mmu.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "kvm.h"
  21. #include "x86.h"
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <asm/page.h>
  28. #include <asm/cmpxchg.h>
  29. #undef MMU_DEBUG
  30. #undef AUDIT
  31. #ifdef AUDIT
  32. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  33. #else
  34. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  35. #endif
  36. #ifdef MMU_DEBUG
  37. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  38. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  39. #else
  40. #define pgprintk(x...) do { } while (0)
  41. #define rmap_printk(x...) do { } while (0)
  42. #endif
  43. #if defined(MMU_DEBUG) || defined(AUDIT)
  44. static int dbg = 1;
  45. #endif
  46. #ifndef MMU_DEBUG
  47. #define ASSERT(x) do { } while (0)
  48. #else
  49. #define ASSERT(x) \
  50. if (!(x)) { \
  51. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  52. __FILE__, __LINE__, #x); \
  53. }
  54. #endif
  55. #define PT64_PT_BITS 9
  56. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  57. #define PT32_PT_BITS 10
  58. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  59. #define PT_WRITABLE_SHIFT 1
  60. #define PT_PRESENT_MASK (1ULL << 0)
  61. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  62. #define PT_USER_MASK (1ULL << 2)
  63. #define PT_PWT_MASK (1ULL << 3)
  64. #define PT_PCD_MASK (1ULL << 4)
  65. #define PT_ACCESSED_MASK (1ULL << 5)
  66. #define PT_DIRTY_MASK (1ULL << 6)
  67. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  68. #define PT_PAT_MASK (1ULL << 7)
  69. #define PT_GLOBAL_MASK (1ULL << 8)
  70. #define PT64_NX_MASK (1ULL << 63)
  71. #define PT_PAT_SHIFT 7
  72. #define PT_DIR_PAT_SHIFT 12
  73. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  74. #define PT32_DIR_PSE36_SIZE 4
  75. #define PT32_DIR_PSE36_SHIFT 13
  76. #define PT32_DIR_PSE36_MASK \
  77. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  81. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  82. #define PT64_LEVEL_BITS 9
  83. #define PT64_LEVEL_SHIFT(level) \
  84. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  85. #define PT64_LEVEL_MASK(level) \
  86. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  87. #define PT64_INDEX(address, level)\
  88. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  89. #define PT32_LEVEL_BITS 10
  90. #define PT32_LEVEL_SHIFT(level) \
  91. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  92. #define PT32_LEVEL_MASK(level) \
  93. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  94. #define PT32_INDEX(address, level)\
  95. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  96. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  97. #define PT64_DIR_BASE_ADDR_MASK \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  99. #define PT32_BASE_ADDR_MASK PAGE_MASK
  100. #define PT32_DIR_BASE_ADDR_MASK \
  101. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  102. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  103. | PT64_NX_MASK)
  104. #define PFERR_PRESENT_MASK (1U << 0)
  105. #define PFERR_WRITE_MASK (1U << 1)
  106. #define PFERR_USER_MASK (1U << 2)
  107. #define PFERR_FETCH_MASK (1U << 4)
  108. #define PT64_ROOT_LEVEL 4
  109. #define PT32_ROOT_LEVEL 2
  110. #define PT32E_ROOT_LEVEL 3
  111. #define PT_DIRECTORY_LEVEL 2
  112. #define PT_PAGE_TABLE_LEVEL 1
  113. #define RMAP_EXT 4
  114. struct kvm_rmap_desc {
  115. u64 *shadow_ptes[RMAP_EXT];
  116. struct kvm_rmap_desc *more;
  117. };
  118. static struct kmem_cache *pte_chain_cache;
  119. static struct kmem_cache *rmap_desc_cache;
  120. static struct kmem_cache *mmu_page_header_cache;
  121. static u64 __read_mostly shadow_trap_nonpresent_pte;
  122. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  123. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  124. {
  125. shadow_trap_nonpresent_pte = trap_pte;
  126. shadow_notrap_nonpresent_pte = notrap_pte;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  129. static int is_write_protection(struct kvm_vcpu *vcpu)
  130. {
  131. return vcpu->cr0 & X86_CR0_WP;
  132. }
  133. static int is_cpuid_PSE36(void)
  134. {
  135. return 1;
  136. }
  137. static int is_nx(struct kvm_vcpu *vcpu)
  138. {
  139. return vcpu->shadow_efer & EFER_NX;
  140. }
  141. static int is_present_pte(unsigned long pte)
  142. {
  143. return pte & PT_PRESENT_MASK;
  144. }
  145. static int is_shadow_present_pte(u64 pte)
  146. {
  147. pte &= ~PT_SHADOW_IO_MARK;
  148. return pte != shadow_trap_nonpresent_pte
  149. && pte != shadow_notrap_nonpresent_pte;
  150. }
  151. static int is_writeble_pte(unsigned long pte)
  152. {
  153. return pte & PT_WRITABLE_MASK;
  154. }
  155. static int is_dirty_pte(unsigned long pte)
  156. {
  157. return pte & PT_DIRTY_MASK;
  158. }
  159. static int is_io_pte(unsigned long pte)
  160. {
  161. return pte & PT_SHADOW_IO_MARK;
  162. }
  163. static int is_rmap_pte(u64 pte)
  164. {
  165. return pte != shadow_trap_nonpresent_pte
  166. && pte != shadow_notrap_nonpresent_pte;
  167. }
  168. static void set_shadow_pte(u64 *sptep, u64 spte)
  169. {
  170. #ifdef CONFIG_X86_64
  171. set_64bit((unsigned long *)sptep, spte);
  172. #else
  173. set_64bit((unsigned long long *)sptep, spte);
  174. #endif
  175. }
  176. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  177. struct kmem_cache *base_cache, int min)
  178. {
  179. void *obj;
  180. if (cache->nobjs >= min)
  181. return 0;
  182. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  183. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  184. if (!obj)
  185. return -ENOMEM;
  186. cache->objects[cache->nobjs++] = obj;
  187. }
  188. return 0;
  189. }
  190. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  191. {
  192. while (mc->nobjs)
  193. kfree(mc->objects[--mc->nobjs]);
  194. }
  195. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  196. int min)
  197. {
  198. struct page *page;
  199. if (cache->nobjs >= min)
  200. return 0;
  201. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  202. page = alloc_page(GFP_KERNEL);
  203. if (!page)
  204. return -ENOMEM;
  205. set_page_private(page, 0);
  206. cache->objects[cache->nobjs++] = page_address(page);
  207. }
  208. return 0;
  209. }
  210. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  211. {
  212. while (mc->nobjs)
  213. free_page((unsigned long)mc->objects[--mc->nobjs]);
  214. }
  215. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  216. {
  217. int r;
  218. kvm_mmu_free_some_pages(vcpu);
  219. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  220. pte_chain_cache, 4);
  221. if (r)
  222. goto out;
  223. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  224. rmap_desc_cache, 1);
  225. if (r)
  226. goto out;
  227. r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
  228. if (r)
  229. goto out;
  230. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  231. mmu_page_header_cache, 4);
  232. out:
  233. return r;
  234. }
  235. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  236. {
  237. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  238. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  239. mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
  240. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  241. }
  242. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  243. size_t size)
  244. {
  245. void *p;
  246. BUG_ON(!mc->nobjs);
  247. p = mc->objects[--mc->nobjs];
  248. memset(p, 0, size);
  249. return p;
  250. }
  251. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  252. {
  253. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  254. sizeof(struct kvm_pte_chain));
  255. }
  256. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  257. {
  258. kfree(pc);
  259. }
  260. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  261. {
  262. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  263. sizeof(struct kvm_rmap_desc));
  264. }
  265. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  266. {
  267. kfree(rd);
  268. }
  269. /*
  270. * Take gfn and return the reverse mapping to it.
  271. * Note: gfn must be unaliased before this function get called
  272. */
  273. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
  274. {
  275. struct kvm_memory_slot *slot;
  276. slot = gfn_to_memslot(kvm, gfn);
  277. return &slot->rmap[gfn - slot->base_gfn];
  278. }
  279. /*
  280. * Reverse mapping data structures:
  281. *
  282. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  283. * that points to page_address(page).
  284. *
  285. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  286. * containing more mappings.
  287. */
  288. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  289. {
  290. struct kvm_mmu_page *page;
  291. struct kvm_rmap_desc *desc;
  292. unsigned long *rmapp;
  293. int i;
  294. if (!is_rmap_pte(*spte))
  295. return;
  296. gfn = unalias_gfn(vcpu->kvm, gfn);
  297. page = page_header(__pa(spte));
  298. page->gfns[spte - page->spt] = gfn;
  299. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  300. if (!*rmapp) {
  301. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  302. *rmapp = (unsigned long)spte;
  303. } else if (!(*rmapp & 1)) {
  304. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  305. desc = mmu_alloc_rmap_desc(vcpu);
  306. desc->shadow_ptes[0] = (u64 *)*rmapp;
  307. desc->shadow_ptes[1] = spte;
  308. *rmapp = (unsigned long)desc | 1;
  309. } else {
  310. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  311. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  312. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  313. desc = desc->more;
  314. if (desc->shadow_ptes[RMAP_EXT-1]) {
  315. desc->more = mmu_alloc_rmap_desc(vcpu);
  316. desc = desc->more;
  317. }
  318. for (i = 0; desc->shadow_ptes[i]; ++i)
  319. ;
  320. desc->shadow_ptes[i] = spte;
  321. }
  322. }
  323. static void rmap_desc_remove_entry(unsigned long *rmapp,
  324. struct kvm_rmap_desc *desc,
  325. int i,
  326. struct kvm_rmap_desc *prev_desc)
  327. {
  328. int j;
  329. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  330. ;
  331. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  332. desc->shadow_ptes[j] = NULL;
  333. if (j != 0)
  334. return;
  335. if (!prev_desc && !desc->more)
  336. *rmapp = (unsigned long)desc->shadow_ptes[0];
  337. else
  338. if (prev_desc)
  339. prev_desc->more = desc->more;
  340. else
  341. *rmapp = (unsigned long)desc->more | 1;
  342. mmu_free_rmap_desc(desc);
  343. }
  344. static void rmap_remove(struct kvm *kvm, u64 *spte)
  345. {
  346. struct kvm_rmap_desc *desc;
  347. struct kvm_rmap_desc *prev_desc;
  348. struct kvm_mmu_page *page;
  349. struct page *release_page;
  350. unsigned long *rmapp;
  351. int i;
  352. if (!is_rmap_pte(*spte))
  353. return;
  354. page = page_header(__pa(spte));
  355. release_page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  356. if (is_writeble_pte(*spte))
  357. kvm_release_page_dirty(release_page);
  358. else
  359. kvm_release_page_clean(release_page);
  360. rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
  361. if (!*rmapp) {
  362. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  363. BUG();
  364. } else if (!(*rmapp & 1)) {
  365. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  366. if ((u64 *)*rmapp != spte) {
  367. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  368. spte, *spte);
  369. BUG();
  370. }
  371. *rmapp = 0;
  372. } else {
  373. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  374. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  375. prev_desc = NULL;
  376. while (desc) {
  377. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  378. if (desc->shadow_ptes[i] == spte) {
  379. rmap_desc_remove_entry(rmapp,
  380. desc, i,
  381. prev_desc);
  382. return;
  383. }
  384. prev_desc = desc;
  385. desc = desc->more;
  386. }
  387. BUG();
  388. }
  389. }
  390. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  391. {
  392. struct kvm_rmap_desc *desc;
  393. struct kvm_rmap_desc *prev_desc;
  394. u64 *prev_spte;
  395. int i;
  396. if (!*rmapp)
  397. return NULL;
  398. else if (!(*rmapp & 1)) {
  399. if (!spte)
  400. return (u64 *)*rmapp;
  401. return NULL;
  402. }
  403. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  404. prev_desc = NULL;
  405. prev_spte = NULL;
  406. while (desc) {
  407. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  408. if (prev_spte == spte)
  409. return desc->shadow_ptes[i];
  410. prev_spte = desc->shadow_ptes[i];
  411. }
  412. desc = desc->more;
  413. }
  414. return NULL;
  415. }
  416. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  417. {
  418. unsigned long *rmapp;
  419. u64 *spte;
  420. gfn = unalias_gfn(kvm, gfn);
  421. rmapp = gfn_to_rmap(kvm, gfn);
  422. spte = rmap_next(kvm, rmapp, NULL);
  423. while (spte) {
  424. BUG_ON(!spte);
  425. BUG_ON(!(*spte & PT_PRESENT_MASK));
  426. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  427. if (is_writeble_pte(*spte))
  428. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  429. kvm_flush_remote_tlbs(kvm);
  430. spte = rmap_next(kvm, rmapp, spte);
  431. }
  432. }
  433. #ifdef MMU_DEBUG
  434. static int is_empty_shadow_page(u64 *spt)
  435. {
  436. u64 *pos;
  437. u64 *end;
  438. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  439. if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
  440. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  441. pos, *pos);
  442. return 0;
  443. }
  444. return 1;
  445. }
  446. #endif
  447. static void kvm_mmu_free_page(struct kvm *kvm,
  448. struct kvm_mmu_page *page_head)
  449. {
  450. ASSERT(is_empty_shadow_page(page_head->spt));
  451. list_del(&page_head->link);
  452. __free_page(virt_to_page(page_head->spt));
  453. __free_page(virt_to_page(page_head->gfns));
  454. kfree(page_head);
  455. ++kvm->n_free_mmu_pages;
  456. }
  457. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  458. {
  459. return gfn;
  460. }
  461. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  462. u64 *parent_pte)
  463. {
  464. struct kvm_mmu_page *page;
  465. if (!vcpu->kvm->n_free_mmu_pages)
  466. return NULL;
  467. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  468. sizeof *page);
  469. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  470. page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  471. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  472. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  473. ASSERT(is_empty_shadow_page(page->spt));
  474. page->slot_bitmap = 0;
  475. page->multimapped = 0;
  476. page->parent_pte = parent_pte;
  477. --vcpu->kvm->n_free_mmu_pages;
  478. return page;
  479. }
  480. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  481. struct kvm_mmu_page *page, u64 *parent_pte)
  482. {
  483. struct kvm_pte_chain *pte_chain;
  484. struct hlist_node *node;
  485. int i;
  486. if (!parent_pte)
  487. return;
  488. if (!page->multimapped) {
  489. u64 *old = page->parent_pte;
  490. if (!old) {
  491. page->parent_pte = parent_pte;
  492. return;
  493. }
  494. page->multimapped = 1;
  495. pte_chain = mmu_alloc_pte_chain(vcpu);
  496. INIT_HLIST_HEAD(&page->parent_ptes);
  497. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  498. pte_chain->parent_ptes[0] = old;
  499. }
  500. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  501. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  502. continue;
  503. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  504. if (!pte_chain->parent_ptes[i]) {
  505. pte_chain->parent_ptes[i] = parent_pte;
  506. return;
  507. }
  508. }
  509. pte_chain = mmu_alloc_pte_chain(vcpu);
  510. BUG_ON(!pte_chain);
  511. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  512. pte_chain->parent_ptes[0] = parent_pte;
  513. }
  514. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  515. u64 *parent_pte)
  516. {
  517. struct kvm_pte_chain *pte_chain;
  518. struct hlist_node *node;
  519. int i;
  520. if (!page->multimapped) {
  521. BUG_ON(page->parent_pte != parent_pte);
  522. page->parent_pte = NULL;
  523. return;
  524. }
  525. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  526. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  527. if (!pte_chain->parent_ptes[i])
  528. break;
  529. if (pte_chain->parent_ptes[i] != parent_pte)
  530. continue;
  531. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  532. && pte_chain->parent_ptes[i + 1]) {
  533. pte_chain->parent_ptes[i]
  534. = pte_chain->parent_ptes[i + 1];
  535. ++i;
  536. }
  537. pte_chain->parent_ptes[i] = NULL;
  538. if (i == 0) {
  539. hlist_del(&pte_chain->link);
  540. mmu_free_pte_chain(pte_chain);
  541. if (hlist_empty(&page->parent_ptes)) {
  542. page->multimapped = 0;
  543. page->parent_pte = NULL;
  544. }
  545. }
  546. return;
  547. }
  548. BUG();
  549. }
  550. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm,
  551. gfn_t gfn)
  552. {
  553. unsigned index;
  554. struct hlist_head *bucket;
  555. struct kvm_mmu_page *page;
  556. struct hlist_node *node;
  557. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  558. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  559. bucket = &kvm->mmu_page_hash[index];
  560. hlist_for_each_entry(page, node, bucket, hash_link)
  561. if (page->gfn == gfn && !page->role.metaphysical) {
  562. pgprintk("%s: found role %x\n",
  563. __FUNCTION__, page->role.word);
  564. return page;
  565. }
  566. return NULL;
  567. }
  568. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  569. gfn_t gfn,
  570. gva_t gaddr,
  571. unsigned level,
  572. int metaphysical,
  573. unsigned hugepage_access,
  574. u64 *parent_pte)
  575. {
  576. union kvm_mmu_page_role role;
  577. unsigned index;
  578. unsigned quadrant;
  579. struct hlist_head *bucket;
  580. struct kvm_mmu_page *page;
  581. struct hlist_node *node;
  582. role.word = 0;
  583. role.glevels = vcpu->mmu.root_level;
  584. role.level = level;
  585. role.metaphysical = metaphysical;
  586. role.hugepage_access = hugepage_access;
  587. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  588. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  589. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  590. role.quadrant = quadrant;
  591. }
  592. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  593. gfn, role.word);
  594. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  595. bucket = &vcpu->kvm->mmu_page_hash[index];
  596. hlist_for_each_entry(page, node, bucket, hash_link)
  597. if (page->gfn == gfn && page->role.word == role.word) {
  598. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  599. pgprintk("%s: found\n", __FUNCTION__);
  600. return page;
  601. }
  602. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  603. if (!page)
  604. return page;
  605. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  606. page->gfn = gfn;
  607. page->role = role;
  608. hlist_add_head(&page->hash_link, bucket);
  609. vcpu->mmu.prefetch_page(vcpu, page);
  610. if (!metaphysical)
  611. rmap_write_protect(vcpu->kvm, gfn);
  612. return page;
  613. }
  614. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  615. struct kvm_mmu_page *page)
  616. {
  617. unsigned i;
  618. u64 *pt;
  619. u64 ent;
  620. pt = page->spt;
  621. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  622. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  623. if (is_shadow_present_pte(pt[i]))
  624. rmap_remove(kvm, &pt[i]);
  625. pt[i] = shadow_trap_nonpresent_pte;
  626. }
  627. kvm_flush_remote_tlbs(kvm);
  628. return;
  629. }
  630. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  631. ent = pt[i];
  632. pt[i] = shadow_trap_nonpresent_pte;
  633. if (!is_shadow_present_pte(ent))
  634. continue;
  635. ent &= PT64_BASE_ADDR_MASK;
  636. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  637. }
  638. kvm_flush_remote_tlbs(kvm);
  639. }
  640. static void kvm_mmu_put_page(struct kvm_mmu_page *page,
  641. u64 *parent_pte)
  642. {
  643. mmu_page_remove_parent_pte(page, parent_pte);
  644. }
  645. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  646. {
  647. int i;
  648. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  649. if (kvm->vcpus[i])
  650. kvm->vcpus[i]->last_pte_updated = NULL;
  651. }
  652. static void kvm_mmu_zap_page(struct kvm *kvm,
  653. struct kvm_mmu_page *page)
  654. {
  655. u64 *parent_pte;
  656. ++kvm->stat.mmu_shadow_zapped;
  657. while (page->multimapped || page->parent_pte) {
  658. if (!page->multimapped)
  659. parent_pte = page->parent_pte;
  660. else {
  661. struct kvm_pte_chain *chain;
  662. chain = container_of(page->parent_ptes.first,
  663. struct kvm_pte_chain, link);
  664. parent_pte = chain->parent_ptes[0];
  665. }
  666. BUG_ON(!parent_pte);
  667. kvm_mmu_put_page(page, parent_pte);
  668. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  669. }
  670. kvm_mmu_page_unlink_children(kvm, page);
  671. if (!page->root_count) {
  672. hlist_del(&page->hash_link);
  673. kvm_mmu_free_page(kvm, page);
  674. } else
  675. list_move(&page->link, &kvm->active_mmu_pages);
  676. kvm_mmu_reset_last_pte_updated(kvm);
  677. }
  678. /*
  679. * Changing the number of mmu pages allocated to the vm
  680. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  681. */
  682. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  683. {
  684. /*
  685. * If we set the number of mmu pages to be smaller be than the
  686. * number of actived pages , we must to free some mmu pages before we
  687. * change the value
  688. */
  689. if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
  690. kvm_nr_mmu_pages) {
  691. int n_used_mmu_pages = kvm->n_alloc_mmu_pages
  692. - kvm->n_free_mmu_pages;
  693. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  694. struct kvm_mmu_page *page;
  695. page = container_of(kvm->active_mmu_pages.prev,
  696. struct kvm_mmu_page, link);
  697. kvm_mmu_zap_page(kvm, page);
  698. n_used_mmu_pages--;
  699. }
  700. kvm->n_free_mmu_pages = 0;
  701. }
  702. else
  703. kvm->n_free_mmu_pages += kvm_nr_mmu_pages
  704. - kvm->n_alloc_mmu_pages;
  705. kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
  706. }
  707. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  708. {
  709. unsigned index;
  710. struct hlist_head *bucket;
  711. struct kvm_mmu_page *page;
  712. struct hlist_node *node, *n;
  713. int r;
  714. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  715. r = 0;
  716. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  717. bucket = &kvm->mmu_page_hash[index];
  718. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  719. if (page->gfn == gfn && !page->role.metaphysical) {
  720. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  721. page->role.word);
  722. kvm_mmu_zap_page(kvm, page);
  723. r = 1;
  724. }
  725. return r;
  726. }
  727. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  728. {
  729. struct kvm_mmu_page *page;
  730. while ((page = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  731. pgprintk("%s: zap %lx %x\n",
  732. __FUNCTION__, gfn, page->role.word);
  733. kvm_mmu_zap_page(kvm, page);
  734. }
  735. }
  736. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  737. {
  738. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  739. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  740. __set_bit(slot, &page_head->slot_bitmap);
  741. }
  742. hpa_t gpa_to_hpa(struct kvm *kvm, gpa_t gpa)
  743. {
  744. struct page *page;
  745. hpa_t hpa;
  746. ASSERT((gpa & HPA_ERR_MASK) == 0);
  747. page = gfn_to_page(kvm, gpa >> PAGE_SHIFT);
  748. hpa = ((hpa_t)page_to_pfn(page) << PAGE_SHIFT) | (gpa & (PAGE_SIZE-1));
  749. if (is_error_page(page))
  750. return hpa | HPA_ERR_MASK;
  751. return hpa;
  752. }
  753. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  754. {
  755. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  756. if (gpa == UNMAPPED_GVA)
  757. return UNMAPPED_GVA;
  758. return gpa_to_hpa(vcpu->kvm, gpa);
  759. }
  760. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  761. {
  762. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  763. if (gpa == UNMAPPED_GVA)
  764. return NULL;
  765. return pfn_to_page(gpa_to_hpa(vcpu->kvm, gpa) >> PAGE_SHIFT);
  766. }
  767. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  768. {
  769. }
  770. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  771. {
  772. int level = PT32E_ROOT_LEVEL;
  773. hpa_t table_addr = vcpu->mmu.root_hpa;
  774. struct page *page;
  775. page = pfn_to_page(p >> PAGE_SHIFT);
  776. for (; ; level--) {
  777. u32 index = PT64_INDEX(v, level);
  778. u64 *table;
  779. u64 pte;
  780. ASSERT(VALID_PAGE(table_addr));
  781. table = __va(table_addr);
  782. if (level == 1) {
  783. int was_rmapped;
  784. pte = table[index];
  785. was_rmapped = is_rmap_pte(pte);
  786. if (is_shadow_present_pte(pte) && is_writeble_pte(pte)) {
  787. kvm_release_page_clean(page);
  788. return 0;
  789. }
  790. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  791. page_header_update_slot(vcpu->kvm, table, v);
  792. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  793. PT_USER_MASK;
  794. if (!was_rmapped)
  795. rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
  796. else
  797. kvm_release_page_clean(page);
  798. return 0;
  799. }
  800. if (table[index] == shadow_trap_nonpresent_pte) {
  801. struct kvm_mmu_page *new_table;
  802. gfn_t pseudo_gfn;
  803. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  804. >> PAGE_SHIFT;
  805. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  806. v, level - 1,
  807. 1, 3, &table[index]);
  808. if (!new_table) {
  809. pgprintk("nonpaging_map: ENOMEM\n");
  810. kvm_release_page_clean(page);
  811. return -ENOMEM;
  812. }
  813. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  814. | PT_WRITABLE_MASK | PT_USER_MASK;
  815. }
  816. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  817. }
  818. }
  819. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  820. struct kvm_mmu_page *sp)
  821. {
  822. int i;
  823. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  824. sp->spt[i] = shadow_trap_nonpresent_pte;
  825. }
  826. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  827. {
  828. int i;
  829. struct kvm_mmu_page *page;
  830. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  831. return;
  832. #ifdef CONFIG_X86_64
  833. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  834. hpa_t root = vcpu->mmu.root_hpa;
  835. page = page_header(root);
  836. --page->root_count;
  837. vcpu->mmu.root_hpa = INVALID_PAGE;
  838. return;
  839. }
  840. #endif
  841. for (i = 0; i < 4; ++i) {
  842. hpa_t root = vcpu->mmu.pae_root[i];
  843. if (root) {
  844. root &= PT64_BASE_ADDR_MASK;
  845. page = page_header(root);
  846. --page->root_count;
  847. }
  848. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  849. }
  850. vcpu->mmu.root_hpa = INVALID_PAGE;
  851. }
  852. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  853. {
  854. int i;
  855. gfn_t root_gfn;
  856. struct kvm_mmu_page *page;
  857. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  858. #ifdef CONFIG_X86_64
  859. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  860. hpa_t root = vcpu->mmu.root_hpa;
  861. ASSERT(!VALID_PAGE(root));
  862. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  863. PT64_ROOT_LEVEL, 0, 0, NULL);
  864. root = __pa(page->spt);
  865. ++page->root_count;
  866. vcpu->mmu.root_hpa = root;
  867. return;
  868. }
  869. #endif
  870. for (i = 0; i < 4; ++i) {
  871. hpa_t root = vcpu->mmu.pae_root[i];
  872. ASSERT(!VALID_PAGE(root));
  873. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  874. if (!is_present_pte(vcpu->pdptrs[i])) {
  875. vcpu->mmu.pae_root[i] = 0;
  876. continue;
  877. }
  878. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  879. } else if (vcpu->mmu.root_level == 0)
  880. root_gfn = 0;
  881. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  882. PT32_ROOT_LEVEL, !is_paging(vcpu),
  883. 0, NULL);
  884. root = __pa(page->spt);
  885. ++page->root_count;
  886. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  887. }
  888. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  889. }
  890. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  891. {
  892. return vaddr;
  893. }
  894. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  895. u32 error_code)
  896. {
  897. gpa_t addr = gva;
  898. hpa_t paddr;
  899. int r;
  900. r = mmu_topup_memory_caches(vcpu);
  901. if (r)
  902. return r;
  903. ASSERT(vcpu);
  904. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  905. paddr = gpa_to_hpa(vcpu->kvm, addr & PT64_BASE_ADDR_MASK);
  906. if (is_error_hpa(paddr)) {
  907. kvm_release_page_clean(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  908. >> PAGE_SHIFT));
  909. return 1;
  910. }
  911. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  912. }
  913. static void nonpaging_free(struct kvm_vcpu *vcpu)
  914. {
  915. mmu_free_roots(vcpu);
  916. }
  917. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  918. {
  919. struct kvm_mmu *context = &vcpu->mmu;
  920. context->new_cr3 = nonpaging_new_cr3;
  921. context->page_fault = nonpaging_page_fault;
  922. context->gva_to_gpa = nonpaging_gva_to_gpa;
  923. context->free = nonpaging_free;
  924. context->prefetch_page = nonpaging_prefetch_page;
  925. context->root_level = 0;
  926. context->shadow_root_level = PT32E_ROOT_LEVEL;
  927. context->root_hpa = INVALID_PAGE;
  928. return 0;
  929. }
  930. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  931. {
  932. ++vcpu->stat.tlb_flush;
  933. kvm_x86_ops->tlb_flush(vcpu);
  934. }
  935. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  936. {
  937. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  938. mmu_free_roots(vcpu);
  939. }
  940. static void inject_page_fault(struct kvm_vcpu *vcpu,
  941. u64 addr,
  942. u32 err_code)
  943. {
  944. kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
  945. }
  946. static void paging_free(struct kvm_vcpu *vcpu)
  947. {
  948. nonpaging_free(vcpu);
  949. }
  950. #define PTTYPE 64
  951. #include "paging_tmpl.h"
  952. #undef PTTYPE
  953. #define PTTYPE 32
  954. #include "paging_tmpl.h"
  955. #undef PTTYPE
  956. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  957. {
  958. struct kvm_mmu *context = &vcpu->mmu;
  959. ASSERT(is_pae(vcpu));
  960. context->new_cr3 = paging_new_cr3;
  961. context->page_fault = paging64_page_fault;
  962. context->gva_to_gpa = paging64_gva_to_gpa;
  963. context->prefetch_page = paging64_prefetch_page;
  964. context->free = paging_free;
  965. context->root_level = level;
  966. context->shadow_root_level = level;
  967. context->root_hpa = INVALID_PAGE;
  968. return 0;
  969. }
  970. static int paging64_init_context(struct kvm_vcpu *vcpu)
  971. {
  972. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  973. }
  974. static int paging32_init_context(struct kvm_vcpu *vcpu)
  975. {
  976. struct kvm_mmu *context = &vcpu->mmu;
  977. context->new_cr3 = paging_new_cr3;
  978. context->page_fault = paging32_page_fault;
  979. context->gva_to_gpa = paging32_gva_to_gpa;
  980. context->free = paging_free;
  981. context->prefetch_page = paging32_prefetch_page;
  982. context->root_level = PT32_ROOT_LEVEL;
  983. context->shadow_root_level = PT32E_ROOT_LEVEL;
  984. context->root_hpa = INVALID_PAGE;
  985. return 0;
  986. }
  987. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  988. {
  989. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  990. }
  991. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  992. {
  993. ASSERT(vcpu);
  994. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  995. if (!is_paging(vcpu))
  996. return nonpaging_init_context(vcpu);
  997. else if (is_long_mode(vcpu))
  998. return paging64_init_context(vcpu);
  999. else if (is_pae(vcpu))
  1000. return paging32E_init_context(vcpu);
  1001. else
  1002. return paging32_init_context(vcpu);
  1003. }
  1004. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1005. {
  1006. ASSERT(vcpu);
  1007. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  1008. vcpu->mmu.free(vcpu);
  1009. vcpu->mmu.root_hpa = INVALID_PAGE;
  1010. }
  1011. }
  1012. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1013. {
  1014. destroy_kvm_mmu(vcpu);
  1015. return init_kvm_mmu(vcpu);
  1016. }
  1017. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1018. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1019. {
  1020. int r;
  1021. mutex_lock(&vcpu->kvm->lock);
  1022. r = mmu_topup_memory_caches(vcpu);
  1023. if (r)
  1024. goto out;
  1025. mmu_alloc_roots(vcpu);
  1026. kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  1027. kvm_mmu_flush_tlb(vcpu);
  1028. out:
  1029. mutex_unlock(&vcpu->kvm->lock);
  1030. return r;
  1031. }
  1032. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1033. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1034. {
  1035. mmu_free_roots(vcpu);
  1036. }
  1037. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1038. struct kvm_mmu_page *page,
  1039. u64 *spte)
  1040. {
  1041. u64 pte;
  1042. struct kvm_mmu_page *child;
  1043. pte = *spte;
  1044. if (is_shadow_present_pte(pte)) {
  1045. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  1046. rmap_remove(vcpu->kvm, spte);
  1047. else {
  1048. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1049. mmu_page_remove_parent_pte(child, spte);
  1050. }
  1051. }
  1052. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1053. }
  1054. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1055. struct kvm_mmu_page *page,
  1056. u64 *spte,
  1057. const void *new, int bytes,
  1058. int offset_in_pte)
  1059. {
  1060. if (page->role.level != PT_PAGE_TABLE_LEVEL) {
  1061. ++vcpu->kvm->stat.mmu_pde_zapped;
  1062. return;
  1063. }
  1064. ++vcpu->kvm->stat.mmu_pte_updated;
  1065. if (page->role.glevels == PT32_ROOT_LEVEL)
  1066. paging32_update_pte(vcpu, page, spte, new, bytes,
  1067. offset_in_pte);
  1068. else
  1069. paging64_update_pte(vcpu, page, spte, new, bytes,
  1070. offset_in_pte);
  1071. }
  1072. static bool need_remote_flush(u64 old, u64 new)
  1073. {
  1074. if (!is_shadow_present_pte(old))
  1075. return false;
  1076. if (!is_shadow_present_pte(new))
  1077. return true;
  1078. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1079. return true;
  1080. old ^= PT64_NX_MASK;
  1081. new ^= PT64_NX_MASK;
  1082. return (old & ~new & PT64_PERM_MASK) != 0;
  1083. }
  1084. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1085. {
  1086. if (need_remote_flush(old, new))
  1087. kvm_flush_remote_tlbs(vcpu->kvm);
  1088. else
  1089. kvm_mmu_flush_tlb(vcpu);
  1090. }
  1091. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1092. {
  1093. u64 *spte = vcpu->last_pte_updated;
  1094. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1095. }
  1096. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1097. const u8 *new, int bytes)
  1098. {
  1099. gfn_t gfn = gpa >> PAGE_SHIFT;
  1100. struct kvm_mmu_page *page;
  1101. struct hlist_node *node, *n;
  1102. struct hlist_head *bucket;
  1103. unsigned index;
  1104. u64 entry;
  1105. u64 *spte;
  1106. unsigned offset = offset_in_page(gpa);
  1107. unsigned pte_size;
  1108. unsigned page_offset;
  1109. unsigned misaligned;
  1110. unsigned quadrant;
  1111. int level;
  1112. int flooded = 0;
  1113. int npte;
  1114. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  1115. ++vcpu->kvm->stat.mmu_pte_write;
  1116. kvm_mmu_audit(vcpu, "pre pte write");
  1117. if (gfn == vcpu->last_pt_write_gfn
  1118. && !last_updated_pte_accessed(vcpu)) {
  1119. ++vcpu->last_pt_write_count;
  1120. if (vcpu->last_pt_write_count >= 3)
  1121. flooded = 1;
  1122. } else {
  1123. vcpu->last_pt_write_gfn = gfn;
  1124. vcpu->last_pt_write_count = 1;
  1125. vcpu->last_pte_updated = NULL;
  1126. }
  1127. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  1128. bucket = &vcpu->kvm->mmu_page_hash[index];
  1129. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  1130. if (page->gfn != gfn || page->role.metaphysical)
  1131. continue;
  1132. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1133. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1134. misaligned |= bytes < 4;
  1135. if (misaligned || flooded) {
  1136. /*
  1137. * Misaligned accesses are too much trouble to fix
  1138. * up; also, they usually indicate a page is not used
  1139. * as a page table.
  1140. *
  1141. * If we're seeing too many writes to a page,
  1142. * it may no longer be a page table, or we may be
  1143. * forking, in which case it is better to unmap the
  1144. * page.
  1145. */
  1146. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1147. gpa, bytes, page->role.word);
  1148. kvm_mmu_zap_page(vcpu->kvm, page);
  1149. ++vcpu->kvm->stat.mmu_flooded;
  1150. continue;
  1151. }
  1152. page_offset = offset;
  1153. level = page->role.level;
  1154. npte = 1;
  1155. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1156. page_offset <<= 1; /* 32->64 */
  1157. /*
  1158. * A 32-bit pde maps 4MB while the shadow pdes map
  1159. * only 2MB. So we need to double the offset again
  1160. * and zap two pdes instead of one.
  1161. */
  1162. if (level == PT32_ROOT_LEVEL) {
  1163. page_offset &= ~7; /* kill rounding error */
  1164. page_offset <<= 1;
  1165. npte = 2;
  1166. }
  1167. quadrant = page_offset >> PAGE_SHIFT;
  1168. page_offset &= ~PAGE_MASK;
  1169. if (quadrant != page->role.quadrant)
  1170. continue;
  1171. }
  1172. spte = &page->spt[page_offset / sizeof(*spte)];
  1173. while (npte--) {
  1174. entry = *spte;
  1175. mmu_pte_write_zap_pte(vcpu, page, spte);
  1176. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
  1177. page_offset & (pte_size - 1));
  1178. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1179. ++spte;
  1180. }
  1181. }
  1182. kvm_mmu_audit(vcpu, "post pte write");
  1183. }
  1184. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1185. {
  1186. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1187. return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1188. }
  1189. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1190. {
  1191. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1192. struct kvm_mmu_page *page;
  1193. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1194. struct kvm_mmu_page, link);
  1195. kvm_mmu_zap_page(vcpu->kvm, page);
  1196. ++vcpu->kvm->stat.mmu_recycled;
  1197. }
  1198. }
  1199. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1200. {
  1201. int r;
  1202. enum emulation_result er;
  1203. mutex_lock(&vcpu->kvm->lock);
  1204. r = vcpu->mmu.page_fault(vcpu, cr2, error_code);
  1205. if (r < 0)
  1206. goto out;
  1207. if (!r) {
  1208. r = 1;
  1209. goto out;
  1210. }
  1211. r = mmu_topup_memory_caches(vcpu);
  1212. if (r)
  1213. goto out;
  1214. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1215. mutex_unlock(&vcpu->kvm->lock);
  1216. switch (er) {
  1217. case EMULATE_DONE:
  1218. return 1;
  1219. case EMULATE_DO_MMIO:
  1220. ++vcpu->stat.mmio_exits;
  1221. return 0;
  1222. case EMULATE_FAIL:
  1223. kvm_report_emulation_failure(vcpu, "pagetable");
  1224. return 1;
  1225. default:
  1226. BUG();
  1227. }
  1228. out:
  1229. mutex_unlock(&vcpu->kvm->lock);
  1230. return r;
  1231. }
  1232. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1233. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1234. {
  1235. struct kvm_mmu_page *page;
  1236. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1237. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1238. struct kvm_mmu_page, link);
  1239. kvm_mmu_zap_page(vcpu->kvm, page);
  1240. }
  1241. free_page((unsigned long)vcpu->mmu.pae_root);
  1242. }
  1243. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1244. {
  1245. struct page *page;
  1246. int i;
  1247. ASSERT(vcpu);
  1248. if (vcpu->kvm->n_requested_mmu_pages)
  1249. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
  1250. else
  1251. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
  1252. /*
  1253. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1254. * Therefore we need to allocate shadow page tables in the first
  1255. * 4GB of memory, which happens to fit the DMA32 zone.
  1256. */
  1257. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1258. if (!page)
  1259. goto error_1;
  1260. vcpu->mmu.pae_root = page_address(page);
  1261. for (i = 0; i < 4; ++i)
  1262. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1263. return 0;
  1264. error_1:
  1265. free_mmu_pages(vcpu);
  1266. return -ENOMEM;
  1267. }
  1268. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1269. {
  1270. ASSERT(vcpu);
  1271. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1272. return alloc_mmu_pages(vcpu);
  1273. }
  1274. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1275. {
  1276. ASSERT(vcpu);
  1277. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1278. return init_kvm_mmu(vcpu);
  1279. }
  1280. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1281. {
  1282. ASSERT(vcpu);
  1283. destroy_kvm_mmu(vcpu);
  1284. free_mmu_pages(vcpu);
  1285. mmu_free_memory_caches(vcpu);
  1286. }
  1287. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1288. {
  1289. struct kvm_mmu_page *page;
  1290. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1291. int i;
  1292. u64 *pt;
  1293. if (!test_bit(slot, &page->slot_bitmap))
  1294. continue;
  1295. pt = page->spt;
  1296. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1297. /* avoid RMW */
  1298. if (pt[i] & PT_WRITABLE_MASK)
  1299. pt[i] &= ~PT_WRITABLE_MASK;
  1300. }
  1301. }
  1302. void kvm_mmu_zap_all(struct kvm *kvm)
  1303. {
  1304. struct kvm_mmu_page *page, *node;
  1305. list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
  1306. kvm_mmu_zap_page(kvm, page);
  1307. kvm_flush_remote_tlbs(kvm);
  1308. }
  1309. void kvm_mmu_module_exit(void)
  1310. {
  1311. if (pte_chain_cache)
  1312. kmem_cache_destroy(pte_chain_cache);
  1313. if (rmap_desc_cache)
  1314. kmem_cache_destroy(rmap_desc_cache);
  1315. if (mmu_page_header_cache)
  1316. kmem_cache_destroy(mmu_page_header_cache);
  1317. }
  1318. int kvm_mmu_module_init(void)
  1319. {
  1320. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1321. sizeof(struct kvm_pte_chain),
  1322. 0, 0, NULL);
  1323. if (!pte_chain_cache)
  1324. goto nomem;
  1325. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1326. sizeof(struct kvm_rmap_desc),
  1327. 0, 0, NULL);
  1328. if (!rmap_desc_cache)
  1329. goto nomem;
  1330. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1331. sizeof(struct kvm_mmu_page),
  1332. 0, 0, NULL);
  1333. if (!mmu_page_header_cache)
  1334. goto nomem;
  1335. return 0;
  1336. nomem:
  1337. kvm_mmu_module_exit();
  1338. return -ENOMEM;
  1339. }
  1340. /*
  1341. * Caculate mmu pages needed for kvm.
  1342. */
  1343. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1344. {
  1345. int i;
  1346. unsigned int nr_mmu_pages;
  1347. unsigned int nr_pages = 0;
  1348. for (i = 0; i < kvm->nmemslots; i++)
  1349. nr_pages += kvm->memslots[i].npages;
  1350. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1351. nr_mmu_pages = max(nr_mmu_pages,
  1352. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1353. return nr_mmu_pages;
  1354. }
  1355. #ifdef AUDIT
  1356. static const char *audit_msg;
  1357. static gva_t canonicalize(gva_t gva)
  1358. {
  1359. #ifdef CONFIG_X86_64
  1360. gva = (long long)(gva << 16) >> 16;
  1361. #endif
  1362. return gva;
  1363. }
  1364. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1365. gva_t va, int level)
  1366. {
  1367. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1368. int i;
  1369. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1370. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1371. u64 ent = pt[i];
  1372. if (ent == shadow_trap_nonpresent_pte)
  1373. continue;
  1374. va = canonicalize(va);
  1375. if (level > 1) {
  1376. if (ent == shadow_notrap_nonpresent_pte)
  1377. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1378. " in nonleaf level: levels %d gva %lx"
  1379. " level %d pte %llx\n", audit_msg,
  1380. vcpu->mmu.root_level, va, level, ent);
  1381. audit_mappings_page(vcpu, ent, va, level - 1);
  1382. } else {
  1383. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1384. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1385. struct page *page;
  1386. if (is_shadow_present_pte(ent)
  1387. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1388. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1389. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1390. audit_msg, vcpu->mmu.root_level,
  1391. va, gpa, hpa, ent,
  1392. is_shadow_present_pte(ent));
  1393. else if (ent == shadow_notrap_nonpresent_pte
  1394. && !is_error_hpa(hpa))
  1395. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1396. " valid guest gva %lx\n", audit_msg, va);
  1397. page = pfn_to_page((gpa & PT64_BASE_ADDR_MASK)
  1398. >> PAGE_SHIFT);
  1399. kvm_release_page_clean(page);
  1400. }
  1401. }
  1402. }
  1403. static void audit_mappings(struct kvm_vcpu *vcpu)
  1404. {
  1405. unsigned i;
  1406. if (vcpu->mmu.root_level == 4)
  1407. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1408. else
  1409. for (i = 0; i < 4; ++i)
  1410. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1411. audit_mappings_page(vcpu,
  1412. vcpu->mmu.pae_root[i],
  1413. i << 30,
  1414. 2);
  1415. }
  1416. static int count_rmaps(struct kvm_vcpu *vcpu)
  1417. {
  1418. int nmaps = 0;
  1419. int i, j, k;
  1420. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1421. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1422. struct kvm_rmap_desc *d;
  1423. for (j = 0; j < m->npages; ++j) {
  1424. unsigned long *rmapp = &m->rmap[j];
  1425. if (!*rmapp)
  1426. continue;
  1427. if (!(*rmapp & 1)) {
  1428. ++nmaps;
  1429. continue;
  1430. }
  1431. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1432. while (d) {
  1433. for (k = 0; k < RMAP_EXT; ++k)
  1434. if (d->shadow_ptes[k])
  1435. ++nmaps;
  1436. else
  1437. break;
  1438. d = d->more;
  1439. }
  1440. }
  1441. }
  1442. return nmaps;
  1443. }
  1444. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1445. {
  1446. int nmaps = 0;
  1447. struct kvm_mmu_page *page;
  1448. int i;
  1449. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1450. u64 *pt = page->spt;
  1451. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1452. continue;
  1453. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1454. u64 ent = pt[i];
  1455. if (!(ent & PT_PRESENT_MASK))
  1456. continue;
  1457. if (!(ent & PT_WRITABLE_MASK))
  1458. continue;
  1459. ++nmaps;
  1460. }
  1461. }
  1462. return nmaps;
  1463. }
  1464. static void audit_rmap(struct kvm_vcpu *vcpu)
  1465. {
  1466. int n_rmap = count_rmaps(vcpu);
  1467. int n_actual = count_writable_mappings(vcpu);
  1468. if (n_rmap != n_actual)
  1469. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1470. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1471. }
  1472. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1473. {
  1474. struct kvm_mmu_page *page;
  1475. struct kvm_memory_slot *slot;
  1476. unsigned long *rmapp;
  1477. gfn_t gfn;
  1478. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1479. if (page->role.metaphysical)
  1480. continue;
  1481. slot = gfn_to_memslot(vcpu->kvm, page->gfn);
  1482. gfn = unalias_gfn(vcpu->kvm, page->gfn);
  1483. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1484. if (*rmapp)
  1485. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1486. " mappings: gfn %lx role %x\n",
  1487. __FUNCTION__, audit_msg, page->gfn,
  1488. page->role.word);
  1489. }
  1490. }
  1491. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1492. {
  1493. int olddbg = dbg;
  1494. dbg = 0;
  1495. audit_msg = msg;
  1496. audit_rmap(vcpu);
  1497. audit_write_protection(vcpu);
  1498. audit_mappings(vcpu);
  1499. dbg = olddbg;
  1500. }
  1501. #endif