hash_utils_64.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003
  1. /*
  2. * PowerPC64 port by Mike Corrigan and Dave Engebretsen
  3. * {mikejc|engebret}@us.ibm.com
  4. *
  5. * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
  6. *
  7. * SMP scalability work:
  8. * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  9. *
  10. * Module name: htab.c
  11. *
  12. * Description:
  13. * PowerPC Hashed Page Table functions
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. */
  20. #undef DEBUG
  21. #undef DEBUG_LOW
  22. #include <linux/spinlock.h>
  23. #include <linux/errno.h>
  24. #include <linux/sched.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/stat.h>
  27. #include <linux/sysctl.h>
  28. #include <linux/ctype.h>
  29. #include <linux/cache.h>
  30. #include <linux/init.h>
  31. #include <linux/signal.h>
  32. #include <asm/processor.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/mmu.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/page.h>
  37. #include <asm/types.h>
  38. #include <asm/system.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/machdep.h>
  41. #include <asm/lmb.h>
  42. #include <asm/abs_addr.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/io.h>
  45. #include <asm/eeh.h>
  46. #include <asm/tlb.h>
  47. #include <asm/cacheflush.h>
  48. #include <asm/cputable.h>
  49. #include <asm/sections.h>
  50. #include <asm/spu.h>
  51. #include <asm/udbg.h>
  52. #ifdef DEBUG
  53. #define DBG(fmt...) udbg_printf(fmt)
  54. #else
  55. #define DBG(fmt...)
  56. #endif
  57. #ifdef DEBUG_LOW
  58. #define DBG_LOW(fmt...) udbg_printf(fmt)
  59. #else
  60. #define DBG_LOW(fmt...)
  61. #endif
  62. #define KB (1024)
  63. #define MB (1024*KB)
  64. /*
  65. * Note: pte --> Linux PTE
  66. * HPTE --> PowerPC Hashed Page Table Entry
  67. *
  68. * Execution context:
  69. * htab_initialize is called with the MMU off (of course), but
  70. * the kernel has been copied down to zero so it can directly
  71. * reference global data. At this point it is very difficult
  72. * to print debug info.
  73. *
  74. */
  75. #ifdef CONFIG_U3_DART
  76. extern unsigned long dart_tablebase;
  77. #endif /* CONFIG_U3_DART */
  78. static unsigned long _SDR1;
  79. struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  80. struct hash_pte *htab_address;
  81. unsigned long htab_size_bytes;
  82. unsigned long htab_hash_mask;
  83. int mmu_linear_psize = MMU_PAGE_4K;
  84. int mmu_virtual_psize = MMU_PAGE_4K;
  85. int mmu_vmalloc_psize = MMU_PAGE_4K;
  86. int mmu_io_psize = MMU_PAGE_4K;
  87. int mmu_kernel_ssize = MMU_SEGSIZE_256M;
  88. int mmu_highuser_ssize = MMU_SEGSIZE_256M;
  89. #ifdef CONFIG_HUGETLB_PAGE
  90. int mmu_huge_psize = MMU_PAGE_16M;
  91. unsigned int HPAGE_SHIFT;
  92. #endif
  93. #ifdef CONFIG_PPC_64K_PAGES
  94. int mmu_ci_restrictions;
  95. #endif
  96. #ifdef CONFIG_DEBUG_PAGEALLOC
  97. static u8 *linear_map_hash_slots;
  98. static unsigned long linear_map_hash_count;
  99. static DEFINE_SPINLOCK(linear_map_hash_lock);
  100. #endif /* CONFIG_DEBUG_PAGEALLOC */
  101. /* There are definitions of page sizes arrays to be used when none
  102. * is provided by the firmware.
  103. */
  104. /* Pre-POWER4 CPUs (4k pages only)
  105. */
  106. struct mmu_psize_def mmu_psize_defaults_old[] = {
  107. [MMU_PAGE_4K] = {
  108. .shift = 12,
  109. .sllp = 0,
  110. .penc = 0,
  111. .avpnm = 0,
  112. .tlbiel = 0,
  113. },
  114. };
  115. /* POWER4, GPUL, POWER5
  116. *
  117. * Support for 16Mb large pages
  118. */
  119. struct mmu_psize_def mmu_psize_defaults_gp[] = {
  120. [MMU_PAGE_4K] = {
  121. .shift = 12,
  122. .sllp = 0,
  123. .penc = 0,
  124. .avpnm = 0,
  125. .tlbiel = 1,
  126. },
  127. [MMU_PAGE_16M] = {
  128. .shift = 24,
  129. .sllp = SLB_VSID_L,
  130. .penc = 0,
  131. .avpnm = 0x1UL,
  132. .tlbiel = 0,
  133. },
  134. };
  135. int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  136. unsigned long pstart, unsigned long mode,
  137. int psize, int ssize)
  138. {
  139. unsigned long vaddr, paddr;
  140. unsigned int step, shift;
  141. unsigned long tmp_mode;
  142. int ret = 0;
  143. shift = mmu_psize_defs[psize].shift;
  144. step = 1 << shift;
  145. for (vaddr = vstart, paddr = pstart; vaddr < vend;
  146. vaddr += step, paddr += step) {
  147. unsigned long hash, hpteg;
  148. unsigned long vsid = get_kernel_vsid(vaddr, ssize);
  149. unsigned long va = hpt_va(vaddr, vsid, ssize);
  150. tmp_mode = mode;
  151. /* Make non-kernel text non-executable */
  152. if (!in_kernel_text(vaddr))
  153. tmp_mode = mode | HPTE_R_N;
  154. hash = hpt_hash(va, shift, ssize);
  155. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  156. DBG("htab_bolt_mapping: calling %p\n", ppc_md.hpte_insert);
  157. BUG_ON(!ppc_md.hpte_insert);
  158. ret = ppc_md.hpte_insert(hpteg, va, paddr,
  159. tmp_mode, HPTE_V_BOLTED, psize, ssize);
  160. if (ret < 0)
  161. break;
  162. #ifdef CONFIG_DEBUG_PAGEALLOC
  163. if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
  164. linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
  165. #endif /* CONFIG_DEBUG_PAGEALLOC */
  166. }
  167. return ret < 0 ? ret : 0;
  168. }
  169. static int __init htab_dt_scan_seg_sizes(unsigned long node,
  170. const char *uname, int depth,
  171. void *data)
  172. {
  173. char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  174. u32 *prop;
  175. unsigned long size = 0;
  176. /* We are scanning "cpu" nodes only */
  177. if (type == NULL || strcmp(type, "cpu") != 0)
  178. return 0;
  179. prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
  180. &size);
  181. if (prop == NULL)
  182. return 0;
  183. for (; size >= 4; size -= 4, ++prop) {
  184. if (prop[0] == 40) {
  185. DBG("1T segment support detected\n");
  186. cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
  187. return 1;
  188. }
  189. }
  190. cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
  191. return 0;
  192. }
  193. static void __init htab_init_seg_sizes(void)
  194. {
  195. of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
  196. }
  197. static int __init htab_dt_scan_page_sizes(unsigned long node,
  198. const char *uname, int depth,
  199. void *data)
  200. {
  201. char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  202. u32 *prop;
  203. unsigned long size = 0;
  204. /* We are scanning "cpu" nodes only */
  205. if (type == NULL || strcmp(type, "cpu") != 0)
  206. return 0;
  207. prop = (u32 *)of_get_flat_dt_prop(node,
  208. "ibm,segment-page-sizes", &size);
  209. if (prop != NULL) {
  210. DBG("Page sizes from device-tree:\n");
  211. size /= 4;
  212. cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
  213. while(size > 0) {
  214. unsigned int shift = prop[0];
  215. unsigned int slbenc = prop[1];
  216. unsigned int lpnum = prop[2];
  217. unsigned int lpenc = 0;
  218. struct mmu_psize_def *def;
  219. int idx = -1;
  220. size -= 3; prop += 3;
  221. while(size > 0 && lpnum) {
  222. if (prop[0] == shift)
  223. lpenc = prop[1];
  224. prop += 2; size -= 2;
  225. lpnum--;
  226. }
  227. switch(shift) {
  228. case 0xc:
  229. idx = MMU_PAGE_4K;
  230. break;
  231. case 0x10:
  232. idx = MMU_PAGE_64K;
  233. break;
  234. case 0x14:
  235. idx = MMU_PAGE_1M;
  236. break;
  237. case 0x18:
  238. idx = MMU_PAGE_16M;
  239. cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
  240. break;
  241. case 0x22:
  242. idx = MMU_PAGE_16G;
  243. break;
  244. }
  245. if (idx < 0)
  246. continue;
  247. def = &mmu_psize_defs[idx];
  248. def->shift = shift;
  249. if (shift <= 23)
  250. def->avpnm = 0;
  251. else
  252. def->avpnm = (1 << (shift - 23)) - 1;
  253. def->sllp = slbenc;
  254. def->penc = lpenc;
  255. /* We don't know for sure what's up with tlbiel, so
  256. * for now we only set it for 4K and 64K pages
  257. */
  258. if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
  259. def->tlbiel = 1;
  260. else
  261. def->tlbiel = 0;
  262. DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
  263. "tlbiel=%d, penc=%d\n",
  264. idx, shift, def->sllp, def->avpnm, def->tlbiel,
  265. def->penc);
  266. }
  267. return 1;
  268. }
  269. return 0;
  270. }
  271. static void __init htab_init_page_sizes(void)
  272. {
  273. int rc;
  274. /* Default to 4K pages only */
  275. memcpy(mmu_psize_defs, mmu_psize_defaults_old,
  276. sizeof(mmu_psize_defaults_old));
  277. /*
  278. * Try to find the available page sizes in the device-tree
  279. */
  280. rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
  281. if (rc != 0) /* Found */
  282. goto found;
  283. /*
  284. * Not in the device-tree, let's fallback on known size
  285. * list for 16M capable GP & GR
  286. */
  287. if (cpu_has_feature(CPU_FTR_16M_PAGE))
  288. memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
  289. sizeof(mmu_psize_defaults_gp));
  290. found:
  291. #ifndef CONFIG_DEBUG_PAGEALLOC
  292. /*
  293. * Pick a size for the linear mapping. Currently, we only support
  294. * 16M, 1M and 4K which is the default
  295. */
  296. if (mmu_psize_defs[MMU_PAGE_16M].shift)
  297. mmu_linear_psize = MMU_PAGE_16M;
  298. else if (mmu_psize_defs[MMU_PAGE_1M].shift)
  299. mmu_linear_psize = MMU_PAGE_1M;
  300. #endif /* CONFIG_DEBUG_PAGEALLOC */
  301. #ifdef CONFIG_PPC_64K_PAGES
  302. /*
  303. * Pick a size for the ordinary pages. Default is 4K, we support
  304. * 64K for user mappings and vmalloc if supported by the processor.
  305. * We only use 64k for ioremap if the processor
  306. * (and firmware) support cache-inhibited large pages.
  307. * If not, we use 4k and set mmu_ci_restrictions so that
  308. * hash_page knows to switch processes that use cache-inhibited
  309. * mappings to 4k pages.
  310. */
  311. if (mmu_psize_defs[MMU_PAGE_64K].shift) {
  312. mmu_virtual_psize = MMU_PAGE_64K;
  313. mmu_vmalloc_psize = MMU_PAGE_64K;
  314. if (mmu_linear_psize == MMU_PAGE_4K)
  315. mmu_linear_psize = MMU_PAGE_64K;
  316. if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE))
  317. mmu_io_psize = MMU_PAGE_64K;
  318. else
  319. mmu_ci_restrictions = 1;
  320. }
  321. #endif /* CONFIG_PPC_64K_PAGES */
  322. printk(KERN_DEBUG "Page orders: linear mapping = %d, "
  323. "virtual = %d, io = %d\n",
  324. mmu_psize_defs[mmu_linear_psize].shift,
  325. mmu_psize_defs[mmu_virtual_psize].shift,
  326. mmu_psize_defs[mmu_io_psize].shift);
  327. #ifdef CONFIG_HUGETLB_PAGE
  328. /* Init large page size. Currently, we pick 16M or 1M depending
  329. * on what is available
  330. */
  331. if (mmu_psize_defs[MMU_PAGE_16M].shift)
  332. mmu_huge_psize = MMU_PAGE_16M;
  333. /* With 4k/4level pagetables, we can't (for now) cope with a
  334. * huge page size < PMD_SIZE */
  335. else if (mmu_psize_defs[MMU_PAGE_1M].shift)
  336. mmu_huge_psize = MMU_PAGE_1M;
  337. /* Calculate HPAGE_SHIFT and sanity check it */
  338. if (mmu_psize_defs[mmu_huge_psize].shift > MIN_HUGEPTE_SHIFT &&
  339. mmu_psize_defs[mmu_huge_psize].shift < SID_SHIFT)
  340. HPAGE_SHIFT = mmu_psize_defs[mmu_huge_psize].shift;
  341. else
  342. HPAGE_SHIFT = 0; /* No huge pages dude ! */
  343. #endif /* CONFIG_HUGETLB_PAGE */
  344. }
  345. static int __init htab_dt_scan_pftsize(unsigned long node,
  346. const char *uname, int depth,
  347. void *data)
  348. {
  349. char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  350. u32 *prop;
  351. /* We are scanning "cpu" nodes only */
  352. if (type == NULL || strcmp(type, "cpu") != 0)
  353. return 0;
  354. prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
  355. if (prop != NULL) {
  356. /* pft_size[0] is the NUMA CEC cookie */
  357. ppc64_pft_size = prop[1];
  358. return 1;
  359. }
  360. return 0;
  361. }
  362. static unsigned long __init htab_get_table_size(void)
  363. {
  364. unsigned long mem_size, rnd_mem_size, pteg_count;
  365. /* If hash size isn't already provided by the platform, we try to
  366. * retrieve it from the device-tree. If it's not there neither, we
  367. * calculate it now based on the total RAM size
  368. */
  369. if (ppc64_pft_size == 0)
  370. of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
  371. if (ppc64_pft_size)
  372. return 1UL << ppc64_pft_size;
  373. /* round mem_size up to next power of 2 */
  374. mem_size = lmb_phys_mem_size();
  375. rnd_mem_size = 1UL << __ilog2(mem_size);
  376. if (rnd_mem_size < mem_size)
  377. rnd_mem_size <<= 1;
  378. /* # pages / 2 */
  379. pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
  380. return pteg_count << 7;
  381. }
  382. #ifdef CONFIG_MEMORY_HOTPLUG
  383. void create_section_mapping(unsigned long start, unsigned long end)
  384. {
  385. BUG_ON(htab_bolt_mapping(start, end, __pa(start),
  386. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX,
  387. mmu_linear_psize, mmu_kernel_ssize));
  388. }
  389. #endif /* CONFIG_MEMORY_HOTPLUG */
  390. static inline void make_bl(unsigned int *insn_addr, void *func)
  391. {
  392. unsigned long funcp = *((unsigned long *)func);
  393. int offset = funcp - (unsigned long)insn_addr;
  394. *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
  395. flush_icache_range((unsigned long)insn_addr, 4+
  396. (unsigned long)insn_addr);
  397. }
  398. static void __init htab_finish_init(void)
  399. {
  400. extern unsigned int *htab_call_hpte_insert1;
  401. extern unsigned int *htab_call_hpte_insert2;
  402. extern unsigned int *htab_call_hpte_remove;
  403. extern unsigned int *htab_call_hpte_updatepp;
  404. #ifdef CONFIG_PPC_HAS_HASH_64K
  405. extern unsigned int *ht64_call_hpte_insert1;
  406. extern unsigned int *ht64_call_hpte_insert2;
  407. extern unsigned int *ht64_call_hpte_remove;
  408. extern unsigned int *ht64_call_hpte_updatepp;
  409. make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
  410. make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
  411. make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
  412. make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
  413. #endif /* CONFIG_PPC_HAS_HASH_64K */
  414. make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
  415. make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
  416. make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
  417. make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
  418. }
  419. void __init htab_initialize(void)
  420. {
  421. unsigned long table;
  422. unsigned long pteg_count;
  423. unsigned long mode_rw;
  424. unsigned long base = 0, size = 0;
  425. int i;
  426. extern unsigned long tce_alloc_start, tce_alloc_end;
  427. DBG(" -> htab_initialize()\n");
  428. /* Initialize segment sizes */
  429. htab_init_seg_sizes();
  430. /* Initialize page sizes */
  431. htab_init_page_sizes();
  432. if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
  433. mmu_kernel_ssize = MMU_SEGSIZE_1T;
  434. mmu_highuser_ssize = MMU_SEGSIZE_1T;
  435. printk(KERN_INFO "Using 1TB segments\n");
  436. }
  437. /*
  438. * Calculate the required size of the htab. We want the number of
  439. * PTEGs to equal one half the number of real pages.
  440. */
  441. htab_size_bytes = htab_get_table_size();
  442. pteg_count = htab_size_bytes >> 7;
  443. htab_hash_mask = pteg_count - 1;
  444. if (firmware_has_feature(FW_FEATURE_LPAR)) {
  445. /* Using a hypervisor which owns the htab */
  446. htab_address = NULL;
  447. _SDR1 = 0;
  448. } else {
  449. /* Find storage for the HPT. Must be contiguous in
  450. * the absolute address space.
  451. */
  452. table = lmb_alloc(htab_size_bytes, htab_size_bytes);
  453. DBG("Hash table allocated at %lx, size: %lx\n", table,
  454. htab_size_bytes);
  455. htab_address = abs_to_virt(table);
  456. /* htab absolute addr + encoded htabsize */
  457. _SDR1 = table + __ilog2(pteg_count) - 11;
  458. /* Initialize the HPT with no entries */
  459. memset((void *)table, 0, htab_size_bytes);
  460. /* Set SDR1 */
  461. mtspr(SPRN_SDR1, _SDR1);
  462. }
  463. mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX;
  464. #ifdef CONFIG_DEBUG_PAGEALLOC
  465. linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
  466. linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
  467. 1, lmb.rmo_size));
  468. memset(linear_map_hash_slots, 0, linear_map_hash_count);
  469. #endif /* CONFIG_DEBUG_PAGEALLOC */
  470. /* On U3 based machines, we need to reserve the DART area and
  471. * _NOT_ map it to avoid cache paradoxes as it's remapped non
  472. * cacheable later on
  473. */
  474. /* create bolted the linear mapping in the hash table */
  475. for (i=0; i < lmb.memory.cnt; i++) {
  476. base = (unsigned long)__va(lmb.memory.region[i].base);
  477. size = lmb.memory.region[i].size;
  478. DBG("creating mapping for region: %lx : %lx\n", base, size);
  479. #ifdef CONFIG_U3_DART
  480. /* Do not map the DART space. Fortunately, it will be aligned
  481. * in such a way that it will not cross two lmb regions and
  482. * will fit within a single 16Mb page.
  483. * The DART space is assumed to be a full 16Mb region even if
  484. * we only use 2Mb of that space. We will use more of it later
  485. * for AGP GART. We have to use a full 16Mb large page.
  486. */
  487. DBG("DART base: %lx\n", dart_tablebase);
  488. if (dart_tablebase != 0 && dart_tablebase >= base
  489. && dart_tablebase < (base + size)) {
  490. unsigned long dart_table_end = dart_tablebase + 16 * MB;
  491. if (base != dart_tablebase)
  492. BUG_ON(htab_bolt_mapping(base, dart_tablebase,
  493. __pa(base), mode_rw,
  494. mmu_linear_psize,
  495. mmu_kernel_ssize));
  496. if ((base + size) > dart_table_end)
  497. BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
  498. base + size,
  499. __pa(dart_table_end),
  500. mode_rw,
  501. mmu_linear_psize,
  502. mmu_kernel_ssize));
  503. continue;
  504. }
  505. #endif /* CONFIG_U3_DART */
  506. BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
  507. mode_rw, mmu_linear_psize, mmu_kernel_ssize));
  508. }
  509. /*
  510. * If we have a memory_limit and we've allocated TCEs then we need to
  511. * explicitly map the TCE area at the top of RAM. We also cope with the
  512. * case that the TCEs start below memory_limit.
  513. * tce_alloc_start/end are 16MB aligned so the mapping should work
  514. * for either 4K or 16MB pages.
  515. */
  516. if (tce_alloc_start) {
  517. tce_alloc_start = (unsigned long)__va(tce_alloc_start);
  518. tce_alloc_end = (unsigned long)__va(tce_alloc_end);
  519. if (base + size >= tce_alloc_start)
  520. tce_alloc_start = base + size + 1;
  521. BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
  522. __pa(tce_alloc_start), mode_rw,
  523. mmu_linear_psize, mmu_kernel_ssize));
  524. }
  525. htab_finish_init();
  526. DBG(" <- htab_initialize()\n");
  527. }
  528. #undef KB
  529. #undef MB
  530. void htab_initialize_secondary(void)
  531. {
  532. if (!firmware_has_feature(FW_FEATURE_LPAR))
  533. mtspr(SPRN_SDR1, _SDR1);
  534. }
  535. /*
  536. * Called by asm hashtable.S for doing lazy icache flush
  537. */
  538. unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
  539. {
  540. struct page *page;
  541. if (!pfn_valid(pte_pfn(pte)))
  542. return pp;
  543. page = pte_page(pte);
  544. /* page is dirty */
  545. if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
  546. if (trap == 0x400) {
  547. __flush_dcache_icache(page_address(page));
  548. set_bit(PG_arch_1, &page->flags);
  549. } else
  550. pp |= HPTE_R_N;
  551. }
  552. return pp;
  553. }
  554. /*
  555. * Demote a segment to using 4k pages.
  556. * For now this makes the whole process use 4k pages.
  557. */
  558. #ifdef CONFIG_PPC_64K_PAGES
  559. static void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
  560. {
  561. if (mm->context.user_psize == MMU_PAGE_4K)
  562. return;
  563. slice_set_user_psize(mm, MMU_PAGE_4K);
  564. #ifdef CONFIG_SPU_BASE
  565. spu_flush_all_slbs(mm);
  566. #endif
  567. }
  568. #endif /* CONFIG_PPC_64K_PAGES */
  569. /* Result code is:
  570. * 0 - handled
  571. * 1 - normal page fault
  572. * -1 - critical hash insertion error
  573. */
  574. int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
  575. {
  576. void *pgdir;
  577. unsigned long vsid;
  578. struct mm_struct *mm;
  579. pte_t *ptep;
  580. cpumask_t tmp;
  581. int rc, user_region = 0, local = 0;
  582. int psize, ssize;
  583. DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
  584. ea, access, trap);
  585. if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
  586. DBG_LOW(" out of pgtable range !\n");
  587. return 1;
  588. }
  589. /* Get region & vsid */
  590. switch (REGION_ID(ea)) {
  591. case USER_REGION_ID:
  592. user_region = 1;
  593. mm = current->mm;
  594. if (! mm) {
  595. DBG_LOW(" user region with no mm !\n");
  596. return 1;
  597. }
  598. #ifdef CONFIG_PPC_MM_SLICES
  599. psize = get_slice_psize(mm, ea);
  600. #else
  601. psize = mm->context.user_psize;
  602. #endif
  603. ssize = user_segment_size(ea);
  604. vsid = get_vsid(mm->context.id, ea, ssize);
  605. break;
  606. case VMALLOC_REGION_ID:
  607. mm = &init_mm;
  608. vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
  609. if (ea < VMALLOC_END)
  610. psize = mmu_vmalloc_psize;
  611. else
  612. psize = mmu_io_psize;
  613. ssize = mmu_kernel_ssize;
  614. break;
  615. default:
  616. /* Not a valid range
  617. * Send the problem up to do_page_fault
  618. */
  619. return 1;
  620. }
  621. DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
  622. /* Get pgdir */
  623. pgdir = mm->pgd;
  624. if (pgdir == NULL)
  625. return 1;
  626. /* Check CPU locality */
  627. tmp = cpumask_of_cpu(smp_processor_id());
  628. if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
  629. local = 1;
  630. #ifdef CONFIG_HUGETLB_PAGE
  631. /* Handle hugepage regions */
  632. if (HPAGE_SHIFT && psize == mmu_huge_psize) {
  633. DBG_LOW(" -> huge page !\n");
  634. return hash_huge_page(mm, access, ea, vsid, local, trap);
  635. }
  636. #endif /* CONFIG_HUGETLB_PAGE */
  637. #ifndef CONFIG_PPC_64K_PAGES
  638. /* If we use 4K pages and our psize is not 4K, then we are hitting
  639. * a special driver mapping, we need to align the address before
  640. * we fetch the PTE
  641. */
  642. if (psize != MMU_PAGE_4K)
  643. ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
  644. #endif /* CONFIG_PPC_64K_PAGES */
  645. /* Get PTE and page size from page tables */
  646. ptep = find_linux_pte(pgdir, ea);
  647. if (ptep == NULL || !pte_present(*ptep)) {
  648. DBG_LOW(" no PTE !\n");
  649. return 1;
  650. }
  651. #ifndef CONFIG_PPC_64K_PAGES
  652. DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
  653. #else
  654. DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
  655. pte_val(*(ptep + PTRS_PER_PTE)));
  656. #endif
  657. /* Pre-check access permissions (will be re-checked atomically
  658. * in __hash_page_XX but this pre-check is a fast path
  659. */
  660. if (access & ~pte_val(*ptep)) {
  661. DBG_LOW(" no access !\n");
  662. return 1;
  663. }
  664. /* Do actual hashing */
  665. #ifdef CONFIG_PPC_64K_PAGES
  666. /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
  667. if (pte_val(*ptep) & _PAGE_4K_PFN) {
  668. demote_segment_4k(mm, ea);
  669. psize = MMU_PAGE_4K;
  670. }
  671. /* If this PTE is non-cacheable and we have restrictions on
  672. * using non cacheable large pages, then we switch to 4k
  673. */
  674. if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
  675. (pte_val(*ptep) & _PAGE_NO_CACHE)) {
  676. if (user_region) {
  677. demote_segment_4k(mm, ea);
  678. psize = MMU_PAGE_4K;
  679. } else if (ea < VMALLOC_END) {
  680. /*
  681. * some driver did a non-cacheable mapping
  682. * in vmalloc space, so switch vmalloc
  683. * to 4k pages
  684. */
  685. printk(KERN_ALERT "Reducing vmalloc segment "
  686. "to 4kB pages because of "
  687. "non-cacheable mapping\n");
  688. psize = mmu_vmalloc_psize = MMU_PAGE_4K;
  689. #ifdef CONFIG_SPU_BASE
  690. spu_flush_all_slbs(mm);
  691. #endif
  692. }
  693. }
  694. if (user_region) {
  695. if (psize != get_paca()->context.user_psize) {
  696. get_paca()->context = mm->context;
  697. slb_flush_and_rebolt();
  698. }
  699. } else if (get_paca()->vmalloc_sllp !=
  700. mmu_psize_defs[mmu_vmalloc_psize].sllp) {
  701. get_paca()->vmalloc_sllp =
  702. mmu_psize_defs[mmu_vmalloc_psize].sllp;
  703. slb_vmalloc_update();
  704. }
  705. #endif /* CONFIG_PPC_64K_PAGES */
  706. #ifdef CONFIG_PPC_HAS_HASH_64K
  707. if (psize == MMU_PAGE_64K)
  708. rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
  709. else
  710. #endif /* CONFIG_PPC_HAS_HASH_64K */
  711. rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize);
  712. #ifndef CONFIG_PPC_64K_PAGES
  713. DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
  714. #else
  715. DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
  716. pte_val(*(ptep + PTRS_PER_PTE)));
  717. #endif
  718. DBG_LOW(" -> rc=%d\n", rc);
  719. return rc;
  720. }
  721. EXPORT_SYMBOL_GPL(hash_page);
  722. void hash_preload(struct mm_struct *mm, unsigned long ea,
  723. unsigned long access, unsigned long trap)
  724. {
  725. unsigned long vsid;
  726. void *pgdir;
  727. pte_t *ptep;
  728. cpumask_t mask;
  729. unsigned long flags;
  730. int local = 0;
  731. int ssize;
  732. BUG_ON(REGION_ID(ea) != USER_REGION_ID);
  733. #ifdef CONFIG_PPC_MM_SLICES
  734. /* We only prefault standard pages for now */
  735. if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
  736. return;
  737. #endif
  738. DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
  739. " trap=%lx\n", mm, mm->pgd, ea, access, trap);
  740. /* Get Linux PTE if available */
  741. pgdir = mm->pgd;
  742. if (pgdir == NULL)
  743. return;
  744. ptep = find_linux_pte(pgdir, ea);
  745. if (!ptep)
  746. return;
  747. #ifdef CONFIG_PPC_64K_PAGES
  748. /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
  749. * a 64K kernel), then we don't preload, hash_page() will take
  750. * care of it once we actually try to access the page.
  751. * That way we don't have to duplicate all of the logic for segment
  752. * page size demotion here
  753. */
  754. if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
  755. return;
  756. #endif /* CONFIG_PPC_64K_PAGES */
  757. /* Get VSID */
  758. ssize = user_segment_size(ea);
  759. vsid = get_vsid(mm->context.id, ea, ssize);
  760. /* Hash doesn't like irqs */
  761. local_irq_save(flags);
  762. /* Is that local to this CPU ? */
  763. mask = cpumask_of_cpu(smp_processor_id());
  764. if (cpus_equal(mm->cpu_vm_mask, mask))
  765. local = 1;
  766. /* Hash it in */
  767. #ifdef CONFIG_PPC_HAS_HASH_64K
  768. if (mm->context.user_psize == MMU_PAGE_64K)
  769. __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
  770. else
  771. #endif /* CONFIG_PPC_HAS_HASH_64K */
  772. __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize);
  773. local_irq_restore(flags);
  774. }
  775. /* WARNING: This is called from hash_low_64.S, if you change this prototype,
  776. * do not forget to update the assembly call site !
  777. */
  778. void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
  779. int local)
  780. {
  781. unsigned long hash, index, shift, hidx, slot;
  782. DBG_LOW("flush_hash_page(va=%016x)\n", va);
  783. pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
  784. hash = hpt_hash(va, shift, ssize);
  785. hidx = __rpte_to_hidx(pte, index);
  786. if (hidx & _PTEIDX_SECONDARY)
  787. hash = ~hash;
  788. slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
  789. slot += hidx & _PTEIDX_GROUP_IX;
  790. DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
  791. ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
  792. } pte_iterate_hashed_end();
  793. }
  794. void flush_hash_range(unsigned long number, int local)
  795. {
  796. if (ppc_md.flush_hash_range)
  797. ppc_md.flush_hash_range(number, local);
  798. else {
  799. int i;
  800. struct ppc64_tlb_batch *batch =
  801. &__get_cpu_var(ppc64_tlb_batch);
  802. for (i = 0; i < number; i++)
  803. flush_hash_page(batch->vaddr[i], batch->pte[i],
  804. batch->psize, batch->ssize, local);
  805. }
  806. }
  807. /*
  808. * low_hash_fault is called when we the low level hash code failed
  809. * to instert a PTE due to an hypervisor error
  810. */
  811. void low_hash_fault(struct pt_regs *regs, unsigned long address)
  812. {
  813. if (user_mode(regs)) {
  814. siginfo_t info;
  815. info.si_signo = SIGBUS;
  816. info.si_errno = 0;
  817. info.si_code = BUS_ADRERR;
  818. info.si_addr = (void __user *)address;
  819. force_sig_info(SIGBUS, &info, current);
  820. return;
  821. }
  822. bad_page_fault(regs, address, SIGBUS);
  823. }
  824. #ifdef CONFIG_DEBUG_PAGEALLOC
  825. static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
  826. {
  827. unsigned long hash, hpteg;
  828. unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
  829. unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
  830. unsigned long mode = _PAGE_ACCESSED | _PAGE_DIRTY |
  831. _PAGE_COHERENT | PP_RWXX | HPTE_R_N;
  832. int ret;
  833. hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
  834. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  835. ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
  836. mode, HPTE_V_BOLTED,
  837. mmu_linear_psize, mmu_kernel_ssize);
  838. BUG_ON (ret < 0);
  839. spin_lock(&linear_map_hash_lock);
  840. BUG_ON(linear_map_hash_slots[lmi] & 0x80);
  841. linear_map_hash_slots[lmi] = ret | 0x80;
  842. spin_unlock(&linear_map_hash_lock);
  843. }
  844. static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
  845. {
  846. unsigned long hash, hidx, slot;
  847. unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
  848. unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
  849. hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
  850. spin_lock(&linear_map_hash_lock);
  851. BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
  852. hidx = linear_map_hash_slots[lmi] & 0x7f;
  853. linear_map_hash_slots[lmi] = 0;
  854. spin_unlock(&linear_map_hash_lock);
  855. if (hidx & _PTEIDX_SECONDARY)
  856. hash = ~hash;
  857. slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
  858. slot += hidx & _PTEIDX_GROUP_IX;
  859. ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
  860. }
  861. void kernel_map_pages(struct page *page, int numpages, int enable)
  862. {
  863. unsigned long flags, vaddr, lmi;
  864. int i;
  865. local_irq_save(flags);
  866. for (i = 0; i < numpages; i++, page++) {
  867. vaddr = (unsigned long)page_address(page);
  868. lmi = __pa(vaddr) >> PAGE_SHIFT;
  869. if (lmi >= linear_map_hash_count)
  870. continue;
  871. if (enable)
  872. kernel_map_linear_page(vaddr, lmi);
  873. else
  874. kernel_unmap_linear_page(vaddr, lmi);
  875. }
  876. local_irq_restore(flags);
  877. }
  878. #endif /* CONFIG_DEBUG_PAGEALLOC */