vfpmodule.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /*
  2. * linux/arch/arm/vfp/vfpmodule.c
  3. *
  4. * Copyright (C) 2004 ARM Limited.
  5. * Written by Deep Blue Solutions Limited.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/signal.h>
  15. #include <linux/sched.h>
  16. #include <linux/init.h>
  17. #include <asm/thread_notify.h>
  18. #include <asm/vfp.h>
  19. #include "vfpinstr.h"
  20. #include "vfp.h"
  21. /*
  22. * Our undef handlers (in entry.S)
  23. */
  24. void vfp_testing_entry(void);
  25. void vfp_support_entry(void);
  26. void vfp_null_entry(void);
  27. void (*vfp_vector)(void) = vfp_null_entry;
  28. union vfp_state *last_VFP_context[NR_CPUS];
  29. /*
  30. * Dual-use variable.
  31. * Used in startup: set to non-zero if VFP checks fail
  32. * After startup, holds VFP architecture
  33. */
  34. unsigned int VFP_arch;
  35. static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
  36. {
  37. struct thread_info *thread = v;
  38. union vfp_state *vfp;
  39. __u32 cpu = thread->cpu;
  40. if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
  41. u32 fpexc = fmrx(FPEXC);
  42. #ifdef CONFIG_SMP
  43. /*
  44. * On SMP, if VFP is enabled, save the old state in
  45. * case the thread migrates to a different CPU. The
  46. * restoring is done lazily.
  47. */
  48. if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
  49. vfp_save_state(last_VFP_context[cpu], fpexc);
  50. last_VFP_context[cpu]->hard.cpu = cpu;
  51. }
  52. /*
  53. * Thread migration, just force the reloading of the
  54. * state on the new CPU in case the VFP registers
  55. * contain stale data.
  56. */
  57. if (thread->vfpstate.hard.cpu != cpu)
  58. last_VFP_context[cpu] = NULL;
  59. #endif
  60. /*
  61. * Always disable VFP so we can lazily save/restore the
  62. * old state.
  63. */
  64. fmxr(FPEXC, fpexc & ~FPEXC_EN);
  65. return NOTIFY_DONE;
  66. }
  67. vfp = &thread->vfpstate;
  68. if (cmd == THREAD_NOTIFY_FLUSH) {
  69. /*
  70. * Per-thread VFP initialisation.
  71. */
  72. memset(vfp, 0, sizeof(union vfp_state));
  73. vfp->hard.fpexc = FPEXC_EN;
  74. vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
  75. /*
  76. * Disable VFP to ensure we initialise it first.
  77. */
  78. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  79. }
  80. /* flush and release case: Per-thread VFP cleanup. */
  81. if (last_VFP_context[cpu] == vfp)
  82. last_VFP_context[cpu] = NULL;
  83. return NOTIFY_DONE;
  84. }
  85. static struct notifier_block vfp_notifier_block = {
  86. .notifier_call = vfp_notifier,
  87. };
  88. /*
  89. * Raise a SIGFPE for the current process.
  90. * sicode describes the signal being raised.
  91. */
  92. void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
  93. {
  94. siginfo_t info;
  95. memset(&info, 0, sizeof(info));
  96. info.si_signo = SIGFPE;
  97. info.si_code = sicode;
  98. info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
  99. /*
  100. * This is the same as NWFPE, because it's not clear what
  101. * this is used for
  102. */
  103. current->thread.error_code = 0;
  104. current->thread.trap_no = 6;
  105. send_sig_info(SIGFPE, &info, current);
  106. }
  107. static void vfp_panic(char *reason)
  108. {
  109. int i;
  110. printk(KERN_ERR "VFP: Error: %s\n", reason);
  111. printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
  112. fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
  113. for (i = 0; i < 32; i += 2)
  114. printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
  115. i, vfp_get_float(i), i+1, vfp_get_float(i+1));
  116. }
  117. /*
  118. * Process bitmask of exception conditions.
  119. */
  120. static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
  121. {
  122. int si_code = 0;
  123. pr_debug("VFP: raising exceptions %08x\n", exceptions);
  124. if (exceptions == VFP_EXCEPTION_ERROR) {
  125. vfp_panic("unhandled bounce");
  126. vfp_raise_sigfpe(0, regs);
  127. return;
  128. }
  129. /*
  130. * If any of the status flags are set, update the FPSCR.
  131. * Comparison instructions always return at least one of
  132. * these flags set.
  133. */
  134. if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
  135. fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
  136. fpscr |= exceptions;
  137. fmxr(FPSCR, fpscr);
  138. #define RAISE(stat,en,sig) \
  139. if (exceptions & stat && fpscr & en) \
  140. si_code = sig;
  141. /*
  142. * These are arranged in priority order, least to highest.
  143. */
  144. RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
  145. RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
  146. RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
  147. RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
  148. RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
  149. if (si_code)
  150. vfp_raise_sigfpe(si_code, regs);
  151. }
  152. /*
  153. * Emulate a VFP instruction.
  154. */
  155. static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
  156. {
  157. u32 exceptions = VFP_EXCEPTION_ERROR;
  158. pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
  159. if (INST_CPRTDO(inst)) {
  160. if (!INST_CPRT(inst)) {
  161. /*
  162. * CPDO
  163. */
  164. if (vfp_single(inst)) {
  165. exceptions = vfp_single_cpdo(inst, fpscr);
  166. } else {
  167. exceptions = vfp_double_cpdo(inst, fpscr);
  168. }
  169. } else {
  170. /*
  171. * A CPRT instruction can not appear in FPINST2, nor
  172. * can it cause an exception. Therefore, we do not
  173. * have to emulate it.
  174. */
  175. }
  176. } else {
  177. /*
  178. * A CPDT instruction can not appear in FPINST2, nor can
  179. * it cause an exception. Therefore, we do not have to
  180. * emulate it.
  181. */
  182. }
  183. return exceptions & ~VFP_NAN_FLAG;
  184. }
  185. /*
  186. * Package up a bounce condition.
  187. */
  188. void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
  189. {
  190. u32 fpscr, orig_fpscr, exceptions, inst;
  191. pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
  192. /*
  193. * Enable access to the VFP so we can handle the bounce.
  194. */
  195. fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_FPV2|FPEXC_INV|FPEXC_UFC|FPEXC_OFC|FPEXC_IOC));
  196. orig_fpscr = fpscr = fmrx(FPSCR);
  197. /*
  198. * If we are running with inexact exceptions enabled, we need to
  199. * emulate the trigger instruction. Note that as we're emulating
  200. * the trigger instruction, we need to increment PC.
  201. */
  202. if (fpscr & FPSCR_IXE) {
  203. regs->ARM_pc += 4;
  204. goto emulate;
  205. }
  206. barrier();
  207. /*
  208. * Modify fpscr to indicate the number of iterations remaining
  209. */
  210. if (fpexc & FPEXC_EX) {
  211. u32 len;
  212. len = fpexc + (1 << FPEXC_LENGTH_BIT);
  213. fpscr &= ~FPSCR_LENGTH_MASK;
  214. fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
  215. }
  216. /*
  217. * Handle the first FP instruction. We used to take note of the
  218. * FPEXC bounce reason, but this appears to be unreliable.
  219. * Emulate the bounced instruction instead.
  220. */
  221. inst = fmrx(FPINST);
  222. exceptions = vfp_emulate_instruction(inst, fpscr, regs);
  223. if (exceptions)
  224. vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
  225. /*
  226. * If there isn't a second FP instruction, exit now.
  227. */
  228. if (!(fpexc & FPEXC_FPV2))
  229. return;
  230. /*
  231. * The barrier() here prevents fpinst2 being read
  232. * before the condition above.
  233. */
  234. barrier();
  235. trigger = fmrx(FPINST2);
  236. orig_fpscr = fpscr = fmrx(FPSCR);
  237. emulate:
  238. exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
  239. if (exceptions)
  240. vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
  241. }
  242. static void vfp_enable(void *unused)
  243. {
  244. u32 access = get_copro_access();
  245. /*
  246. * Enable full access to VFP (cp10 and cp11)
  247. */
  248. set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
  249. }
  250. #include <linux/smp.h>
  251. /*
  252. * VFP support code initialisation.
  253. */
  254. static int __init vfp_init(void)
  255. {
  256. unsigned int vfpsid;
  257. unsigned int cpu_arch = cpu_architecture();
  258. u32 access = 0;
  259. if (cpu_arch >= CPU_ARCH_ARMv6) {
  260. access = get_copro_access();
  261. /*
  262. * Enable full access to VFP (cp10 and cp11)
  263. */
  264. set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
  265. }
  266. /*
  267. * First check that there is a VFP that we can use.
  268. * The handler is already setup to just log calls, so
  269. * we just need to read the VFPSID register.
  270. */
  271. vfp_vector = vfp_testing_entry;
  272. barrier();
  273. vfpsid = fmrx(FPSID);
  274. barrier();
  275. vfp_vector = vfp_null_entry;
  276. printk(KERN_INFO "VFP support v0.3: ");
  277. if (VFP_arch) {
  278. printk("not present\n");
  279. /*
  280. * Restore the copro access register.
  281. */
  282. if (cpu_arch >= CPU_ARCH_ARMv6)
  283. set_copro_access(access);
  284. } else if (vfpsid & FPSID_NODOUBLE) {
  285. printk("no double precision support\n");
  286. } else {
  287. smp_call_function(vfp_enable, NULL, 1, 1);
  288. VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
  289. printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
  290. (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
  291. (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
  292. (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
  293. (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
  294. (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
  295. vfp_vector = vfp_support_entry;
  296. thread_register_notifier(&vfp_notifier_block);
  297. /*
  298. * We detected VFP, and the support code is
  299. * in place; report VFP support to userspace.
  300. */
  301. elf_hwcap |= HWCAP_VFP;
  302. }
  303. return 0;
  304. }
  305. late_initcall(vfp_init);