vmem.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. unsigned long vmalloc_end;
  17. EXPORT_SYMBOL(vmalloc_end);
  18. static struct page *vmem_map;
  19. static DEFINE_MUTEX(vmem_mutex);
  20. struct memory_segment {
  21. struct list_head list;
  22. unsigned long start;
  23. unsigned long size;
  24. };
  25. static LIST_HEAD(mem_segs);
  26. void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
  27. unsigned long start_pfn)
  28. {
  29. struct page *start, *end;
  30. struct page *map_start, *map_end;
  31. int i;
  32. start = pfn_to_page(start_pfn);
  33. end = start + size;
  34. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  35. unsigned long cstart, cend;
  36. cstart = PFN_DOWN(memory_chunk[i].addr);
  37. cend = cstart + PFN_DOWN(memory_chunk[i].size);
  38. map_start = mem_map + cstart;
  39. map_end = mem_map + cend;
  40. if (map_start < start)
  41. map_start = start;
  42. if (map_end > end)
  43. map_end = end;
  44. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
  45. / sizeof(struct page);
  46. map_end += ((PFN_ALIGN((unsigned long) map_end)
  47. - (unsigned long) map_end)
  48. / sizeof(struct page));
  49. if (map_start < map_end)
  50. memmap_init_zone((unsigned long)(map_end - map_start),
  51. nid, zone, page_to_pfn(map_start),
  52. MEMMAP_EARLY);
  53. }
  54. }
  55. static void __init_refok *vmem_alloc_pages(unsigned int order)
  56. {
  57. if (slab_is_available())
  58. return (void *)__get_free_pages(GFP_KERNEL, order);
  59. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  60. }
  61. #define vmem_pud_alloc() ({ BUG(); ((pud_t *) NULL); })
  62. static inline pmd_t *vmem_pmd_alloc(void)
  63. {
  64. pmd_t *pmd = NULL;
  65. #ifdef CONFIG_64BIT
  66. pmd = vmem_alloc_pages(2);
  67. if (!pmd)
  68. return NULL;
  69. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
  70. #endif
  71. return pmd;
  72. }
  73. static inline pte_t *vmem_pte_alloc(void)
  74. {
  75. pte_t *pte = vmem_alloc_pages(0);
  76. if (!pte)
  77. return NULL;
  78. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY, PAGE_SIZE);
  79. return pte;
  80. }
  81. /*
  82. * Add a physical memory range to the 1:1 mapping.
  83. */
  84. static int vmem_add_range(unsigned long start, unsigned long size)
  85. {
  86. unsigned long address;
  87. pgd_t *pg_dir;
  88. pud_t *pu_dir;
  89. pmd_t *pm_dir;
  90. pte_t *pt_dir;
  91. pte_t pte;
  92. int ret = -ENOMEM;
  93. for (address = start; address < start + size; address += PAGE_SIZE) {
  94. pg_dir = pgd_offset_k(address);
  95. if (pgd_none(*pg_dir)) {
  96. pu_dir = vmem_pud_alloc();
  97. if (!pu_dir)
  98. goto out;
  99. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  100. }
  101. pu_dir = pud_offset(pg_dir, address);
  102. if (pud_none(*pu_dir)) {
  103. pm_dir = vmem_pmd_alloc();
  104. if (!pm_dir)
  105. goto out;
  106. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  107. }
  108. pm_dir = pmd_offset(pu_dir, address);
  109. if (pmd_none(*pm_dir)) {
  110. pt_dir = vmem_pte_alloc();
  111. if (!pt_dir)
  112. goto out;
  113. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  114. }
  115. pt_dir = pte_offset_kernel(pm_dir, address);
  116. pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
  117. *pt_dir = pte;
  118. }
  119. ret = 0;
  120. out:
  121. flush_tlb_kernel_range(start, start + size);
  122. return ret;
  123. }
  124. /*
  125. * Remove a physical memory range from the 1:1 mapping.
  126. * Currently only invalidates page table entries.
  127. */
  128. static void vmem_remove_range(unsigned long start, unsigned long size)
  129. {
  130. unsigned long address;
  131. pgd_t *pg_dir;
  132. pud_t *pu_dir;
  133. pmd_t *pm_dir;
  134. pte_t *pt_dir;
  135. pte_t pte;
  136. pte_val(pte) = _PAGE_TYPE_EMPTY;
  137. for (address = start; address < start + size; address += PAGE_SIZE) {
  138. pg_dir = pgd_offset_k(address);
  139. pu_dir = pud_offset(pg_dir, address);
  140. if (pud_none(*pu_dir))
  141. continue;
  142. pm_dir = pmd_offset(pu_dir, address);
  143. if (pmd_none(*pm_dir))
  144. continue;
  145. pt_dir = pte_offset_kernel(pm_dir, address);
  146. *pt_dir = pte;
  147. }
  148. flush_tlb_kernel_range(start, start + size);
  149. }
  150. /*
  151. * Add a backed mem_map array to the virtual mem_map array.
  152. */
  153. static int vmem_add_mem_map(unsigned long start, unsigned long size)
  154. {
  155. unsigned long address, start_addr, end_addr;
  156. struct page *map_start, *map_end;
  157. pgd_t *pg_dir;
  158. pud_t *pu_dir;
  159. pmd_t *pm_dir;
  160. pte_t *pt_dir;
  161. pte_t pte;
  162. int ret = -ENOMEM;
  163. map_start = vmem_map + PFN_DOWN(start);
  164. map_end = vmem_map + PFN_DOWN(start + size);
  165. start_addr = (unsigned long) map_start & PAGE_MASK;
  166. end_addr = PFN_ALIGN((unsigned long) map_end);
  167. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  168. pg_dir = pgd_offset_k(address);
  169. if (pgd_none(*pg_dir)) {
  170. pu_dir = vmem_pud_alloc();
  171. if (!pu_dir)
  172. goto out;
  173. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  174. }
  175. pu_dir = pud_offset(pg_dir, address);
  176. if (pud_none(*pu_dir)) {
  177. pm_dir = vmem_pmd_alloc();
  178. if (!pm_dir)
  179. goto out;
  180. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  181. }
  182. pm_dir = pmd_offset(pu_dir, address);
  183. if (pmd_none(*pm_dir)) {
  184. pt_dir = vmem_pte_alloc();
  185. if (!pt_dir)
  186. goto out;
  187. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  188. }
  189. pt_dir = pte_offset_kernel(pm_dir, address);
  190. if (pte_none(*pt_dir)) {
  191. unsigned long new_page;
  192. new_page =__pa(vmem_alloc_pages(0));
  193. if (!new_page)
  194. goto out;
  195. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  196. *pt_dir = pte;
  197. }
  198. }
  199. ret = 0;
  200. out:
  201. flush_tlb_kernel_range(start_addr, end_addr);
  202. return ret;
  203. }
  204. static int vmem_add_mem(unsigned long start, unsigned long size)
  205. {
  206. int ret;
  207. ret = vmem_add_range(start, size);
  208. if (ret)
  209. return ret;
  210. return vmem_add_mem_map(start, size);
  211. }
  212. /*
  213. * Add memory segment to the segment list if it doesn't overlap with
  214. * an already present segment.
  215. */
  216. static int insert_memory_segment(struct memory_segment *seg)
  217. {
  218. struct memory_segment *tmp;
  219. if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
  220. seg->start + seg->size < seg->start)
  221. return -ERANGE;
  222. list_for_each_entry(tmp, &mem_segs, list) {
  223. if (seg->start >= tmp->start + tmp->size)
  224. continue;
  225. if (seg->start + seg->size <= tmp->start)
  226. continue;
  227. return -ENOSPC;
  228. }
  229. list_add(&seg->list, &mem_segs);
  230. return 0;
  231. }
  232. /*
  233. * Remove memory segment from the segment list.
  234. */
  235. static void remove_memory_segment(struct memory_segment *seg)
  236. {
  237. list_del(&seg->list);
  238. }
  239. static void __remove_shared_memory(struct memory_segment *seg)
  240. {
  241. remove_memory_segment(seg);
  242. vmem_remove_range(seg->start, seg->size);
  243. }
  244. int remove_shared_memory(unsigned long start, unsigned long size)
  245. {
  246. struct memory_segment *seg;
  247. int ret;
  248. mutex_lock(&vmem_mutex);
  249. ret = -ENOENT;
  250. list_for_each_entry(seg, &mem_segs, list) {
  251. if (seg->start == start && seg->size == size)
  252. break;
  253. }
  254. if (seg->start != start || seg->size != size)
  255. goto out;
  256. ret = 0;
  257. __remove_shared_memory(seg);
  258. kfree(seg);
  259. out:
  260. mutex_unlock(&vmem_mutex);
  261. return ret;
  262. }
  263. int add_shared_memory(unsigned long start, unsigned long size)
  264. {
  265. struct memory_segment *seg;
  266. struct page *page;
  267. unsigned long pfn, num_pfn, end_pfn;
  268. int ret;
  269. mutex_lock(&vmem_mutex);
  270. ret = -ENOMEM;
  271. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  272. if (!seg)
  273. goto out;
  274. seg->start = start;
  275. seg->size = size;
  276. ret = insert_memory_segment(seg);
  277. if (ret)
  278. goto out_free;
  279. ret = vmem_add_mem(start, size);
  280. if (ret)
  281. goto out_remove;
  282. pfn = PFN_DOWN(start);
  283. num_pfn = PFN_DOWN(size);
  284. end_pfn = pfn + num_pfn;
  285. page = pfn_to_page(pfn);
  286. memset(page, 0, num_pfn * sizeof(struct page));
  287. for (; pfn < end_pfn; pfn++) {
  288. page = pfn_to_page(pfn);
  289. init_page_count(page);
  290. reset_page_mapcount(page);
  291. SetPageReserved(page);
  292. INIT_LIST_HEAD(&page->lru);
  293. }
  294. goto out;
  295. out_remove:
  296. __remove_shared_memory(seg);
  297. out_free:
  298. kfree(seg);
  299. out:
  300. mutex_unlock(&vmem_mutex);
  301. return ret;
  302. }
  303. /*
  304. * map whole physical memory to virtual memory (identity mapping)
  305. */
  306. void __init vmem_map_init(void)
  307. {
  308. unsigned long map_size;
  309. int i;
  310. map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
  311. vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
  312. vmem_map = (struct page *) vmalloc_end;
  313. NODE_DATA(0)->node_mem_map = vmem_map;
  314. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
  315. vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
  316. }
  317. /*
  318. * Convert memory chunk array to a memory segment list so there is a single
  319. * list that contains both r/w memory and shared memory segments.
  320. */
  321. static int __init vmem_convert_memory_chunk(void)
  322. {
  323. struct memory_segment *seg;
  324. int i;
  325. mutex_lock(&vmem_mutex);
  326. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  327. if (!memory_chunk[i].size)
  328. continue;
  329. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  330. if (!seg)
  331. panic("Out of memory...\n");
  332. seg->start = memory_chunk[i].addr;
  333. seg->size = memory_chunk[i].size;
  334. insert_memory_segment(seg);
  335. }
  336. mutex_unlock(&vmem_mutex);
  337. return 0;
  338. }
  339. core_initcall(vmem_convert_memory_chunk);