discontig.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725
  1. /*
  2. * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
  3. * Copyright (c) 2001 Intel Corp.
  4. * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  5. * Copyright (c) 2002 NEC Corp.
  6. * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  7. * Copyright (c) 2004 Silicon Graphics, Inc
  8. * Russ Anderson <rja@sgi.com>
  9. * Jesse Barnes <jbarnes@sgi.com>
  10. * Jack Steiner <steiner@sgi.com>
  11. */
  12. /*
  13. * Platform initialization for Discontig Memory
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/nmi.h>
  18. #include <linux/swap.h>
  19. #include <linux/bootmem.h>
  20. #include <linux/acpi.h>
  21. #include <linux/efi.h>
  22. #include <linux/nodemask.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/tlb.h>
  25. #include <asm/meminit.h>
  26. #include <asm/numa.h>
  27. #include <asm/sections.h>
  28. /*
  29. * Track per-node information needed to setup the boot memory allocator, the
  30. * per-node areas, and the real VM.
  31. */
  32. struct early_node_data {
  33. struct ia64_node_data *node_data;
  34. unsigned long pernode_addr;
  35. unsigned long pernode_size;
  36. struct bootmem_data bootmem_data;
  37. unsigned long num_physpages;
  38. #ifdef CONFIG_ZONE_DMA
  39. unsigned long num_dma_physpages;
  40. #endif
  41. unsigned long min_pfn;
  42. unsigned long max_pfn;
  43. };
  44. static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
  45. static nodemask_t memory_less_mask __initdata;
  46. pg_data_t *pgdat_list[MAX_NUMNODES];
  47. /*
  48. * To prevent cache aliasing effects, align per-node structures so that they
  49. * start at addresses that are strided by node number.
  50. */
  51. #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
  52. #define NODEDATA_ALIGN(addr, node) \
  53. ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
  54. (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
  55. /**
  56. * build_node_maps - callback to setup bootmem structs for each node
  57. * @start: physical start of range
  58. * @len: length of range
  59. * @node: node where this range resides
  60. *
  61. * We allocate a struct bootmem_data for each piece of memory that we wish to
  62. * treat as a virtually contiguous block (i.e. each node). Each such block
  63. * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
  64. * if necessary. Any non-existent pages will simply be part of the virtual
  65. * memmap. We also update min_low_pfn and max_low_pfn here as we receive
  66. * memory ranges from the caller.
  67. */
  68. static int __init build_node_maps(unsigned long start, unsigned long len,
  69. int node)
  70. {
  71. unsigned long cstart, epfn, end = start + len;
  72. struct bootmem_data *bdp = &mem_data[node].bootmem_data;
  73. epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
  74. cstart = GRANULEROUNDDOWN(start);
  75. if (!bdp->node_low_pfn) {
  76. bdp->node_boot_start = cstart;
  77. bdp->node_low_pfn = epfn;
  78. } else {
  79. bdp->node_boot_start = min(cstart, bdp->node_boot_start);
  80. bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
  81. }
  82. return 0;
  83. }
  84. /**
  85. * early_nr_cpus_node - return number of cpus on a given node
  86. * @node: node to check
  87. *
  88. * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
  89. * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
  90. * called yet. Note that node 0 will also count all non-existent cpus.
  91. */
  92. static int __meminit early_nr_cpus_node(int node)
  93. {
  94. int cpu, n = 0;
  95. for (cpu = 0; cpu < NR_CPUS; cpu++)
  96. if (node == node_cpuid[cpu].nid)
  97. n++;
  98. return n;
  99. }
  100. /**
  101. * compute_pernodesize - compute size of pernode data
  102. * @node: the node id.
  103. */
  104. static unsigned long __meminit compute_pernodesize(int node)
  105. {
  106. unsigned long pernodesize = 0, cpus;
  107. cpus = early_nr_cpus_node(node);
  108. pernodesize += PERCPU_PAGE_SIZE * cpus;
  109. pernodesize += node * L1_CACHE_BYTES;
  110. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  111. pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  112. pernodesize = PAGE_ALIGN(pernodesize);
  113. return pernodesize;
  114. }
  115. /**
  116. * per_cpu_node_setup - setup per-cpu areas on each node
  117. * @cpu_data: per-cpu area on this node
  118. * @node: node to setup
  119. *
  120. * Copy the static per-cpu data into the region we just set aside and then
  121. * setup __per_cpu_offset for each CPU on this node. Return a pointer to
  122. * the end of the area.
  123. */
  124. static void *per_cpu_node_setup(void *cpu_data, int node)
  125. {
  126. #ifdef CONFIG_SMP
  127. int cpu;
  128. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  129. if (node == node_cpuid[cpu].nid) {
  130. memcpy(__va(cpu_data), __phys_per_cpu_start,
  131. __per_cpu_end - __per_cpu_start);
  132. __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
  133. __per_cpu_start;
  134. cpu_data += PERCPU_PAGE_SIZE;
  135. }
  136. }
  137. #endif
  138. return cpu_data;
  139. }
  140. /**
  141. * fill_pernode - initialize pernode data.
  142. * @node: the node id.
  143. * @pernode: physical address of pernode data
  144. * @pernodesize: size of the pernode data
  145. */
  146. static void __init fill_pernode(int node, unsigned long pernode,
  147. unsigned long pernodesize)
  148. {
  149. void *cpu_data;
  150. int cpus = early_nr_cpus_node(node);
  151. struct bootmem_data *bdp = &mem_data[node].bootmem_data;
  152. mem_data[node].pernode_addr = pernode;
  153. mem_data[node].pernode_size = pernodesize;
  154. memset(__va(pernode), 0, pernodesize);
  155. cpu_data = (void *)pernode;
  156. pernode += PERCPU_PAGE_SIZE * cpus;
  157. pernode += node * L1_CACHE_BYTES;
  158. pgdat_list[node] = __va(pernode);
  159. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  160. mem_data[node].node_data = __va(pernode);
  161. pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  162. pgdat_list[node]->bdata = bdp;
  163. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  164. cpu_data = per_cpu_node_setup(cpu_data, node);
  165. return;
  166. }
  167. /**
  168. * find_pernode_space - allocate memory for memory map and per-node structures
  169. * @start: physical start of range
  170. * @len: length of range
  171. * @node: node where this range resides
  172. *
  173. * This routine reserves space for the per-cpu data struct, the list of
  174. * pg_data_ts and the per-node data struct. Each node will have something like
  175. * the following in the first chunk of addr. space large enough to hold it.
  176. *
  177. * ________________________
  178. * | |
  179. * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
  180. * | PERCPU_PAGE_SIZE * | start and length big enough
  181. * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
  182. * |------------------------|
  183. * | local pg_data_t * |
  184. * |------------------------|
  185. * | local ia64_node_data |
  186. * |------------------------|
  187. * | ??? |
  188. * |________________________|
  189. *
  190. * Once this space has been set aside, the bootmem maps are initialized. We
  191. * could probably move the allocation of the per-cpu and ia64_node_data space
  192. * outside of this function and use alloc_bootmem_node(), but doing it here
  193. * is straightforward and we get the alignments we want so...
  194. */
  195. static int __init find_pernode_space(unsigned long start, unsigned long len,
  196. int node)
  197. {
  198. unsigned long epfn;
  199. unsigned long pernodesize = 0, pernode, pages, mapsize;
  200. struct bootmem_data *bdp = &mem_data[node].bootmem_data;
  201. epfn = (start + len) >> PAGE_SHIFT;
  202. pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
  203. mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  204. /*
  205. * Make sure this memory falls within this node's usable memory
  206. * since we may have thrown some away in build_maps().
  207. */
  208. if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
  209. return 0;
  210. /* Don't setup this node's local space twice... */
  211. if (mem_data[node].pernode_addr)
  212. return 0;
  213. /*
  214. * Calculate total size needed, incl. what's necessary
  215. * for good alignment and alias prevention.
  216. */
  217. pernodesize = compute_pernodesize(node);
  218. pernode = NODEDATA_ALIGN(start, node);
  219. /* Is this range big enough for what we want to store here? */
  220. if (start + len > (pernode + pernodesize + mapsize))
  221. fill_pernode(node, pernode, pernodesize);
  222. return 0;
  223. }
  224. /**
  225. * free_node_bootmem - free bootmem allocator memory for use
  226. * @start: physical start of range
  227. * @len: length of range
  228. * @node: node where this range resides
  229. *
  230. * Simply calls the bootmem allocator to free the specified ranged from
  231. * the given pg_data_t's bdata struct. After this function has been called
  232. * for all the entries in the EFI memory map, the bootmem allocator will
  233. * be ready to service allocation requests.
  234. */
  235. static int __init free_node_bootmem(unsigned long start, unsigned long len,
  236. int node)
  237. {
  238. free_bootmem_node(pgdat_list[node], start, len);
  239. return 0;
  240. }
  241. /**
  242. * reserve_pernode_space - reserve memory for per-node space
  243. *
  244. * Reserve the space used by the bootmem maps & per-node space in the boot
  245. * allocator so that when we actually create the real mem maps we don't
  246. * use their memory.
  247. */
  248. static void __init reserve_pernode_space(void)
  249. {
  250. unsigned long base, size, pages;
  251. struct bootmem_data *bdp;
  252. int node;
  253. for_each_online_node(node) {
  254. pg_data_t *pdp = pgdat_list[node];
  255. if (node_isset(node, memory_less_mask))
  256. continue;
  257. bdp = pdp->bdata;
  258. /* First the bootmem_map itself */
  259. pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
  260. size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  261. base = __pa(bdp->node_bootmem_map);
  262. reserve_bootmem_node(pdp, base, size);
  263. /* Now the per-node space */
  264. size = mem_data[node].pernode_size;
  265. base = __pa(mem_data[node].pernode_addr);
  266. reserve_bootmem_node(pdp, base, size);
  267. }
  268. }
  269. static void __meminit scatter_node_data(void)
  270. {
  271. pg_data_t **dst;
  272. int node;
  273. /*
  274. * for_each_online_node() can't be used at here.
  275. * node_online_map is not set for hot-added nodes at this time,
  276. * because we are halfway through initialization of the new node's
  277. * structures. If for_each_online_node() is used, a new node's
  278. * pg_data_ptrs will be not initialized. Instead of using it,
  279. * pgdat_list[] is checked.
  280. */
  281. for_each_node(node) {
  282. if (pgdat_list[node]) {
  283. dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
  284. memcpy(dst, pgdat_list, sizeof(pgdat_list));
  285. }
  286. }
  287. }
  288. /**
  289. * initialize_pernode_data - fixup per-cpu & per-node pointers
  290. *
  291. * Each node's per-node area has a copy of the global pg_data_t list, so
  292. * we copy that to each node here, as well as setting the per-cpu pointer
  293. * to the local node data structure. The active_cpus field of the per-node
  294. * structure gets setup by the platform_cpu_init() function later.
  295. */
  296. static void __init initialize_pernode_data(void)
  297. {
  298. int cpu, node;
  299. scatter_node_data();
  300. #ifdef CONFIG_SMP
  301. /* Set the node_data pointer for each per-cpu struct */
  302. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  303. node = node_cpuid[cpu].nid;
  304. per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
  305. }
  306. #else
  307. {
  308. struct cpuinfo_ia64 *cpu0_cpu_info;
  309. cpu = 0;
  310. node = node_cpuid[cpu].nid;
  311. cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
  312. ((char *)&per_cpu__cpu_info - __per_cpu_start));
  313. cpu0_cpu_info->node_data = mem_data[node].node_data;
  314. }
  315. #endif /* CONFIG_SMP */
  316. }
  317. /**
  318. * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
  319. * node but fall back to any other node when __alloc_bootmem_node fails
  320. * for best.
  321. * @nid: node id
  322. * @pernodesize: size of this node's pernode data
  323. */
  324. static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
  325. {
  326. void *ptr = NULL;
  327. u8 best = 0xff;
  328. int bestnode = -1, node, anynode = 0;
  329. for_each_online_node(node) {
  330. if (node_isset(node, memory_less_mask))
  331. continue;
  332. else if (node_distance(nid, node) < best) {
  333. best = node_distance(nid, node);
  334. bestnode = node;
  335. }
  336. anynode = node;
  337. }
  338. if (bestnode == -1)
  339. bestnode = anynode;
  340. ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
  341. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  342. return ptr;
  343. }
  344. /**
  345. * memory_less_nodes - allocate and initialize CPU only nodes pernode
  346. * information.
  347. */
  348. static void __init memory_less_nodes(void)
  349. {
  350. unsigned long pernodesize;
  351. void *pernode;
  352. int node;
  353. for_each_node_mask(node, memory_less_mask) {
  354. pernodesize = compute_pernodesize(node);
  355. pernode = memory_less_node_alloc(node, pernodesize);
  356. fill_pernode(node, __pa(pernode), pernodesize);
  357. }
  358. return;
  359. }
  360. /**
  361. * find_memory - walk the EFI memory map and setup the bootmem allocator
  362. *
  363. * Called early in boot to setup the bootmem allocator, and to
  364. * allocate the per-cpu and per-node structures.
  365. */
  366. void __init find_memory(void)
  367. {
  368. int node;
  369. reserve_memory();
  370. if (num_online_nodes() == 0) {
  371. printk(KERN_ERR "node info missing!\n");
  372. node_set_online(0);
  373. }
  374. nodes_or(memory_less_mask, memory_less_mask, node_online_map);
  375. min_low_pfn = -1;
  376. max_low_pfn = 0;
  377. /* These actually end up getting called by call_pernode_memory() */
  378. efi_memmap_walk(filter_rsvd_memory, build_node_maps);
  379. efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
  380. efi_memmap_walk(find_max_min_low_pfn, NULL);
  381. for_each_online_node(node)
  382. if (mem_data[node].bootmem_data.node_low_pfn) {
  383. node_clear(node, memory_less_mask);
  384. mem_data[node].min_pfn = ~0UL;
  385. }
  386. efi_memmap_walk(register_active_ranges, NULL);
  387. /*
  388. * Initialize the boot memory maps in reverse order since that's
  389. * what the bootmem allocator expects
  390. */
  391. for (node = MAX_NUMNODES - 1; node >= 0; node--) {
  392. unsigned long pernode, pernodesize, map;
  393. struct bootmem_data *bdp;
  394. if (!node_online(node))
  395. continue;
  396. else if (node_isset(node, memory_less_mask))
  397. continue;
  398. bdp = &mem_data[node].bootmem_data;
  399. pernode = mem_data[node].pernode_addr;
  400. pernodesize = mem_data[node].pernode_size;
  401. map = pernode + pernodesize;
  402. init_bootmem_node(pgdat_list[node],
  403. map>>PAGE_SHIFT,
  404. bdp->node_boot_start>>PAGE_SHIFT,
  405. bdp->node_low_pfn);
  406. }
  407. efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
  408. reserve_pernode_space();
  409. memory_less_nodes();
  410. initialize_pernode_data();
  411. max_pfn = max_low_pfn;
  412. find_initrd();
  413. }
  414. #ifdef CONFIG_SMP
  415. /**
  416. * per_cpu_init - setup per-cpu variables
  417. *
  418. * find_pernode_space() does most of this already, we just need to set
  419. * local_per_cpu_offset
  420. */
  421. void __cpuinit *per_cpu_init(void)
  422. {
  423. int cpu;
  424. static int first_time = 1;
  425. if (smp_processor_id() != 0)
  426. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  427. if (first_time) {
  428. first_time = 0;
  429. for (cpu = 0; cpu < NR_CPUS; cpu++)
  430. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  431. }
  432. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  433. }
  434. #endif /* CONFIG_SMP */
  435. /**
  436. * show_mem - give short summary of memory stats
  437. *
  438. * Shows a simple page count of reserved and used pages in the system.
  439. * For discontig machines, it does this on a per-pgdat basis.
  440. */
  441. void show_mem(void)
  442. {
  443. int i, total_reserved = 0;
  444. int total_shared = 0, total_cached = 0;
  445. unsigned long total_present = 0;
  446. pg_data_t *pgdat;
  447. printk(KERN_INFO "Mem-info:\n");
  448. show_free_areas();
  449. printk(KERN_INFO "Free swap: %6ldkB\n",
  450. nr_swap_pages<<(PAGE_SHIFT-10));
  451. printk(KERN_INFO "Node memory in pages:\n");
  452. for_each_online_pgdat(pgdat) {
  453. unsigned long present;
  454. unsigned long flags;
  455. int shared = 0, cached = 0, reserved = 0;
  456. pgdat_resize_lock(pgdat, &flags);
  457. present = pgdat->node_present_pages;
  458. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  459. struct page *page;
  460. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  461. touch_nmi_watchdog();
  462. if (pfn_valid(pgdat->node_start_pfn + i))
  463. page = pfn_to_page(pgdat->node_start_pfn + i);
  464. else {
  465. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  466. i) - 1;
  467. continue;
  468. }
  469. if (PageReserved(page))
  470. reserved++;
  471. else if (PageSwapCache(page))
  472. cached++;
  473. else if (page_count(page))
  474. shared += page_count(page)-1;
  475. }
  476. pgdat_resize_unlock(pgdat, &flags);
  477. total_present += present;
  478. total_reserved += reserved;
  479. total_cached += cached;
  480. total_shared += shared;
  481. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  482. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  483. present, reserved, shared, cached);
  484. }
  485. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  486. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  487. printk(KERN_INFO "%d pages shared\n", total_shared);
  488. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  489. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  490. quicklist_total_size());
  491. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  492. }
  493. /**
  494. * call_pernode_memory - use SRAT to call callback functions with node info
  495. * @start: physical start of range
  496. * @len: length of range
  497. * @arg: function to call for each range
  498. *
  499. * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
  500. * out to which node a block of memory belongs. Ignore memory that we cannot
  501. * identify, and split blocks that run across multiple nodes.
  502. *
  503. * Take this opportunity to round the start address up and the end address
  504. * down to page boundaries.
  505. */
  506. void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
  507. {
  508. unsigned long rs, re, end = start + len;
  509. void (*func)(unsigned long, unsigned long, int);
  510. int i;
  511. start = PAGE_ALIGN(start);
  512. end &= PAGE_MASK;
  513. if (start >= end)
  514. return;
  515. func = arg;
  516. if (!num_node_memblks) {
  517. /* No SRAT table, so assume one node (node 0) */
  518. if (start < end)
  519. (*func)(start, end - start, 0);
  520. return;
  521. }
  522. for (i = 0; i < num_node_memblks; i++) {
  523. rs = max(start, node_memblk[i].start_paddr);
  524. re = min(end, node_memblk[i].start_paddr +
  525. node_memblk[i].size);
  526. if (rs < re)
  527. (*func)(rs, re - rs, node_memblk[i].nid);
  528. if (re == end)
  529. break;
  530. }
  531. }
  532. /**
  533. * count_node_pages - callback to build per-node memory info structures
  534. * @start: physical start of range
  535. * @len: length of range
  536. * @node: node where this range resides
  537. *
  538. * Each node has it's own number of physical pages, DMAable pages, start, and
  539. * end page frame number. This routine will be called by call_pernode_memory()
  540. * for each piece of usable memory and will setup these values for each node.
  541. * Very similar to build_maps().
  542. */
  543. static __init int count_node_pages(unsigned long start, unsigned long len, int node)
  544. {
  545. unsigned long end = start + len;
  546. mem_data[node].num_physpages += len >> PAGE_SHIFT;
  547. #ifdef CONFIG_ZONE_DMA
  548. if (start <= __pa(MAX_DMA_ADDRESS))
  549. mem_data[node].num_dma_physpages +=
  550. (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
  551. #endif
  552. start = GRANULEROUNDDOWN(start);
  553. start = ORDERROUNDDOWN(start);
  554. end = GRANULEROUNDUP(end);
  555. mem_data[node].max_pfn = max(mem_data[node].max_pfn,
  556. end >> PAGE_SHIFT);
  557. mem_data[node].min_pfn = min(mem_data[node].min_pfn,
  558. start >> PAGE_SHIFT);
  559. return 0;
  560. }
  561. /**
  562. * paging_init - setup page tables
  563. *
  564. * paging_init() sets up the page tables for each node of the system and frees
  565. * the bootmem allocator memory for general use.
  566. */
  567. void __init paging_init(void)
  568. {
  569. unsigned long max_dma;
  570. unsigned long pfn_offset = 0;
  571. unsigned long max_pfn = 0;
  572. int node;
  573. unsigned long max_zone_pfns[MAX_NR_ZONES];
  574. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  575. efi_memmap_walk(filter_rsvd_memory, count_node_pages);
  576. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  577. sparse_init();
  578. #ifdef CONFIG_VIRTUAL_MEM_MAP
  579. vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  580. sizeof(struct page));
  581. vmem_map = (struct page *) vmalloc_end;
  582. efi_memmap_walk(create_mem_map_page_table, NULL);
  583. printk("Virtual mem_map starts at 0x%p\n", vmem_map);
  584. #endif
  585. for_each_online_node(node) {
  586. num_physpages += mem_data[node].num_physpages;
  587. pfn_offset = mem_data[node].min_pfn;
  588. #ifdef CONFIG_VIRTUAL_MEM_MAP
  589. NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
  590. #endif
  591. if (mem_data[node].max_pfn > max_pfn)
  592. max_pfn = mem_data[node].max_pfn;
  593. }
  594. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  595. #ifdef CONFIG_ZONE_DMA
  596. max_zone_pfns[ZONE_DMA] = max_dma;
  597. #endif
  598. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  599. free_area_init_nodes(max_zone_pfns);
  600. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  601. }
  602. #ifdef CONFIG_MEMORY_HOTPLUG
  603. pg_data_t *arch_alloc_nodedata(int nid)
  604. {
  605. unsigned long size = compute_pernodesize(nid);
  606. return kzalloc(size, GFP_KERNEL);
  607. }
  608. void arch_free_nodedata(pg_data_t *pgdat)
  609. {
  610. kfree(pgdat);
  611. }
  612. void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
  613. {
  614. pgdat_list[update_node] = update_pgdat;
  615. scatter_node_data();
  616. }
  617. #endif
  618. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  619. int __meminit vmemmap_populate(struct page *start_page,
  620. unsigned long size, int node)
  621. {
  622. return vmemmap_populate_basepages(start_page, size, node);
  623. }
  624. #endif