irq.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2007 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/init.h>
  13. #include <asm/sn/addrs.h>
  14. #include <asm/sn/arch.h>
  15. #include <asm/sn/intr.h>
  16. #include <asm/sn/pcibr_provider.h>
  17. #include <asm/sn/pcibus_provider_defs.h>
  18. #include <asm/sn/pcidev.h>
  19. #include <asm/sn/shub_mmr.h>
  20. #include <asm/sn/sn_sal.h>
  21. #include <asm/sn/sn_feature_sets.h>
  22. static void force_interrupt(int irq);
  23. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  24. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  25. int sn_force_interrupt_flag = 1;
  26. extern int sn_ioif_inited;
  27. struct list_head **sn_irq_lh;
  28. static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
  29. u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
  30. struct sn_irq_info *sn_irq_info,
  31. int req_irq, nasid_t req_nasid,
  32. int req_slice)
  33. {
  34. struct ia64_sal_retval ret_stuff;
  35. ret_stuff.status = 0;
  36. ret_stuff.v0 = 0;
  37. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  38. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  39. (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
  40. (u64) req_nasid, (u64) req_slice);
  41. return ret_stuff.status;
  42. }
  43. void sn_intr_free(nasid_t local_nasid, int local_widget,
  44. struct sn_irq_info *sn_irq_info)
  45. {
  46. struct ia64_sal_retval ret_stuff;
  47. ret_stuff.status = 0;
  48. ret_stuff.v0 = 0;
  49. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  50. (u64) SAL_INTR_FREE, (u64) local_nasid,
  51. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  52. (u64) sn_irq_info->irq_cookie, 0, 0);
  53. }
  54. u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
  55. struct sn_irq_info *sn_irq_info,
  56. nasid_t req_nasid, int req_slice)
  57. {
  58. struct ia64_sal_retval ret_stuff;
  59. ret_stuff.status = 0;
  60. ret_stuff.v0 = 0;
  61. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  62. (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
  63. (u64) local_widget, __pa(sn_irq_info),
  64. (u64) req_nasid, (u64) req_slice, 0);
  65. return ret_stuff.status;
  66. }
  67. static unsigned int sn_startup_irq(unsigned int irq)
  68. {
  69. return 0;
  70. }
  71. static void sn_shutdown_irq(unsigned int irq)
  72. {
  73. }
  74. extern void ia64_mca_register_cpev(int);
  75. static void sn_disable_irq(unsigned int irq)
  76. {
  77. if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
  78. ia64_mca_register_cpev(0);
  79. }
  80. static void sn_enable_irq(unsigned int irq)
  81. {
  82. if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
  83. ia64_mca_register_cpev(irq);
  84. }
  85. static void sn_ack_irq(unsigned int irq)
  86. {
  87. u64 event_occurred, mask;
  88. irq = irq & 0xff;
  89. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
  90. mask = event_occurred & SH_ALL_INT_MASK;
  91. HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
  92. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  93. move_native_irq(irq);
  94. }
  95. static void sn_end_irq(unsigned int irq)
  96. {
  97. int ivec;
  98. u64 event_occurred;
  99. ivec = irq & 0xff;
  100. if (ivec == SGI_UART_VECTOR) {
  101. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
  102. /* If the UART bit is set here, we may have received an
  103. * interrupt from the UART that the driver missed. To
  104. * make sure, we IPI ourselves to force us to look again.
  105. */
  106. if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
  107. platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
  108. IA64_IPI_DM_INT, 0);
  109. }
  110. }
  111. __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
  112. if (sn_force_interrupt_flag)
  113. force_interrupt(irq);
  114. }
  115. static void sn_irq_info_free(struct rcu_head *head);
  116. struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
  117. nasid_t nasid, int slice)
  118. {
  119. int vector;
  120. int cpuid;
  121. #ifdef CONFIG_SMP
  122. int cpuphys;
  123. #endif
  124. int64_t bridge;
  125. int local_widget, status;
  126. nasid_t local_nasid;
  127. struct sn_irq_info *new_irq_info;
  128. struct sn_pcibus_provider *pci_provider;
  129. bridge = (u64) sn_irq_info->irq_bridge;
  130. if (!bridge) {
  131. return NULL; /* irq is not a device interrupt */
  132. }
  133. local_nasid = NASID_GET(bridge);
  134. if (local_nasid & 1)
  135. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  136. else
  137. local_widget = SWIN_WIDGETNUM(bridge);
  138. vector = sn_irq_info->irq_irq;
  139. /* Make use of SAL_INTR_REDIRECT if PROM supports it */
  140. status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
  141. if (!status) {
  142. new_irq_info = sn_irq_info;
  143. goto finish_up;
  144. }
  145. /*
  146. * PROM does not support SAL_INTR_REDIRECT, or it failed.
  147. * Revert to old method.
  148. */
  149. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  150. if (new_irq_info == NULL)
  151. return NULL;
  152. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  153. /* Free the old PROM new_irq_info structure */
  154. sn_intr_free(local_nasid, local_widget, new_irq_info);
  155. unregister_intr_pda(new_irq_info);
  156. /* allocate a new PROM new_irq_info struct */
  157. status = sn_intr_alloc(local_nasid, local_widget,
  158. new_irq_info, vector,
  159. nasid, slice);
  160. /* SAL call failed */
  161. if (status) {
  162. kfree(new_irq_info);
  163. return NULL;
  164. }
  165. register_intr_pda(new_irq_info);
  166. spin_lock(&sn_irq_info_lock);
  167. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  168. spin_unlock(&sn_irq_info_lock);
  169. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  170. finish_up:
  171. /* Update kernels new_irq_info with new target info */
  172. cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
  173. new_irq_info->irq_slice);
  174. new_irq_info->irq_cpuid = cpuid;
  175. pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
  176. /*
  177. * If this represents a line interrupt, target it. If it's
  178. * an msi (irq_int_bit < 0), it's already targeted.
  179. */
  180. if (new_irq_info->irq_int_bit >= 0 &&
  181. pci_provider && pci_provider->target_interrupt)
  182. (pci_provider->target_interrupt)(new_irq_info);
  183. #ifdef CONFIG_SMP
  184. cpuphys = cpu_physical_id(cpuid);
  185. set_irq_affinity_info((vector & 0xff), cpuphys, 0);
  186. #endif
  187. return new_irq_info;
  188. }
  189. static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
  190. {
  191. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  192. nasid_t nasid;
  193. int slice;
  194. nasid = cpuid_to_nasid(first_cpu(mask));
  195. slice = cpuid_to_slice(first_cpu(mask));
  196. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  197. sn_irq_lh[irq], list)
  198. (void)sn_retarget_vector(sn_irq_info, nasid, slice);
  199. }
  200. #ifdef CONFIG_SMP
  201. void sn_set_err_irq_affinity(unsigned int irq)
  202. {
  203. /*
  204. * On systems which support CPU disabling (SHub2), all error interrupts
  205. * are targetted at the boot CPU.
  206. */
  207. if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
  208. set_irq_affinity_info(irq, cpu_physical_id(0), 0);
  209. }
  210. #else
  211. void sn_set_err_irq_affinity(unsigned int irq) { }
  212. #endif
  213. static void
  214. sn_mask_irq(unsigned int irq)
  215. {
  216. }
  217. static void
  218. sn_unmask_irq(unsigned int irq)
  219. {
  220. }
  221. struct irq_chip irq_type_sn = {
  222. .name = "SN hub",
  223. .startup = sn_startup_irq,
  224. .shutdown = sn_shutdown_irq,
  225. .enable = sn_enable_irq,
  226. .disable = sn_disable_irq,
  227. .ack = sn_ack_irq,
  228. .end = sn_end_irq,
  229. .mask = sn_mask_irq,
  230. .unmask = sn_unmask_irq,
  231. .set_affinity = sn_set_affinity_irq
  232. };
  233. ia64_vector sn_irq_to_vector(int irq)
  234. {
  235. if (irq >= IA64_NUM_VECTORS)
  236. return 0;
  237. return (ia64_vector)irq;
  238. }
  239. unsigned int sn_local_vector_to_irq(u8 vector)
  240. {
  241. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  242. }
  243. void sn_irq_init(void)
  244. {
  245. int i;
  246. irq_desc_t *base_desc = irq_desc;
  247. ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
  248. ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
  249. for (i = 0; i < NR_IRQS; i++) {
  250. if (base_desc[i].chip == &no_irq_type) {
  251. base_desc[i].chip = &irq_type_sn;
  252. }
  253. }
  254. }
  255. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  256. {
  257. int irq = sn_irq_info->irq_irq;
  258. int cpu = sn_irq_info->irq_cpuid;
  259. if (pdacpu(cpu)->sn_last_irq < irq) {
  260. pdacpu(cpu)->sn_last_irq = irq;
  261. }
  262. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
  263. pdacpu(cpu)->sn_first_irq = irq;
  264. }
  265. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  266. {
  267. int irq = sn_irq_info->irq_irq;
  268. int cpu = sn_irq_info->irq_cpuid;
  269. struct sn_irq_info *tmp_irq_info;
  270. int i, foundmatch;
  271. rcu_read_lock();
  272. if (pdacpu(cpu)->sn_last_irq == irq) {
  273. foundmatch = 0;
  274. for (i = pdacpu(cpu)->sn_last_irq - 1;
  275. i && !foundmatch; i--) {
  276. list_for_each_entry_rcu(tmp_irq_info,
  277. sn_irq_lh[i],
  278. list) {
  279. if (tmp_irq_info->irq_cpuid == cpu) {
  280. foundmatch = 1;
  281. break;
  282. }
  283. }
  284. }
  285. pdacpu(cpu)->sn_last_irq = i;
  286. }
  287. if (pdacpu(cpu)->sn_first_irq == irq) {
  288. foundmatch = 0;
  289. for (i = pdacpu(cpu)->sn_first_irq + 1;
  290. i < NR_IRQS && !foundmatch; i++) {
  291. list_for_each_entry_rcu(tmp_irq_info,
  292. sn_irq_lh[i],
  293. list) {
  294. if (tmp_irq_info->irq_cpuid == cpu) {
  295. foundmatch = 1;
  296. break;
  297. }
  298. }
  299. }
  300. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  301. }
  302. rcu_read_unlock();
  303. }
  304. static void sn_irq_info_free(struct rcu_head *head)
  305. {
  306. struct sn_irq_info *sn_irq_info;
  307. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  308. kfree(sn_irq_info);
  309. }
  310. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  311. {
  312. nasid_t nasid = sn_irq_info->irq_nasid;
  313. int slice = sn_irq_info->irq_slice;
  314. int cpu = nasid_slice_to_cpuid(nasid, slice);
  315. #ifdef CONFIG_SMP
  316. int cpuphys;
  317. #endif
  318. pci_dev_get(pci_dev);
  319. sn_irq_info->irq_cpuid = cpu;
  320. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  321. /* link it into the sn_irq[irq] list */
  322. spin_lock(&sn_irq_info_lock);
  323. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  324. reserve_irq_vector(sn_irq_info->irq_irq);
  325. spin_unlock(&sn_irq_info_lock);
  326. register_intr_pda(sn_irq_info);
  327. #ifdef CONFIG_SMP
  328. cpuphys = cpu_physical_id(cpu);
  329. set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
  330. #endif
  331. }
  332. void sn_irq_unfixup(struct pci_dev *pci_dev)
  333. {
  334. struct sn_irq_info *sn_irq_info;
  335. /* Only cleanup IRQ stuff if this device has a host bus context */
  336. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  337. return;
  338. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  339. if (!sn_irq_info)
  340. return;
  341. if (!sn_irq_info->irq_irq) {
  342. kfree(sn_irq_info);
  343. return;
  344. }
  345. unregister_intr_pda(sn_irq_info);
  346. spin_lock(&sn_irq_info_lock);
  347. list_del_rcu(&sn_irq_info->list);
  348. spin_unlock(&sn_irq_info_lock);
  349. if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
  350. free_irq_vector(sn_irq_info->irq_irq);
  351. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  352. pci_dev_put(pci_dev);
  353. }
  354. static inline void
  355. sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
  356. {
  357. struct sn_pcibus_provider *pci_provider;
  358. pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
  359. /* Don't force an interrupt if the irq has been disabled */
  360. if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
  361. pci_provider && pci_provider->force_interrupt)
  362. (*pci_provider->force_interrupt)(sn_irq_info);
  363. }
  364. static void force_interrupt(int irq)
  365. {
  366. struct sn_irq_info *sn_irq_info;
  367. if (!sn_ioif_inited)
  368. return;
  369. rcu_read_lock();
  370. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
  371. sn_call_force_intr_provider(sn_irq_info);
  372. rcu_read_unlock();
  373. }
  374. /*
  375. * Check for lost interrupts. If the PIC int_status reg. says that
  376. * an interrupt has been sent, but not handled, and the interrupt
  377. * is not pending in either the cpu irr regs or in the soft irr regs,
  378. * and the interrupt is not in service, then the interrupt may have
  379. * been lost. Force an interrupt on that pin. It is possible that
  380. * the interrupt is in flight, so we may generate a spurious interrupt,
  381. * but we should never miss a real lost interrupt.
  382. */
  383. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  384. {
  385. u64 regval;
  386. struct pcidev_info *pcidev_info;
  387. struct pcibus_info *pcibus_info;
  388. /*
  389. * Bridge types attached to TIO (anything but PIC) do not need this WAR
  390. * since they do not target Shub II interrupt registers. If that
  391. * ever changes, this check needs to accomodate.
  392. */
  393. if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
  394. return;
  395. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  396. if (!pcidev_info)
  397. return;
  398. pcibus_info =
  399. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  400. pdi_pcibus_info;
  401. regval = pcireg_intr_status_get(pcibus_info);
  402. if (!ia64_get_irr(irq_to_vector(irq))) {
  403. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  404. regval &= 0xff;
  405. if (sn_irq_info->irq_int_bit & regval &
  406. sn_irq_info->irq_last_intr) {
  407. regval &= ~(sn_irq_info->irq_int_bit & regval);
  408. sn_call_force_intr_provider(sn_irq_info);
  409. }
  410. }
  411. }
  412. sn_irq_info->irq_last_intr = regval;
  413. }
  414. void sn_lb_int_war_check(void)
  415. {
  416. struct sn_irq_info *sn_irq_info;
  417. int i;
  418. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  419. return;
  420. rcu_read_lock();
  421. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  422. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  423. sn_check_intr(i, sn_irq_info);
  424. }
  425. }
  426. rcu_read_unlock();
  427. }
  428. void __init sn_irq_lh_init(void)
  429. {
  430. int i;
  431. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  432. if (!sn_irq_lh)
  433. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  434. for (i = 0; i < NR_IRQS; i++) {
  435. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  436. if (!sn_irq_lh[i])
  437. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  438. INIT_LIST_HEAD(sn_irq_lh[i]);
  439. }
  440. }