ide-iops.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202
  1. /*
  2. * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
  3. *
  4. * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
  5. * Copyright (C) 2003 Red Hat <alan@redhat.com>
  6. *
  7. */
  8. #include <linux/module.h>
  9. #include <linux/types.h>
  10. #include <linux/string.h>
  11. #include <linux/kernel.h>
  12. #include <linux/timer.h>
  13. #include <linux/mm.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/major.h>
  16. #include <linux/errno.h>
  17. #include <linux/genhd.h>
  18. #include <linux/blkpg.h>
  19. #include <linux/slab.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/hdreg.h>
  23. #include <linux/ide.h>
  24. #include <linux/bitops.h>
  25. #include <linux/nmi.h>
  26. #include <asm/byteorder.h>
  27. #include <asm/irq.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/io.h>
  30. /*
  31. * Conventional PIO operations for ATA devices
  32. */
  33. static u8 ide_inb (unsigned long port)
  34. {
  35. return (u8) inb(port);
  36. }
  37. static u16 ide_inw (unsigned long port)
  38. {
  39. return (u16) inw(port);
  40. }
  41. static void ide_insw (unsigned long port, void *addr, u32 count)
  42. {
  43. insw(port, addr, count);
  44. }
  45. static void ide_insl (unsigned long port, void *addr, u32 count)
  46. {
  47. insl(port, addr, count);
  48. }
  49. static void ide_outb (u8 val, unsigned long port)
  50. {
  51. outb(val, port);
  52. }
  53. static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
  54. {
  55. outb(addr, port);
  56. }
  57. static void ide_outw (u16 val, unsigned long port)
  58. {
  59. outw(val, port);
  60. }
  61. static void ide_outsw (unsigned long port, void *addr, u32 count)
  62. {
  63. outsw(port, addr, count);
  64. }
  65. static void ide_outsl (unsigned long port, void *addr, u32 count)
  66. {
  67. outsl(port, addr, count);
  68. }
  69. void default_hwif_iops (ide_hwif_t *hwif)
  70. {
  71. hwif->OUTB = ide_outb;
  72. hwif->OUTBSYNC = ide_outbsync;
  73. hwif->OUTW = ide_outw;
  74. hwif->OUTSW = ide_outsw;
  75. hwif->OUTSL = ide_outsl;
  76. hwif->INB = ide_inb;
  77. hwif->INW = ide_inw;
  78. hwif->INSW = ide_insw;
  79. hwif->INSL = ide_insl;
  80. }
  81. /*
  82. * MMIO operations, typically used for SATA controllers
  83. */
  84. static u8 ide_mm_inb (unsigned long port)
  85. {
  86. return (u8) readb((void __iomem *) port);
  87. }
  88. static u16 ide_mm_inw (unsigned long port)
  89. {
  90. return (u16) readw((void __iomem *) port);
  91. }
  92. static void ide_mm_insw (unsigned long port, void *addr, u32 count)
  93. {
  94. __ide_mm_insw((void __iomem *) port, addr, count);
  95. }
  96. static void ide_mm_insl (unsigned long port, void *addr, u32 count)
  97. {
  98. __ide_mm_insl((void __iomem *) port, addr, count);
  99. }
  100. static void ide_mm_outb (u8 value, unsigned long port)
  101. {
  102. writeb(value, (void __iomem *) port);
  103. }
  104. static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
  105. {
  106. writeb(value, (void __iomem *) port);
  107. }
  108. static void ide_mm_outw (u16 value, unsigned long port)
  109. {
  110. writew(value, (void __iomem *) port);
  111. }
  112. static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
  113. {
  114. __ide_mm_outsw((void __iomem *) port, addr, count);
  115. }
  116. static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
  117. {
  118. __ide_mm_outsl((void __iomem *) port, addr, count);
  119. }
  120. void default_hwif_mmiops (ide_hwif_t *hwif)
  121. {
  122. hwif->OUTB = ide_mm_outb;
  123. /* Most systems will need to override OUTBSYNC, alas however
  124. this one is controller specific! */
  125. hwif->OUTBSYNC = ide_mm_outbsync;
  126. hwif->OUTW = ide_mm_outw;
  127. hwif->OUTSW = ide_mm_outsw;
  128. hwif->OUTSL = ide_mm_outsl;
  129. hwif->INB = ide_mm_inb;
  130. hwif->INW = ide_mm_inw;
  131. hwif->INSW = ide_mm_insw;
  132. hwif->INSL = ide_mm_insl;
  133. }
  134. EXPORT_SYMBOL(default_hwif_mmiops);
  135. void SELECT_DRIVE (ide_drive_t *drive)
  136. {
  137. if (HWIF(drive)->selectproc)
  138. HWIF(drive)->selectproc(drive);
  139. HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
  140. }
  141. EXPORT_SYMBOL(SELECT_DRIVE);
  142. void SELECT_MASK (ide_drive_t *drive, int mask)
  143. {
  144. if (HWIF(drive)->maskproc)
  145. HWIF(drive)->maskproc(drive, mask);
  146. }
  147. /*
  148. * Some localbus EIDE interfaces require a special access sequence
  149. * when using 32-bit I/O instructions to transfer data. We call this
  150. * the "vlb_sync" sequence, which consists of three successive reads
  151. * of the sector count register location, with interrupts disabled
  152. * to ensure that the reads all happen together.
  153. */
  154. static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
  155. {
  156. (void) HWIF(drive)->INB(port);
  157. (void) HWIF(drive)->INB(port);
  158. (void) HWIF(drive)->INB(port);
  159. }
  160. /*
  161. * This is used for most PIO data transfers *from* the IDE interface
  162. */
  163. static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
  164. {
  165. ide_hwif_t *hwif = HWIF(drive);
  166. u8 io_32bit = drive->io_32bit;
  167. if (io_32bit) {
  168. if (io_32bit & 2) {
  169. unsigned long flags;
  170. local_irq_save(flags);
  171. ata_vlb_sync(drive, IDE_NSECTOR_REG);
  172. hwif->INSL(IDE_DATA_REG, buffer, wcount);
  173. local_irq_restore(flags);
  174. } else
  175. hwif->INSL(IDE_DATA_REG, buffer, wcount);
  176. } else {
  177. hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
  178. }
  179. }
  180. /*
  181. * This is used for most PIO data transfers *to* the IDE interface
  182. */
  183. static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
  184. {
  185. ide_hwif_t *hwif = HWIF(drive);
  186. u8 io_32bit = drive->io_32bit;
  187. if (io_32bit) {
  188. if (io_32bit & 2) {
  189. unsigned long flags;
  190. local_irq_save(flags);
  191. ata_vlb_sync(drive, IDE_NSECTOR_REG);
  192. hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
  193. local_irq_restore(flags);
  194. } else
  195. hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
  196. } else {
  197. hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
  198. }
  199. }
  200. /*
  201. * The following routines are mainly used by the ATAPI drivers.
  202. *
  203. * These routines will round up any request for an odd number of bytes,
  204. * so if an odd bytecount is specified, be sure that there's at least one
  205. * extra byte allocated for the buffer.
  206. */
  207. static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  208. {
  209. ide_hwif_t *hwif = HWIF(drive);
  210. ++bytecount;
  211. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  212. if (MACH_IS_ATARI || MACH_IS_Q40) {
  213. /* Atari has a byte-swapped IDE interface */
  214. insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
  215. return;
  216. }
  217. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  218. hwif->ata_input_data(drive, buffer, bytecount / 4);
  219. if ((bytecount & 0x03) >= 2)
  220. hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
  221. }
  222. static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  223. {
  224. ide_hwif_t *hwif = HWIF(drive);
  225. ++bytecount;
  226. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  227. if (MACH_IS_ATARI || MACH_IS_Q40) {
  228. /* Atari has a byte-swapped IDE interface */
  229. outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
  230. return;
  231. }
  232. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  233. hwif->ata_output_data(drive, buffer, bytecount / 4);
  234. if ((bytecount & 0x03) >= 2)
  235. hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
  236. }
  237. void default_hwif_transport(ide_hwif_t *hwif)
  238. {
  239. hwif->ata_input_data = ata_input_data;
  240. hwif->ata_output_data = ata_output_data;
  241. hwif->atapi_input_bytes = atapi_input_bytes;
  242. hwif->atapi_output_bytes = atapi_output_bytes;
  243. }
  244. void ide_fix_driveid (struct hd_driveid *id)
  245. {
  246. #ifndef __LITTLE_ENDIAN
  247. # ifdef __BIG_ENDIAN
  248. int i;
  249. u16 *stringcast;
  250. id->config = __le16_to_cpu(id->config);
  251. id->cyls = __le16_to_cpu(id->cyls);
  252. id->reserved2 = __le16_to_cpu(id->reserved2);
  253. id->heads = __le16_to_cpu(id->heads);
  254. id->track_bytes = __le16_to_cpu(id->track_bytes);
  255. id->sector_bytes = __le16_to_cpu(id->sector_bytes);
  256. id->sectors = __le16_to_cpu(id->sectors);
  257. id->vendor0 = __le16_to_cpu(id->vendor0);
  258. id->vendor1 = __le16_to_cpu(id->vendor1);
  259. id->vendor2 = __le16_to_cpu(id->vendor2);
  260. stringcast = (u16 *)&id->serial_no[0];
  261. for (i = 0; i < (20/2); i++)
  262. stringcast[i] = __le16_to_cpu(stringcast[i]);
  263. id->buf_type = __le16_to_cpu(id->buf_type);
  264. id->buf_size = __le16_to_cpu(id->buf_size);
  265. id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
  266. stringcast = (u16 *)&id->fw_rev[0];
  267. for (i = 0; i < (8/2); i++)
  268. stringcast[i] = __le16_to_cpu(stringcast[i]);
  269. stringcast = (u16 *)&id->model[0];
  270. for (i = 0; i < (40/2); i++)
  271. stringcast[i] = __le16_to_cpu(stringcast[i]);
  272. id->dword_io = __le16_to_cpu(id->dword_io);
  273. id->reserved50 = __le16_to_cpu(id->reserved50);
  274. id->field_valid = __le16_to_cpu(id->field_valid);
  275. id->cur_cyls = __le16_to_cpu(id->cur_cyls);
  276. id->cur_heads = __le16_to_cpu(id->cur_heads);
  277. id->cur_sectors = __le16_to_cpu(id->cur_sectors);
  278. id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
  279. id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
  280. id->lba_capacity = __le32_to_cpu(id->lba_capacity);
  281. id->dma_1word = __le16_to_cpu(id->dma_1word);
  282. id->dma_mword = __le16_to_cpu(id->dma_mword);
  283. id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
  284. id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
  285. id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
  286. id->eide_pio = __le16_to_cpu(id->eide_pio);
  287. id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
  288. for (i = 0; i < 2; ++i)
  289. id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
  290. for (i = 0; i < 4; ++i)
  291. id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
  292. id->queue_depth = __le16_to_cpu(id->queue_depth);
  293. for (i = 0; i < 4; ++i)
  294. id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
  295. id->major_rev_num = __le16_to_cpu(id->major_rev_num);
  296. id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
  297. id->command_set_1 = __le16_to_cpu(id->command_set_1);
  298. id->command_set_2 = __le16_to_cpu(id->command_set_2);
  299. id->cfsse = __le16_to_cpu(id->cfsse);
  300. id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
  301. id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
  302. id->csf_default = __le16_to_cpu(id->csf_default);
  303. id->dma_ultra = __le16_to_cpu(id->dma_ultra);
  304. id->trseuc = __le16_to_cpu(id->trseuc);
  305. id->trsEuc = __le16_to_cpu(id->trsEuc);
  306. id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
  307. id->mprc = __le16_to_cpu(id->mprc);
  308. id->hw_config = __le16_to_cpu(id->hw_config);
  309. id->acoustic = __le16_to_cpu(id->acoustic);
  310. id->msrqs = __le16_to_cpu(id->msrqs);
  311. id->sxfert = __le16_to_cpu(id->sxfert);
  312. id->sal = __le16_to_cpu(id->sal);
  313. id->spg = __le32_to_cpu(id->spg);
  314. id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
  315. for (i = 0; i < 22; i++)
  316. id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
  317. id->last_lun = __le16_to_cpu(id->last_lun);
  318. id->word127 = __le16_to_cpu(id->word127);
  319. id->dlf = __le16_to_cpu(id->dlf);
  320. id->csfo = __le16_to_cpu(id->csfo);
  321. for (i = 0; i < 26; i++)
  322. id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
  323. id->word156 = __le16_to_cpu(id->word156);
  324. for (i = 0; i < 3; i++)
  325. id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
  326. id->cfa_power = __le16_to_cpu(id->cfa_power);
  327. for (i = 0; i < 14; i++)
  328. id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
  329. for (i = 0; i < 31; i++)
  330. id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
  331. for (i = 0; i < 48; i++)
  332. id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
  333. id->integrity_word = __le16_to_cpu(id->integrity_word);
  334. # else
  335. # error "Please fix <asm/byteorder.h>"
  336. # endif
  337. #endif
  338. }
  339. /*
  340. * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
  341. * removing leading/trailing blanks and compressing internal blanks.
  342. * It is primarily used to tidy up the model name/number fields as
  343. * returned by the WIN_[P]IDENTIFY commands.
  344. */
  345. void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
  346. {
  347. u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
  348. if (byteswap) {
  349. /* convert from big-endian to host byte order */
  350. for (p = end ; p != s;) {
  351. unsigned short *pp = (unsigned short *) (p -= 2);
  352. *pp = ntohs(*pp);
  353. }
  354. }
  355. /* strip leading blanks */
  356. while (s != end && *s == ' ')
  357. ++s;
  358. /* compress internal blanks and strip trailing blanks */
  359. while (s != end && *s) {
  360. if (*s++ != ' ' || (s != end && *s && *s != ' '))
  361. *p++ = *(s-1);
  362. }
  363. /* wipe out trailing garbage */
  364. while (p != end)
  365. *p++ = '\0';
  366. }
  367. EXPORT_SYMBOL(ide_fixstring);
  368. /*
  369. * Needed for PCI irq sharing
  370. */
  371. int drive_is_ready (ide_drive_t *drive)
  372. {
  373. ide_hwif_t *hwif = HWIF(drive);
  374. u8 stat = 0;
  375. if (drive->waiting_for_dma)
  376. return hwif->ide_dma_test_irq(drive);
  377. #if 0
  378. /* need to guarantee 400ns since last command was issued */
  379. udelay(1);
  380. #endif
  381. /*
  382. * We do a passive status test under shared PCI interrupts on
  383. * cards that truly share the ATA side interrupt, but may also share
  384. * an interrupt with another pci card/device. We make no assumptions
  385. * about possible isa-pnp and pci-pnp issues yet.
  386. */
  387. if (IDE_CONTROL_REG)
  388. stat = hwif->INB(IDE_ALTSTATUS_REG);
  389. else
  390. /* Note: this may clear a pending IRQ!! */
  391. stat = hwif->INB(IDE_STATUS_REG);
  392. if (stat & BUSY_STAT)
  393. /* drive busy: definitely not interrupting */
  394. return 0;
  395. /* drive ready: *might* be interrupting */
  396. return 1;
  397. }
  398. EXPORT_SYMBOL(drive_is_ready);
  399. /*
  400. * This routine busy-waits for the drive status to be not "busy".
  401. * It then checks the status for all of the "good" bits and none
  402. * of the "bad" bits, and if all is okay it returns 0. All other
  403. * cases return error -- caller may then invoke ide_error().
  404. *
  405. * This routine should get fixed to not hog the cpu during extra long waits..
  406. * That could be done by busy-waiting for the first jiffy or two, and then
  407. * setting a timer to wake up at half second intervals thereafter,
  408. * until timeout is achieved, before timing out.
  409. */
  410. static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
  411. {
  412. ide_hwif_t *hwif = drive->hwif;
  413. unsigned long flags;
  414. int i;
  415. u8 stat;
  416. udelay(1); /* spec allows drive 400ns to assert "BUSY" */
  417. if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
  418. local_irq_set(flags);
  419. timeout += jiffies;
  420. while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
  421. if (time_after(jiffies, timeout)) {
  422. /*
  423. * One last read after the timeout in case
  424. * heavy interrupt load made us not make any
  425. * progress during the timeout..
  426. */
  427. stat = hwif->INB(IDE_STATUS_REG);
  428. if (!(stat & BUSY_STAT))
  429. break;
  430. local_irq_restore(flags);
  431. *rstat = stat;
  432. return -EBUSY;
  433. }
  434. }
  435. local_irq_restore(flags);
  436. }
  437. /*
  438. * Allow status to settle, then read it again.
  439. * A few rare drives vastly violate the 400ns spec here,
  440. * so we'll wait up to 10usec for a "good" status
  441. * rather than expensively fail things immediately.
  442. * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
  443. */
  444. for (i = 0; i < 10; i++) {
  445. udelay(1);
  446. if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
  447. *rstat = stat;
  448. return 0;
  449. }
  450. }
  451. *rstat = stat;
  452. return -EFAULT;
  453. }
  454. /*
  455. * In case of error returns error value after doing "*startstop = ide_error()".
  456. * The caller should return the updated value of "startstop" in this case,
  457. * "startstop" is unchanged when the function returns 0.
  458. */
  459. int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
  460. {
  461. int err;
  462. u8 stat;
  463. /* bail early if we've exceeded max_failures */
  464. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  465. *startstop = ide_stopped;
  466. return 1;
  467. }
  468. err = __ide_wait_stat(drive, good, bad, timeout, &stat);
  469. if (err) {
  470. char *s = (err == -EBUSY) ? "status timeout" : "status error";
  471. *startstop = ide_error(drive, s, stat);
  472. }
  473. return err;
  474. }
  475. EXPORT_SYMBOL(ide_wait_stat);
  476. /**
  477. * ide_in_drive_list - look for drive in black/white list
  478. * @id: drive identifier
  479. * @drive_table: list to inspect
  480. *
  481. * Look for a drive in the blacklist and the whitelist tables
  482. * Returns 1 if the drive is found in the table.
  483. */
  484. int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
  485. {
  486. for ( ; drive_table->id_model; drive_table++)
  487. if ((!strcmp(drive_table->id_model, id->model)) &&
  488. (!drive_table->id_firmware ||
  489. strstr(id->fw_rev, drive_table->id_firmware)))
  490. return 1;
  491. return 0;
  492. }
  493. EXPORT_SYMBOL_GPL(ide_in_drive_list);
  494. /*
  495. * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
  496. * We list them here and depend on the device side cable detection for them.
  497. *
  498. * Some optical devices with the buggy firmwares have the same problem.
  499. */
  500. static const struct drive_list_entry ivb_list[] = {
  501. { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
  502. { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
  503. { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
  504. { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
  505. { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
  506. { NULL , NULL }
  507. };
  508. /*
  509. * All hosts that use the 80c ribbon must use!
  510. * The name is derived from upper byte of word 93 and the 80c ribbon.
  511. */
  512. u8 eighty_ninty_three (ide_drive_t *drive)
  513. {
  514. ide_hwif_t *hwif = drive->hwif;
  515. struct hd_driveid *id = drive->id;
  516. int ivb = ide_in_drive_list(id, ivb_list);
  517. if (hwif->cbl == ATA_CBL_PATA40_SHORT)
  518. return 1;
  519. if (ivb)
  520. printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
  521. drive->name);
  522. if (ide_dev_is_sata(id) && !ivb)
  523. return 1;
  524. if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
  525. goto no_80w;
  526. /*
  527. * FIXME:
  528. * - force bit13 (80c cable present) check also for !ivb devices
  529. * (unless the slave device is pre-ATA3)
  530. */
  531. if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
  532. return 1;
  533. no_80w:
  534. if (drive->udma33_warned == 1)
  535. return 0;
  536. printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
  537. "limiting max speed to UDMA33\n",
  538. drive->name,
  539. hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
  540. drive->udma33_warned = 1;
  541. return 0;
  542. }
  543. int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
  544. {
  545. if (args->tf.command == WIN_SETFEATURES &&
  546. args->tf.lbal > XFER_UDMA_2 &&
  547. args->tf.feature == SETFEATURES_XFER) {
  548. if (eighty_ninty_three(drive) == 0) {
  549. printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
  550. "be set\n", drive->name);
  551. return 1;
  552. }
  553. }
  554. return 0;
  555. }
  556. /*
  557. * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
  558. * 1 : Safe to update drive->id DMA registers.
  559. * 0 : OOPs not allowed.
  560. */
  561. int set_transfer (ide_drive_t *drive, ide_task_t *args)
  562. {
  563. if (args->tf.command == WIN_SETFEATURES &&
  564. args->tf.lbal >= XFER_SW_DMA_0 &&
  565. args->tf.feature == SETFEATURES_XFER &&
  566. (drive->id->dma_ultra ||
  567. drive->id->dma_mword ||
  568. drive->id->dma_1word))
  569. return 1;
  570. return 0;
  571. }
  572. #ifdef CONFIG_BLK_DEV_IDEDMA
  573. static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
  574. {
  575. if (!drive->crc_count)
  576. return drive->current_speed;
  577. drive->crc_count = 0;
  578. switch(drive->current_speed) {
  579. case XFER_UDMA_7: return XFER_UDMA_6;
  580. case XFER_UDMA_6: return XFER_UDMA_5;
  581. case XFER_UDMA_5: return XFER_UDMA_4;
  582. case XFER_UDMA_4: return XFER_UDMA_3;
  583. case XFER_UDMA_3: return XFER_UDMA_2;
  584. case XFER_UDMA_2: return XFER_UDMA_1;
  585. case XFER_UDMA_1: return XFER_UDMA_0;
  586. /*
  587. * OOPS we do not goto non Ultra DMA modes
  588. * without iCRC's available we force
  589. * the system to PIO and make the user
  590. * invoke the ATA-1 ATA-2 DMA modes.
  591. */
  592. case XFER_UDMA_0:
  593. default: return XFER_PIO_4;
  594. }
  595. }
  596. #endif /* CONFIG_BLK_DEV_IDEDMA */
  597. int ide_driveid_update(ide_drive_t *drive)
  598. {
  599. ide_hwif_t *hwif = drive->hwif;
  600. struct hd_driveid *id;
  601. unsigned long timeout, flags;
  602. /*
  603. * Re-read drive->id for possible DMA mode
  604. * change (copied from ide-probe.c)
  605. */
  606. SELECT_MASK(drive, 1);
  607. if (IDE_CONTROL_REG)
  608. hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
  609. msleep(50);
  610. hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
  611. timeout = jiffies + WAIT_WORSTCASE;
  612. do {
  613. if (time_after(jiffies, timeout)) {
  614. SELECT_MASK(drive, 0);
  615. return 0; /* drive timed-out */
  616. }
  617. msleep(50); /* give drive a breather */
  618. } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
  619. msleep(50); /* wait for IRQ and DRQ_STAT */
  620. if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
  621. SELECT_MASK(drive, 0);
  622. printk("%s: CHECK for good STATUS\n", drive->name);
  623. return 0;
  624. }
  625. local_irq_save(flags);
  626. SELECT_MASK(drive, 0);
  627. id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
  628. if (!id) {
  629. local_irq_restore(flags);
  630. return 0;
  631. }
  632. ata_input_data(drive, id, SECTOR_WORDS);
  633. (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
  634. local_irq_enable();
  635. local_irq_restore(flags);
  636. ide_fix_driveid(id);
  637. if (id) {
  638. drive->id->dma_ultra = id->dma_ultra;
  639. drive->id->dma_mword = id->dma_mword;
  640. drive->id->dma_1word = id->dma_1word;
  641. /* anything more ? */
  642. kfree(id);
  643. if (drive->using_dma && ide_id_dma_bug(drive))
  644. ide_dma_off(drive);
  645. }
  646. return 1;
  647. }
  648. int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
  649. {
  650. ide_hwif_t *hwif = drive->hwif;
  651. int error = 0;
  652. u8 stat;
  653. // while (HWGROUP(drive)->busy)
  654. // msleep(50);
  655. #ifdef CONFIG_BLK_DEV_IDEDMA
  656. if (hwif->dma_host_set) /* check if host supports DMA */
  657. hwif->dma_host_set(drive, 0);
  658. #endif
  659. /* Skip setting PIO flow-control modes on pre-EIDE drives */
  660. if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
  661. goto skip;
  662. /*
  663. * Don't use ide_wait_cmd here - it will
  664. * attempt to set_geometry and recalibrate,
  665. * but for some reason these don't work at
  666. * this point (lost interrupt).
  667. */
  668. /*
  669. * Select the drive, and issue the SETFEATURES command
  670. */
  671. disable_irq_nosync(hwif->irq);
  672. /*
  673. * FIXME: we race against the running IRQ here if
  674. * this is called from non IRQ context. If we use
  675. * disable_irq() we hang on the error path. Work
  676. * is needed.
  677. */
  678. udelay(1);
  679. SELECT_DRIVE(drive);
  680. SELECT_MASK(drive, 0);
  681. udelay(1);
  682. if (IDE_CONTROL_REG)
  683. hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
  684. hwif->OUTB(speed, IDE_NSECTOR_REG);
  685. hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
  686. hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
  687. if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
  688. hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
  689. error = __ide_wait_stat(drive, drive->ready_stat,
  690. BUSY_STAT|DRQ_STAT|ERR_STAT,
  691. WAIT_CMD, &stat);
  692. SELECT_MASK(drive, 0);
  693. enable_irq(hwif->irq);
  694. if (error) {
  695. (void) ide_dump_status(drive, "set_drive_speed_status", stat);
  696. return error;
  697. }
  698. drive->id->dma_ultra &= ~0xFF00;
  699. drive->id->dma_mword &= ~0x0F00;
  700. drive->id->dma_1word &= ~0x0F00;
  701. skip:
  702. #ifdef CONFIG_BLK_DEV_IDEDMA
  703. if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
  704. drive->using_dma)
  705. hwif->dma_host_set(drive, 1);
  706. else if (hwif->dma_host_set) /* check if host supports DMA */
  707. ide_dma_off_quietly(drive);
  708. #endif
  709. switch(speed) {
  710. case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
  711. case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
  712. case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
  713. case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
  714. case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
  715. case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
  716. case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
  717. case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
  718. case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
  719. case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
  720. case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
  721. case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
  722. case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
  723. case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
  724. default: break;
  725. }
  726. if (!drive->init_speed)
  727. drive->init_speed = speed;
  728. drive->current_speed = speed;
  729. return error;
  730. }
  731. /*
  732. * This should get invoked any time we exit the driver to
  733. * wait for an interrupt response from a drive. handler() points
  734. * at the appropriate code to handle the next interrupt, and a
  735. * timer is started to prevent us from waiting forever in case
  736. * something goes wrong (see the ide_timer_expiry() handler later on).
  737. *
  738. * See also ide_execute_command
  739. */
  740. static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  741. unsigned int timeout, ide_expiry_t *expiry)
  742. {
  743. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  744. if (hwgroup->handler != NULL) {
  745. printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
  746. "old=%p, new=%p\n",
  747. drive->name, hwgroup->handler, handler);
  748. }
  749. hwgroup->handler = handler;
  750. hwgroup->expiry = expiry;
  751. hwgroup->timer.expires = jiffies + timeout;
  752. hwgroup->req_gen_timer = hwgroup->req_gen;
  753. add_timer(&hwgroup->timer);
  754. }
  755. void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  756. unsigned int timeout, ide_expiry_t *expiry)
  757. {
  758. unsigned long flags;
  759. spin_lock_irqsave(&ide_lock, flags);
  760. __ide_set_handler(drive, handler, timeout, expiry);
  761. spin_unlock_irqrestore(&ide_lock, flags);
  762. }
  763. EXPORT_SYMBOL(ide_set_handler);
  764. /**
  765. * ide_execute_command - execute an IDE command
  766. * @drive: IDE drive to issue the command against
  767. * @command: command byte to write
  768. * @handler: handler for next phase
  769. * @timeout: timeout for command
  770. * @expiry: handler to run on timeout
  771. *
  772. * Helper function to issue an IDE command. This handles the
  773. * atomicity requirements, command timing and ensures that the
  774. * handler and IRQ setup do not race. All IDE command kick off
  775. * should go via this function or do equivalent locking.
  776. */
  777. void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
  778. unsigned timeout, ide_expiry_t *expiry)
  779. {
  780. unsigned long flags;
  781. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  782. ide_hwif_t *hwif = HWIF(drive);
  783. spin_lock_irqsave(&ide_lock, flags);
  784. BUG_ON(hwgroup->handler);
  785. hwgroup->handler = handler;
  786. hwgroup->expiry = expiry;
  787. hwgroup->timer.expires = jiffies + timeout;
  788. hwgroup->req_gen_timer = hwgroup->req_gen;
  789. add_timer(&hwgroup->timer);
  790. hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
  791. /* Drive takes 400nS to respond, we must avoid the IRQ being
  792. serviced before that.
  793. FIXME: we could skip this delay with care on non shared
  794. devices
  795. */
  796. ndelay(400);
  797. spin_unlock_irqrestore(&ide_lock, flags);
  798. }
  799. EXPORT_SYMBOL(ide_execute_command);
  800. /* needed below */
  801. static ide_startstop_t do_reset1 (ide_drive_t *, int);
  802. /*
  803. * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  804. * during an atapi drive reset operation. If the drive has not yet responded,
  805. * and we have not yet hit our maximum waiting time, then the timer is restarted
  806. * for another 50ms.
  807. */
  808. static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
  809. {
  810. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  811. ide_hwif_t *hwif = HWIF(drive);
  812. u8 stat;
  813. SELECT_DRIVE(drive);
  814. udelay (10);
  815. if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
  816. printk("%s: ATAPI reset complete\n", drive->name);
  817. } else {
  818. if (time_before(jiffies, hwgroup->poll_timeout)) {
  819. BUG_ON(HWGROUP(drive)->handler != NULL);
  820. ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  821. /* continue polling */
  822. return ide_started;
  823. }
  824. /* end of polling */
  825. hwgroup->polling = 0;
  826. printk("%s: ATAPI reset timed-out, status=0x%02x\n",
  827. drive->name, stat);
  828. /* do it the old fashioned way */
  829. return do_reset1(drive, 1);
  830. }
  831. /* done polling */
  832. hwgroup->polling = 0;
  833. hwgroup->resetting = 0;
  834. return ide_stopped;
  835. }
  836. /*
  837. * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  838. * during an ide reset operation. If the drives have not yet responded,
  839. * and we have not yet hit our maximum waiting time, then the timer is restarted
  840. * for another 50ms.
  841. */
  842. static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
  843. {
  844. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  845. ide_hwif_t *hwif = HWIF(drive);
  846. u8 tmp;
  847. if (hwif->reset_poll != NULL) {
  848. if (hwif->reset_poll(drive)) {
  849. printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
  850. hwif->name, drive->name);
  851. return ide_stopped;
  852. }
  853. }
  854. if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
  855. if (time_before(jiffies, hwgroup->poll_timeout)) {
  856. BUG_ON(HWGROUP(drive)->handler != NULL);
  857. ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  858. /* continue polling */
  859. return ide_started;
  860. }
  861. printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
  862. drive->failures++;
  863. } else {
  864. printk("%s: reset: ", hwif->name);
  865. if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
  866. printk("success\n");
  867. drive->failures = 0;
  868. } else {
  869. drive->failures++;
  870. printk("master: ");
  871. switch (tmp & 0x7f) {
  872. case 1: printk("passed");
  873. break;
  874. case 2: printk("formatter device error");
  875. break;
  876. case 3: printk("sector buffer error");
  877. break;
  878. case 4: printk("ECC circuitry error");
  879. break;
  880. case 5: printk("controlling MPU error");
  881. break;
  882. default:printk("error (0x%02x?)", tmp);
  883. }
  884. if (tmp & 0x80)
  885. printk("; slave: failed");
  886. printk("\n");
  887. }
  888. }
  889. hwgroup->polling = 0; /* done polling */
  890. hwgroup->resetting = 0; /* done reset attempt */
  891. return ide_stopped;
  892. }
  893. static void check_dma_crc(ide_drive_t *drive)
  894. {
  895. #ifdef CONFIG_BLK_DEV_IDEDMA
  896. if (drive->crc_count) {
  897. ide_dma_off_quietly(drive);
  898. ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
  899. if (drive->current_speed >= XFER_SW_DMA_0)
  900. ide_dma_on(drive);
  901. } else
  902. ide_dma_off(drive);
  903. #endif
  904. }
  905. static void ide_disk_pre_reset(ide_drive_t *drive)
  906. {
  907. int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
  908. drive->special.all = 0;
  909. drive->special.b.set_geometry = legacy;
  910. drive->special.b.recalibrate = legacy;
  911. drive->mult_count = 0;
  912. if (!drive->keep_settings && !drive->using_dma)
  913. drive->mult_req = 0;
  914. if (drive->mult_req != drive->mult_count)
  915. drive->special.b.set_multmode = 1;
  916. }
  917. static void pre_reset(ide_drive_t *drive)
  918. {
  919. if (drive->media == ide_disk)
  920. ide_disk_pre_reset(drive);
  921. else
  922. drive->post_reset = 1;
  923. if (!drive->keep_settings) {
  924. if (drive->using_dma) {
  925. check_dma_crc(drive);
  926. } else {
  927. drive->unmask = 0;
  928. drive->io_32bit = 0;
  929. }
  930. return;
  931. }
  932. if (drive->using_dma)
  933. check_dma_crc(drive);
  934. if (HWIF(drive)->pre_reset != NULL)
  935. HWIF(drive)->pre_reset(drive);
  936. if (drive->current_speed != 0xff)
  937. drive->desired_speed = drive->current_speed;
  938. drive->current_speed = 0xff;
  939. }
  940. /*
  941. * do_reset1() attempts to recover a confused drive by resetting it.
  942. * Unfortunately, resetting a disk drive actually resets all devices on
  943. * the same interface, so it can really be thought of as resetting the
  944. * interface rather than resetting the drive.
  945. *
  946. * ATAPI devices have their own reset mechanism which allows them to be
  947. * individually reset without clobbering other devices on the same interface.
  948. *
  949. * Unfortunately, the IDE interface does not generate an interrupt to let
  950. * us know when the reset operation has finished, so we must poll for this.
  951. * Equally poor, though, is the fact that this may a very long time to complete,
  952. * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
  953. * we set a timer to poll at 50ms intervals.
  954. */
  955. static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
  956. {
  957. unsigned int unit;
  958. unsigned long flags;
  959. ide_hwif_t *hwif;
  960. ide_hwgroup_t *hwgroup;
  961. spin_lock_irqsave(&ide_lock, flags);
  962. hwif = HWIF(drive);
  963. hwgroup = HWGROUP(drive);
  964. /* We must not reset with running handlers */
  965. BUG_ON(hwgroup->handler != NULL);
  966. /* For an ATAPI device, first try an ATAPI SRST. */
  967. if (drive->media != ide_disk && !do_not_try_atapi) {
  968. hwgroup->resetting = 1;
  969. pre_reset(drive);
  970. SELECT_DRIVE(drive);
  971. udelay (20);
  972. hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
  973. ndelay(400);
  974. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  975. hwgroup->polling = 1;
  976. __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  977. spin_unlock_irqrestore(&ide_lock, flags);
  978. return ide_started;
  979. }
  980. /*
  981. * First, reset any device state data we were maintaining
  982. * for any of the drives on this interface.
  983. */
  984. for (unit = 0; unit < MAX_DRIVES; ++unit)
  985. pre_reset(&hwif->drives[unit]);
  986. if (!IDE_CONTROL_REG) {
  987. spin_unlock_irqrestore(&ide_lock, flags);
  988. return ide_stopped;
  989. }
  990. hwgroup->resetting = 1;
  991. /*
  992. * Note that we also set nIEN while resetting the device,
  993. * to mask unwanted interrupts from the interface during the reset.
  994. * However, due to the design of PC hardware, this will cause an
  995. * immediate interrupt due to the edge transition it produces.
  996. * This single interrupt gives us a "fast poll" for drives that
  997. * recover from reset very quickly, saving us the first 50ms wait time.
  998. */
  999. /* set SRST and nIEN */
  1000. hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
  1001. /* more than enough time */
  1002. udelay(10);
  1003. if (drive->quirk_list == 2) {
  1004. /* clear SRST and nIEN */
  1005. hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
  1006. } else {
  1007. /* clear SRST, leave nIEN */
  1008. hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
  1009. }
  1010. /* more than enough time */
  1011. udelay(10);
  1012. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  1013. hwgroup->polling = 1;
  1014. __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  1015. /*
  1016. * Some weird controller like resetting themselves to a strange
  1017. * state when the disks are reset this way. At least, the Winbond
  1018. * 553 documentation says that
  1019. */
  1020. if (hwif->resetproc)
  1021. hwif->resetproc(drive);
  1022. spin_unlock_irqrestore(&ide_lock, flags);
  1023. return ide_started;
  1024. }
  1025. /*
  1026. * ide_do_reset() is the entry point to the drive/interface reset code.
  1027. */
  1028. ide_startstop_t ide_do_reset (ide_drive_t *drive)
  1029. {
  1030. return do_reset1(drive, 0);
  1031. }
  1032. EXPORT_SYMBOL(ide_do_reset);
  1033. /*
  1034. * ide_wait_not_busy() waits for the currently selected device on the hwif
  1035. * to report a non-busy status, see comments in probe_hwif().
  1036. */
  1037. int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
  1038. {
  1039. u8 stat = 0;
  1040. while(timeout--) {
  1041. /*
  1042. * Turn this into a schedule() sleep once I'm sure
  1043. * about locking issues (2.5 work ?).
  1044. */
  1045. mdelay(1);
  1046. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1047. if ((stat & BUSY_STAT) == 0)
  1048. return 0;
  1049. /*
  1050. * Assume a value of 0xff means nothing is connected to
  1051. * the interface and it doesn't implement the pull-down
  1052. * resistor on D7.
  1053. */
  1054. if (stat == 0xff)
  1055. return -ENODEV;
  1056. touch_softlockup_watchdog();
  1057. touch_nmi_watchdog();
  1058. }
  1059. return -EBUSY;
  1060. }
  1061. EXPORT_SYMBOL_GPL(ide_wait_not_busy);