spi-pxa2xx.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/ioport.h>
  23. #include <linux/errno.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/pxa2xx_spi.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/delay.h>
  31. #include <linux/gpio.h>
  32. #include <linux/slab.h>
  33. #include <linux/clk.h>
  34. #include <linux/pm_runtime.h>
  35. #include <linux/acpi.h>
  36. #include <asm/io.h>
  37. #include <asm/irq.h>
  38. #include <asm/delay.h>
  39. #include "spi-pxa2xx.h"
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. MODULE_ALIAS("platform:pxa2xx-spi");
  44. #define MAX_BUSES 3
  45. #define TIMOUT_DFLT 1000
  46. /*
  47. * for testing SSCR1 changes that require SSP restart, basically
  48. * everything except the service and interrupt enables, the pxa270 developer
  49. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50. * list, but the PXA255 dev man says all bits without really meaning the
  51. * service and interrupt enables
  52. */
  53. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59. #define LPSS_RX_THRESH_DFLT 64
  60. #define LPSS_TX_LOTHRESH_DFLT 160
  61. #define LPSS_TX_HITHRESH_DFLT 224
  62. /* Offset from drv_data->lpss_base */
  63. #define GENERAL_REG 0x08
  64. #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
  65. #define SSP_REG 0x0c
  66. #define SPI_CS_CONTROL 0x18
  67. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  68. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  69. static bool is_lpss_ssp(const struct driver_data *drv_data)
  70. {
  71. return drv_data->ssp_type == LPSS_SSP;
  72. }
  73. /*
  74. * Read and write LPSS SSP private registers. Caller must first check that
  75. * is_lpss_ssp() returns true before these can be called.
  76. */
  77. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  78. {
  79. WARN_ON(!drv_data->lpss_base);
  80. return readl(drv_data->lpss_base + offset);
  81. }
  82. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  83. unsigned offset, u32 value)
  84. {
  85. WARN_ON(!drv_data->lpss_base);
  86. writel(value, drv_data->lpss_base + offset);
  87. }
  88. /*
  89. * lpss_ssp_setup - perform LPSS SSP specific setup
  90. * @drv_data: pointer to the driver private data
  91. *
  92. * Perform LPSS SSP specific setup. This function must be called first if
  93. * one is going to use LPSS SSP private registers.
  94. */
  95. static void lpss_ssp_setup(struct driver_data *drv_data)
  96. {
  97. unsigned offset = 0x400;
  98. u32 value, orig;
  99. if (!is_lpss_ssp(drv_data))
  100. return;
  101. /*
  102. * Perform auto-detection of the LPSS SSP private registers. They
  103. * can be either at 1k or 2k offset from the base address.
  104. */
  105. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  106. value = orig | SPI_CS_CONTROL_SW_MODE;
  107. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  108. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  109. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  110. offset = 0x800;
  111. goto detection_done;
  112. }
  113. value &= ~SPI_CS_CONTROL_SW_MODE;
  114. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  115. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  116. if (value != orig) {
  117. offset = 0x800;
  118. goto detection_done;
  119. }
  120. detection_done:
  121. /* Now set the LPSS base */
  122. drv_data->lpss_base = drv_data->ioaddr + offset;
  123. /* Enable software chip select control */
  124. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  125. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  126. /* Enable multiblock DMA transfers */
  127. if (drv_data->master_info->enable_dma) {
  128. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  129. value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
  130. value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
  131. __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
  132. }
  133. }
  134. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  135. {
  136. u32 value;
  137. if (!is_lpss_ssp(drv_data))
  138. return;
  139. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  140. if (enable)
  141. value &= ~SPI_CS_CONTROL_CS_HIGH;
  142. else
  143. value |= SPI_CS_CONTROL_CS_HIGH;
  144. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  145. }
  146. static void cs_assert(struct driver_data *drv_data)
  147. {
  148. struct chip_data *chip = drv_data->cur_chip;
  149. if (drv_data->ssp_type == CE4100_SSP) {
  150. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  151. return;
  152. }
  153. if (chip->cs_control) {
  154. chip->cs_control(PXA2XX_CS_ASSERT);
  155. return;
  156. }
  157. if (gpio_is_valid(chip->gpio_cs)) {
  158. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  159. return;
  160. }
  161. lpss_ssp_cs_control(drv_data, true);
  162. }
  163. static void cs_deassert(struct driver_data *drv_data)
  164. {
  165. struct chip_data *chip = drv_data->cur_chip;
  166. if (drv_data->ssp_type == CE4100_SSP)
  167. return;
  168. if (chip->cs_control) {
  169. chip->cs_control(PXA2XX_CS_DEASSERT);
  170. return;
  171. }
  172. if (gpio_is_valid(chip->gpio_cs)) {
  173. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  174. return;
  175. }
  176. lpss_ssp_cs_control(drv_data, false);
  177. }
  178. int pxa2xx_spi_flush(struct driver_data *drv_data)
  179. {
  180. unsigned long limit = loops_per_jiffy << 1;
  181. void __iomem *reg = drv_data->ioaddr;
  182. do {
  183. while (read_SSSR(reg) & SSSR_RNE) {
  184. read_SSDR(reg);
  185. }
  186. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  187. write_SSSR_CS(drv_data, SSSR_ROR);
  188. return limit;
  189. }
  190. static int null_writer(struct driver_data *drv_data)
  191. {
  192. void __iomem *reg = drv_data->ioaddr;
  193. u8 n_bytes = drv_data->n_bytes;
  194. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  195. || (drv_data->tx == drv_data->tx_end))
  196. return 0;
  197. write_SSDR(0, reg);
  198. drv_data->tx += n_bytes;
  199. return 1;
  200. }
  201. static int null_reader(struct driver_data *drv_data)
  202. {
  203. void __iomem *reg = drv_data->ioaddr;
  204. u8 n_bytes = drv_data->n_bytes;
  205. while ((read_SSSR(reg) & SSSR_RNE)
  206. && (drv_data->rx < drv_data->rx_end)) {
  207. read_SSDR(reg);
  208. drv_data->rx += n_bytes;
  209. }
  210. return drv_data->rx == drv_data->rx_end;
  211. }
  212. static int u8_writer(struct driver_data *drv_data)
  213. {
  214. void __iomem *reg = drv_data->ioaddr;
  215. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  216. || (drv_data->tx == drv_data->tx_end))
  217. return 0;
  218. write_SSDR(*(u8 *)(drv_data->tx), reg);
  219. ++drv_data->tx;
  220. return 1;
  221. }
  222. static int u8_reader(struct driver_data *drv_data)
  223. {
  224. void __iomem *reg = drv_data->ioaddr;
  225. while ((read_SSSR(reg) & SSSR_RNE)
  226. && (drv_data->rx < drv_data->rx_end)) {
  227. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  228. ++drv_data->rx;
  229. }
  230. return drv_data->rx == drv_data->rx_end;
  231. }
  232. static int u16_writer(struct driver_data *drv_data)
  233. {
  234. void __iomem *reg = drv_data->ioaddr;
  235. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  236. || (drv_data->tx == drv_data->tx_end))
  237. return 0;
  238. write_SSDR(*(u16 *)(drv_data->tx), reg);
  239. drv_data->tx += 2;
  240. return 1;
  241. }
  242. static int u16_reader(struct driver_data *drv_data)
  243. {
  244. void __iomem *reg = drv_data->ioaddr;
  245. while ((read_SSSR(reg) & SSSR_RNE)
  246. && (drv_data->rx < drv_data->rx_end)) {
  247. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  248. drv_data->rx += 2;
  249. }
  250. return drv_data->rx == drv_data->rx_end;
  251. }
  252. static int u32_writer(struct driver_data *drv_data)
  253. {
  254. void __iomem *reg = drv_data->ioaddr;
  255. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  256. || (drv_data->tx == drv_data->tx_end))
  257. return 0;
  258. write_SSDR(*(u32 *)(drv_data->tx), reg);
  259. drv_data->tx += 4;
  260. return 1;
  261. }
  262. static int u32_reader(struct driver_data *drv_data)
  263. {
  264. void __iomem *reg = drv_data->ioaddr;
  265. while ((read_SSSR(reg) & SSSR_RNE)
  266. && (drv_data->rx < drv_data->rx_end)) {
  267. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  268. drv_data->rx += 4;
  269. }
  270. return drv_data->rx == drv_data->rx_end;
  271. }
  272. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  273. {
  274. struct spi_message *msg = drv_data->cur_msg;
  275. struct spi_transfer *trans = drv_data->cur_transfer;
  276. /* Move to next transfer */
  277. if (trans->transfer_list.next != &msg->transfers) {
  278. drv_data->cur_transfer =
  279. list_entry(trans->transfer_list.next,
  280. struct spi_transfer,
  281. transfer_list);
  282. return RUNNING_STATE;
  283. } else
  284. return DONE_STATE;
  285. }
  286. /* caller already set message->status; dma and pio irqs are blocked */
  287. static void giveback(struct driver_data *drv_data)
  288. {
  289. struct spi_transfer* last_transfer;
  290. struct spi_message *msg;
  291. msg = drv_data->cur_msg;
  292. drv_data->cur_msg = NULL;
  293. drv_data->cur_transfer = NULL;
  294. last_transfer = list_entry(msg->transfers.prev,
  295. struct spi_transfer,
  296. transfer_list);
  297. /* Delay if requested before any change in chip select */
  298. if (last_transfer->delay_usecs)
  299. udelay(last_transfer->delay_usecs);
  300. /* Drop chip select UNLESS cs_change is true or we are returning
  301. * a message with an error, or next message is for another chip
  302. */
  303. if (!last_transfer->cs_change)
  304. cs_deassert(drv_data);
  305. else {
  306. struct spi_message *next_msg;
  307. /* Holding of cs was hinted, but we need to make sure
  308. * the next message is for the same chip. Don't waste
  309. * time with the following tests unless this was hinted.
  310. *
  311. * We cannot postpone this until pump_messages, because
  312. * after calling msg->complete (below) the driver that
  313. * sent the current message could be unloaded, which
  314. * could invalidate the cs_control() callback...
  315. */
  316. /* get a pointer to the next message, if any */
  317. next_msg = spi_get_next_queued_message(drv_data->master);
  318. /* see if the next and current messages point
  319. * to the same chip
  320. */
  321. if (next_msg && next_msg->spi != msg->spi)
  322. next_msg = NULL;
  323. if (!next_msg || msg->state == ERROR_STATE)
  324. cs_deassert(drv_data);
  325. }
  326. spi_finalize_current_message(drv_data->master);
  327. drv_data->cur_chip = NULL;
  328. }
  329. static void reset_sccr1(struct driver_data *drv_data)
  330. {
  331. void __iomem *reg = drv_data->ioaddr;
  332. struct chip_data *chip = drv_data->cur_chip;
  333. u32 sccr1_reg;
  334. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  335. sccr1_reg &= ~SSCR1_RFT;
  336. sccr1_reg |= chip->threshold;
  337. write_SSCR1(sccr1_reg, reg);
  338. }
  339. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  340. {
  341. void __iomem *reg = drv_data->ioaddr;
  342. /* Stop and reset SSP */
  343. write_SSSR_CS(drv_data, drv_data->clear_sr);
  344. reset_sccr1(drv_data);
  345. if (!pxa25x_ssp_comp(drv_data))
  346. write_SSTO(0, reg);
  347. pxa2xx_spi_flush(drv_data);
  348. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  349. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  350. drv_data->cur_msg->state = ERROR_STATE;
  351. tasklet_schedule(&drv_data->pump_transfers);
  352. }
  353. static void int_transfer_complete(struct driver_data *drv_data)
  354. {
  355. void __iomem *reg = drv_data->ioaddr;
  356. /* Stop SSP */
  357. write_SSSR_CS(drv_data, drv_data->clear_sr);
  358. reset_sccr1(drv_data);
  359. if (!pxa25x_ssp_comp(drv_data))
  360. write_SSTO(0, reg);
  361. /* Update total byte transferred return count actual bytes read */
  362. drv_data->cur_msg->actual_length += drv_data->len -
  363. (drv_data->rx_end - drv_data->rx);
  364. /* Transfer delays and chip select release are
  365. * handled in pump_transfers or giveback
  366. */
  367. /* Move to next transfer */
  368. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  369. /* Schedule transfer tasklet */
  370. tasklet_schedule(&drv_data->pump_transfers);
  371. }
  372. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  373. {
  374. void __iomem *reg = drv_data->ioaddr;
  375. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  376. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  377. u32 irq_status = read_SSSR(reg) & irq_mask;
  378. if (irq_status & SSSR_ROR) {
  379. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  380. return IRQ_HANDLED;
  381. }
  382. if (irq_status & SSSR_TINT) {
  383. write_SSSR(SSSR_TINT, reg);
  384. if (drv_data->read(drv_data)) {
  385. int_transfer_complete(drv_data);
  386. return IRQ_HANDLED;
  387. }
  388. }
  389. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  390. do {
  391. if (drv_data->read(drv_data)) {
  392. int_transfer_complete(drv_data);
  393. return IRQ_HANDLED;
  394. }
  395. } while (drv_data->write(drv_data));
  396. if (drv_data->read(drv_data)) {
  397. int_transfer_complete(drv_data);
  398. return IRQ_HANDLED;
  399. }
  400. if (drv_data->tx == drv_data->tx_end) {
  401. u32 bytes_left;
  402. u32 sccr1_reg;
  403. sccr1_reg = read_SSCR1(reg);
  404. sccr1_reg &= ~SSCR1_TIE;
  405. /*
  406. * PXA25x_SSP has no timeout, set up rx threshould for the
  407. * remaining RX bytes.
  408. */
  409. if (pxa25x_ssp_comp(drv_data)) {
  410. sccr1_reg &= ~SSCR1_RFT;
  411. bytes_left = drv_data->rx_end - drv_data->rx;
  412. switch (drv_data->n_bytes) {
  413. case 4:
  414. bytes_left >>= 1;
  415. case 2:
  416. bytes_left >>= 1;
  417. }
  418. if (bytes_left > RX_THRESH_DFLT)
  419. bytes_left = RX_THRESH_DFLT;
  420. sccr1_reg |= SSCR1_RxTresh(bytes_left);
  421. }
  422. write_SSCR1(sccr1_reg, reg);
  423. }
  424. /* We did something */
  425. return IRQ_HANDLED;
  426. }
  427. static irqreturn_t ssp_int(int irq, void *dev_id)
  428. {
  429. struct driver_data *drv_data = dev_id;
  430. void __iomem *reg = drv_data->ioaddr;
  431. u32 sccr1_reg;
  432. u32 mask = drv_data->mask_sr;
  433. u32 status;
  434. /*
  435. * The IRQ might be shared with other peripherals so we must first
  436. * check that are we RPM suspended or not. If we are we assume that
  437. * the IRQ was not for us (we shouldn't be RPM suspended when the
  438. * interrupt is enabled).
  439. */
  440. if (pm_runtime_suspended(&drv_data->pdev->dev))
  441. return IRQ_NONE;
  442. sccr1_reg = read_SSCR1(reg);
  443. status = read_SSSR(reg);
  444. /* Ignore possible writes if we don't need to write */
  445. if (!(sccr1_reg & SSCR1_TIE))
  446. mask &= ~SSSR_TFS;
  447. if (!(status & mask))
  448. return IRQ_NONE;
  449. if (!drv_data->cur_msg) {
  450. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  451. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  452. if (!pxa25x_ssp_comp(drv_data))
  453. write_SSTO(0, reg);
  454. write_SSSR_CS(drv_data, drv_data->clear_sr);
  455. dev_err(&drv_data->pdev->dev, "bad message state "
  456. "in interrupt handler\n");
  457. /* Never fail */
  458. return IRQ_HANDLED;
  459. }
  460. return drv_data->transfer_handler(drv_data);
  461. }
  462. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  463. {
  464. unsigned long ssp_clk = drv_data->max_clk_rate;
  465. const struct ssp_device *ssp = drv_data->ssp;
  466. rate = min_t(int, ssp_clk, rate);
  467. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  468. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  469. else
  470. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  471. }
  472. static void pump_transfers(unsigned long data)
  473. {
  474. struct driver_data *drv_data = (struct driver_data *)data;
  475. struct spi_message *message = NULL;
  476. struct spi_transfer *transfer = NULL;
  477. struct spi_transfer *previous = NULL;
  478. struct chip_data *chip = NULL;
  479. void __iomem *reg = drv_data->ioaddr;
  480. u32 clk_div = 0;
  481. u8 bits = 0;
  482. u32 speed = 0;
  483. u32 cr0;
  484. u32 cr1;
  485. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  486. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  487. /* Get current state information */
  488. message = drv_data->cur_msg;
  489. transfer = drv_data->cur_transfer;
  490. chip = drv_data->cur_chip;
  491. /* Handle for abort */
  492. if (message->state == ERROR_STATE) {
  493. message->status = -EIO;
  494. giveback(drv_data);
  495. return;
  496. }
  497. /* Handle end of message */
  498. if (message->state == DONE_STATE) {
  499. message->status = 0;
  500. giveback(drv_data);
  501. return;
  502. }
  503. /* Delay if requested at end of transfer before CS change */
  504. if (message->state == RUNNING_STATE) {
  505. previous = list_entry(transfer->transfer_list.prev,
  506. struct spi_transfer,
  507. transfer_list);
  508. if (previous->delay_usecs)
  509. udelay(previous->delay_usecs);
  510. /* Drop chip select only if cs_change is requested */
  511. if (previous->cs_change)
  512. cs_deassert(drv_data);
  513. }
  514. /* Check if we can DMA this transfer */
  515. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  516. /* reject already-mapped transfers; PIO won't always work */
  517. if (message->is_dma_mapped
  518. || transfer->rx_dma || transfer->tx_dma) {
  519. dev_err(&drv_data->pdev->dev,
  520. "pump_transfers: mapped transfer length "
  521. "of %u is greater than %d\n",
  522. transfer->len, MAX_DMA_LEN);
  523. message->status = -EINVAL;
  524. giveback(drv_data);
  525. return;
  526. }
  527. /* warn ... we force this to PIO mode */
  528. if (printk_ratelimit())
  529. dev_warn(&message->spi->dev, "pump_transfers: "
  530. "DMA disabled for transfer length %ld "
  531. "greater than %d\n",
  532. (long)drv_data->len, MAX_DMA_LEN);
  533. }
  534. /* Setup the transfer state based on the type of transfer */
  535. if (pxa2xx_spi_flush(drv_data) == 0) {
  536. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  537. message->status = -EIO;
  538. giveback(drv_data);
  539. return;
  540. }
  541. drv_data->n_bytes = chip->n_bytes;
  542. drv_data->tx = (void *)transfer->tx_buf;
  543. drv_data->tx_end = drv_data->tx + transfer->len;
  544. drv_data->rx = transfer->rx_buf;
  545. drv_data->rx_end = drv_data->rx + transfer->len;
  546. drv_data->rx_dma = transfer->rx_dma;
  547. drv_data->tx_dma = transfer->tx_dma;
  548. drv_data->len = transfer->len;
  549. drv_data->write = drv_data->tx ? chip->write : null_writer;
  550. drv_data->read = drv_data->rx ? chip->read : null_reader;
  551. /* Change speed and bit per word on a per transfer */
  552. cr0 = chip->cr0;
  553. if (transfer->speed_hz || transfer->bits_per_word) {
  554. bits = chip->bits_per_word;
  555. speed = chip->speed_hz;
  556. if (transfer->speed_hz)
  557. speed = transfer->speed_hz;
  558. if (transfer->bits_per_word)
  559. bits = transfer->bits_per_word;
  560. clk_div = ssp_get_clk_div(drv_data, speed);
  561. if (bits <= 8) {
  562. drv_data->n_bytes = 1;
  563. drv_data->read = drv_data->read != null_reader ?
  564. u8_reader : null_reader;
  565. drv_data->write = drv_data->write != null_writer ?
  566. u8_writer : null_writer;
  567. } else if (bits <= 16) {
  568. drv_data->n_bytes = 2;
  569. drv_data->read = drv_data->read != null_reader ?
  570. u16_reader : null_reader;
  571. drv_data->write = drv_data->write != null_writer ?
  572. u16_writer : null_writer;
  573. } else if (bits <= 32) {
  574. drv_data->n_bytes = 4;
  575. drv_data->read = drv_data->read != null_reader ?
  576. u32_reader : null_reader;
  577. drv_data->write = drv_data->write != null_writer ?
  578. u32_writer : null_writer;
  579. }
  580. /* if bits/word is changed in dma mode, then must check the
  581. * thresholds and burst also */
  582. if (chip->enable_dma) {
  583. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  584. message->spi,
  585. bits, &dma_burst,
  586. &dma_thresh))
  587. if (printk_ratelimit())
  588. dev_warn(&message->spi->dev,
  589. "pump_transfers: "
  590. "DMA burst size reduced to "
  591. "match bits_per_word\n");
  592. }
  593. cr0 = clk_div
  594. | SSCR0_Motorola
  595. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  596. | SSCR0_SSE
  597. | (bits > 16 ? SSCR0_EDSS : 0);
  598. }
  599. message->state = RUNNING_STATE;
  600. drv_data->dma_mapped = 0;
  601. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  602. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  603. if (drv_data->dma_mapped) {
  604. /* Ensure we have the correct interrupt handler */
  605. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  606. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  607. /* Clear status and start DMA engine */
  608. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  609. write_SSSR(drv_data->clear_sr, reg);
  610. pxa2xx_spi_dma_start(drv_data);
  611. } else {
  612. /* Ensure we have the correct interrupt handler */
  613. drv_data->transfer_handler = interrupt_transfer;
  614. /* Clear status */
  615. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  616. write_SSSR_CS(drv_data, drv_data->clear_sr);
  617. }
  618. if (is_lpss_ssp(drv_data)) {
  619. if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
  620. write_SSIRF(chip->lpss_rx_threshold, reg);
  621. if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
  622. write_SSITF(chip->lpss_tx_threshold, reg);
  623. }
  624. /* see if we need to reload the config registers */
  625. if ((read_SSCR0(reg) != cr0)
  626. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  627. (cr1 & SSCR1_CHANGE_MASK)) {
  628. /* stop the SSP, and update the other bits */
  629. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  630. if (!pxa25x_ssp_comp(drv_data))
  631. write_SSTO(chip->timeout, reg);
  632. /* first set CR1 without interrupt and service enables */
  633. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  634. /* restart the SSP */
  635. write_SSCR0(cr0, reg);
  636. } else {
  637. if (!pxa25x_ssp_comp(drv_data))
  638. write_SSTO(chip->timeout, reg);
  639. }
  640. cs_assert(drv_data);
  641. /* after chip select, release the data by enabling service
  642. * requests and interrupts, without changing any mode bits */
  643. write_SSCR1(cr1, reg);
  644. }
  645. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  646. struct spi_message *msg)
  647. {
  648. struct driver_data *drv_data = spi_master_get_devdata(master);
  649. drv_data->cur_msg = msg;
  650. /* Initial message state*/
  651. drv_data->cur_msg->state = START_STATE;
  652. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  653. struct spi_transfer,
  654. transfer_list);
  655. /* prepare to setup the SSP, in pump_transfers, using the per
  656. * chip configuration */
  657. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  658. /* Mark as busy and launch transfers */
  659. tasklet_schedule(&drv_data->pump_transfers);
  660. return 0;
  661. }
  662. static int pxa2xx_spi_prepare_transfer(struct spi_master *master)
  663. {
  664. struct driver_data *drv_data = spi_master_get_devdata(master);
  665. pm_runtime_get_sync(&drv_data->pdev->dev);
  666. return 0;
  667. }
  668. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  669. {
  670. struct driver_data *drv_data = spi_master_get_devdata(master);
  671. /* Disable the SSP now */
  672. write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
  673. drv_data->ioaddr);
  674. pm_runtime_mark_last_busy(&drv_data->pdev->dev);
  675. pm_runtime_put_autosuspend(&drv_data->pdev->dev);
  676. return 0;
  677. }
  678. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  679. struct pxa2xx_spi_chip *chip_info)
  680. {
  681. int err = 0;
  682. if (chip == NULL || chip_info == NULL)
  683. return 0;
  684. /* NOTE: setup() can be called multiple times, possibly with
  685. * different chip_info, release previously requested GPIO
  686. */
  687. if (gpio_is_valid(chip->gpio_cs))
  688. gpio_free(chip->gpio_cs);
  689. /* If (*cs_control) is provided, ignore GPIO chip select */
  690. if (chip_info->cs_control) {
  691. chip->cs_control = chip_info->cs_control;
  692. return 0;
  693. }
  694. if (gpio_is_valid(chip_info->gpio_cs)) {
  695. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  696. if (err) {
  697. dev_err(&spi->dev, "failed to request chip select "
  698. "GPIO%d\n", chip_info->gpio_cs);
  699. return err;
  700. }
  701. chip->gpio_cs = chip_info->gpio_cs;
  702. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  703. err = gpio_direction_output(chip->gpio_cs,
  704. !chip->gpio_cs_inverted);
  705. }
  706. return err;
  707. }
  708. static int setup(struct spi_device *spi)
  709. {
  710. struct pxa2xx_spi_chip *chip_info = NULL;
  711. struct chip_data *chip;
  712. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  713. unsigned int clk_div;
  714. uint tx_thres, tx_hi_thres, rx_thres;
  715. if (is_lpss_ssp(drv_data)) {
  716. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  717. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  718. rx_thres = LPSS_RX_THRESH_DFLT;
  719. } else {
  720. tx_thres = TX_THRESH_DFLT;
  721. tx_hi_thres = 0;
  722. rx_thres = RX_THRESH_DFLT;
  723. }
  724. /* Only alloc on first setup */
  725. chip = spi_get_ctldata(spi);
  726. if (!chip) {
  727. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  728. if (!chip) {
  729. dev_err(&spi->dev,
  730. "failed setup: can't allocate chip data\n");
  731. return -ENOMEM;
  732. }
  733. if (drv_data->ssp_type == CE4100_SSP) {
  734. if (spi->chip_select > 4) {
  735. dev_err(&spi->dev, "failed setup: "
  736. "cs number must not be > 4.\n");
  737. kfree(chip);
  738. return -EINVAL;
  739. }
  740. chip->frm = spi->chip_select;
  741. } else
  742. chip->gpio_cs = -1;
  743. chip->enable_dma = 0;
  744. chip->timeout = TIMOUT_DFLT;
  745. }
  746. /* protocol drivers may change the chip settings, so...
  747. * if chip_info exists, use it */
  748. chip_info = spi->controller_data;
  749. /* chip_info isn't always needed */
  750. chip->cr1 = 0;
  751. if (chip_info) {
  752. if (chip_info->timeout)
  753. chip->timeout = chip_info->timeout;
  754. if (chip_info->tx_threshold)
  755. tx_thres = chip_info->tx_threshold;
  756. if (chip_info->tx_hi_threshold)
  757. tx_hi_thres = chip_info->tx_hi_threshold;
  758. if (chip_info->rx_threshold)
  759. rx_thres = chip_info->rx_threshold;
  760. chip->enable_dma = drv_data->master_info->enable_dma;
  761. chip->dma_threshold = 0;
  762. if (chip_info->enable_loopback)
  763. chip->cr1 = SSCR1_LBM;
  764. } else if (ACPI_HANDLE(&spi->dev)) {
  765. /*
  766. * Slave devices enumerated from ACPI namespace don't
  767. * usually have chip_info but we still might want to use
  768. * DMA with them.
  769. */
  770. chip->enable_dma = drv_data->master_info->enable_dma;
  771. }
  772. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  773. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  774. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  775. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  776. | SSITF_TxHiThresh(tx_hi_thres);
  777. /* set dma burst and threshold outside of chip_info path so that if
  778. * chip_info goes away after setting chip->enable_dma, the
  779. * burst and threshold can still respond to changes in bits_per_word */
  780. if (chip->enable_dma) {
  781. /* set up legal burst and threshold for dma */
  782. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  783. spi->bits_per_word,
  784. &chip->dma_burst_size,
  785. &chip->dma_threshold)) {
  786. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  787. "to match bits_per_word\n");
  788. }
  789. }
  790. clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
  791. chip->speed_hz = spi->max_speed_hz;
  792. chip->cr0 = clk_div
  793. | SSCR0_Motorola
  794. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  795. spi->bits_per_word - 16 : spi->bits_per_word)
  796. | SSCR0_SSE
  797. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  798. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  799. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  800. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  801. if (spi->mode & SPI_LOOP)
  802. chip->cr1 |= SSCR1_LBM;
  803. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  804. if (!pxa25x_ssp_comp(drv_data))
  805. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  806. drv_data->max_clk_rate
  807. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  808. chip->enable_dma ? "DMA" : "PIO");
  809. else
  810. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  811. drv_data->max_clk_rate / 2
  812. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  813. chip->enable_dma ? "DMA" : "PIO");
  814. if (spi->bits_per_word <= 8) {
  815. chip->n_bytes = 1;
  816. chip->read = u8_reader;
  817. chip->write = u8_writer;
  818. } else if (spi->bits_per_word <= 16) {
  819. chip->n_bytes = 2;
  820. chip->read = u16_reader;
  821. chip->write = u16_writer;
  822. } else if (spi->bits_per_word <= 32) {
  823. chip->cr0 |= SSCR0_EDSS;
  824. chip->n_bytes = 4;
  825. chip->read = u32_reader;
  826. chip->write = u32_writer;
  827. }
  828. chip->bits_per_word = spi->bits_per_word;
  829. spi_set_ctldata(spi, chip);
  830. if (drv_data->ssp_type == CE4100_SSP)
  831. return 0;
  832. return setup_cs(spi, chip, chip_info);
  833. }
  834. static void cleanup(struct spi_device *spi)
  835. {
  836. struct chip_data *chip = spi_get_ctldata(spi);
  837. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  838. if (!chip)
  839. return;
  840. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  841. gpio_free(chip->gpio_cs);
  842. kfree(chip);
  843. }
  844. #ifdef CONFIG_ACPI
  845. static struct pxa2xx_spi_master *
  846. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  847. {
  848. struct pxa2xx_spi_master *pdata;
  849. struct acpi_device *adev;
  850. struct ssp_device *ssp;
  851. struct resource *res;
  852. int devid;
  853. if (!ACPI_HANDLE(&pdev->dev) ||
  854. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  855. return NULL;
  856. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  857. if (!pdata) {
  858. dev_err(&pdev->dev,
  859. "failed to allocate memory for platform data\n");
  860. return NULL;
  861. }
  862. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  863. if (!res)
  864. return NULL;
  865. ssp = &pdata->ssp;
  866. ssp->phys_base = res->start;
  867. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  868. if (IS_ERR(ssp->mmio_base))
  869. return NULL;
  870. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  871. ssp->irq = platform_get_irq(pdev, 0);
  872. ssp->type = LPSS_SSP;
  873. ssp->pdev = pdev;
  874. ssp->port_id = -1;
  875. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  876. ssp->port_id = devid;
  877. pdata->num_chipselect = 1;
  878. pdata->enable_dma = true;
  879. return pdata;
  880. }
  881. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  882. { "INT33C0", 0 },
  883. { "INT33C1", 0 },
  884. { "80860F0E", 0 },
  885. { },
  886. };
  887. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  888. #else
  889. static inline struct pxa2xx_spi_master *
  890. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  891. {
  892. return NULL;
  893. }
  894. #endif
  895. static int pxa2xx_spi_probe(struct platform_device *pdev)
  896. {
  897. struct device *dev = &pdev->dev;
  898. struct pxa2xx_spi_master *platform_info;
  899. struct spi_master *master;
  900. struct driver_data *drv_data;
  901. struct ssp_device *ssp;
  902. int status;
  903. platform_info = dev_get_platdata(dev);
  904. if (!platform_info) {
  905. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  906. if (!platform_info) {
  907. dev_err(&pdev->dev, "missing platform data\n");
  908. return -ENODEV;
  909. }
  910. }
  911. ssp = pxa_ssp_request(pdev->id, pdev->name);
  912. if (!ssp)
  913. ssp = &platform_info->ssp;
  914. if (!ssp->mmio_base) {
  915. dev_err(&pdev->dev, "failed to get ssp\n");
  916. return -ENODEV;
  917. }
  918. /* Allocate master with space for drv_data and null dma buffer */
  919. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  920. if (!master) {
  921. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  922. pxa_ssp_free(ssp);
  923. return -ENOMEM;
  924. }
  925. drv_data = spi_master_get_devdata(master);
  926. drv_data->master = master;
  927. drv_data->master_info = platform_info;
  928. drv_data->pdev = pdev;
  929. drv_data->ssp = ssp;
  930. master->dev.parent = &pdev->dev;
  931. master->dev.of_node = pdev->dev.of_node;
  932. /* the spi->mode bits understood by this driver: */
  933. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  934. master->bus_num = ssp->port_id;
  935. master->num_chipselect = platform_info->num_chipselect;
  936. master->dma_alignment = DMA_ALIGNMENT;
  937. master->cleanup = cleanup;
  938. master->setup = setup;
  939. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  940. master->prepare_transfer_hardware = pxa2xx_spi_prepare_transfer;
  941. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  942. drv_data->ssp_type = ssp->type;
  943. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  944. drv_data->ioaddr = ssp->mmio_base;
  945. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  946. if (pxa25x_ssp_comp(drv_data)) {
  947. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  948. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  949. drv_data->dma_cr1 = 0;
  950. drv_data->clear_sr = SSSR_ROR;
  951. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  952. } else {
  953. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  954. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  955. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  956. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  957. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  958. }
  959. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  960. drv_data);
  961. if (status < 0) {
  962. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  963. goto out_error_master_alloc;
  964. }
  965. /* Setup DMA if requested */
  966. drv_data->tx_channel = -1;
  967. drv_data->rx_channel = -1;
  968. if (platform_info->enable_dma) {
  969. status = pxa2xx_spi_dma_setup(drv_data);
  970. if (status) {
  971. dev_dbg(dev, "no DMA channels available, using PIO\n");
  972. platform_info->enable_dma = false;
  973. }
  974. }
  975. /* Enable SOC clock */
  976. clk_prepare_enable(ssp->clk);
  977. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  978. /* Load default SSP configuration */
  979. write_SSCR0(0, drv_data->ioaddr);
  980. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  981. SSCR1_TxTresh(TX_THRESH_DFLT),
  982. drv_data->ioaddr);
  983. write_SSCR0(SSCR0_SCR(2)
  984. | SSCR0_Motorola
  985. | SSCR0_DataSize(8),
  986. drv_data->ioaddr);
  987. if (!pxa25x_ssp_comp(drv_data))
  988. write_SSTO(0, drv_data->ioaddr);
  989. write_SSPSP(0, drv_data->ioaddr);
  990. lpss_ssp_setup(drv_data);
  991. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  992. (unsigned long)drv_data);
  993. /* Register with the SPI framework */
  994. platform_set_drvdata(pdev, drv_data);
  995. status = spi_register_master(master);
  996. if (status != 0) {
  997. dev_err(&pdev->dev, "problem registering spi master\n");
  998. goto out_error_clock_enabled;
  999. }
  1000. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  1001. pm_runtime_use_autosuspend(&pdev->dev);
  1002. pm_runtime_set_active(&pdev->dev);
  1003. pm_runtime_enable(&pdev->dev);
  1004. return status;
  1005. out_error_clock_enabled:
  1006. clk_disable_unprepare(ssp->clk);
  1007. pxa2xx_spi_dma_release(drv_data);
  1008. free_irq(ssp->irq, drv_data);
  1009. out_error_master_alloc:
  1010. spi_master_put(master);
  1011. pxa_ssp_free(ssp);
  1012. return status;
  1013. }
  1014. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1015. {
  1016. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1017. struct ssp_device *ssp;
  1018. if (!drv_data)
  1019. return 0;
  1020. ssp = drv_data->ssp;
  1021. pm_runtime_get_sync(&pdev->dev);
  1022. /* Disable the SSP at the peripheral and SOC level */
  1023. write_SSCR0(0, drv_data->ioaddr);
  1024. clk_disable_unprepare(ssp->clk);
  1025. /* Release DMA */
  1026. if (drv_data->master_info->enable_dma)
  1027. pxa2xx_spi_dma_release(drv_data);
  1028. pm_runtime_put_noidle(&pdev->dev);
  1029. pm_runtime_disable(&pdev->dev);
  1030. /* Release IRQ */
  1031. free_irq(ssp->irq, drv_data);
  1032. /* Release SSP */
  1033. pxa_ssp_free(ssp);
  1034. /* Disconnect from the SPI framework */
  1035. spi_unregister_master(drv_data->master);
  1036. return 0;
  1037. }
  1038. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1039. {
  1040. int status = 0;
  1041. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1042. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1043. }
  1044. #ifdef CONFIG_PM
  1045. static int pxa2xx_spi_suspend(struct device *dev)
  1046. {
  1047. struct driver_data *drv_data = dev_get_drvdata(dev);
  1048. struct ssp_device *ssp = drv_data->ssp;
  1049. int status = 0;
  1050. status = spi_master_suspend(drv_data->master);
  1051. if (status != 0)
  1052. return status;
  1053. write_SSCR0(0, drv_data->ioaddr);
  1054. clk_disable_unprepare(ssp->clk);
  1055. return 0;
  1056. }
  1057. static int pxa2xx_spi_resume(struct device *dev)
  1058. {
  1059. struct driver_data *drv_data = dev_get_drvdata(dev);
  1060. struct ssp_device *ssp = drv_data->ssp;
  1061. int status = 0;
  1062. pxa2xx_spi_dma_resume(drv_data);
  1063. /* Enable the SSP clock */
  1064. clk_prepare_enable(ssp->clk);
  1065. /* Start the queue running */
  1066. status = spi_master_resume(drv_data->master);
  1067. if (status != 0) {
  1068. dev_err(dev, "problem starting queue (%d)\n", status);
  1069. return status;
  1070. }
  1071. return 0;
  1072. }
  1073. #endif
  1074. #ifdef CONFIG_PM_RUNTIME
  1075. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1076. {
  1077. struct driver_data *drv_data = dev_get_drvdata(dev);
  1078. clk_disable_unprepare(drv_data->ssp->clk);
  1079. return 0;
  1080. }
  1081. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1082. {
  1083. struct driver_data *drv_data = dev_get_drvdata(dev);
  1084. clk_prepare_enable(drv_data->ssp->clk);
  1085. return 0;
  1086. }
  1087. #endif
  1088. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1089. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1090. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1091. pxa2xx_spi_runtime_resume, NULL)
  1092. };
  1093. static struct platform_driver driver = {
  1094. .driver = {
  1095. .name = "pxa2xx-spi",
  1096. .owner = THIS_MODULE,
  1097. .pm = &pxa2xx_spi_pm_ops,
  1098. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1099. },
  1100. .probe = pxa2xx_spi_probe,
  1101. .remove = pxa2xx_spi_remove,
  1102. .shutdown = pxa2xx_spi_shutdown,
  1103. };
  1104. static int __init pxa2xx_spi_init(void)
  1105. {
  1106. return platform_driver_register(&driver);
  1107. }
  1108. subsys_initcall(pxa2xx_spi_init);
  1109. static void __exit pxa2xx_spi_exit(void)
  1110. {
  1111. platform_driver_unregister(&driver);
  1112. }
  1113. module_exit(pxa2xx_spi_exit);