setup.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Stephane Eranian <eranian@hpl.hp.com>
  7. * Copyright (C) 2000, 2004 Intel Corp
  8. * Rohit Seth <rohit.seth@intel.com>
  9. * Suresh Siddha <suresh.b.siddha@intel.com>
  10. * Gordon Jin <gordon.jin@intel.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. *
  14. * 12/26/04 S.Siddha, G.Jin, R.Seth
  15. * Add multi-threading and multi-core detection
  16. * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17. * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18. * 03/31/00 R.Seth cpu_initialized and current->processor fixes
  19. * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20. * 02/01/00 R.Seth fixed get_cpuinfo for SMP
  21. * 01/07/99 S.Eranian added the support for command line argument
  22. * 06/24/99 W.Drummond added boot_cpu_data.
  23. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/acpi.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/console.h>
  30. #include <linux/delay.h>
  31. #include <linux/kernel.h>
  32. #include <linux/reboot.h>
  33. #include <linux/sched.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/string.h>
  36. #include <linux/threads.h>
  37. #include <linux/screen_info.h>
  38. #include <linux/dmi.h>
  39. #include <linux/serial.h>
  40. #include <linux/serial_core.h>
  41. #include <linux/efi.h>
  42. #include <linux/initrd.h>
  43. #include <linux/pm.h>
  44. #include <linux/cpufreq.h>
  45. #include <linux/kexec.h>
  46. #include <linux/crash_dump.h>
  47. #include <asm/ia32.h>
  48. #include <asm/machvec.h>
  49. #include <asm/mca.h>
  50. #include <asm/meminit.h>
  51. #include <asm/page.h>
  52. #include <asm/patch.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/sal.h>
  56. #include <asm/sections.h>
  57. #include <asm/setup.h>
  58. #include <asm/smp.h>
  59. #include <asm/system.h>
  60. #include <asm/unistd.h>
  61. #include <asm/hpsim.h>
  62. #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  63. # error "struct cpuinfo_ia64 too big!"
  64. #endif
  65. #ifdef CONFIG_SMP
  66. unsigned long __per_cpu_offset[NR_CPUS];
  67. EXPORT_SYMBOL(__per_cpu_offset);
  68. #endif
  69. DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
  70. DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  71. unsigned long ia64_cycles_per_usec;
  72. struct ia64_boot_param *ia64_boot_param;
  73. struct screen_info screen_info;
  74. unsigned long vga_console_iobase;
  75. unsigned long vga_console_membase;
  76. static struct resource data_resource = {
  77. .name = "Kernel data",
  78. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  79. };
  80. static struct resource code_resource = {
  81. .name = "Kernel code",
  82. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  83. };
  84. static struct resource bss_resource = {
  85. .name = "Kernel bss",
  86. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  87. };
  88. unsigned long ia64_max_cacheline_size;
  89. int dma_get_cache_alignment(void)
  90. {
  91. return ia64_max_cacheline_size;
  92. }
  93. EXPORT_SYMBOL(dma_get_cache_alignment);
  94. unsigned long ia64_iobase; /* virtual address for I/O accesses */
  95. EXPORT_SYMBOL(ia64_iobase);
  96. struct io_space io_space[MAX_IO_SPACES];
  97. EXPORT_SYMBOL(io_space);
  98. unsigned int num_io_spaces;
  99. /*
  100. * "flush_icache_range()" needs to know what processor dependent stride size to use
  101. * when it makes i-cache(s) coherent with d-caches.
  102. */
  103. #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
  104. unsigned long ia64_i_cache_stride_shift = ~0;
  105. /*
  106. * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
  107. * mask specifies a mask of address bits that must be 0 in order for two buffers to be
  108. * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
  109. * address of the second buffer must be aligned to (merge_mask+1) in order to be
  110. * mergeable). By default, we assume there is no I/O MMU which can merge physically
  111. * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
  112. * page-size of 2^64.
  113. */
  114. unsigned long ia64_max_iommu_merge_mask = ~0UL;
  115. EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
  116. /*
  117. * We use a special marker for the end of memory and it uses the extra (+1) slot
  118. */
  119. struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
  120. int num_rsvd_regions __initdata;
  121. /*
  122. * Filter incoming memory segments based on the primitive map created from the boot
  123. * parameters. Segments contained in the map are removed from the memory ranges. A
  124. * caller-specified function is called with the memory ranges that remain after filtering.
  125. * This routine does not assume the incoming segments are sorted.
  126. */
  127. int __init
  128. filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
  129. {
  130. unsigned long range_start, range_end, prev_start;
  131. void (*func)(unsigned long, unsigned long, int);
  132. int i;
  133. #if IGNORE_PFN0
  134. if (start == PAGE_OFFSET) {
  135. printk(KERN_WARNING "warning: skipping physical page 0\n");
  136. start += PAGE_SIZE;
  137. if (start >= end) return 0;
  138. }
  139. #endif
  140. /*
  141. * lowest possible address(walker uses virtual)
  142. */
  143. prev_start = PAGE_OFFSET;
  144. func = arg;
  145. for (i = 0; i < num_rsvd_regions; ++i) {
  146. range_start = max(start, prev_start);
  147. range_end = min(end, rsvd_region[i].start);
  148. if (range_start < range_end)
  149. call_pernode_memory(__pa(range_start), range_end - range_start, func);
  150. /* nothing more available in this segment */
  151. if (range_end == end) return 0;
  152. prev_start = rsvd_region[i].end;
  153. }
  154. /* end of memory marker allows full processing inside loop body */
  155. return 0;
  156. }
  157. static void __init
  158. sort_regions (struct rsvd_region *rsvd_region, int max)
  159. {
  160. int j;
  161. /* simple bubble sorting */
  162. while (max--) {
  163. for (j = 0; j < max; ++j) {
  164. if (rsvd_region[j].start > rsvd_region[j+1].start) {
  165. struct rsvd_region tmp;
  166. tmp = rsvd_region[j];
  167. rsvd_region[j] = rsvd_region[j + 1];
  168. rsvd_region[j + 1] = tmp;
  169. }
  170. }
  171. }
  172. }
  173. /*
  174. * Request address space for all standard resources
  175. */
  176. static int __init register_memory(void)
  177. {
  178. code_resource.start = ia64_tpa(_text);
  179. code_resource.end = ia64_tpa(_etext) - 1;
  180. data_resource.start = ia64_tpa(_etext);
  181. data_resource.end = ia64_tpa(_edata) - 1;
  182. bss_resource.start = ia64_tpa(__bss_start);
  183. bss_resource.end = ia64_tpa(_end) - 1;
  184. efi_initialize_iomem_resources(&code_resource, &data_resource,
  185. &bss_resource);
  186. return 0;
  187. }
  188. __initcall(register_memory);
  189. #ifdef CONFIG_KEXEC
  190. static void __init setup_crashkernel(unsigned long total, int *n)
  191. {
  192. unsigned long long base = 0, size = 0;
  193. int ret;
  194. ret = parse_crashkernel(boot_command_line, total,
  195. &size, &base);
  196. if (ret == 0 && size > 0) {
  197. if (!base) {
  198. sort_regions(rsvd_region, *n);
  199. base = kdump_find_rsvd_region(size,
  200. rsvd_region, *n);
  201. }
  202. if (base != ~0UL) {
  203. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  204. "for crashkernel (System RAM: %ldMB)\n",
  205. (unsigned long)(size >> 20),
  206. (unsigned long)(base >> 20),
  207. (unsigned long)(total >> 20));
  208. rsvd_region[*n].start =
  209. (unsigned long)__va(base);
  210. rsvd_region[*n].end =
  211. (unsigned long)__va(base + size);
  212. (*n)++;
  213. crashk_res.start = base;
  214. crashk_res.end = base + size - 1;
  215. }
  216. }
  217. efi_memmap_res.start = ia64_boot_param->efi_memmap;
  218. efi_memmap_res.end = efi_memmap_res.start +
  219. ia64_boot_param->efi_memmap_size;
  220. boot_param_res.start = __pa(ia64_boot_param);
  221. boot_param_res.end = boot_param_res.start +
  222. sizeof(*ia64_boot_param);
  223. }
  224. #else
  225. static inline void __init setup_crashkernel(unsigned long total, int *n)
  226. {}
  227. #endif
  228. /**
  229. * reserve_memory - setup reserved memory areas
  230. *
  231. * Setup the reserved memory areas set aside for the boot parameters,
  232. * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
  233. * see include/asm-ia64/meminit.h if you need to define more.
  234. */
  235. void __init
  236. reserve_memory (void)
  237. {
  238. int n = 0;
  239. unsigned long total_memory;
  240. /*
  241. * none of the entries in this table overlap
  242. */
  243. rsvd_region[n].start = (unsigned long) ia64_boot_param;
  244. rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
  245. n++;
  246. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
  247. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
  248. n++;
  249. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
  250. rsvd_region[n].end = (rsvd_region[n].start
  251. + strlen(__va(ia64_boot_param->command_line)) + 1);
  252. n++;
  253. rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
  254. rsvd_region[n].end = (unsigned long) ia64_imva(_end);
  255. n++;
  256. #ifdef CONFIG_BLK_DEV_INITRD
  257. if (ia64_boot_param->initrd_start) {
  258. rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
  259. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
  260. n++;
  261. }
  262. #endif
  263. #ifdef CONFIG_PROC_VMCORE
  264. if (reserve_elfcorehdr(&rsvd_region[n].start,
  265. &rsvd_region[n].end) == 0)
  266. n++;
  267. #endif
  268. total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
  269. n++;
  270. setup_crashkernel(total_memory, &n);
  271. /* end of memory marker */
  272. rsvd_region[n].start = ~0UL;
  273. rsvd_region[n].end = ~0UL;
  274. n++;
  275. num_rsvd_regions = n;
  276. BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
  277. sort_regions(rsvd_region, num_rsvd_regions);
  278. }
  279. /**
  280. * find_initrd - get initrd parameters from the boot parameter structure
  281. *
  282. * Grab the initrd start and end from the boot parameter struct given us by
  283. * the boot loader.
  284. */
  285. void __init
  286. find_initrd (void)
  287. {
  288. #ifdef CONFIG_BLK_DEV_INITRD
  289. if (ia64_boot_param->initrd_start) {
  290. initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
  291. initrd_end = initrd_start+ia64_boot_param->initrd_size;
  292. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  293. initrd_start, ia64_boot_param->initrd_size);
  294. }
  295. #endif
  296. }
  297. static void __init
  298. io_port_init (void)
  299. {
  300. unsigned long phys_iobase;
  301. /*
  302. * Set `iobase' based on the EFI memory map or, failing that, the
  303. * value firmware left in ar.k0.
  304. *
  305. * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
  306. * the port's virtual address, so ia32_load_state() loads it with a
  307. * user virtual address. But in ia64 mode, glibc uses the
  308. * *physical* address in ar.k0 to mmap the appropriate area from
  309. * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
  310. * cases, user-mode can only use the legacy 0-64K I/O port space.
  311. *
  312. * ar.k0 is not involved in kernel I/O port accesses, which can use
  313. * any of the I/O port spaces and are done via MMIO using the
  314. * virtual mmio_base from the appropriate io_space[].
  315. */
  316. phys_iobase = efi_get_iobase();
  317. if (!phys_iobase) {
  318. phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
  319. printk(KERN_INFO "No I/O port range found in EFI memory map, "
  320. "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
  321. }
  322. ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
  323. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  324. /* setup legacy IO port space */
  325. io_space[0].mmio_base = ia64_iobase;
  326. io_space[0].sparse = 1;
  327. num_io_spaces = 1;
  328. }
  329. /**
  330. * early_console_setup - setup debugging console
  331. *
  332. * Consoles started here require little enough setup that we can start using
  333. * them very early in the boot process, either right after the machine
  334. * vector initialization, or even before if the drivers can detect their hw.
  335. *
  336. * Returns non-zero if a console couldn't be setup.
  337. */
  338. static inline int __init
  339. early_console_setup (char *cmdline)
  340. {
  341. int earlycons = 0;
  342. #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
  343. {
  344. extern int sn_serial_console_early_setup(void);
  345. if (!sn_serial_console_early_setup())
  346. earlycons++;
  347. }
  348. #endif
  349. #ifdef CONFIG_EFI_PCDP
  350. if (!efi_setup_pcdp_console(cmdline))
  351. earlycons++;
  352. #endif
  353. if (!simcons_register())
  354. earlycons++;
  355. return (earlycons) ? 0 : -1;
  356. }
  357. static inline void
  358. mark_bsp_online (void)
  359. {
  360. #ifdef CONFIG_SMP
  361. /* If we register an early console, allow CPU 0 to printk */
  362. cpu_set(smp_processor_id(), cpu_online_map);
  363. #endif
  364. }
  365. static __initdata int nomca;
  366. static __init int setup_nomca(char *s)
  367. {
  368. nomca = 1;
  369. return 0;
  370. }
  371. early_param("nomca", setup_nomca);
  372. #ifdef CONFIG_PROC_VMCORE
  373. /* elfcorehdr= specifies the location of elf core header
  374. * stored by the crashed kernel.
  375. */
  376. static int __init parse_elfcorehdr(char *arg)
  377. {
  378. if (!arg)
  379. return -EINVAL;
  380. elfcorehdr_addr = memparse(arg, &arg);
  381. return 0;
  382. }
  383. early_param("elfcorehdr", parse_elfcorehdr);
  384. int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
  385. {
  386. unsigned long length;
  387. /* We get the address using the kernel command line,
  388. * but the size is extracted from the EFI tables.
  389. * Both address and size are required for reservation
  390. * to work properly.
  391. */
  392. if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
  393. return -EINVAL;
  394. if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
  395. elfcorehdr_addr = ELFCORE_ADDR_MAX;
  396. return -EINVAL;
  397. }
  398. *start = (unsigned long)__va(elfcorehdr_addr);
  399. *end = *start + length;
  400. return 0;
  401. }
  402. #endif /* CONFIG_PROC_VMCORE */
  403. void __init
  404. setup_arch (char **cmdline_p)
  405. {
  406. unw_init();
  407. ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
  408. *cmdline_p = __va(ia64_boot_param->command_line);
  409. strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
  410. efi_init();
  411. io_port_init();
  412. #ifdef CONFIG_IA64_GENERIC
  413. /* machvec needs to be parsed from the command line
  414. * before parse_early_param() is called to ensure
  415. * that ia64_mv is initialised before any command line
  416. * settings may cause console setup to occur
  417. */
  418. machvec_init_from_cmdline(*cmdline_p);
  419. #endif
  420. parse_early_param();
  421. if (early_console_setup(*cmdline_p) == 0)
  422. mark_bsp_online();
  423. #ifdef CONFIG_ACPI
  424. /* Initialize the ACPI boot-time table parser */
  425. acpi_table_init();
  426. # ifdef CONFIG_ACPI_NUMA
  427. acpi_numa_init();
  428. # endif
  429. #else
  430. # ifdef CONFIG_SMP
  431. smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
  432. # endif
  433. #endif /* CONFIG_APCI_BOOT */
  434. find_memory();
  435. /* process SAL system table: */
  436. ia64_sal_init(__va(efi.sal_systab));
  437. #ifdef CONFIG_SMP
  438. cpu_physical_id(0) = hard_smp_processor_id();
  439. #endif
  440. cpu_init(); /* initialize the bootstrap CPU */
  441. mmu_context_init(); /* initialize context_id bitmap */
  442. check_sal_cache_flush();
  443. #ifdef CONFIG_ACPI
  444. acpi_boot_init();
  445. #endif
  446. #ifdef CONFIG_VT
  447. if (!conswitchp) {
  448. # if defined(CONFIG_DUMMY_CONSOLE)
  449. conswitchp = &dummy_con;
  450. # endif
  451. # if defined(CONFIG_VGA_CONSOLE)
  452. /*
  453. * Non-legacy systems may route legacy VGA MMIO range to system
  454. * memory. vga_con probes the MMIO hole, so memory looks like
  455. * a VGA device to it. The EFI memory map can tell us if it's
  456. * memory so we can avoid this problem.
  457. */
  458. if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
  459. conswitchp = &vga_con;
  460. # endif
  461. }
  462. #endif
  463. /* enable IA-64 Machine Check Abort Handling unless disabled */
  464. if (!nomca)
  465. ia64_mca_init();
  466. platform_setup(cmdline_p);
  467. paging_init();
  468. }
  469. /*
  470. * Display cpu info for all CPUs.
  471. */
  472. static int
  473. show_cpuinfo (struct seq_file *m, void *v)
  474. {
  475. #ifdef CONFIG_SMP
  476. # define lpj c->loops_per_jiffy
  477. # define cpunum c->cpu
  478. #else
  479. # define lpj loops_per_jiffy
  480. # define cpunum 0
  481. #endif
  482. static struct {
  483. unsigned long mask;
  484. const char *feature_name;
  485. } feature_bits[] = {
  486. { 1UL << 0, "branchlong" },
  487. { 1UL << 1, "spontaneous deferral"},
  488. { 1UL << 2, "16-byte atomic ops" }
  489. };
  490. char features[128], *cp, *sep;
  491. struct cpuinfo_ia64 *c = v;
  492. unsigned long mask;
  493. unsigned long proc_freq;
  494. int i, size;
  495. mask = c->features;
  496. /* build the feature string: */
  497. memcpy(features, "standard", 9);
  498. cp = features;
  499. size = sizeof(features);
  500. sep = "";
  501. for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
  502. if (mask & feature_bits[i].mask) {
  503. cp += snprintf(cp, size, "%s%s", sep,
  504. feature_bits[i].feature_name),
  505. sep = ", ";
  506. mask &= ~feature_bits[i].mask;
  507. size = sizeof(features) - (cp - features);
  508. }
  509. }
  510. if (mask && size > 1) {
  511. /* print unknown features as a hex value */
  512. snprintf(cp, size, "%s0x%lx", sep, mask);
  513. }
  514. proc_freq = cpufreq_quick_get(cpunum);
  515. if (!proc_freq)
  516. proc_freq = c->proc_freq / 1000;
  517. seq_printf(m,
  518. "processor : %d\n"
  519. "vendor : %s\n"
  520. "arch : IA-64\n"
  521. "family : %u\n"
  522. "model : %u\n"
  523. "model name : %s\n"
  524. "revision : %u\n"
  525. "archrev : %u\n"
  526. "features : %s\n"
  527. "cpu number : %lu\n"
  528. "cpu regs : %u\n"
  529. "cpu MHz : %lu.%03lu\n"
  530. "itc MHz : %lu.%06lu\n"
  531. "BogoMIPS : %lu.%02lu\n",
  532. cpunum, c->vendor, c->family, c->model,
  533. c->model_name, c->revision, c->archrev,
  534. features, c->ppn, c->number,
  535. proc_freq / 1000, proc_freq % 1000,
  536. c->itc_freq / 1000000, c->itc_freq % 1000000,
  537. lpj*HZ/500000, (lpj*HZ/5000) % 100);
  538. #ifdef CONFIG_SMP
  539. seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
  540. if (c->socket_id != -1)
  541. seq_printf(m, "physical id: %u\n", c->socket_id);
  542. if (c->threads_per_core > 1 || c->cores_per_socket > 1)
  543. seq_printf(m,
  544. "core id : %u\n"
  545. "thread id : %u\n",
  546. c->core_id, c->thread_id);
  547. #endif
  548. seq_printf(m,"\n");
  549. return 0;
  550. }
  551. static void *
  552. c_start (struct seq_file *m, loff_t *pos)
  553. {
  554. #ifdef CONFIG_SMP
  555. while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
  556. ++*pos;
  557. #endif
  558. return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
  559. }
  560. static void *
  561. c_next (struct seq_file *m, void *v, loff_t *pos)
  562. {
  563. ++*pos;
  564. return c_start(m, pos);
  565. }
  566. static void
  567. c_stop (struct seq_file *m, void *v)
  568. {
  569. }
  570. struct seq_operations cpuinfo_op = {
  571. .start = c_start,
  572. .next = c_next,
  573. .stop = c_stop,
  574. .show = show_cpuinfo
  575. };
  576. #define MAX_BRANDS 8
  577. static char brandname[MAX_BRANDS][128];
  578. static char * __cpuinit
  579. get_model_name(__u8 family, __u8 model)
  580. {
  581. static int overflow;
  582. char brand[128];
  583. int i;
  584. memcpy(brand, "Unknown", 8);
  585. if (ia64_pal_get_brand_info(brand)) {
  586. if (family == 0x7)
  587. memcpy(brand, "Merced", 7);
  588. else if (family == 0x1f) switch (model) {
  589. case 0: memcpy(brand, "McKinley", 9); break;
  590. case 1: memcpy(brand, "Madison", 8); break;
  591. case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
  592. }
  593. }
  594. for (i = 0; i < MAX_BRANDS; i++)
  595. if (strcmp(brandname[i], brand) == 0)
  596. return brandname[i];
  597. for (i = 0; i < MAX_BRANDS; i++)
  598. if (brandname[i][0] == '\0')
  599. return strcpy(brandname[i], brand);
  600. if (overflow++ == 0)
  601. printk(KERN_ERR
  602. "%s: Table overflow. Some processor model information will be missing\n",
  603. __FUNCTION__);
  604. return "Unknown";
  605. }
  606. static void __cpuinit
  607. identify_cpu (struct cpuinfo_ia64 *c)
  608. {
  609. union {
  610. unsigned long bits[5];
  611. struct {
  612. /* id 0 & 1: */
  613. char vendor[16];
  614. /* id 2 */
  615. u64 ppn; /* processor serial number */
  616. /* id 3: */
  617. unsigned number : 8;
  618. unsigned revision : 8;
  619. unsigned model : 8;
  620. unsigned family : 8;
  621. unsigned archrev : 8;
  622. unsigned reserved : 24;
  623. /* id 4: */
  624. u64 features;
  625. } field;
  626. } cpuid;
  627. pal_vm_info_1_u_t vm1;
  628. pal_vm_info_2_u_t vm2;
  629. pal_status_t status;
  630. unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
  631. int i;
  632. for (i = 0; i < 5; ++i)
  633. cpuid.bits[i] = ia64_get_cpuid(i);
  634. memcpy(c->vendor, cpuid.field.vendor, 16);
  635. #ifdef CONFIG_SMP
  636. c->cpu = smp_processor_id();
  637. /* below default values will be overwritten by identify_siblings()
  638. * for Multi-Threading/Multi-Core capable CPUs
  639. */
  640. c->threads_per_core = c->cores_per_socket = c->num_log = 1;
  641. c->socket_id = -1;
  642. identify_siblings(c);
  643. if (c->threads_per_core > smp_num_siblings)
  644. smp_num_siblings = c->threads_per_core;
  645. #endif
  646. c->ppn = cpuid.field.ppn;
  647. c->number = cpuid.field.number;
  648. c->revision = cpuid.field.revision;
  649. c->model = cpuid.field.model;
  650. c->family = cpuid.field.family;
  651. c->archrev = cpuid.field.archrev;
  652. c->features = cpuid.field.features;
  653. c->model_name = get_model_name(c->family, c->model);
  654. status = ia64_pal_vm_summary(&vm1, &vm2);
  655. if (status == PAL_STATUS_SUCCESS) {
  656. impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
  657. phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
  658. }
  659. c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
  660. c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
  661. }
  662. void __init
  663. setup_per_cpu_areas (void)
  664. {
  665. /* start_kernel() requires this... */
  666. #ifdef CONFIG_ACPI_HOTPLUG_CPU
  667. prefill_possible_map();
  668. #endif
  669. }
  670. /*
  671. * Calculate the max. cache line size.
  672. *
  673. * In addition, the minimum of the i-cache stride sizes is calculated for
  674. * "flush_icache_range()".
  675. */
  676. static void __cpuinit
  677. get_max_cacheline_size (void)
  678. {
  679. unsigned long line_size, max = 1;
  680. u64 l, levels, unique_caches;
  681. pal_cache_config_info_t cci;
  682. s64 status;
  683. status = ia64_pal_cache_summary(&levels, &unique_caches);
  684. if (status != 0) {
  685. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  686. __FUNCTION__, status);
  687. max = SMP_CACHE_BYTES;
  688. /* Safest setup for "flush_icache_range()" */
  689. ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
  690. goto out;
  691. }
  692. for (l = 0; l < levels; ++l) {
  693. status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
  694. &cci);
  695. if (status != 0) {
  696. printk(KERN_ERR
  697. "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
  698. __FUNCTION__, l, status);
  699. max = SMP_CACHE_BYTES;
  700. /* The safest setup for "flush_icache_range()" */
  701. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  702. cci.pcci_unified = 1;
  703. }
  704. line_size = 1 << cci.pcci_line_size;
  705. if (line_size > max)
  706. max = line_size;
  707. if (!cci.pcci_unified) {
  708. status = ia64_pal_cache_config_info(l,
  709. /* cache_type (instruction)= */ 1,
  710. &cci);
  711. if (status != 0) {
  712. printk(KERN_ERR
  713. "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
  714. __FUNCTION__, l, status);
  715. /* The safest setup for "flush_icache_range()" */
  716. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  717. }
  718. }
  719. if (cci.pcci_stride < ia64_i_cache_stride_shift)
  720. ia64_i_cache_stride_shift = cci.pcci_stride;
  721. }
  722. out:
  723. if (max > ia64_max_cacheline_size)
  724. ia64_max_cacheline_size = max;
  725. }
  726. /*
  727. * cpu_init() initializes state that is per-CPU. This function acts
  728. * as a 'CPU state barrier', nothing should get across.
  729. */
  730. void __cpuinit
  731. cpu_init (void)
  732. {
  733. extern void __cpuinit ia64_mmu_init (void *);
  734. static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
  735. unsigned long num_phys_stacked;
  736. pal_vm_info_2_u_t vmi;
  737. unsigned int max_ctx;
  738. struct cpuinfo_ia64 *cpu_info;
  739. void *cpu_data;
  740. cpu_data = per_cpu_init();
  741. #ifdef CONFIG_SMP
  742. /*
  743. * insert boot cpu into sibling and core mapes
  744. * (must be done after per_cpu area is setup)
  745. */
  746. if (smp_processor_id() == 0) {
  747. cpu_set(0, per_cpu(cpu_sibling_map, 0));
  748. cpu_set(0, cpu_core_map[0]);
  749. }
  750. #endif
  751. /*
  752. * We set ar.k3 so that assembly code in MCA handler can compute
  753. * physical addresses of per cpu variables with a simple:
  754. * phys = ar.k3 + &per_cpu_var
  755. */
  756. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  757. ia64_tpa(cpu_data) - (long) __per_cpu_start);
  758. get_max_cacheline_size();
  759. /*
  760. * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
  761. * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
  762. * depends on the data returned by identify_cpu(). We break the dependency by
  763. * accessing cpu_data() through the canonical per-CPU address.
  764. */
  765. cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
  766. identify_cpu(cpu_info);
  767. #ifdef CONFIG_MCKINLEY
  768. {
  769. # define FEATURE_SET 16
  770. struct ia64_pal_retval iprv;
  771. if (cpu_info->family == 0x1f) {
  772. PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
  773. if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
  774. PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
  775. (iprv.v1 | 0x80), FEATURE_SET, 0);
  776. }
  777. }
  778. #endif
  779. /* Clear the stack memory reserved for pt_regs: */
  780. memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
  781. ia64_set_kr(IA64_KR_FPU_OWNER, 0);
  782. /*
  783. * Initialize the page-table base register to a global
  784. * directory with all zeroes. This ensure that we can handle
  785. * TLB-misses to user address-space even before we created the
  786. * first user address-space. This may happen, e.g., due to
  787. * aggressive use of lfetch.fault.
  788. */
  789. ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
  790. /*
  791. * Initialize default control register to defer speculative faults except
  792. * for those arising from TLB misses, which are not deferred. The
  793. * kernel MUST NOT depend on a particular setting of these bits (in other words,
  794. * the kernel must have recovery code for all speculative accesses). Turn on
  795. * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
  796. * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
  797. * be fine).
  798. */
  799. ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
  800. | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
  801. atomic_inc(&init_mm.mm_count);
  802. current->active_mm = &init_mm;
  803. if (current->mm)
  804. BUG();
  805. ia64_mmu_init(ia64_imva(cpu_data));
  806. ia64_mca_cpu_init(ia64_imva(cpu_data));
  807. #ifdef CONFIG_IA32_SUPPORT
  808. ia32_cpu_init();
  809. #endif
  810. /* Clear ITC to eliminate sched_clock() overflows in human time. */
  811. ia64_set_itc(0);
  812. /* disable all local interrupt sources: */
  813. ia64_set_itv(1 << 16);
  814. ia64_set_lrr0(1 << 16);
  815. ia64_set_lrr1(1 << 16);
  816. ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
  817. ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
  818. /* clear TPR & XTP to enable all interrupt classes: */
  819. ia64_setreg(_IA64_REG_CR_TPR, 0);
  820. /* Clear any pending interrupts left by SAL/EFI */
  821. while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
  822. ia64_eoi();
  823. #ifdef CONFIG_SMP
  824. normal_xtp();
  825. #endif
  826. /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
  827. if (ia64_pal_vm_summary(NULL, &vmi) == 0)
  828. max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
  829. else {
  830. printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
  831. max_ctx = (1U << 15) - 1; /* use architected minimum */
  832. }
  833. while (max_ctx < ia64_ctx.max_ctx) {
  834. unsigned int old = ia64_ctx.max_ctx;
  835. if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
  836. break;
  837. }
  838. if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
  839. printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
  840. "stacked regs\n");
  841. num_phys_stacked = 96;
  842. }
  843. /* size of physical stacked register partition plus 8 bytes: */
  844. if (num_phys_stacked > max_num_phys_stacked) {
  845. ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
  846. max_num_phys_stacked = num_phys_stacked;
  847. }
  848. platform_cpu_init();
  849. pm_idle = default_idle;
  850. }
  851. void __init
  852. check_bugs (void)
  853. {
  854. ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
  855. (unsigned long) __end___mckinley_e9_bundles);
  856. }
  857. static int __init run_dmi_scan(void)
  858. {
  859. dmi_scan_machine();
  860. return 0;
  861. }
  862. core_initcall(run_dmi_scan);