct pmac_ide_hwif {
  53. unsigned long regbase;
  54. int irq;
  55. int kind;
  56. int aapl_bus_id;
  57. unsigned cable_80 : 1;
  58. unsigned mediabay : 1;
  59. unsigned broken_dma : 1;
  60. unsigned broken_dma_warn : 1;
  61. struct device_node* node;
  62. struct macio_dev *mdev;
  63. u32 timings[4];
  64. volatile u32 __iomem * *kauai_fcr;
  65. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  66. /* Those fields are duplicating what is in hwif. We currently
  67. * can't use the hwif ones because of some assumptions that are
  68. * beeing done by the generic code about the kind of dma controller
  69. * and format of the dma table. This will have to be fixed though.
  70. */
  71. volatile struct dbdma_regs __iomem * dma_regs;
  72. struct dbdma_cmd* dma_table_cpu;
  73. #endif
  74. } pmac_ide_hwif_t;
  75. static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
  76. static int pmac_ide_count;
  77. enum {
  78. controller_ohare, /* OHare based */
  79. controller_heathrow, /* Heathrow/Paddington */
  80. controller_kl_ata3, /* KeyLargo ATA-3 */
  81. controller_kl_ata4, /* KeyLargo ATA-4 */
  82. controller_un_ata6, /* UniNorth2 ATA-6 */
  83. controller_k2_ata6, /* K2 ATA-6 */
  84. controller_sh_ata6, /* Shasta ATA-6 */
  85. };
  86. static const char* model_name[] = {
  87. "OHare ATA", /* OHare based */
  88. "Heathrow ATA", /* Heathrow/Paddington */
  89. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  90. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  91. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  92. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  93. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  94. };
  95. /*
  96. * Extra registers, both 32-bit little-endian
  97. */
  98. #define IDE_TIMING_CONFIG 0x200
  99. #define IDE_INTERRUPT 0x300
  100. /* Kauai (U2) ATA has different register setup */
  101. #define IDE_KAUAI_PIO_CONFIG 0x200
  102. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  103. #define IDE_KAUAI_POLL_CONFIG 0x220
  104. /*
  105. * Timing configuration register definitions
  106. */
  107. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  108. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  109. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  110. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  111. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  112. /* 133Mhz cell, found in shasta.
  113. * See comments about 100 Mhz Uninorth 2...
  114. * Note that PIO_MASK and MDMA_MASK seem to overlap
  115. */
  116. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  117. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  118. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  119. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  120. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  121. * this one yet, it appears as a pci device (106b/0033) on uninorth
  122. * internal PCI bus and it's clock is controlled like gem or fw. It
  123. * appears to be an evolution of keylargo ATA4 with a timing register
  124. * extended to 2 32bits registers and a similar DBDMA channel. Other
  125. * registers seem to exist but I can't tell much about them.
  126. *
  127. * So far, I'm using pre-calculated tables for this extracted from
  128. * the values used by the MacOS X driver.
  129. *
  130. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  131. * register controls the UDMA timings. At least, it seems bit 0
  132. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  133. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  134. * know their meaning yet
  135. */
  136. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  137. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  138. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  139. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  140. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  141. * 40 connector cable and to 4 on 80 connector one.
  142. * Clock unit is 15ns (66Mhz)
  143. *
  144. * 3 Values can be programmed:
  145. * - Write data setup, which appears to match the cycle time. They
  146. * also call it DIOW setup.
  147. * - Ready to pause time (from spec)
  148. * - Address setup. That one is weird. I don't see where exactly
  149. * it fits in UDMA cycles, I got it's name from an obscure piece
  150. * of commented out code in Darwin. They leave it to 0, we do as
  151. * well, despite a comment that would lead to think it has a
  152. * min value of 45ns.
  153. * Apple also add 60ns to the write data setup (or cycle time ?) on
  154. * reads.
  155. */
  156. #define TR_66_UDMA_MASK 0xfff00000
  157. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  158. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  159. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  160. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  161. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  162. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  163. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  164. #define TR_66_MDMA_MASK 0x000ffc00
  165. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  166. #define TR_66_MDMA_RECOVERY_SHIFT 15
  167. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  168. #define TR_66_MDMA_ACCESS_SHIFT 10
  169. #define TR_66_PIO_MASK 0x000003ff
  170. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  171. #define TR_66_PIO_RECOVERY_SHIFT 5
  172. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  173. #define TR_66_PIO_ACCESS_SHIFT 0
  174. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  175. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  176. *
  177. * The access time and recovery time can be programmed. Some older
  178. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  179. * the same here fore safety against broken old hardware ;)
  180. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  181. * time and removes one from recovery. It's not supported on KeyLargo
  182. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  183. * is used to reach long timings used in this mode.
  184. */
  185. #define TR_33_MDMA_MASK 0x003ff800
  186. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  187. #define TR_33_MDMA_RECOVERY_SHIFT 16
  188. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  189. #define TR_33_MDMA_ACCESS_SHIFT 11
  190. #define TR_33_MDMA_HALFTICK 0x00200000
  191. #define TR_33_PIO_MASK 0x000007ff
  192. #define TR_33_PIO_E 0x00000400
  193. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  194. #define TR_33_PIO_RECOVERY_SHIFT 5
  195. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  196. #define TR_33_PIO_ACCESS_SHIFT 0
  197. /*
  198. * Interrupt register definitions
  199. */
  200. #define IDE_INTR_DMA 0x80000000
  201. #define IDE_INTR_DEVICE 0x40000000
  202. /*
  203. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  204. */
  205. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  206. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  207. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  208. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  209. /* Rounded Multiword DMA timings
  210. *
  211. * I gave up finding a generic formula for all controller
  212. * types and instead, built tables based on timing values
  213. * used by Apple in Darwin's implementation.
  214. */
  215. struct mdma_timings_t {
  216. int accessTime;
  217. int recoveryTime;
  218. int cycleTime;
  219. };
  220. struct mdma_timings_t mdma_timings_33[] =
  221. {
  222. { 240, 240, 480 },
  223. { 180, 180, 360 },
  224. { 135, 135, 270 },
  225. { 120, 120, 240 },
  226. { 105, 105, 210 },
  227. { 90, 90, 180 },
  228. { 75, 75, 150 },
  229. { 75, 45, 120 },
  230. { 0, 0, 0 }
  231. };
  232. struct mdma_timings_t mdma_timings_33k[] =
  233. {
  234. { 240, 240, 480 },
  235. { 180, 180, 360 },
  236. { 150, 150, 300 },
  237. { 120, 120, 240 },
  238. { 90, 120, 210 },
  239. { 90, 90, 180 },
  240. { 90, 60, 150 },
  241. { 90, 30, 120 },
  242. { 0, 0, 0 }
  243. };
  244. struct mdma_timings_t mdma_timings_66[] =
  245. {
  246. { 240, 240, 480 },
  247. { 180, 180, 360 },
  248. { 135, 135, 270 },
  249. { 120, 120, 240 },
  250. { 105, 105, 210 },
  251. { 90, 90, 180 },
  252. { 90, 75, 165 },
  253. { 75, 45, 120 },
  254. { 0, 0, 0 }
  255. };
  256. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  257. struct {
  258. int addrSetup; /* ??? */
  259. int rdy2pause;
  260. int wrDataSetup;
  261. } kl66_udma_timings[] =
  262. {
  263. { 0, 180, 120 }, /* Mode 0 */
  264. { 0, 150, 90 }, /* 1 */
  265. { 0, 120, 60 }, /* 2 */
  266. { 0, 90, 45 }, /* 3 */
  267. { 0, 90, 30 } /* 4 */
  268. };
  269. /* UniNorth 2 ATA/100 timings */
  270. struct kauai_timing {
  271. int cycle_time;
  272. u32 timing_reg;
  273. };
  274. static struct kauai_timing kauai_pio_timings[] =
  275. {
  276. { 930 , 0x08000fff },
  277. { 600 , 0x08000a92 },
  278. { 383 , 0x0800060f },
  279. { 360 , 0x08000492 },
  280. { 330 , 0x0800048f },
  281. { 300 , 0x080003cf },
  282. { 270 , 0x080003cc },
  283. { 240 , 0x0800038b },
  284. { 239 , 0x0800030c },
  285. { 180 , 0x05000249 },
  286. { 120 , 0x04000148 },
  287. { 0 , 0 },
  288. };
  289. static struct kauai_timing kauai_mdma_timings[] =
  290. {
  291. { 1260 , 0x00fff000 },
  292. { 480 , 0x00618000 },
  293. { 360 , 0x00492000 },
  294. { 270 , 0x0038e000 },
  295. { 240 , 0x0030c000 },
  296. { 210 , 0x002cb000 },
  297. { 180 , 0x00249000 },
  298. { 150 , 0x00209000 },
  299. { 120 , 0x00148000 },
  300. { 0 , 0 },
  301. };
  302. static struct kauai_timing kauai_udma_timings[] =
  303. {
  304. { 120 , 0x000070c0 },
  305. { 90 , 0x00005d80 },
  306. { 60 , 0x00004a60 },
  307. { 45 , 0x00003a50 },
  308. { 30 , 0x00002a30 },
  309. { 20 , 0x00002921 },
  310. { 0 , 0 },
  311. };
  312. static struct kauai_timing shasta_pio_timings[] =
  313. {
  314. { 930 , 0x08000fff },
  315. { 600 , 0x0A000c97 },
  316. { 383 , 0x07000712 },
  317. { 360 , 0x040003cd },
  318. { 330 , 0x040003cd },
  319. { 300 , 0x040003cd },
  320. { 270 , 0x040003cd },
  321. { 240 , 0x040003cd },
  322. { 239 , 0x040003cd },
  323. { 180 , 0x0400028b },
  324. { 120 , 0x0400010a },
  325. { 0 , 0 },
  326. };
  327. static struct kauai_timing shasta_mdma_timings[] =
  328. {
  329. { 1260 , 0x00fff000 },
  330. { 480 , 0x00820800 },
  331. { 360 , 0x00820800 },
  332. { 270 , 0x00820800 },
  333. { 240 , 0x00820800 },
  334. { 210 , 0x00820800 },
  335. { 180 , 0x00820800 },
  336. { 150 , 0x0028b000 },
  337. { 120 , 0x001ca000 },
  338. { 0 , 0 },
  339. };
  340. static struct kauai_timing shasta_udma133_timings[] =
  341. {
  342. { 120 , 0x00035901, },
  343. { 90 , 0x000348b1, },
  344. { 60 , 0x00033881, },
  345. { 45 , 0x00033861, },
  346. { 30 , 0x00033841, },
  347. { 20 , 0x00033031, },
  348. { 15 , 0x00033021, },
  349. { 0 , 0 },
  350. };
  351. static inline u32
  352. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  353. {
  354. int i;
  355. for (i=0; table[i].cycle_time; i++)
  356. if (cycle_time > table[i+1].cycle_time)
  357. return table[i].timing_reg;
  358. BUG();
  359. return 0;
  360. }
  361. /* allow up to 256 DBDMA commands per xfer */
  362. #define MAX_DCMDS 256
  363. /*
  364. * Wait 1s for disk to answer on IDE bus after a hard reset
  365. * of the device (via GPIO/FCR).
  366. *
  367. * Some devices seem to "pollute" the bus even after dropping
  368. * the BSY bit (typically some combo drives slave on the UDMA
  369. * bus) after a hard reset. Since we hard reset all drives on
  370. * KeyLargo ATA66, we have to keep that delay around. I may end
  371. * up not hard resetting anymore on these and keep the delay only
  372. * for older interfaces instead (we have to reset when coming
  373. * from MacOS...) --BenH.
  374. */
  375. #define IDE_WAKEUP_DELAY (1*HZ)
  376. static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
  377. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  378. static void pmac_ide_selectproc(ide_drive_t *drive);
  379. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  380. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  381. /*
  382. * N.B. this can't be an initfunc, because the media-bay task can
  383. * call ide_[un]register at any time.
  384. */
  385. void
  386. pmac_ide_init_hwif_ports(hw_regs_t *hw,
  387. unsigned long data_port, unsigned long ctrl_port,
  388. int *irq)
  389. {
  390. int i, ix;
  391. if (data_port == 0)
  392. return;
  393. for (ix = 0; ix < MAX_HWIFS; ++ix)
  394. if (data_port == pmac_ide[ix].regbase)
  395. break;
  396. if (ix >= MAX_HWIFS)
  397. return; /* not an IDE PMAC interface */
  398. for (i = 0; i < 8; ++i)
  399. hw->io_ports[i] = data_port + i * 0x10;
  400. hw->io_ports[8] = data_port + 0x160;
  401. if (irq != NULL)
  402. *irq = pmac_ide[ix].irq;
  403. hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
  404. }
  405. #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
  406. /*
  407. * Apply the timings of the proper unit (master/slave) to the shared
  408. * timing register when selecting that unit. This version is for
  409. * ASICs with a single timing register
  410. */
  411. static void
  412. pmac_ide_selectproc(ide_drive_t *drive)
  413. {
  414. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  415. if (pmif == NULL)
  416. return;
  417. if (drive->select.b.unit & 0x01)
  418. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  419. else
  420. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  421. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  422. }
  423. /*
  424. * Apply the timings of the proper unit (master/slave) to the shared
  425. * timing register when selecting that unit. This version is for
  426. * ASICs with a dual timing register (Kauai)
  427. */
  428. static void
  429. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  430. {
  431. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  432. if (pmif == NULL)
  433. return;
  434. if (drive->select.b.unit & 0x01) {
  435. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  436. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  437. } else {
  438. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  439. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  440. }
  441. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  442. }
  443. /*
  444. * Force an update of controller timing values for a given drive
  445. */
  446. static void
  447. pmac_ide_do_update_timings(ide_drive_t *drive)
  448. {
  449. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  450. if (pmif == NULL)
  451. return;
  452. if (pmif->kind == controller_sh_ata6 ||
  453. pmif->kind == controller_un_ata6 ||
  454. pmif->kind == controller_k2_ata6)
  455. pmac_ide_kauai_selectproc(drive);
  456. else
  457. pmac_ide_selectproc(drive);
  458. }
  459. static void
  460. pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
  461. {
  462. u32 tmp;
  463. writeb(value, (void __iomem *) port);
  464. tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  465. }
  466. /*
  467. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  468. */
  469. static void
  470. pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
  471. {
  472. u32 *timings, t;
  473. unsigned accessTicks, recTicks;
  474. unsigned accessTime, recTime;
  475. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  476. unsigned int cycle_time;
  477. if (pmif == NULL)
  478. return;
  479. /* which drive is it ? */
  480. timings = &pmif->timings[drive->select.b.unit & 0x01];
  481. t = *timings;
  482. cycle_time = ide_pio_cycle_time(drive, pio);
  483. switch (pmif->kind) {
  484. case controller_sh_ata6: {
  485. /* 133Mhz cell */
  486. u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
  487. t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
  488. break;
  489. }
  490. case controller_un_ata6:
  491. case controller_k2_ata6: {
  492. /* 100Mhz cell */
  493. u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
  494. t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
  495. break;
  496. }
  497. case controller_kl_ata4:
  498. /* 66Mhz cell */
  499. recTime = cycle_time - ide_pio_timings[pio].active_time
  500. - ide_pio_timings[pio].setup_time;
  501. recTime = max(recTime, 150U);
  502. accessTime = ide_pio_timings[pio].active_time;
  503. accessTime = max(accessTime, 150U);
  504. accessTicks = SYSCLK_TICKS_66(accessTime);
  505. accessTicks = min(accessTicks, 0x1fU);
  506. recTicks = SYSCLK_TICKS_66(recTime);
  507. recTicks = min(recTicks, 0x1fU);
  508. t = (t & ~TR_66_PIO_MASK) |
  509. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  510. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  511. break;
  512. default: {
  513. /* 33Mhz cell */
  514. int ebit = 0;
  515. recTime = cycle_time - ide_pio_timings[pio].active_time
  516. - ide_pio_timings[pio].setup_time;
  517. recTime = max(recTime, 150U);
  518. accessTime = ide_pio_timings[pio].active_time;
  519. accessTime = max(accessTime, 150U);
  520. accessTicks = SYSCLK_TICKS(accessTime);
  521. accessTicks = min(accessTicks, 0x1fU);
  522. accessTicks = max(accessTicks, 4U);
  523. recTicks = SYSCLK_TICKS(recTime);
  524. recTicks = min(recTicks, 0x1fU);
  525. recTicks = max(recTicks, 5U) - 4;
  526. if (recTicks > 9) {
  527. recTicks--; /* guess, but it's only for PIO0, so... */
  528. ebit = 1;
  529. }
  530. t = (t & ~TR_33_PIO_MASK) |
  531. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  532. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  533. if (ebit)
  534. t |= TR_33_PIO_E;
  535. break;
  536. }
  537. }
  538. #ifdef IDE_PMAC_DEBUG
  539. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  540. drive->name, pio, *timings);
  541. #endif
  542. *timings = t;
  543. pmac_ide_do_update_timings(drive);
  544. }
  545. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  546. /*
  547. * Calculate KeyLargo ATA/66 UDMA timings
  548. */
  549. static int
  550. set_timings_udma_ata4(u32 *timings, u8 speed)
  551. {
  552. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  553. if (speed > XFER_UDMA_4)
  554. return 1;
  555. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  556. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  557. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  558. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  559. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  560. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  561. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  562. TR_66_UDMA_EN;
  563. #ifdef IDE_PMAC_DEBUG
  564. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  565. speed & 0xf, *timings);
  566. #endif
  567. return 0;
  568. }
  569. /*
  570. * Calculate Kauai ATA/100 UDMA timings
  571. */
  572. static int
  573. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  574. {
  575. struct ide_timing *t = ide_timing_find_mode(speed);
  576. u32 tr;
  577. if (speed > XFER_UDMA_5 || t == NULL)
  578. return 1;
  579. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  580. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  581. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  582. return 0;
  583. }
  584. /*
  585. * Calculate Shasta ATA/133 UDMA timings
  586. */
  587. static int
  588. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  589. {
  590. struct ide_timing *t = ide_timing_find_mode(speed);
  591. u32 tr;
  592. if (speed > XFER_UDMA_6 || t == NULL)
  593. return 1;
  594. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  595. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  596. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  597. return 0;
  598. }
  599. /*
  600. * Calculate MDMA timings for all cells
  601. */
  602. static void
  603. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  604. u8 speed)
  605. {
  606. int cycleTime, accessTime = 0, recTime = 0;
  607. unsigned accessTicks, recTicks;
  608. struct hd_driveid *id = drive->id;
  609. struct mdma_timings_t* tm = NULL;
  610. int i;
  611. /* Get default cycle time for mode */
  612. switch(speed & 0xf) {
  613. case 0: cycleTime = 480; break;
  614. case 1: cycleTime = 150; break;
  615. case 2: cycleTime = 120; break;
  616. default:
  617. BUG();
  618. break;
  619. }
  620. /* Check if drive provides explicit DMA cycle time */
  621. if ((id->field_valid & 2) && id->eide_dma_time)
  622. cycleTime = max_t(int, id->eide_dma_time, cycleTime);
  623. /* OHare limits according to some old Apple sources */
  624. if ((intf_type == controller_ohare) && (cycleTime < 150))
  625. cycleTime = 150;
  626. /* Get the proper timing array for this controller */
  627. switch(intf_type) {
  628. case controller_sh_ata6:
  629. case controller_un_ata6:
  630. case controller_k2_ata6:
  631. break;
  632. case controller_kl_ata4:
  633. tm = mdma_timings_66;
  634. break;
  635. case controller_kl_ata3:
  636. tm = mdma_timings_33k;
  637. break;
  638. default:
  639. tm = mdma_timings_33;
  640. break;
  641. }
  642. if (tm != NULL) {
  643. /* Lookup matching access & recovery times */
  644. i = -1;
  645. for (;;) {
  646. if (tm[i+1].cycleTime < cycleTime)
  647. break;
  648. i++;
  649. }
  650. cycleTime = tm[i].cycleTime;
  651. accessTime = tm[i].accessTime;
  652. recTime = tm[i].recoveryTime;
  653. #ifdef IDE_PMAC_DEBUG
  654. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  655. drive->name, cycleTime, accessTime, recTime);
  656. #endif
  657. }
  658. switch(intf_type) {
  659. case controller_sh_ata6: {
  660. /* 133Mhz cell */
  661. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  662. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  663. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  664. }
  665. case controller_un_ata6:
  666. case controller_k2_ata6: {
  667. /* 100Mhz cell */
  668. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  669. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  670. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  671. }
  672. break;
  673. case controller_kl_ata4:
  674. /* 66Mhz cell */
  675. accessTicks = SYSCLK_TICKS_66(accessTime);
  676. accessTicks = min(accessTicks, 0x1fU);
  677. accessTicks = max(accessTicks, 0x1U);
  678. recTicks = SYSCLK_TICKS_66(recTime);
  679. recTicks = min(recTicks, 0x1fU);
  680. recTicks = max(recTicks, 0x3U);
  681. /* Clear out mdma bits and disable udma */
  682. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  683. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  684. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  685. break;
  686. case controller_kl_ata3:
  687. /* 33Mhz cell on KeyLargo */
  688. accessTicks = SYSCLK_TICKS(accessTime);
  689. accessTicks = max(accessTicks, 1U);
  690. accessTicks = min(accessTicks, 0x1fU);
  691. accessTime = accessTicks * IDE_SYSCLK_NS;
  692. recTicks = SYSCLK_TICKS(recTime);
  693. recTicks = max(recTicks, 1U);
  694. recTicks = min(recTicks, 0x1fU);
  695. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  696. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  697. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  698. break;
  699. default: {
  700. /* 33Mhz cell on others */
  701. int halfTick = 0;
  702. int origAccessTime = accessTime;
  703. int origRecTime = recTime;
  704. accessTicks = SYSCLK_TICKS(accessTime);
  705. accessTicks = max(accessTicks, 1U);
  706. accessTicks = min(accessTicks, 0x1fU);
  707. accessTime = accessTicks * IDE_SYSCLK_NS;
  708. recTicks = SYSCLK_TICKS(recTime);
  709. recTicks = max(recTicks, 2U) - 1;
  710. recTicks = min(recTicks, 0x1fU);
  711. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  712. if ((accessTicks > 1) &&
  713. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  714. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  715. halfTick = 1;
  716. accessTicks--;
  717. }
  718. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  719. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  720. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  721. if (halfTick)
  722. *timings |= TR_33_MDMA_HALFTICK;
  723. }
  724. }
  725. #ifdef IDE_PMAC_DEBUG
  726. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  727. drive->name, speed & 0xf, *timings);
  728. #endif
  729. }
  730. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  731. static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
  732. {
  733. int unit = (drive->select.b.unit & 0x01);
  734. int ret = 0;
  735. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  736. u32 *timings, *timings2, tl[2];
  737. timings = &pmif->timings[unit];
  738. timings2 = &pmif->timings[unit+2];
  739. /* Copy timings to local image */
  740. tl[0] = *timings;
  741. tl[1] = *timings2;
  742. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  743. if (speed >= XFER_UDMA_0) {
  744. if (pmif->kind == controller_kl_ata4)
  745. ret = set_timings_udma_ata4(&tl[0], speed);
  746. else if (pmif->kind == controller_un_ata6
  747. || pmif->kind == controller_k2_ata6)
  748. ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
  749. else if (pmif->kind == controller_sh_ata6)
  750. ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
  751. else
  752. ret = -1;
  753. } else
  754. set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
  755. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  756. if (ret)
  757. return;
  758. /* Apply timings to controller */
  759. *timings = tl[0];
  760. *timings2 = tl[1];
  761. pmac_ide_do_update_timings(drive);
  762. }
  763. /*
  764. * Blast some well known "safe" values to the timing registers at init or
  765. * wakeup from sleep time, before we do real calculation
  766. */
  767. static void
  768. sanitize_timings(pmac_ide_hwif_t *pmif)
  769. {
  770. unsigned int value, value2 = 0;
  771. switch(pmif->kind) {
  772. case controller_sh_ata6:
  773. value = 0x0a820c97;
  774. value2 = 0x00033031;
  775. break;
  776. case controller_un_ata6:
  777. case controller_k2_ata6:
  778. value = 0x08618a92;
  779. value2 = 0x00002921;
  780. break;
  781. case controller_kl_ata4:
  782. value = 0x0008438c;
  783. break;
  784. case controller_kl_ata3:
  785. value = 0x00084526;
  786. break;
  787. case controller_heathrow:
  788. case controller_ohare:
  789. default:
  790. value = 0x00074526;
  791. break;
  792. }
  793. pmif->timings[0] = pmif->timings[1] = value;
  794. pmif->timings[2] = pmif->timings[3] = value2;
  795. }
  796. unsigned long
  797. pmac_ide_get_base(int index)
  798. {
  799. return pmac_ide[index].regbase;
  800. }
  801. int
  802. pmac_ide_check_base(unsigned long base)
  803. {
  804. int ix;
  805. for (ix = 0; ix < MAX_HWIFS; ++ix)
  806. if (base == pmac_ide[ix].regbase)
  807. return ix;
  808. return -1;
  809. }
  810. int
  811. pmac_ide_get_irq(unsigned long base)
  812. {
  813. int ix;
  814. for (ix = 0; ix < MAX_HWIFS; ++ix)
  815. if (base == pmac_ide[ix].regbase)
  816. return pmac_ide[ix].irq;
  817. return 0;
  818. }
  819. static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
  820. dev_t __init
  821. pmac_find_ide_boot(char *bootdevice, int n)
  822. {
  823. int i;
  824. /*
  825. * Look through the list of IDE interfaces for this one.
  826. */
  827. for (i = 0; i < pmac_ide_count; ++i) {
  828. char *name;
  829. if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
  830. continue;
  831. name = pmac_ide[i].node->full_name;
  832. if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
  833. /* XXX should cope with the 2nd drive as well... */
  834. return MKDEV(ide_majors[i], 0);
  835. }
  836. }
  837. return 0;
  838. }
  839. /* Suspend call back, should be called after the child devices
  840. * have actually been suspended
  841. */
  842. static int
  843. pmac_ide_do_suspend(ide_hwif_t *hwif)
  844. {
  845. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  846. /* We clear the timings */
  847. pmif->timings[0] = 0;
  848. pmif->timings[1] = 0;
  849. disable_irq(pmif->irq);
  850. /* The media bay will handle itself just fine */
  851. if (pmif->mediabay)
  852. return 0;
  853. /* Kauai has bus control FCRs directly here */
  854. if (pmif->kauai_fcr) {
  855. u32 fcr = readl(pmif->kauai_fcr);
  856. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  857. writel(fcr, pmif->kauai_fcr);
  858. }
  859. /* Disable the bus on older machines and the cell on kauai */
  860. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  861. 0);
  862. return 0;
  863. }
  864. /* Resume call back, should be called before the child devices
  865. * are resumed
  866. */
  867. static int
  868. pmac_ide_do_resume(ide_hwif_t *hwif)
  869. {
  870. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  871. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  872. if (!pmif->mediabay) {
  873. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  874. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  875. msleep(10);
  876. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  877. /* Kauai has it different */
  878. if (pmif->kauai_fcr) {
  879. u32 fcr = readl(pmif->kauai_fcr);
  880. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  881. writel(fcr, pmif->kauai_fcr);
  882. }
  883. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  884. }
  885. /* Sanitize drive timings */
  886. sanitize_timings(pmif);
  887. enable_irq(pmif->irq);
  888. return 0;
  889. }
  890. /*
  891. * Setup, register & probe an IDE channel driven by this driver, this is
  892. * called by one of the 2 probe functions (macio or PCI). Note that a channel
  893. * that ends up beeing free of any device is not kept around by this driver
  894. * (it is kept in 2.4). This introduce an interface numbering change on some
  895. * rare machines unfortunately, but it's better this way.
  896. */
  897. static int
  898. pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  899. {
  900. struct device_node *np = pmif->node;
  901. const int *bidp;
  902. u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
  903. hw_regs_t hw;
  904. pmif->cable_80 = 0;
  905. pmif->broken_dma = pmif->broken_dma_warn = 0;
  906. if (of_device_is_compatible(np, "shasta-ata"))
  907. pmif->kind = controller_sh_ata6;
  908. else if (of_device_is_compatible(np, "kauai-ata"))
  909. pmif->kind = controller_un_ata6;
  910. else if (of_device_is_compatible(np, "K2-UATA"))
  911. pmif->kind = controller_k2_ata6;
  912. else if (of_device_is_compatible(np, "keylargo-ata")) {
  913. if (strcmp(np->name, "ata-4") == 0)
  914. pmif->kind = controller_kl_ata4;
  915. else
  916. pmif->kind = controller_kl_ata3;
  917. } else if (of_device_is_compatible(np, "heathrow-ata"))
  918. pmif->kind = controller_heathrow;
  919. else {
  920. pmif->kind = controller_ohare;
  921. pmif->broken_dma = 1;
  922. }
  923. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  924. pmif->aapl_bus_id = bidp ? *bidp : 0;
  925. /* Get cable type from device-tree */
  926. if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
  927. || pmif->kind == controller_k2_ata6
  928. || pmif->kind == controller_sh_ata6) {
  929. const char* cable = of_get_property(np, "cable-type", NULL);
  930. if (cable && !strncmp(cable, "80-", 3))
  931. pmif->cable_80 = 1;
  932. }
  933. /* G5's seem to have incorrect cable type in device-tree. Let's assume
  934. * they have a 80 conductor cable, this seem to be always the case unless
  935. * the user mucked around
  936. */
  937. if (of_device_is_compatible(np, "K2-UATA") ||
  938. of_device_is_compatible(np, "shasta-ata"))
  939. pmif->cable_80 = 1;
  940. /* On Kauai-type controllers, we make sure the FCR is correct */
  941. if (pmif->kauai_fcr)
  942. writel(KAUAI_FCR_UATA_MAGIC |
  943. KAUAI_FCR_UATA_RESET_N |
  944. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  945. pmif->mediabay = 0;
  946. /* Make sure we have sane timings */
  947. sanitize_timings(pmif);
  948. #ifndef CONFIG_PPC64
  949. /* XXX FIXME: Media bay stuff need re-organizing */
  950. if (np->parent && np->parent->name
  951. && strcasecmp(np->parent->name, "media-bay") == 0) {
  952. #ifdef CONFIG_PMAC_MEDIABAY
  953. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
  954. #endif /* CONFIG_PMAC_MEDIABAY */
  955. pmif->mediabay = 1;
  956. if (!bidp)
  957. pmif->aapl_bus_id = 1;
  958. } else if (pmif->kind == controller_ohare) {
  959. /* The code below is having trouble on some ohare machines
  960. * (timing related ?). Until I can put my hand on one of these
  961. * units, I keep the old way
  962. */
  963. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  964. } else
  965. #endif
  966. {
  967. /* This is necessary to enable IDE when net-booting */
  968. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  969. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  970. msleep(10);
  971. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  972. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  973. }
  974. /* Setup MMIO ops */
  975. default_hwif_mmiops(hwif);
  976. hwif->OUTBSYNC = pmac_outbsync;
  977. /* Tell common code _not_ to mess with resources */
  978. hwif->mmio = 1;
  979. hwif->hwif_data = pmif;
  980. memset(&hw, 0, sizeof(hw));
  981. pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, &hwif->irq);
  982. memcpy(hwif->io_ports, hw.io_ports, sizeof(hwif->io_ports));
  983. hwif->chipset = ide_pmac;
  984. hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
  985. hwif->hold = pmif->mediabay;
  986. hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
  987. hwif->drives[0].unmask = 1;
  988. hwif->drives[1].unmask = 1;
  989. hwif->drives[0].autotune = IDE_TUNE_AUTO;
  990. hwif->drives[1].autotune = IDE_TUNE_AUTO;
  991. hwif->host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
  992. IDE_HFLAG_PIO_NO_DOWNGRADE |
  993. IDE_HFLAG_POST_SET_MODE;
  994. hwif->pio_mask = ATA_PIO4;
  995. hwif->set_pio_mode = pmac_ide_set_pio_mode;
  996. if (pmif->kind == controller_un_ata6
  997. || pmif->kind == controller_k2_ata6
  998. || pmif->kind == controller_sh_ata6)
  999. hwif->selectproc = pmac_ide_kauai_selectproc;
  1000. else
  1001. hwif->selectproc = pmac_ide_selectproc;
  1002. hwif->set_dma_mode = pmac_ide_set_dma_mode;
  1003. printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
  1004. hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
  1005. pmif->mediabay ? " (mediabay)" : "", hwif->irq);
  1006. #ifdef CONFIG_PMAC_MEDIABAY
  1007. if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
  1008. hwif->noprobe = 0;
  1009. #endif /* CONFIG_PMAC_MEDIABAY */
  1010. hwif->sg_max_nents = MAX_DCMDS;
  1011. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1012. /* has a DBDMA controller channel */
  1013. if (pmif->dma_regs)
  1014. pmac_ide_setup_dma(pmif, hwif);
  1015. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1016. idx[0] = hwif->index;
  1017. ide_device_add(idx);
  1018. return 0;
  1019. }
  1020. /*
  1021. * Attach to a macio probed interface
  1022. */
  1023. static int __devinit
  1024. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  1025. {
  1026. void __iomem *base;
  1027. unsigned long regbase;
  1028. int irq;
  1029. ide_hwif_t *hwif;
  1030. pmac_ide_hwif_t *pmif;
  1031. int i, rc;
  1032. i = 0;
  1033. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1034. || pmac_ide[i].node != NULL))
  1035. ++i;
  1036. if (i >= MAX_HWIFS) {
  1037. printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
  1038. printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
  1039. return -ENODEV;
  1040. }
  1041. pmif = &pmac_ide[i];
  1042. hwif = &ide_hwifs[i];
  1043. if (macio_resource_count(mdev) == 0) {
  1044. printk(KERN_WARNING "ide%d: no address for %s\n",
  1045. i, mdev->ofdev.node->full_name);
  1046. return -ENXIO;
  1047. }
  1048. /* Request memory resource for IO ports */
  1049. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1050. printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
  1051. return -EBUSY;
  1052. }
  1053. /* XXX This is bogus. Should be fixed in the registry by checking
  1054. * the kind of host interrupt controller, a bit like gatwick
  1055. * fixes in irq.c. That works well enough for the single case
  1056. * where that happens though...
  1057. */
  1058. if (macio_irq_count(mdev) == 0) {
  1059. printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
  1060. i, mdev->ofdev.node->full_name);
  1061. irq = irq_create_mapping(NULL, 13);
  1062. } else
  1063. irq = macio_irq(mdev, 0);
  1064. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1065. regbase = (unsigned long) base;
  1066. hwif->pci_dev = mdev->bus->pdev;
  1067. hwif->gendev.parent = &mdev->ofdev.dev;
  1068. pmif->mdev = mdev;
  1069. pmif->node = mdev->ofdev.node;
  1070. pmif->regbase = regbase;
  1071. pmif->irq = irq;
  1072. pmif->kauai_fcr = NULL;
  1073. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1074. if (macio_resource_count(mdev) >= 2) {
  1075. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1076. printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
  1077. else
  1078. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1079. } else
  1080. pmif->dma_regs = NULL;
  1081. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1082. dev_set_drvdata(&mdev->ofdev.dev, hwif);
  1083. rc = pmac_ide_setup_device(pmif, hwif);
  1084. if (rc != 0) {
  1085. /* The inteface is released to the common IDE layer */
  1086. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1087. iounmap(base);
  1088. if (pmif->dma_regs)
  1089. iounmap(pmif->dma_regs);
  1090. memset(pmif, 0, sizeof(*pmif));
  1091. macio_release_resource(mdev, 0);
  1092. if (pmif->dma_regs)
  1093. macio_release_resource(mdev, 1);
  1094. }
  1095. return rc;
  1096. }
  1097. static int
  1098. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1099. {
  1100. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1101. int rc = 0;
  1102. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1103. && mesg.event == PM_EVENT_SUSPEND) {
  1104. rc = pmac_ide_do_suspend(hwif);
  1105. if (rc == 0)
  1106. mdev->ofdev.dev.power.power_state = mesg;
  1107. }
  1108. return rc;
  1109. }
  1110. static int
  1111. pmac_ide_macio_resume(struct macio_dev *mdev)
  1112. {
  1113. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1114. int rc = 0;
  1115. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1116. rc = pmac_ide_do_resume(hwif);
  1117. if (rc == 0)
  1118. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1119. }
  1120. return rc;
  1121. }
  1122. /*
  1123. * Attach to a PCI probed interface
  1124. */
  1125. static int __devinit
  1126. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1127. {
  1128. ide_hwif_t *hwif;
  1129. struct device_node *np;
  1130. pmac_ide_hwif_t *pmif;
  1131. void __iomem *base;
  1132. unsigned long rbase, rlen;
  1133. int i, rc;
  1134. np = pci_device_to_OF_node(pdev);
  1135. if (np == NULL) {
  1136. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1137. return -ENODEV;
  1138. }
  1139. i = 0;
  1140. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1141. || pmac_ide[i].node != NULL))
  1142. ++i;
  1143. if (i >= MAX_HWIFS) {
  1144. printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
  1145. printk(KERN_ERR " %s\n", np->full_name);
  1146. return -ENODEV;
  1147. }
  1148. pmif = &pmac_ide[i];
  1149. hwif = &ide_hwifs[i];
  1150. if (pci_enable_device(pdev)) {
  1151. printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
  1152. i, np->full_name);
  1153. return -ENXIO;
  1154. }
  1155. pci_set_master(pdev);
  1156. if (pci_request_regions(pdev, "Kauai ATA")) {
  1157. printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
  1158. i, np->full_name);
  1159. return -ENXIO;
  1160. }
  1161. hwif->pci_dev = pdev;
  1162. hwif->gendev.parent = &pdev->dev;
  1163. pmif->mdev = NULL;
  1164. pmif->node = np;
  1165. rbase = pci_resource_start(pdev, 0);
  1166. rlen = pci_resource_len(pdev, 0);
  1167. base = ioremap(rbase, rlen);
  1168. pmif->regbase = (unsigned long) base + 0x2000;
  1169. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1170. pmif->dma_regs = base + 0x1000;
  1171. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1172. pmif->kauai_fcr = base;
  1173. pmif->irq = pdev->irq;
  1174. pci_set_drvdata(pdev, hwif);
  1175. rc = pmac_ide_setup_device(pmif, hwif);
  1176. if (rc != 0) {
  1177. /* The inteface is released to the common IDE layer */
  1178. pci_set_drvdata(pdev, NULL);
  1179. iounmap(base);
  1180. memset(pmif, 0, sizeof(*pmif));
  1181. pci_release_regions(pdev);
  1182. }
  1183. return rc;
  1184. }
  1185. static int
  1186. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1187. {
  1188. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1189. int rc = 0;
  1190. if (mesg.event != pdev->dev.power.power_state.event
  1191. && mesg.event == PM_EVENT_SUSPEND) {
  1192. rc = pmac_ide_do_suspend(hwif);
  1193. if (rc == 0)
  1194. pdev->dev.power.power_state = mesg;
  1195. }
  1196. return rc;
  1197. }
  1198. static int
  1199. pmac_ide_pci_resume(struct pci_dev *pdev)
  1200. {
  1201. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1202. int rc = 0;
  1203. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1204. rc = pmac_ide_do_resume(hwif);
  1205. if (rc == 0)
  1206. pdev->dev.power.power_state = PMSG_ON;
  1207. }
  1208. return rc;
  1209. }
  1210. static struct of_device_id pmac_ide_macio_match[] =
  1211. {
  1212. {
  1213. .name = "IDE",
  1214. },
  1215. {
  1216. .name = "ATA",
  1217. },
  1218. {
  1219. .type = "ide",
  1220. },
  1221. {
  1222. .type = "ata",
  1223. },
  1224. {},
  1225. };
  1226. static struct macio_driver pmac_ide_macio_driver =
  1227. {
  1228. .name = "ide-pmac",
  1229. .match_table = pmac_ide_macio_match,
  1230. .probe = pmac_ide_macio_attach,
  1231. .suspend = pmac_ide_macio_suspend,
  1232. .resume = pmac_ide_macio_resume,
  1233. };
  1234. static const struct pci_device_id pmac_ide_pci_match[] = {
  1235. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
  1236. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
  1237. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
  1238. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
  1239. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
  1240. {},
  1241. };
  1242. static struct pci_driver pmac_ide_pci_driver = {
  1243. .name = "ide-pmac",
  1244. .id_table = pmac_ide_pci_match,
  1245. .probe = pmac_ide_pci_attach,
  1246. .suspend = pmac_ide_pci_suspend,
  1247. .resume = pmac_ide_pci_resume,
  1248. };
  1249. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1250. int __init pmac_ide_probe(void)
  1251. {
  1252. int error;
  1253. if (!machine_is(powermac))
  1254. return -ENODEV;
  1255. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1256. error = pci_register_driver(&pmac_ide_pci_driver);
  1257. if (error)
  1258. goto out;
  1259. error = macio_register_driver(&pmac_ide_macio_driver);
  1260. if (error) {
  1261. pci_unregister_driver(&pmac_ide_pci_driver);
  1262. goto out;
  1263. }
  1264. #else
  1265. error = macio_register_driver(&pmac_ide_macio_driver);
  1266. if (error)
  1267. goto out;
  1268. error = pci_register_driver(&pmac_ide_pci_driver);
  1269. if (error) {
  1270. macio_unregister_driver(&pmac_ide_macio_driver);
  1271. goto out;
  1272. }
  1273. #endif
  1274. out:
  1275. return error;
  1276. }
  1277. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1278. /*
  1279. * pmac_ide_build_dmatable builds the DBDMA command list
  1280. * for a transfer and sets the DBDMA channel to point to it.
  1281. */
  1282. static int
  1283. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1284. {
  1285. struct dbdma_cmd *table;
  1286. int i, count = 0;
  1287. ide_hwif_t *hwif = HWIF(drive);
  1288. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1289. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1290. struct scatterlist *sg;
  1291. int wr = (rq_data_dir(rq) == WRITE);
  1292. /* DMA table is already aligned */
  1293. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1294. /* Make sure DMA controller is stopped (necessary ?) */
  1295. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1296. while (readl(&dma->status) & RUN)
  1297. udelay(1);
  1298. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1299. if (!i)
  1300. return 0;
  1301. /* Build DBDMA commands list */
  1302. sg = hwif->sg_table;
  1303. while (i && sg_dma_len(sg)) {
  1304. u32 cur_addr;
  1305. u32 cur_len;
  1306. cur_addr = sg_dma_address(sg);
  1307. cur_len = sg_dma_len(sg);
  1308. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1309. if (pmif->broken_dma_warn == 0) {
  1310. printk(KERN_WARNING "%s: DMA on non aligned address, "
  1311. "switching to PIO on Ohare chipset\n", drive->name);
  1312. pmif->broken_dma_warn = 1;
  1313. }
  1314. goto use_pio_instead;
  1315. }
  1316. while (cur_len) {
  1317. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1318. if (count++ >= MAX_DCMDS) {
  1319. printk(KERN_WARNING "%s: DMA table too small\n",
  1320. drive->name);
  1321. goto use_pio_instead;
  1322. }
  1323. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1324. st_le16(&table->req_count, tc);
  1325. st_le32(&table->phy_addr, cur_addr);
  1326. table->cmd_dep = 0;
  1327. table->xfer_status = 0;
  1328. table->res_count = 0;
  1329. cur_addr += tc;
  1330. cur_len -= tc;
  1331. ++table;
  1332. }
  1333. sg = sg_next(sg);
  1334. i--;
  1335. }
  1336. /* convert the last command to an input/output last command */
  1337. if (count) {
  1338. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1339. /* add the stop command to the end of the list */
  1340. memset(table, 0, sizeof(struct dbdma_cmd));
  1341. st_le16(&table->command, DBDMA_STOP);
  1342. mb();
  1343. writel(hwif->dmatable_dma, &dma->cmdptr);
  1344. return 1;
  1345. }
  1346. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1347. use_pio_instead:
  1348. pci_unmap_sg(hwif->pci_dev,
  1349. hwif->sg_table,
  1350. hwif->sg_nents,
  1351. hwif->sg_dma_direction);
  1352. return 0; /* revert to PIO for this request */
  1353. }
  1354. /* Teardown mappings after DMA has completed. */
  1355. static void
  1356. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1357. {
  1358. ide_hwif_t *hwif = drive->hwif;
  1359. struct pci_dev *dev = HWIF(drive)->pci_dev;
  1360. struct scatterlist *sg = hwif->sg_table;
  1361. int nents = hwif->sg_nents;
  1362. if (nents) {
  1363. pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
  1364. hwif->sg_nents = 0;
  1365. }
  1366. }
  1367. /*
  1368. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1369. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1370. */
  1371. static int
  1372. pmac_ide_dma_setup(ide_drive_t *drive)
  1373. {
  1374. ide_hwif_t *hwif = HWIF(drive);
  1375. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1376. struct request *rq = HWGROUP(drive)->rq;
  1377. u8 unit = (drive->select.b.unit & 0x01);
  1378. u8 ata4;
  1379. if (pmif == NULL)
  1380. return 1;
  1381. ata4 = (pmif->kind == controller_kl_ata4);
  1382. if (!pmac_ide_build_dmatable(drive, rq)) {
  1383. ide_map_sg(drive, rq);
  1384. return 1;
  1385. }
  1386. /* Apple adds 60ns to wrDataSetup on reads */
  1387. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1388. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1389. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1390. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1391. }
  1392. drive->waiting_for_dma = 1;
  1393. return 0;
  1394. }
  1395. static void
  1396. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1397. {
  1398. /* issue cmd to drive */
  1399. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1400. }
  1401. /*
  1402. * Kick the DMA controller into life after the DMA command has been issued
  1403. * to the drive.
  1404. */
  1405. static void
  1406. pmac_ide_dma_start(ide_drive_t *drive)
  1407. {
  1408. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1409. volatile struct dbdma_regs __iomem *dma;
  1410. dma = pmif->dma_regs;
  1411. writel((RUN << 16) | RUN, &dma->control);
  1412. /* Make sure it gets to the controller right now */
  1413. (void)readl(&dma->control);
  1414. }
  1415. /*
  1416. * After a DMA transfer, make sure the controller is stopped
  1417. */
  1418. static int
  1419. pmac_ide_dma_end (ide_drive_t *drive)
  1420. {
  1421. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1422. volatile struct dbdma_regs __iomem *dma;
  1423. u32 dstat;
  1424. if (pmif == NULL)
  1425. return 0;
  1426. dma = pmif->dma_regs;
  1427. drive->waiting_for_dma = 0;
  1428. dstat = readl(&dma->status);
  1429. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1430. pmac_ide_destroy_dmatable(drive);
  1431. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1432. * in theory, but with ATAPI decices doing buffer underruns, that would
  1433. * cause us to disable DMA, which isn't what we want
  1434. */
  1435. return (dstat & (RUN|DEAD)) != RUN;
  1436. }
  1437. /*
  1438. * Check out that the interrupt we got was for us. We can't always know this
  1439. * for sure with those Apple interfaces (well, we could on the recent ones but
  1440. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1441. * so it's not really a problem
  1442. */
  1443. static int
  1444. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1445. {
  1446. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1447. volatile struct dbdma_regs __iomem *dma;
  1448. unsigned long status, timeout;
  1449. if (pmif == NULL)
  1450. return 0;
  1451. dma = pmif->dma_regs;
  1452. /* We have to things to deal with here:
  1453. *
  1454. * - The dbdma won't stop if the command was started
  1455. * but completed with an error without transferring all
  1456. * datas. This happens when bad blocks are met during
  1457. * a multi-block transfer.
  1458. *
  1459. * - The dbdma fifo hasn't yet finished flushing to
  1460. * to system memory when the disk interrupt occurs.
  1461. *
  1462. */
  1463. /* If ACTIVE is cleared, the STOP command have passed and
  1464. * transfer is complete.
  1465. */
  1466. status = readl(&dma->status);
  1467. if (!(status & ACTIVE))
  1468. return 1;
  1469. if (!drive->waiting_for_dma)
  1470. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1471. called while not waiting\n", HWIF(drive)->index);
  1472. /* If dbdma didn't execute the STOP command yet, the
  1473. * active bit is still set. We consider that we aren't
  1474. * sharing interrupts (which is hopefully the case with
  1475. * those controllers) and so we just try to flush the
  1476. * channel for pending data in the fifo
  1477. */
  1478. udelay(1);
  1479. writel((FLUSH << 16) | FLUSH, &dma->control);
  1480. timeout = 0;
  1481. for (;;) {
  1482. udelay(1);
  1483. status = readl(&dma->status);
  1484. if ((status & FLUSH) == 0)
  1485. break;
  1486. if (++timeout > 100) {
  1487. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1488. timeout flushing channel\n", HWIF(drive)->index);
  1489. break;
  1490. }
  1491. }
  1492. return 1;
  1493. }
  1494. static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
  1495. {
  1496. }
  1497. static void
  1498. pmac_ide_dma_lost_irq (ide_drive_t *drive)
  1499. {
  1500. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1501. volatile struct dbdma_regs __iomem *dma;
  1502. unsigned long status;
  1503. if (pmif == NULL)
  1504. return;
  1505. dma = pmif->dma_regs;
  1506. status = readl(&dma->status);
  1507. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1508. }
  1509. /*
  1510. * Allocate the data structures needed for using DMA with an interface
  1511. * and fill the proper list of functions pointers
  1512. */
  1513. static void __init
  1514. pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  1515. {
  1516. /* We won't need pci_dev if we switch to generic consistent
  1517. * DMA routines ...
  1518. */
  1519. if (hwif->pci_dev == NULL)
  1520. return;
  1521. /*
  1522. * Allocate space for the DBDMA commands.
  1523. * The +2 is +1 for the stop command and +1 to allow for
  1524. * aligning the start address to a multiple of 16 bytes.
  1525. */
  1526. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1527. hwif->pci_dev,
  1528. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1529. &hwif->dmatable_dma);
  1530. if (pmif->dma_table_cpu == NULL) {
  1531. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1532. hwif->name);
  1533. return;
  1534. }
  1535. hwif->dma_host_set = &pmac_ide_dma_host_set;
  1536. hwif->dma_setup = &pmac_ide_dma_setup;
  1537. hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
  1538. hwif->dma_start = &pmac_ide_dma_start;
  1539. hwif->ide_dma_end = &pmac_ide_dma_end;
  1540. hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
  1541. hwif->dma_timeout = &ide_dma_timeout;
  1542. hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
  1543. switch(pmif->kind) {
  1544. case controller_sh_ata6:
  1545. hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
  1546. hwif->mwdma_mask = 0x07;
  1547. hwif->swdma_mask = 0x00;
  1548. break;
  1549. case controller_un_ata6:
  1550. case controller_k2_ata6:
  1551. hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
  1552. hwif->mwdma_mask = 0x07;
  1553. hwif->swdma_mask = 0x00;
  1554. break;
  1555. case controller_kl_ata4:
  1556. hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
  1557. hwif->mwdma_mask = 0x07;
  1558. hwif->swdma_mask = 0x00;
  1559. break;
  1560. default:
  1561. hwif->ultra_mask = 0x00;
  1562. hwif->mwdma_mask = 0x07;
  1563. hwif->swdma_mask = 0x00;
  1564. break;
  1565. }
  1566. }
  1567. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */