kprobes_64.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749
  1. /*
  2. * Kernel Probes (KProbes)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2002, 2004
  19. *
  20. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21. * Probes initial implementation ( includes contributions from
  22. * Rusty Russell).
  23. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24. * interface to access function arguments.
  25. * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
  26. * <prasanna@in.ibm.com> adapted for x86_64
  27. * 2005-Mar Roland McGrath <roland@redhat.com>
  28. * Fixed to handle %rip-relative addressing mode correctly.
  29. * 2005-May Rusty Lynch <rusty.lynch@intel.com>
  30. * Added function return probes functionality
  31. */
  32. #include <linux/kprobes.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/string.h>
  35. #include <linux/slab.h>
  36. #include <linux/preempt.h>
  37. #include <linux/module.h>
  38. #include <linux/kdebug.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/alternative.h>
  42. void jprobe_return_end(void);
  43. static void __kprobes arch_copy_kprobe(struct kprobe *p);
  44. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  45. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  46. struct kretprobe_blackpoint kretprobe_blacklist[] = {
  47. {"__switch_to", }, /* This function switches only current task, but
  48. doesn't switch kernel stack.*/
  49. {NULL, NULL} /* Terminator */
  50. };
  51. const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
  52. /*
  53. * returns non-zero if opcode modifies the interrupt flag.
  54. */
  55. static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
  56. {
  57. switch (*insn) {
  58. case 0xfa: /* cli */
  59. case 0xfb: /* sti */
  60. case 0xcf: /* iret/iretd */
  61. case 0x9d: /* popf/popfd */
  62. return 1;
  63. }
  64. if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
  65. return 1;
  66. return 0;
  67. }
  68. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  69. {
  70. /* insn: must be on special executable page on x86_64. */
  71. p->ainsn.insn = get_insn_slot();
  72. if (!p->ainsn.insn) {
  73. return -ENOMEM;
  74. }
  75. arch_copy_kprobe(p);
  76. return 0;
  77. }
  78. /*
  79. * Determine if the instruction uses the %rip-relative addressing mode.
  80. * If it does, return the address of the 32-bit displacement word.
  81. * If not, return null.
  82. */
  83. static s32 __kprobes *is_riprel(u8 *insn)
  84. {
  85. #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
  86. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  87. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  88. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  89. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  90. << (row % 64))
  91. static const u64 onebyte_has_modrm[256 / 64] = {
  92. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  93. /* ------------------------------- */
  94. W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
  95. W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
  96. W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
  97. W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
  98. W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
  99. W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
  100. W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
  101. W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
  102. W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
  103. W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
  104. W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
  105. W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
  106. W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
  107. W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
  108. W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
  109. W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
  110. /* ------------------------------- */
  111. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  112. };
  113. static const u64 twobyte_has_modrm[256 / 64] = {
  114. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  115. /* ------------------------------- */
  116. W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
  117. W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
  118. W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
  119. W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
  120. W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
  121. W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
  122. W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
  123. W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
  124. W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
  125. W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
  126. W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
  127. W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
  128. W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
  129. W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
  130. W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
  131. W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
  132. /* ------------------------------- */
  133. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  134. };
  135. #undef W
  136. int need_modrm;
  137. /* Skip legacy instruction prefixes. */
  138. while (1) {
  139. switch (*insn) {
  140. case 0x66:
  141. case 0x67:
  142. case 0x2e:
  143. case 0x3e:
  144. case 0x26:
  145. case 0x64:
  146. case 0x65:
  147. case 0x36:
  148. case 0xf0:
  149. case 0xf3:
  150. case 0xf2:
  151. ++insn;
  152. continue;
  153. }
  154. break;
  155. }
  156. /* Skip REX instruction prefix. */
  157. if ((*insn & 0xf0) == 0x40)
  158. ++insn;
  159. if (*insn == 0x0f) { /* Two-byte opcode. */
  160. ++insn;
  161. need_modrm = test_bit(*insn, twobyte_has_modrm);
  162. } else { /* One-byte opcode. */
  163. need_modrm = test_bit(*insn, onebyte_has_modrm);
  164. }
  165. if (need_modrm) {
  166. u8 modrm = *++insn;
  167. if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
  168. /* Displacement follows ModRM byte. */
  169. return (s32 *) ++insn;
  170. }
  171. }
  172. /* No %rip-relative addressing mode here. */
  173. return NULL;
  174. }
  175. static void __kprobes arch_copy_kprobe(struct kprobe *p)
  176. {
  177. s32 *ripdisp;
  178. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
  179. ripdisp = is_riprel(p->ainsn.insn);
  180. if (ripdisp) {
  181. /*
  182. * The copied instruction uses the %rip-relative
  183. * addressing mode. Adjust the displacement for the
  184. * difference between the original location of this
  185. * instruction and the location of the copy that will
  186. * actually be run. The tricky bit here is making sure
  187. * that the sign extension happens correctly in this
  188. * calculation, since we need a signed 32-bit result to
  189. * be sign-extended to 64 bits when it's added to the
  190. * %rip value and yield the same 64-bit result that the
  191. * sign-extension of the original signed 32-bit
  192. * displacement would have given.
  193. */
  194. s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
  195. BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
  196. *ripdisp = disp;
  197. }
  198. p->opcode = *p->addr;
  199. }
  200. void __kprobes arch_arm_kprobe(struct kprobe *p)
  201. {
  202. text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
  203. }
  204. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  205. {
  206. text_poke(p->addr, &p->opcode, 1);
  207. }
  208. void __kprobes arch_remove_kprobe(struct kprobe *p)
  209. {
  210. mutex_lock(&kprobe_mutex);
  211. free_insn_slot(p->ainsn.insn, 0);
  212. mutex_unlock(&kprobe_mutex);
  213. }
  214. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  215. {
  216. kcb->prev_kprobe.kp = kprobe_running();
  217. kcb->prev_kprobe.status = kcb->kprobe_status;
  218. kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
  219. kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
  220. }
  221. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  222. {
  223. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  224. kcb->kprobe_status = kcb->prev_kprobe.status;
  225. kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
  226. kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
  227. }
  228. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  229. struct kprobe_ctlblk *kcb)
  230. {
  231. __get_cpu_var(current_kprobe) = p;
  232. kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
  233. = (regs->eflags & (TF_MASK | IF_MASK));
  234. if (is_IF_modifier(p->ainsn.insn))
  235. kcb->kprobe_saved_rflags &= ~IF_MASK;
  236. }
  237. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  238. {
  239. regs->eflags |= TF_MASK;
  240. regs->eflags &= ~IF_MASK;
  241. /*single step inline if the instruction is an int3*/
  242. if (p->opcode == BREAKPOINT_INSTRUCTION)
  243. regs->rip = (unsigned long)p->addr;
  244. else
  245. regs->rip = (unsigned long)p->ainsn.insn;
  246. }
  247. /* Called with kretprobe_lock held */
  248. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  249. struct pt_regs *regs)
  250. {
  251. unsigned long *sara = (unsigned long *)regs->rsp;
  252. ri->ret_addr = (kprobe_opcode_t *) *sara;
  253. /* Replace the return addr with trampoline addr */
  254. *sara = (unsigned long) &kretprobe_trampoline;
  255. }
  256. int __kprobes kprobe_handler(struct pt_regs *regs)
  257. {
  258. struct kprobe *p;
  259. int ret = 0;
  260. kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
  261. struct kprobe_ctlblk *kcb;
  262. /*
  263. * We don't want to be preempted for the entire
  264. * duration of kprobe processing
  265. */
  266. preempt_disable();
  267. kcb = get_kprobe_ctlblk();
  268. /* Check we're not actually recursing */
  269. if (kprobe_running()) {
  270. p = get_kprobe(addr);
  271. if (p) {
  272. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  273. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  274. regs->eflags &= ~TF_MASK;
  275. regs->eflags |= kcb->kprobe_saved_rflags;
  276. goto no_kprobe;
  277. } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
  278. /* TODO: Provide re-entrancy from
  279. * post_kprobes_handler() and avoid exception
  280. * stack corruption while single-stepping on
  281. * the instruction of the new probe.
  282. */
  283. arch_disarm_kprobe(p);
  284. regs->rip = (unsigned long)p->addr;
  285. reset_current_kprobe();
  286. ret = 1;
  287. } else {
  288. /* We have reentered the kprobe_handler(), since
  289. * another probe was hit while within the
  290. * handler. We here save the original kprobe
  291. * variables and just single step on instruction
  292. * of the new probe without calling any user
  293. * handlers.
  294. */
  295. save_previous_kprobe(kcb);
  296. set_current_kprobe(p, regs, kcb);
  297. kprobes_inc_nmissed_count(p);
  298. prepare_singlestep(p, regs);
  299. kcb->kprobe_status = KPROBE_REENTER;
  300. return 1;
  301. }
  302. } else {
  303. if (*addr != BREAKPOINT_INSTRUCTION) {
  304. /* The breakpoint instruction was removed by
  305. * another cpu right after we hit, no further
  306. * handling of this interrupt is appropriate
  307. */
  308. regs->rip = (unsigned long)addr;
  309. ret = 1;
  310. goto no_kprobe;
  311. }
  312. p = __get_cpu_var(current_kprobe);
  313. if (p->break_handler && p->break_handler(p, regs)) {
  314. goto ss_probe;
  315. }
  316. }
  317. goto no_kprobe;
  318. }
  319. p = get_kprobe(addr);
  320. if (!p) {
  321. if (*addr != BREAKPOINT_INSTRUCTION) {
  322. /*
  323. * The breakpoint instruction was removed right
  324. * after we hit it. Another cpu has removed
  325. * either a probepoint or a debugger breakpoint
  326. * at this address. In either case, no further
  327. * handling of this interrupt is appropriate.
  328. * Back up over the (now missing) int3 and run
  329. * the original instruction.
  330. */
  331. regs->rip = (unsigned long)addr;
  332. ret = 1;
  333. }
  334. /* Not one of ours: let kernel handle it */
  335. goto no_kprobe;
  336. }
  337. set_current_kprobe(p, regs, kcb);
  338. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  339. if (p->pre_handler && p->pre_handler(p, regs))
  340. /* handler has already set things up, so skip ss setup */
  341. return 1;
  342. ss_probe:
  343. prepare_singlestep(p, regs);
  344. kcb->kprobe_status = KPROBE_HIT_SS;
  345. return 1;
  346. no_kprobe:
  347. preempt_enable_no_resched();
  348. return ret;
  349. }
  350. /*
  351. * For function-return probes, init_kprobes() establishes a probepoint
  352. * here. When a retprobed function returns, this probe is hit and
  353. * trampoline_probe_handler() runs, calling the kretprobe's handler.
  354. */
  355. void kretprobe_trampoline_holder(void)
  356. {
  357. asm volatile ( ".global kretprobe_trampoline\n"
  358. "kretprobe_trampoline: \n"
  359. "nop\n");
  360. }
  361. /*
  362. * Called when we hit the probe point at kretprobe_trampoline
  363. */
  364. int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
  365. {
  366. struct kretprobe_instance *ri = NULL;
  367. struct hlist_head *head, empty_rp;
  368. struct hlist_node *node, *tmp;
  369. unsigned long flags, orig_ret_address = 0;
  370. unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
  371. INIT_HLIST_HEAD(&empty_rp);
  372. spin_lock_irqsave(&kretprobe_lock, flags);
  373. head = kretprobe_inst_table_head(current);
  374. /*
  375. * It is possible to have multiple instances associated with a given
  376. * task either because an multiple functions in the call path
  377. * have a return probe installed on them, and/or more then one return
  378. * return probe was registered for a target function.
  379. *
  380. * We can handle this because:
  381. * - instances are always inserted at the head of the list
  382. * - when multiple return probes are registered for the same
  383. * function, the first instance's ret_addr will point to the
  384. * real return address, and all the rest will point to
  385. * kretprobe_trampoline
  386. */
  387. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  388. if (ri->task != current)
  389. /* another task is sharing our hash bucket */
  390. continue;
  391. if (ri->rp && ri->rp->handler)
  392. ri->rp->handler(ri, regs);
  393. orig_ret_address = (unsigned long)ri->ret_addr;
  394. recycle_rp_inst(ri, &empty_rp);
  395. if (orig_ret_address != trampoline_address)
  396. /*
  397. * This is the real return address. Any other
  398. * instances associated with this task are for
  399. * other calls deeper on the call stack
  400. */
  401. break;
  402. }
  403. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  404. regs->rip = orig_ret_address;
  405. reset_current_kprobe();
  406. spin_unlock_irqrestore(&kretprobe_lock, flags);
  407. preempt_enable_no_resched();
  408. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  409. hlist_del(&ri->hlist);
  410. kfree(ri);
  411. }
  412. /*
  413. * By returning a non-zero value, we are telling
  414. * kprobe_handler() that we don't want the post_handler
  415. * to run (and have re-enabled preemption)
  416. */
  417. return 1;
  418. }
  419. /*
  420. * Called after single-stepping. p->addr is the address of the
  421. * instruction whose first byte has been replaced by the "int 3"
  422. * instruction. To avoid the SMP problems that can occur when we
  423. * temporarily put back the original opcode to single-step, we
  424. * single-stepped a copy of the instruction. The address of this
  425. * copy is p->ainsn.insn.
  426. *
  427. * This function prepares to return from the post-single-step
  428. * interrupt. We have to fix up the stack as follows:
  429. *
  430. * 0) Except in the case of absolute or indirect jump or call instructions,
  431. * the new rip is relative to the copied instruction. We need to make
  432. * it relative to the original instruction.
  433. *
  434. * 1) If the single-stepped instruction was pushfl, then the TF and IF
  435. * flags are set in the just-pushed eflags, and may need to be cleared.
  436. *
  437. * 2) If the single-stepped instruction was a call, the return address
  438. * that is atop the stack is the address following the copied instruction.
  439. * We need to make it the address following the original instruction.
  440. */
  441. static void __kprobes resume_execution(struct kprobe *p,
  442. struct pt_regs *regs, struct kprobe_ctlblk *kcb)
  443. {
  444. unsigned long *tos = (unsigned long *)regs->rsp;
  445. unsigned long copy_rip = (unsigned long)p->ainsn.insn;
  446. unsigned long orig_rip = (unsigned long)p->addr;
  447. kprobe_opcode_t *insn = p->ainsn.insn;
  448. /*skip the REX prefix*/
  449. if (*insn >= 0x40 && *insn <= 0x4f)
  450. insn++;
  451. regs->eflags &= ~TF_MASK;
  452. switch (*insn) {
  453. case 0x9c: /* pushfl */
  454. *tos &= ~(TF_MASK | IF_MASK);
  455. *tos |= kcb->kprobe_old_rflags;
  456. break;
  457. case 0xc2: /* iret/ret/lret */
  458. case 0xc3:
  459. case 0xca:
  460. case 0xcb:
  461. case 0xcf:
  462. case 0xea: /* jmp absolute -- ip is correct */
  463. /* ip is already adjusted, no more changes required */
  464. goto no_change;
  465. case 0xe8: /* call relative - Fix return addr */
  466. *tos = orig_rip + (*tos - copy_rip);
  467. break;
  468. case 0xff:
  469. if ((insn[1] & 0x30) == 0x10) {
  470. /* call absolute, indirect */
  471. /* Fix return addr; ip is correct. */
  472. *tos = orig_rip + (*tos - copy_rip);
  473. goto no_change;
  474. } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
  475. ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
  476. /* ip is correct. */
  477. goto no_change;
  478. }
  479. default:
  480. break;
  481. }
  482. regs->rip = orig_rip + (regs->rip - copy_rip);
  483. no_change:
  484. return;
  485. }
  486. int __kprobes post_kprobe_handler(struct pt_regs *regs)
  487. {
  488. struct kprobe *cur = kprobe_running();
  489. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  490. if (!cur)
  491. return 0;
  492. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  493. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  494. cur->post_handler(cur, regs, 0);
  495. }
  496. resume_execution(cur, regs, kcb);
  497. regs->eflags |= kcb->kprobe_saved_rflags;
  498. trace_hardirqs_fixup_flags(regs->eflags);
  499. /* Restore the original saved kprobes variables and continue. */
  500. if (kcb->kprobe_status == KPROBE_REENTER) {
  501. restore_previous_kprobe(kcb);
  502. goto out;
  503. }
  504. reset_current_kprobe();
  505. out:
  506. preempt_enable_no_resched();
  507. /*
  508. * if somebody else is singlestepping across a probe point, eflags
  509. * will have TF set, in which case, continue the remaining processing
  510. * of do_debug, as if this is not a probe hit.
  511. */
  512. if (regs->eflags & TF_MASK)
  513. return 0;
  514. return 1;
  515. }
  516. int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  517. {
  518. struct kprobe *cur = kprobe_running();
  519. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  520. const struct exception_table_entry *fixup;
  521. switch(kcb->kprobe_status) {
  522. case KPROBE_HIT_SS:
  523. case KPROBE_REENTER:
  524. /*
  525. * We are here because the instruction being single
  526. * stepped caused a page fault. We reset the current
  527. * kprobe and the rip points back to the probe address
  528. * and allow the page fault handler to continue as a
  529. * normal page fault.
  530. */
  531. regs->rip = (unsigned long)cur->addr;
  532. regs->eflags |= kcb->kprobe_old_rflags;
  533. if (kcb->kprobe_status == KPROBE_REENTER)
  534. restore_previous_kprobe(kcb);
  535. else
  536. reset_current_kprobe();
  537. preempt_enable_no_resched();
  538. break;
  539. case KPROBE_HIT_ACTIVE:
  540. case KPROBE_HIT_SSDONE:
  541. /*
  542. * We increment the nmissed count for accounting,
  543. * we can also use npre/npostfault count for accouting
  544. * these specific fault cases.
  545. */
  546. kprobes_inc_nmissed_count(cur);
  547. /*
  548. * We come here because instructions in the pre/post
  549. * handler caused the page_fault, this could happen
  550. * if handler tries to access user space by
  551. * copy_from_user(), get_user() etc. Let the
  552. * user-specified handler try to fix it first.
  553. */
  554. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  555. return 1;
  556. /*
  557. * In case the user-specified fault handler returned
  558. * zero, try to fix up.
  559. */
  560. fixup = search_exception_tables(regs->rip);
  561. if (fixup) {
  562. regs->rip = fixup->fixup;
  563. return 1;
  564. }
  565. /*
  566. * fixup() could not handle it,
  567. * Let do_page_fault() fix it.
  568. */
  569. break;
  570. default:
  571. break;
  572. }
  573. return 0;
  574. }
  575. /*
  576. * Wrapper routine for handling exceptions.
  577. */
  578. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  579. unsigned long val, void *data)
  580. {
  581. struct die_args *args = (struct die_args *)data;
  582. int ret = NOTIFY_DONE;
  583. if (args->regs && user_mode(args->regs))
  584. return ret;
  585. switch (val) {
  586. case DIE_INT3:
  587. if (kprobe_handler(args->regs))
  588. ret = NOTIFY_STOP;
  589. break;
  590. case DIE_DEBUG:
  591. if (post_kprobe_handler(args->regs))
  592. ret = NOTIFY_STOP;
  593. break;
  594. case DIE_GPF:
  595. /* kprobe_running() needs smp_processor_id() */
  596. preempt_disable();
  597. if (kprobe_running() &&
  598. kprobe_fault_handler(args->regs, args->trapnr))
  599. ret = NOTIFY_STOP;
  600. preempt_enable();
  601. break;
  602. default:
  603. break;
  604. }
  605. return ret;
  606. }
  607. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  608. {
  609. struct jprobe *jp = container_of(p, struct jprobe, kp);
  610. unsigned long addr;
  611. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  612. kcb->jprobe_saved_regs = *regs;
  613. kcb->jprobe_saved_rsp = (long *) regs->rsp;
  614. addr = (unsigned long)(kcb->jprobe_saved_rsp);
  615. /*
  616. * As Linus pointed out, gcc assumes that the callee
  617. * owns the argument space and could overwrite it, e.g.
  618. * tailcall optimization. So, to be absolutely safe
  619. * we also save and restore enough stack bytes to cover
  620. * the argument area.
  621. */
  622. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
  623. MIN_STACK_SIZE(addr));
  624. regs->eflags &= ~IF_MASK;
  625. trace_hardirqs_off();
  626. regs->rip = (unsigned long)(jp->entry);
  627. return 1;
  628. }
  629. void __kprobes jprobe_return(void)
  630. {
  631. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  632. asm volatile (" xchg %%rbx,%%rsp \n"
  633. " int3 \n"
  634. " .globl jprobe_return_end \n"
  635. " jprobe_return_end: \n"
  636. " nop \n"::"b"
  637. (kcb->jprobe_saved_rsp):"memory");
  638. }
  639. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  640. {
  641. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  642. u8 *addr = (u8 *) (regs->rip - 1);
  643. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
  644. struct jprobe *jp = container_of(p, struct jprobe, kp);
  645. if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
  646. if ((unsigned long *)regs->rsp != kcb->jprobe_saved_rsp) {
  647. struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
  648. printk("current rsp %p does not match saved rsp %p\n",
  649. (long *)regs->rsp, kcb->jprobe_saved_rsp);
  650. printk("Saved registers for jprobe %p\n", jp);
  651. show_registers(saved_regs);
  652. printk("Current registers\n");
  653. show_registers(regs);
  654. BUG();
  655. }
  656. *regs = kcb->jprobe_saved_regs;
  657. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  658. MIN_STACK_SIZE(stack_addr));
  659. preempt_enable_no_resched();
  660. return 1;
  661. }
  662. return 0;
  663. }
  664. static struct kprobe trampoline_p = {
  665. .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
  666. .pre_handler = trampoline_probe_handler
  667. };
  668. int __init arch_init_kprobes(void)
  669. {
  670. return register_kprobe(&trampoline_p);
  671. }
  672. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  673. {
  674. if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
  675. return 1;
  676. return 0;
  677. }