pci_sun4v.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/log2.h>
  15. #include <asm/iommu.h>
  16. #include <asm/irq.h>
  17. #include <asm/upa.h>
  18. #include <asm/pstate.h>
  19. #include <asm/oplib.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/prom.h>
  22. #include "pci_impl.h"
  23. #include "iommu_common.h"
  24. #include "pci_sun4v.h"
  25. static unsigned long vpci_major = 1;
  26. static unsigned long vpci_minor = 1;
  27. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  28. struct iommu_batch {
  29. struct device *dev; /* Device mapping is for. */
  30. unsigned long prot; /* IOMMU page protections */
  31. unsigned long entry; /* Index into IOTSB. */
  32. u64 *pglist; /* List of physical pages */
  33. unsigned long npages; /* Number of pages in list. */
  34. };
  35. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  36. /* Interrupts must be disabled. */
  37. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  38. {
  39. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  40. p->dev = dev;
  41. p->prot = prot;
  42. p->entry = entry;
  43. p->npages = 0;
  44. }
  45. /* Interrupts must be disabled. */
  46. static long iommu_batch_flush(struct iommu_batch *p)
  47. {
  48. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  49. unsigned long devhandle = pbm->devhandle;
  50. unsigned long prot = p->prot;
  51. unsigned long entry = p->entry;
  52. u64 *pglist = p->pglist;
  53. unsigned long npages = p->npages;
  54. while (npages != 0) {
  55. long num;
  56. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  57. npages, prot, __pa(pglist));
  58. if (unlikely(num < 0)) {
  59. if (printk_ratelimit())
  60. printk("iommu_batch_flush: IOMMU map of "
  61. "[%08lx:%08lx:%lx:%lx:%lx] failed with "
  62. "status %ld\n",
  63. devhandle, HV_PCI_TSBID(0, entry),
  64. npages, prot, __pa(pglist), num);
  65. return -1;
  66. }
  67. entry += num;
  68. npages -= num;
  69. pglist += num;
  70. }
  71. p->entry = entry;
  72. p->npages = 0;
  73. return 0;
  74. }
  75. /* Interrupts must be disabled. */
  76. static inline long iommu_batch_add(u64 phys_page)
  77. {
  78. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  79. BUG_ON(p->npages >= PGLIST_NENTS);
  80. p->pglist[p->npages++] = phys_page;
  81. if (p->npages == PGLIST_NENTS)
  82. return iommu_batch_flush(p);
  83. return 0;
  84. }
  85. /* Interrupts must be disabled. */
  86. static inline long iommu_batch_end(void)
  87. {
  88. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  89. BUG_ON(p->npages >= PGLIST_NENTS);
  90. return iommu_batch_flush(p);
  91. }
  92. static long arena_alloc(struct iommu_arena *arena, unsigned long npages)
  93. {
  94. unsigned long n, i, start, end, limit;
  95. int pass;
  96. limit = arena->limit;
  97. start = arena->hint;
  98. pass = 0;
  99. again:
  100. n = find_next_zero_bit(arena->map, limit, start);
  101. end = n + npages;
  102. if (unlikely(end >= limit)) {
  103. if (likely(pass < 1)) {
  104. limit = start;
  105. start = 0;
  106. pass++;
  107. goto again;
  108. } else {
  109. /* Scanned the whole thing, give up. */
  110. return -1;
  111. }
  112. }
  113. for (i = n; i < end; i++) {
  114. if (test_bit(i, arena->map)) {
  115. start = i + 1;
  116. goto again;
  117. }
  118. }
  119. for (i = n; i < end; i++)
  120. __set_bit(i, arena->map);
  121. arena->hint = end;
  122. return n;
  123. }
  124. static void arena_free(struct iommu_arena *arena, unsigned long base,
  125. unsigned long npages)
  126. {
  127. unsigned long i;
  128. for (i = base; i < (base + npages); i++)
  129. __clear_bit(i, arena->map);
  130. }
  131. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  132. dma_addr_t *dma_addrp, gfp_t gfp)
  133. {
  134. struct iommu *iommu;
  135. unsigned long flags, order, first_page, npages, n;
  136. void *ret;
  137. long entry;
  138. size = IO_PAGE_ALIGN(size);
  139. order = get_order(size);
  140. if (unlikely(order >= MAX_ORDER))
  141. return NULL;
  142. npages = size >> IO_PAGE_SHIFT;
  143. first_page = __get_free_pages(gfp, order);
  144. if (unlikely(first_page == 0UL))
  145. return NULL;
  146. memset((char *)first_page, 0, PAGE_SIZE << order);
  147. iommu = dev->archdata.iommu;
  148. spin_lock_irqsave(&iommu->lock, flags);
  149. entry = arena_alloc(&iommu->arena, npages);
  150. spin_unlock_irqrestore(&iommu->lock, flags);
  151. if (unlikely(entry < 0L))
  152. goto arena_alloc_fail;
  153. *dma_addrp = (iommu->page_table_map_base +
  154. (entry << IO_PAGE_SHIFT));
  155. ret = (void *) first_page;
  156. first_page = __pa(first_page);
  157. local_irq_save(flags);
  158. iommu_batch_start(dev,
  159. (HV_PCI_MAP_ATTR_READ |
  160. HV_PCI_MAP_ATTR_WRITE),
  161. entry);
  162. for (n = 0; n < npages; n++) {
  163. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  164. if (unlikely(err < 0L))
  165. goto iommu_map_fail;
  166. }
  167. if (unlikely(iommu_batch_end() < 0L))
  168. goto iommu_map_fail;
  169. local_irq_restore(flags);
  170. return ret;
  171. iommu_map_fail:
  172. /* Interrupts are disabled. */
  173. spin_lock(&iommu->lock);
  174. arena_free(&iommu->arena, entry, npages);
  175. spin_unlock_irqrestore(&iommu->lock, flags);
  176. arena_alloc_fail:
  177. free_pages(first_page, order);
  178. return NULL;
  179. }
  180. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  181. dma_addr_t dvma)
  182. {
  183. struct pci_pbm_info *pbm;
  184. struct iommu *iommu;
  185. unsigned long flags, order, npages, entry;
  186. u32 devhandle;
  187. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  188. iommu = dev->archdata.iommu;
  189. pbm = dev->archdata.host_controller;
  190. devhandle = pbm->devhandle;
  191. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  192. spin_lock_irqsave(&iommu->lock, flags);
  193. arena_free(&iommu->arena, entry, npages);
  194. do {
  195. unsigned long num;
  196. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  197. npages);
  198. entry += num;
  199. npages -= num;
  200. } while (npages != 0);
  201. spin_unlock_irqrestore(&iommu->lock, flags);
  202. order = get_order(size);
  203. if (order < 10)
  204. free_pages((unsigned long)cpu, order);
  205. }
  206. static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz,
  207. enum dma_data_direction direction)
  208. {
  209. struct iommu *iommu;
  210. unsigned long flags, npages, oaddr;
  211. unsigned long i, base_paddr;
  212. u32 bus_addr, ret;
  213. unsigned long prot;
  214. long entry;
  215. iommu = dev->archdata.iommu;
  216. if (unlikely(direction == DMA_NONE))
  217. goto bad;
  218. oaddr = (unsigned long)ptr;
  219. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  220. npages >>= IO_PAGE_SHIFT;
  221. spin_lock_irqsave(&iommu->lock, flags);
  222. entry = arena_alloc(&iommu->arena, npages);
  223. spin_unlock_irqrestore(&iommu->lock, flags);
  224. if (unlikely(entry < 0L))
  225. goto bad;
  226. bus_addr = (iommu->page_table_map_base +
  227. (entry << IO_PAGE_SHIFT));
  228. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  229. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  230. prot = HV_PCI_MAP_ATTR_READ;
  231. if (direction != DMA_TO_DEVICE)
  232. prot |= HV_PCI_MAP_ATTR_WRITE;
  233. local_irq_save(flags);
  234. iommu_batch_start(dev, prot, entry);
  235. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  236. long err = iommu_batch_add(base_paddr);
  237. if (unlikely(err < 0L))
  238. goto iommu_map_fail;
  239. }
  240. if (unlikely(iommu_batch_end() < 0L))
  241. goto iommu_map_fail;
  242. local_irq_restore(flags);
  243. return ret;
  244. bad:
  245. if (printk_ratelimit())
  246. WARN_ON(1);
  247. return DMA_ERROR_CODE;
  248. iommu_map_fail:
  249. /* Interrupts are disabled. */
  250. spin_lock(&iommu->lock);
  251. arena_free(&iommu->arena, entry, npages);
  252. spin_unlock_irqrestore(&iommu->lock, flags);
  253. return DMA_ERROR_CODE;
  254. }
  255. static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr,
  256. size_t sz, enum dma_data_direction direction)
  257. {
  258. struct pci_pbm_info *pbm;
  259. struct iommu *iommu;
  260. unsigned long flags, npages;
  261. long entry;
  262. u32 devhandle;
  263. if (unlikely(direction == DMA_NONE)) {
  264. if (printk_ratelimit())
  265. WARN_ON(1);
  266. return;
  267. }
  268. iommu = dev->archdata.iommu;
  269. pbm = dev->archdata.host_controller;
  270. devhandle = pbm->devhandle;
  271. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  272. npages >>= IO_PAGE_SHIFT;
  273. bus_addr &= IO_PAGE_MASK;
  274. spin_lock_irqsave(&iommu->lock, flags);
  275. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  276. arena_free(&iommu->arena, entry, npages);
  277. do {
  278. unsigned long num;
  279. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  280. npages);
  281. entry += num;
  282. npages -= num;
  283. } while (npages != 0);
  284. spin_unlock_irqrestore(&iommu->lock, flags);
  285. }
  286. #define SG_ENT_PHYS_ADDRESS(SG) (__pa(sg_virt((SG))))
  287. static long fill_sg(long entry, struct device *dev,
  288. struct scatterlist *sg,
  289. int nused, int nelems, unsigned long prot)
  290. {
  291. struct scatterlist *dma_sg = sg;
  292. unsigned long flags;
  293. int i;
  294. local_irq_save(flags);
  295. iommu_batch_start(dev, prot, entry);
  296. for (i = 0; i < nused; i++) {
  297. unsigned long pteval = ~0UL;
  298. u32 dma_npages;
  299. dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
  300. dma_sg->dma_length +
  301. ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
  302. do {
  303. unsigned long offset;
  304. signed int len;
  305. /* If we are here, we know we have at least one
  306. * more page to map. So walk forward until we
  307. * hit a page crossing, and begin creating new
  308. * mappings from that spot.
  309. */
  310. for (;;) {
  311. unsigned long tmp;
  312. tmp = SG_ENT_PHYS_ADDRESS(sg);
  313. len = sg->length;
  314. if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
  315. pteval = tmp & IO_PAGE_MASK;
  316. offset = tmp & (IO_PAGE_SIZE - 1UL);
  317. break;
  318. }
  319. if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
  320. pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
  321. offset = 0UL;
  322. len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
  323. break;
  324. }
  325. sg = sg_next(sg);
  326. nelems--;
  327. }
  328. pteval = (pteval & IOPTE_PAGE);
  329. while (len > 0) {
  330. long err;
  331. err = iommu_batch_add(pteval);
  332. if (unlikely(err < 0L))
  333. goto iommu_map_failed;
  334. pteval += IO_PAGE_SIZE;
  335. len -= (IO_PAGE_SIZE - offset);
  336. offset = 0;
  337. dma_npages--;
  338. }
  339. pteval = (pteval & IOPTE_PAGE) + len;
  340. sg = sg_next(sg);
  341. nelems--;
  342. /* Skip over any tail mappings we've fully mapped,
  343. * adjusting pteval along the way. Stop when we
  344. * detect a page crossing event.
  345. */
  346. while (nelems &&
  347. (pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
  348. (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
  349. ((pteval ^
  350. (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
  351. pteval += sg->length;
  352. sg = sg_next(sg);
  353. nelems--;
  354. }
  355. if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
  356. pteval = ~0UL;
  357. } while (dma_npages != 0);
  358. dma_sg = sg_next(dma_sg);
  359. }
  360. if (unlikely(iommu_batch_end() < 0L))
  361. goto iommu_map_failed;
  362. local_irq_restore(flags);
  363. return 0;
  364. iommu_map_failed:
  365. local_irq_restore(flags);
  366. return -1L;
  367. }
  368. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  369. int nelems, enum dma_data_direction direction)
  370. {
  371. struct iommu *iommu;
  372. unsigned long flags, npages, prot;
  373. u32 dma_base;
  374. struct scatterlist *sgtmp;
  375. long entry, err;
  376. int used;
  377. /* Fast path single entry scatterlists. */
  378. if (nelems == 1) {
  379. sglist->dma_address =
  380. dma_4v_map_single(dev, sg_virt(sglist),
  381. sglist->length, direction);
  382. if (unlikely(sglist->dma_address == DMA_ERROR_CODE))
  383. return 0;
  384. sglist->dma_length = sglist->length;
  385. return 1;
  386. }
  387. iommu = dev->archdata.iommu;
  388. if (unlikely(direction == DMA_NONE))
  389. goto bad;
  390. /* Step 1: Prepare scatter list. */
  391. npages = prepare_sg(sglist, nelems);
  392. /* Step 2: Allocate a cluster and context, if necessary. */
  393. spin_lock_irqsave(&iommu->lock, flags);
  394. entry = arena_alloc(&iommu->arena, npages);
  395. spin_unlock_irqrestore(&iommu->lock, flags);
  396. if (unlikely(entry < 0L))
  397. goto bad;
  398. dma_base = iommu->page_table_map_base +
  399. (entry << IO_PAGE_SHIFT);
  400. /* Step 3: Normalize DMA addresses. */
  401. used = nelems;
  402. sgtmp = sglist;
  403. while (used && sgtmp->dma_length) {
  404. sgtmp->dma_address += dma_base;
  405. sgtmp = sg_next(sgtmp);
  406. used--;
  407. }
  408. used = nelems - used;
  409. /* Step 4: Create the mappings. */
  410. prot = HV_PCI_MAP_ATTR_READ;
  411. if (direction != DMA_TO_DEVICE)
  412. prot |= HV_PCI_MAP_ATTR_WRITE;
  413. err = fill_sg(entry, dev, sglist, used, nelems, prot);
  414. if (unlikely(err < 0L))
  415. goto iommu_map_failed;
  416. return used;
  417. bad:
  418. if (printk_ratelimit())
  419. WARN_ON(1);
  420. return 0;
  421. iommu_map_failed:
  422. spin_lock_irqsave(&iommu->lock, flags);
  423. arena_free(&iommu->arena, entry, npages);
  424. spin_unlock_irqrestore(&iommu->lock, flags);
  425. return 0;
  426. }
  427. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  428. int nelems, enum dma_data_direction direction)
  429. {
  430. struct pci_pbm_info *pbm;
  431. struct iommu *iommu;
  432. unsigned long flags, i, npages;
  433. struct scatterlist *sg, *sgprv;
  434. long entry;
  435. u32 devhandle, bus_addr;
  436. if (unlikely(direction == DMA_NONE)) {
  437. if (printk_ratelimit())
  438. WARN_ON(1);
  439. }
  440. iommu = dev->archdata.iommu;
  441. pbm = dev->archdata.host_controller;
  442. devhandle = pbm->devhandle;
  443. bus_addr = sglist->dma_address & IO_PAGE_MASK;
  444. sgprv = NULL;
  445. for_each_sg(sglist, sg, nelems, i) {
  446. if (sg->dma_length == 0)
  447. break;
  448. sgprv = sg;
  449. }
  450. npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length) -
  451. bus_addr) >> IO_PAGE_SHIFT;
  452. entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  453. spin_lock_irqsave(&iommu->lock, flags);
  454. arena_free(&iommu->arena, entry, npages);
  455. do {
  456. unsigned long num;
  457. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  458. npages);
  459. entry += num;
  460. npages -= num;
  461. } while (npages != 0);
  462. spin_unlock_irqrestore(&iommu->lock, flags);
  463. }
  464. static void dma_4v_sync_single_for_cpu(struct device *dev,
  465. dma_addr_t bus_addr, size_t sz,
  466. enum dma_data_direction direction)
  467. {
  468. /* Nothing to do... */
  469. }
  470. static void dma_4v_sync_sg_for_cpu(struct device *dev,
  471. struct scatterlist *sglist, int nelems,
  472. enum dma_data_direction direction)
  473. {
  474. /* Nothing to do... */
  475. }
  476. const struct dma_ops sun4v_dma_ops = {
  477. .alloc_coherent = dma_4v_alloc_coherent,
  478. .free_coherent = dma_4v_free_coherent,
  479. .map_single = dma_4v_map_single,
  480. .unmap_single = dma_4v_unmap_single,
  481. .map_sg = dma_4v_map_sg,
  482. .unmap_sg = dma_4v_unmap_sg,
  483. .sync_single_for_cpu = dma_4v_sync_single_for_cpu,
  484. .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
  485. };
  486. static void __init pci_sun4v_scan_bus(struct pci_pbm_info *pbm)
  487. {
  488. struct property *prop;
  489. struct device_node *dp;
  490. dp = pbm->prom_node;
  491. prop = of_find_property(dp, "66mhz-capable", NULL);
  492. pbm->is_66mhz_capable = (prop != NULL);
  493. pbm->pci_bus = pci_scan_one_pbm(pbm);
  494. /* XXX register error interrupt handlers XXX */
  495. }
  496. static unsigned long probe_existing_entries(struct pci_pbm_info *pbm,
  497. struct iommu *iommu)
  498. {
  499. struct iommu_arena *arena = &iommu->arena;
  500. unsigned long i, cnt = 0;
  501. u32 devhandle;
  502. devhandle = pbm->devhandle;
  503. for (i = 0; i < arena->limit; i++) {
  504. unsigned long ret, io_attrs, ra;
  505. ret = pci_sun4v_iommu_getmap(devhandle,
  506. HV_PCI_TSBID(0, i),
  507. &io_attrs, &ra);
  508. if (ret == HV_EOK) {
  509. if (page_in_phys_avail(ra)) {
  510. pci_sun4v_iommu_demap(devhandle,
  511. HV_PCI_TSBID(0, i), 1);
  512. } else {
  513. cnt++;
  514. __set_bit(i, arena->map);
  515. }
  516. }
  517. }
  518. return cnt;
  519. }
  520. static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  521. {
  522. struct iommu *iommu = pbm->iommu;
  523. struct property *prop;
  524. unsigned long num_tsb_entries, sz, tsbsize;
  525. u32 vdma[2], dma_mask, dma_offset;
  526. prop = of_find_property(pbm->prom_node, "virtual-dma", NULL);
  527. if (prop) {
  528. u32 *val = prop->value;
  529. vdma[0] = val[0];
  530. vdma[1] = val[1];
  531. } else {
  532. /* No property, use default values. */
  533. vdma[0] = 0x80000000;
  534. vdma[1] = 0x80000000;
  535. }
  536. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  537. prom_printf("PCI-SUN4V: strange virtual-dma[%08x:%08x].\n",
  538. vdma[0], vdma[1]);
  539. prom_halt();
  540. };
  541. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  542. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  543. tsbsize = num_tsb_entries * sizeof(iopte_t);
  544. dma_offset = vdma[0];
  545. /* Setup initial software IOMMU state. */
  546. spin_lock_init(&iommu->lock);
  547. iommu->ctx_lowest_free = 1;
  548. iommu->page_table_map_base = dma_offset;
  549. iommu->dma_addr_mask = dma_mask;
  550. /* Allocate and initialize the free area map. */
  551. sz = (num_tsb_entries + 7) / 8;
  552. sz = (sz + 7UL) & ~7UL;
  553. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  554. if (!iommu->arena.map) {
  555. prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
  556. prom_halt();
  557. }
  558. iommu->arena.limit = num_tsb_entries;
  559. sz = probe_existing_entries(pbm, iommu);
  560. if (sz)
  561. printk("%s: Imported %lu TSB entries from OBP\n",
  562. pbm->name, sz);
  563. }
  564. #ifdef CONFIG_PCI_MSI
  565. struct pci_sun4v_msiq_entry {
  566. u64 version_type;
  567. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  568. #define MSIQ_VERSION_SHIFT 32
  569. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  570. #define MSIQ_TYPE_SHIFT 0
  571. #define MSIQ_TYPE_NONE 0x00
  572. #define MSIQ_TYPE_MSG 0x01
  573. #define MSIQ_TYPE_MSI32 0x02
  574. #define MSIQ_TYPE_MSI64 0x03
  575. #define MSIQ_TYPE_INTX 0x08
  576. #define MSIQ_TYPE_NONE2 0xff
  577. u64 intx_sysino;
  578. u64 reserved1;
  579. u64 stick;
  580. u64 req_id; /* bus/device/func */
  581. #define MSIQ_REQID_BUS_MASK 0xff00UL
  582. #define MSIQ_REQID_BUS_SHIFT 8
  583. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  584. #define MSIQ_REQID_DEVICE_SHIFT 3
  585. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  586. #define MSIQ_REQID_FUNC_SHIFT 0
  587. u64 msi_address;
  588. /* The format of this value is message type dependent.
  589. * For MSI bits 15:0 are the data from the MSI packet.
  590. * For MSI-X bits 31:0 are the data from the MSI packet.
  591. * For MSG, the message code and message routing code where:
  592. * bits 39:32 is the bus/device/fn of the msg target-id
  593. * bits 18:16 is the message routing code
  594. * bits 7:0 is the message code
  595. * For INTx the low order 2-bits are:
  596. * 00 - INTA
  597. * 01 - INTB
  598. * 10 - INTC
  599. * 11 - INTD
  600. */
  601. u64 msi_data;
  602. u64 reserved2;
  603. };
  604. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  605. unsigned long *head)
  606. {
  607. unsigned long err, limit;
  608. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  609. if (unlikely(err))
  610. return -ENXIO;
  611. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  612. if (unlikely(*head >= limit))
  613. return -EFBIG;
  614. return 0;
  615. }
  616. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  617. unsigned long msiqid, unsigned long *head,
  618. unsigned long *msi)
  619. {
  620. struct pci_sun4v_msiq_entry *ep;
  621. unsigned long err, type;
  622. /* Note: void pointer arithmetic, 'head' is a byte offset */
  623. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  624. (pbm->msiq_ent_count *
  625. sizeof(struct pci_sun4v_msiq_entry))) +
  626. *head);
  627. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  628. return 0;
  629. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  630. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  631. type != MSIQ_TYPE_MSI64))
  632. return -EINVAL;
  633. *msi = ep->msi_data;
  634. err = pci_sun4v_msi_setstate(pbm->devhandle,
  635. ep->msi_data /* msi_num */,
  636. HV_MSISTATE_IDLE);
  637. if (unlikely(err))
  638. return -ENXIO;
  639. /* Clear the entry. */
  640. ep->version_type &= ~MSIQ_TYPE_MASK;
  641. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  642. if (*head >=
  643. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  644. *head = 0;
  645. return 1;
  646. }
  647. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  648. unsigned long head)
  649. {
  650. unsigned long err;
  651. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  652. if (unlikely(err))
  653. return -EINVAL;
  654. return 0;
  655. }
  656. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  657. unsigned long msi, int is_msi64)
  658. {
  659. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  660. (is_msi64 ?
  661. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  662. return -ENXIO;
  663. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  664. return -ENXIO;
  665. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  666. return -ENXIO;
  667. return 0;
  668. }
  669. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  670. {
  671. unsigned long err, msiqid;
  672. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  673. if (err)
  674. return -ENXIO;
  675. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  676. return 0;
  677. }
  678. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  679. {
  680. unsigned long q_size, alloc_size, pages, order;
  681. int i;
  682. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  683. alloc_size = (pbm->msiq_num * q_size);
  684. order = get_order(alloc_size);
  685. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  686. if (pages == 0UL) {
  687. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  688. order);
  689. return -ENOMEM;
  690. }
  691. memset((char *)pages, 0, PAGE_SIZE << order);
  692. pbm->msi_queues = (void *) pages;
  693. for (i = 0; i < pbm->msiq_num; i++) {
  694. unsigned long err, base = __pa(pages + (i * q_size));
  695. unsigned long ret1, ret2;
  696. err = pci_sun4v_msiq_conf(pbm->devhandle,
  697. pbm->msiq_first + i,
  698. base, pbm->msiq_ent_count);
  699. if (err) {
  700. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  701. err);
  702. goto h_error;
  703. }
  704. err = pci_sun4v_msiq_info(pbm->devhandle,
  705. pbm->msiq_first + i,
  706. &ret1, &ret2);
  707. if (err) {
  708. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  709. err);
  710. goto h_error;
  711. }
  712. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  713. printk(KERN_ERR "MSI: Bogus qconf "
  714. "expected[%lx:%x] got[%lx:%lx]\n",
  715. base, pbm->msiq_ent_count,
  716. ret1, ret2);
  717. goto h_error;
  718. }
  719. }
  720. return 0;
  721. h_error:
  722. free_pages(pages, order);
  723. return -EINVAL;
  724. }
  725. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  726. {
  727. unsigned long q_size, alloc_size, pages, order;
  728. int i;
  729. for (i = 0; i < pbm->msiq_num; i++) {
  730. unsigned long msiqid = pbm->msiq_first + i;
  731. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  732. }
  733. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  734. alloc_size = (pbm->msiq_num * q_size);
  735. order = get_order(alloc_size);
  736. pages = (unsigned long) pbm->msi_queues;
  737. free_pages(pages, order);
  738. pbm->msi_queues = NULL;
  739. }
  740. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  741. unsigned long msiqid,
  742. unsigned long devino)
  743. {
  744. unsigned int virt_irq = sun4v_build_irq(pbm->devhandle, devino);
  745. if (!virt_irq)
  746. return -ENOMEM;
  747. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  748. return -EINVAL;
  749. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  750. return -EINVAL;
  751. return virt_irq;
  752. }
  753. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  754. .get_head = pci_sun4v_get_head,
  755. .dequeue_msi = pci_sun4v_dequeue_msi,
  756. .set_head = pci_sun4v_set_head,
  757. .msi_setup = pci_sun4v_msi_setup,
  758. .msi_teardown = pci_sun4v_msi_teardown,
  759. .msiq_alloc = pci_sun4v_msiq_alloc,
  760. .msiq_free = pci_sun4v_msiq_free,
  761. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  762. };
  763. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  764. {
  765. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  766. }
  767. #else /* CONFIG_PCI_MSI */
  768. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  769. {
  770. }
  771. #endif /* !(CONFIG_PCI_MSI) */
  772. static void __init pci_sun4v_pbm_init(struct pci_controller_info *p,
  773. struct device_node *dp, u32 devhandle)
  774. {
  775. struct pci_pbm_info *pbm;
  776. if (devhandle & 0x40)
  777. pbm = &p->pbm_B;
  778. else
  779. pbm = &p->pbm_A;
  780. pbm->next = pci_pbm_root;
  781. pci_pbm_root = pbm;
  782. pbm->scan_bus = pci_sun4v_scan_bus;
  783. pbm->pci_ops = &sun4v_pci_ops;
  784. pbm->config_space_reg_bits = 12;
  785. pbm->index = pci_num_pbms++;
  786. pbm->parent = p;
  787. pbm->prom_node = dp;
  788. pbm->devhandle = devhandle;
  789. pbm->name = dp->full_name;
  790. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  791. pci_determine_mem_io_space(pbm);
  792. pci_get_pbm_props(pbm);
  793. pci_sun4v_iommu_init(pbm);
  794. pci_sun4v_msi_init(pbm);
  795. }
  796. void __init sun4v_pci_init(struct device_node *dp, char *model_name)
  797. {
  798. static int hvapi_negotiated = 0;
  799. struct pci_controller_info *p;
  800. struct pci_pbm_info *pbm;
  801. struct iommu *iommu;
  802. struct property *prop;
  803. struct linux_prom64_registers *regs;
  804. u32 devhandle;
  805. int i;
  806. if (!hvapi_negotiated++) {
  807. int err = sun4v_hvapi_register(HV_GRP_PCI,
  808. vpci_major,
  809. &vpci_minor);
  810. if (err) {
  811. prom_printf("SUN4V_PCI: Could not register hvapi, "
  812. "err=%d\n", err);
  813. prom_halt();
  814. }
  815. printk("SUN4V_PCI: Registered hvapi major[%lu] minor[%lu]\n",
  816. vpci_major, vpci_minor);
  817. dma_ops = &sun4v_dma_ops;
  818. }
  819. prop = of_find_property(dp, "reg", NULL);
  820. if (!prop) {
  821. prom_printf("SUN4V_PCI: Could not find config registers\n");
  822. prom_halt();
  823. }
  824. regs = prop->value;
  825. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  826. for (pbm = pci_pbm_root; pbm; pbm = pbm->next) {
  827. if (pbm->devhandle == (devhandle ^ 0x40)) {
  828. pci_sun4v_pbm_init(pbm->parent, dp, devhandle);
  829. return;
  830. }
  831. }
  832. for_each_possible_cpu(i) {
  833. unsigned long page = get_zeroed_page(GFP_ATOMIC);
  834. if (!page)
  835. goto fatal_memory_error;
  836. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  837. }
  838. p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
  839. if (!p)
  840. goto fatal_memory_error;
  841. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  842. if (!iommu)
  843. goto fatal_memory_error;
  844. p->pbm_A.iommu = iommu;
  845. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  846. if (!iommu)
  847. goto fatal_memory_error;
  848. p->pbm_B.iommu = iommu;
  849. pci_sun4v_pbm_init(p, dp, devhandle);
  850. return;
  851. fatal_memory_error:
  852. prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
  853. prom_halt();
  854. }