kprobes.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. * Kernel Probes (KProbes)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2002, 2006
  19. *
  20. * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  21. */
  22. #include <linux/kprobes.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/preempt.h>
  25. #include <linux/stop_machine.h>
  26. #include <linux/kdebug.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/sections.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/module.h>
  31. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  32. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  33. struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  34. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  35. {
  36. /* Make sure the probe isn't going on a difficult instruction */
  37. if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
  38. return -EINVAL;
  39. if ((unsigned long)p->addr & 0x01) {
  40. printk("Attempt to register kprobe at an unaligned address\n");
  41. return -EINVAL;
  42. }
  43. /* Use the get_insn_slot() facility for correctness */
  44. if (!(p->ainsn.insn = get_insn_slot()))
  45. return -ENOMEM;
  46. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  47. get_instruction_type(&p->ainsn);
  48. p->opcode = *p->addr;
  49. return 0;
  50. }
  51. int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
  52. {
  53. switch (*(__u8 *) instruction) {
  54. case 0x0c: /* bassm */
  55. case 0x0b: /* bsm */
  56. case 0x83: /* diag */
  57. case 0x44: /* ex */
  58. return -EINVAL;
  59. }
  60. switch (*(__u16 *) instruction) {
  61. case 0x0101: /* pr */
  62. case 0xb25a: /* bsa */
  63. case 0xb240: /* bakr */
  64. case 0xb258: /* bsg */
  65. case 0xb218: /* pc */
  66. case 0xb228: /* pt */
  67. return -EINVAL;
  68. }
  69. return 0;
  70. }
  71. void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
  72. {
  73. /* default fixup method */
  74. ainsn->fixup = FIXUP_PSW_NORMAL;
  75. /* save r1 operand */
  76. ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
  77. /* save the instruction length (pop 5-5) in bytes */
  78. switch (*(__u8 *) (ainsn->insn) >> 6) {
  79. case 0:
  80. ainsn->ilen = 2;
  81. break;
  82. case 1:
  83. case 2:
  84. ainsn->ilen = 4;
  85. break;
  86. case 3:
  87. ainsn->ilen = 6;
  88. break;
  89. }
  90. switch (*(__u8 *) ainsn->insn) {
  91. case 0x05: /* balr */
  92. case 0x0d: /* basr */
  93. ainsn->fixup = FIXUP_RETURN_REGISTER;
  94. /* if r2 = 0, no branch will be taken */
  95. if ((*ainsn->insn & 0x0f) == 0)
  96. ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
  97. break;
  98. case 0x06: /* bctr */
  99. case 0x07: /* bcr */
  100. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  101. break;
  102. case 0x45: /* bal */
  103. case 0x4d: /* bas */
  104. ainsn->fixup = FIXUP_RETURN_REGISTER;
  105. break;
  106. case 0x47: /* bc */
  107. case 0x46: /* bct */
  108. case 0x86: /* bxh */
  109. case 0x87: /* bxle */
  110. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  111. break;
  112. case 0x82: /* lpsw */
  113. ainsn->fixup = FIXUP_NOT_REQUIRED;
  114. break;
  115. case 0xb2: /* lpswe */
  116. if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
  117. ainsn->fixup = FIXUP_NOT_REQUIRED;
  118. }
  119. break;
  120. case 0xa7: /* bras */
  121. if ((*ainsn->insn & 0x0f) == 0x05) {
  122. ainsn->fixup |= FIXUP_RETURN_REGISTER;
  123. }
  124. break;
  125. case 0xc0:
  126. if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
  127. || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
  128. ainsn->fixup |= FIXUP_RETURN_REGISTER;
  129. break;
  130. case 0xeb:
  131. if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
  132. *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
  133. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  134. }
  135. break;
  136. case 0xe3: /* bctg */
  137. if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
  138. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  139. }
  140. break;
  141. }
  142. }
  143. static int __kprobes swap_instruction(void *aref)
  144. {
  145. struct ins_replace_args *args = aref;
  146. u32 *addr;
  147. u32 instr;
  148. int err = -EFAULT;
  149. /*
  150. * Text segment is read-only, hence we use stura to bypass dynamic
  151. * address translation to exchange the instruction. Since stura
  152. * always operates on four bytes, but we only want to exchange two
  153. * bytes do some calculations to get things right. In addition we
  154. * shall not cross any page boundaries (vmalloc area!) when writing
  155. * the new instruction.
  156. */
  157. addr = (u32 *)((unsigned long)args->ptr & -4UL);
  158. if ((unsigned long)args->ptr & 2)
  159. instr = ((*addr) & 0xffff0000) | args->new;
  160. else
  161. instr = ((*addr) & 0x0000ffff) | args->new << 16;
  162. asm volatile(
  163. " lra %1,0(%1)\n"
  164. "0: stura %2,%1\n"
  165. "1: la %0,0\n"
  166. "2:\n"
  167. EX_TABLE(0b,2b)
  168. : "+d" (err)
  169. : "a" (addr), "d" (instr)
  170. : "memory", "cc");
  171. return err;
  172. }
  173. void __kprobes arch_arm_kprobe(struct kprobe *p)
  174. {
  175. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  176. unsigned long status = kcb->kprobe_status;
  177. struct ins_replace_args args;
  178. args.ptr = p->addr;
  179. args.old = p->opcode;
  180. args.new = BREAKPOINT_INSTRUCTION;
  181. kcb->kprobe_status = KPROBE_SWAP_INST;
  182. stop_machine_run(swap_instruction, &args, NR_CPUS);
  183. kcb->kprobe_status = status;
  184. }
  185. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  186. {
  187. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  188. unsigned long status = kcb->kprobe_status;
  189. struct ins_replace_args args;
  190. args.ptr = p->addr;
  191. args.old = BREAKPOINT_INSTRUCTION;
  192. args.new = p->opcode;
  193. kcb->kprobe_status = KPROBE_SWAP_INST;
  194. stop_machine_run(swap_instruction, &args, NR_CPUS);
  195. kcb->kprobe_status = status;
  196. }
  197. void __kprobes arch_remove_kprobe(struct kprobe *p)
  198. {
  199. mutex_lock(&kprobe_mutex);
  200. free_insn_slot(p->ainsn.insn, 0);
  201. mutex_unlock(&kprobe_mutex);
  202. }
  203. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  204. {
  205. per_cr_bits kprobe_per_regs[1];
  206. memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
  207. regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
  208. /* Set up the per control reg info, will pass to lctl */
  209. kprobe_per_regs[0].em_instruction_fetch = 1;
  210. kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
  211. kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
  212. /* Set the PER control regs, turns on single step for this address */
  213. __ctl_load(kprobe_per_regs, 9, 11);
  214. regs->psw.mask |= PSW_MASK_PER;
  215. regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
  216. }
  217. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  218. {
  219. kcb->prev_kprobe.kp = kprobe_running();
  220. kcb->prev_kprobe.status = kcb->kprobe_status;
  221. kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
  222. memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
  223. sizeof(kcb->kprobe_saved_ctl));
  224. }
  225. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  226. {
  227. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  228. kcb->kprobe_status = kcb->prev_kprobe.status;
  229. kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
  230. memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
  231. sizeof(kcb->kprobe_saved_ctl));
  232. }
  233. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  234. struct kprobe_ctlblk *kcb)
  235. {
  236. __get_cpu_var(current_kprobe) = p;
  237. /* Save the interrupt and per flags */
  238. kcb->kprobe_saved_imask = regs->psw.mask &
  239. (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
  240. /* Save the control regs that govern PER */
  241. __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
  242. }
  243. /* Called with kretprobe_lock held */
  244. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  245. struct pt_regs *regs)
  246. {
  247. ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
  248. /* Replace the return addr with trampoline addr */
  249. regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
  250. }
  251. static int __kprobes kprobe_handler(struct pt_regs *regs)
  252. {
  253. struct kprobe *p;
  254. int ret = 0;
  255. unsigned long *addr = (unsigned long *)
  256. ((regs->psw.addr & PSW_ADDR_INSN) - 2);
  257. struct kprobe_ctlblk *kcb;
  258. /*
  259. * We don't want to be preempted for the entire
  260. * duration of kprobe processing
  261. */
  262. preempt_disable();
  263. kcb = get_kprobe_ctlblk();
  264. /* Check we're not actually recursing */
  265. if (kprobe_running()) {
  266. p = get_kprobe(addr);
  267. if (p) {
  268. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  269. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  270. regs->psw.mask &= ~PSW_MASK_PER;
  271. regs->psw.mask |= kcb->kprobe_saved_imask;
  272. goto no_kprobe;
  273. }
  274. /* We have reentered the kprobe_handler(), since
  275. * another probe was hit while within the handler.
  276. * We here save the original kprobes variables and
  277. * just single step on the instruction of the new probe
  278. * without calling any user handlers.
  279. */
  280. save_previous_kprobe(kcb);
  281. set_current_kprobe(p, regs, kcb);
  282. kprobes_inc_nmissed_count(p);
  283. prepare_singlestep(p, regs);
  284. kcb->kprobe_status = KPROBE_REENTER;
  285. return 1;
  286. } else {
  287. p = __get_cpu_var(current_kprobe);
  288. if (p->break_handler && p->break_handler(p, regs)) {
  289. goto ss_probe;
  290. }
  291. }
  292. goto no_kprobe;
  293. }
  294. p = get_kprobe(addr);
  295. if (!p)
  296. /*
  297. * No kprobe at this address. The fault has not been
  298. * caused by a kprobe breakpoint. The race of breakpoint
  299. * vs. kprobe remove does not exist because on s390 we
  300. * use stop_machine_run to arm/disarm the breakpoints.
  301. */
  302. goto no_kprobe;
  303. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  304. set_current_kprobe(p, regs, kcb);
  305. if (p->pre_handler && p->pre_handler(p, regs))
  306. /* handler has already set things up, so skip ss setup */
  307. return 1;
  308. ss_probe:
  309. prepare_singlestep(p, regs);
  310. kcb->kprobe_status = KPROBE_HIT_SS;
  311. return 1;
  312. no_kprobe:
  313. preempt_enable_no_resched();
  314. return ret;
  315. }
  316. /*
  317. * Function return probe trampoline:
  318. * - init_kprobes() establishes a probepoint here
  319. * - When the probed function returns, this probe
  320. * causes the handlers to fire
  321. */
  322. void kretprobe_trampoline_holder(void)
  323. {
  324. asm volatile(".global kretprobe_trampoline\n"
  325. "kretprobe_trampoline: bcr 0,0\n");
  326. }
  327. /*
  328. * Called when the probe at kretprobe trampoline is hit
  329. */
  330. static int __kprobes trampoline_probe_handler(struct kprobe *p,
  331. struct pt_regs *regs)
  332. {
  333. struct kretprobe_instance *ri = NULL;
  334. struct hlist_head *head, empty_rp;
  335. struct hlist_node *node, *tmp;
  336. unsigned long flags, orig_ret_address = 0;
  337. unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
  338. INIT_HLIST_HEAD(&empty_rp);
  339. spin_lock_irqsave(&kretprobe_lock, flags);
  340. head = kretprobe_inst_table_head(current);
  341. /*
  342. * It is possible to have multiple instances associated with a given
  343. * task either because an multiple functions in the call path
  344. * have a return probe installed on them, and/or more then one return
  345. * return probe was registered for a target function.
  346. *
  347. * We can handle this because:
  348. * - instances are always inserted at the head of the list
  349. * - when multiple return probes are registered for the same
  350. * function, the first instance's ret_addr will point to the
  351. * real return address, and all the rest will point to
  352. * kretprobe_trampoline
  353. */
  354. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  355. if (ri->task != current)
  356. /* another task is sharing our hash bucket */
  357. continue;
  358. if (ri->rp && ri->rp->handler)
  359. ri->rp->handler(ri, regs);
  360. orig_ret_address = (unsigned long)ri->ret_addr;
  361. recycle_rp_inst(ri, &empty_rp);
  362. if (orig_ret_address != trampoline_address) {
  363. /*
  364. * This is the real return address. Any other
  365. * instances associated with this task are for
  366. * other calls deeper on the call stack
  367. */
  368. break;
  369. }
  370. }
  371. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  372. regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
  373. reset_current_kprobe();
  374. spin_unlock_irqrestore(&kretprobe_lock, flags);
  375. preempt_enable_no_resched();
  376. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  377. hlist_del(&ri->hlist);
  378. kfree(ri);
  379. }
  380. /*
  381. * By returning a non-zero value, we are telling
  382. * kprobe_handler() that we don't want the post_handler
  383. * to run (and have re-enabled preemption)
  384. */
  385. return 1;
  386. }
  387. /*
  388. * Called after single-stepping. p->addr is the address of the
  389. * instruction whose first byte has been replaced by the "breakpoint"
  390. * instruction. To avoid the SMP problems that can occur when we
  391. * temporarily put back the original opcode to single-step, we
  392. * single-stepped a copy of the instruction. The address of this
  393. * copy is p->ainsn.insn.
  394. */
  395. static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
  396. {
  397. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  398. regs->psw.addr &= PSW_ADDR_INSN;
  399. if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
  400. regs->psw.addr = (unsigned long)p->addr +
  401. ((unsigned long)regs->psw.addr -
  402. (unsigned long)p->ainsn.insn);
  403. if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
  404. if ((unsigned long)regs->psw.addr -
  405. (unsigned long)p->ainsn.insn == p->ainsn.ilen)
  406. regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
  407. if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
  408. regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
  409. (regs->gprs[p->ainsn.reg] -
  410. (unsigned long)p->ainsn.insn))
  411. | PSW_ADDR_AMODE;
  412. regs->psw.addr |= PSW_ADDR_AMODE;
  413. /* turn off PER mode */
  414. regs->psw.mask &= ~PSW_MASK_PER;
  415. /* Restore the original per control regs */
  416. __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
  417. regs->psw.mask |= kcb->kprobe_saved_imask;
  418. }
  419. static int __kprobes post_kprobe_handler(struct pt_regs *regs)
  420. {
  421. struct kprobe *cur = kprobe_running();
  422. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  423. if (!cur)
  424. return 0;
  425. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  426. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  427. cur->post_handler(cur, regs, 0);
  428. }
  429. resume_execution(cur, regs);
  430. /*Restore back the original saved kprobes variables and continue. */
  431. if (kcb->kprobe_status == KPROBE_REENTER) {
  432. restore_previous_kprobe(kcb);
  433. goto out;
  434. }
  435. reset_current_kprobe();
  436. out:
  437. preempt_enable_no_resched();
  438. /*
  439. * if somebody else is singlestepping across a probe point, psw mask
  440. * will have PER set, in which case, continue the remaining processing
  441. * of do_single_step, as if this is not a probe hit.
  442. */
  443. if (regs->psw.mask & PSW_MASK_PER) {
  444. return 0;
  445. }
  446. return 1;
  447. }
  448. int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  449. {
  450. struct kprobe *cur = kprobe_running();
  451. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  452. const struct exception_table_entry *entry;
  453. switch(kcb->kprobe_status) {
  454. case KPROBE_SWAP_INST:
  455. /* We are here because the instruction replacement failed */
  456. return 0;
  457. case KPROBE_HIT_SS:
  458. case KPROBE_REENTER:
  459. /*
  460. * We are here because the instruction being single
  461. * stepped caused a page fault. We reset the current
  462. * kprobe and the nip points back to the probe address
  463. * and allow the page fault handler to continue as a
  464. * normal page fault.
  465. */
  466. regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
  467. regs->psw.mask &= ~PSW_MASK_PER;
  468. regs->psw.mask |= kcb->kprobe_saved_imask;
  469. if (kcb->kprobe_status == KPROBE_REENTER)
  470. restore_previous_kprobe(kcb);
  471. else
  472. reset_current_kprobe();
  473. preempt_enable_no_resched();
  474. break;
  475. case KPROBE_HIT_ACTIVE:
  476. case KPROBE_HIT_SSDONE:
  477. /*
  478. * We increment the nmissed count for accounting,
  479. * we can also use npre/npostfault count for accouting
  480. * these specific fault cases.
  481. */
  482. kprobes_inc_nmissed_count(cur);
  483. /*
  484. * We come here because instructions in the pre/post
  485. * handler caused the page_fault, this could happen
  486. * if handler tries to access user space by
  487. * copy_from_user(), get_user() etc. Let the
  488. * user-specified handler try to fix it first.
  489. */
  490. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  491. return 1;
  492. /*
  493. * In case the user-specified fault handler returned
  494. * zero, try to fix up.
  495. */
  496. entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
  497. if (entry) {
  498. regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
  499. return 1;
  500. }
  501. /*
  502. * fixup_exception() could not handle it,
  503. * Let do_page_fault() fix it.
  504. */
  505. break;
  506. default:
  507. break;
  508. }
  509. return 0;
  510. }
  511. /*
  512. * Wrapper routine to for handling exceptions.
  513. */
  514. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  515. unsigned long val, void *data)
  516. {
  517. struct die_args *args = (struct die_args *)data;
  518. int ret = NOTIFY_DONE;
  519. switch (val) {
  520. case DIE_BPT:
  521. if (kprobe_handler(args->regs))
  522. ret = NOTIFY_STOP;
  523. break;
  524. case DIE_SSTEP:
  525. if (post_kprobe_handler(args->regs))
  526. ret = NOTIFY_STOP;
  527. break;
  528. case DIE_TRAP:
  529. /* kprobe_running() needs smp_processor_id() */
  530. preempt_disable();
  531. if (kprobe_running() &&
  532. kprobe_fault_handler(args->regs, args->trapnr))
  533. ret = NOTIFY_STOP;
  534. preempt_enable();
  535. break;
  536. default:
  537. break;
  538. }
  539. return ret;
  540. }
  541. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  542. {
  543. struct jprobe *jp = container_of(p, struct jprobe, kp);
  544. unsigned long addr;
  545. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  546. memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
  547. /* setup return addr to the jprobe handler routine */
  548. regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
  549. /* r14 is the function return address */
  550. kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
  551. /* r15 is the stack pointer */
  552. kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
  553. addr = (unsigned long)kcb->jprobe_saved_r15;
  554. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
  555. MIN_STACK_SIZE(addr));
  556. return 1;
  557. }
  558. void __kprobes jprobe_return(void)
  559. {
  560. asm volatile(".word 0x0002");
  561. }
  562. void __kprobes jprobe_return_end(void)
  563. {
  564. asm volatile("bcr 0,0");
  565. }
  566. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  567. {
  568. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  569. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
  570. /* Put the regs back */
  571. memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
  572. /* put the stack back */
  573. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  574. MIN_STACK_SIZE(stack_addr));
  575. preempt_enable_no_resched();
  576. return 1;
  577. }
  578. static struct kprobe trampoline_p = {
  579. .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
  580. .pre_handler = trampoline_probe_handler
  581. };
  582. int __init arch_init_kprobes(void)
  583. {
  584. return register_kprobe(&trampoline_p);
  585. }
  586. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  587. {
  588. if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
  589. return 1;
  590. return 0;
  591. }