time.c 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. /*
  2. * arch/arm/mach-ns9xxx/time.c
  3. *
  4. * Copyright (C) 2006 by Digi International Inc.
  5. * All rights reserved.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/jiffies.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/irq.h>
  14. #include <linux/stringify.h>
  15. #include <linux/clocksource.h>
  16. #include <linux/clockchips.h>
  17. #include <asm/arch-ns9xxx/regs-sys.h>
  18. #include <asm/arch-ns9xxx/clock.h>
  19. #include <asm/arch-ns9xxx/irqs.h>
  20. #include <asm/arch/system.h>
  21. #include "generic.h"
  22. #define TIMER_CLOCKSOURCE 0
  23. #define TIMER_CLOCKEVENT 1
  24. static u32 latch;
  25. static cycle_t ns9xxx_clocksource_read(void)
  26. {
  27. return __raw_readl(SYS_TR(TIMER_CLOCKSOURCE));
  28. }
  29. static struct clocksource ns9xxx_clocksource = {
  30. .name = "ns9xxx-timer" __stringify(TIMER_CLOCKSOURCE),
  31. .rating = 300,
  32. .read = ns9xxx_clocksource_read,
  33. .mask = CLOCKSOURCE_MASK(32),
  34. .shift = 20,
  35. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  36. };
  37. static void ns9xxx_clockevent_setmode(enum clock_event_mode mode,
  38. struct clock_event_device *clk)
  39. {
  40. u32 tc = __raw_readl(SYS_TC(TIMER_CLOCKEVENT));
  41. switch(mode) {
  42. case CLOCK_EVT_MODE_PERIODIC:
  43. __raw_writel(latch, SYS_TRC(TIMER_CLOCKEVENT));
  44. REGSET(tc, SYS_TCx, REN, EN);
  45. REGSET(tc, SYS_TCx, INTS, EN);
  46. REGSET(tc, SYS_TCx, TEN, EN);
  47. break;
  48. case CLOCK_EVT_MODE_ONESHOT:
  49. REGSET(tc, SYS_TCx, REN, DIS);
  50. REGSET(tc, SYS_TCx, INTS, EN);
  51. /* fall through */
  52. case CLOCK_EVT_MODE_UNUSED:
  53. case CLOCK_EVT_MODE_SHUTDOWN:
  54. case CLOCK_EVT_MODE_RESUME:
  55. default:
  56. REGSET(tc, SYS_TCx, TEN, DIS);
  57. break;
  58. }
  59. __raw_writel(tc, SYS_TC(TIMER_CLOCKEVENT));
  60. }
  61. static int ns9xxx_clockevent_setnextevent(unsigned long evt,
  62. struct clock_event_device *clk)
  63. {
  64. u32 tc = __raw_readl(SYS_TC(TIMER_CLOCKEVENT));
  65. if (REGGET(tc, SYS_TCx, TEN)) {
  66. REGSET(tc, SYS_TCx, TEN, DIS);
  67. __raw_writel(tc, SYS_TC(TIMER_CLOCKEVENT));
  68. }
  69. REGSET(tc, SYS_TCx, TEN, EN);
  70. __raw_writel(evt, SYS_TRC(TIMER_CLOCKEVENT));
  71. __raw_writel(tc, SYS_TC(TIMER_CLOCKEVENT));
  72. return 0;
  73. }
  74. static struct clock_event_device ns9xxx_clockevent_device = {
  75. .name = "ns9xxx-timer" __stringify(TIMER_CLOCKEVENT),
  76. .shift = 20,
  77. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  78. .set_mode = ns9xxx_clockevent_setmode,
  79. .set_next_event = ns9xxx_clockevent_setnextevent,
  80. };
  81. static irqreturn_t ns9xxx_clockevent_handler(int irq, void *dev_id)
  82. {
  83. int timerno = irq - IRQ_TIMER0;
  84. u32 tc;
  85. struct clock_event_device *evt = &ns9xxx_clockevent_device;
  86. /* clear irq */
  87. tc = __raw_readl(SYS_TC(timerno));
  88. if (REGGET(tc, SYS_TCx, REN) == SYS_TCx_REN_DIS) {
  89. REGSET(tc, SYS_TCx, TEN, DIS);
  90. __raw_writel(tc, SYS_TC(timerno));
  91. }
  92. REGSET(tc, SYS_TCx, INTC, SET);
  93. __raw_writel(tc, SYS_TC(timerno));
  94. REGSET(tc, SYS_TCx, INTC, UNSET);
  95. __raw_writel(tc, SYS_TC(timerno));
  96. evt->event_handler(evt);
  97. return IRQ_HANDLED;
  98. }
  99. static struct irqaction ns9xxx_clockevent_action = {
  100. .name = "ns9xxx-timer" __stringify(TIMER_CLOCKEVENT),
  101. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  102. .handler = ns9xxx_clockevent_handler,
  103. };
  104. static void __init ns9xxx_timer_init(void)
  105. {
  106. int tc;
  107. tc = __raw_readl(SYS_TC(TIMER_CLOCKSOURCE));
  108. if (REGGET(tc, SYS_TCx, TEN)) {
  109. REGSET(tc, SYS_TCx, TEN, DIS);
  110. __raw_writel(tc, SYS_TC(TIMER_CLOCKSOURCE));
  111. }
  112. __raw_writel(0, SYS_TRC(TIMER_CLOCKSOURCE));
  113. REGSET(tc, SYS_TCx, TEN, EN);
  114. REGSET(tc, SYS_TCx, TDBG, STOP);
  115. REGSET(tc, SYS_TCx, TLCS, CPU);
  116. REGSET(tc, SYS_TCx, TM, IEE);
  117. REGSET(tc, SYS_TCx, INTS, DIS);
  118. REGSET(tc, SYS_TCx, UDS, UP);
  119. REGSET(tc, SYS_TCx, TSZ, 32);
  120. REGSET(tc, SYS_TCx, REN, EN);
  121. __raw_writel(tc, SYS_TC(TIMER_CLOCKSOURCE));
  122. ns9xxx_clocksource.mult = clocksource_hz2mult(ns9xxx_cpuclock(),
  123. ns9xxx_clocksource.shift);
  124. clocksource_register(&ns9xxx_clocksource);
  125. latch = SH_DIV(ns9xxx_cpuclock(), HZ, 0);
  126. tc = __raw_readl(SYS_TC(TIMER_CLOCKEVENT));
  127. REGSET(tc, SYS_TCx, TEN, DIS);
  128. REGSET(tc, SYS_TCx, TDBG, STOP);
  129. REGSET(tc, SYS_TCx, TLCS, CPU);
  130. REGSET(tc, SYS_TCx, TM, IEE);
  131. REGSET(tc, SYS_TCx, INTS, DIS);
  132. REGSET(tc, SYS_TCx, UDS, DOWN);
  133. REGSET(tc, SYS_TCx, TSZ, 32);
  134. REGSET(tc, SYS_TCx, REN, EN);
  135. __raw_writel(tc, SYS_TC(TIMER_CLOCKEVENT));
  136. ns9xxx_clockevent_device.mult = div_sc(ns9xxx_cpuclock(),
  137. NSEC_PER_SEC, ns9xxx_clockevent_device.shift);
  138. ns9xxx_clockevent_device.max_delta_ns =
  139. clockevent_delta2ns(-1, &ns9xxx_clockevent_device);
  140. ns9xxx_clockevent_device.min_delta_ns =
  141. clockevent_delta2ns(1, &ns9xxx_clockevent_device);
  142. ns9xxx_clockevent_device.cpumask = cpumask_of_cpu(0);
  143. clockevents_register_device(&ns9xxx_clockevent_device);
  144. setup_irq(IRQ_TIMER0 + TIMER_CLOCKEVENT, &ns9xxx_clockevent_action);
  145. }
  146. struct sys_timer ns9xxx_timer = {
  147. .init = ns9xxx_timer_init,
  148. };