disk-io.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/crc32c.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/swap.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/writeback.h>
  25. #include <linux/buffer_head.h> // for block_sync_page
  26. #include "ctree.h"
  27. #include "disk-io.h"
  28. #include "transaction.h"
  29. #include "btrfs_inode.h"
  30. #include "print-tree.h"
  31. #if 0
  32. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  33. {
  34. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  35. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  36. (unsigned long long)extent_buffer_blocknr(buf),
  37. (unsigned long long)btrfs_header_blocknr(buf));
  38. return 1;
  39. }
  40. return 0;
  41. }
  42. #endif
  43. static struct extent_map_ops btree_extent_map_ops;
  44. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  45. u64 bytenr, u32 blocksize)
  46. {
  47. struct inode *btree_inode = root->fs_info->btree_inode;
  48. struct extent_buffer *eb;
  49. eb = find_extent_buffer(&BTRFS_I(btree_inode)->extent_tree,
  50. bytenr, blocksize, GFP_NOFS);
  51. return eb;
  52. }
  53. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  54. u64 bytenr, u32 blocksize)
  55. {
  56. struct inode *btree_inode = root->fs_info->btree_inode;
  57. struct extent_buffer *eb;
  58. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->extent_tree,
  59. bytenr, blocksize, NULL, GFP_NOFS);
  60. return eb;
  61. }
  62. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  63. size_t page_offset, u64 start, u64 end,
  64. int create)
  65. {
  66. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  67. struct extent_map *em;
  68. int ret;
  69. again:
  70. em = lookup_extent_mapping(em_tree, start, end);
  71. if (em) {
  72. goto out;
  73. }
  74. em = alloc_extent_map(GFP_NOFS);
  75. if (!em) {
  76. em = ERR_PTR(-ENOMEM);
  77. goto out;
  78. }
  79. em->start = 0;
  80. em->end = (i_size_read(inode) & ~((u64)PAGE_CACHE_SIZE -1)) - 1;
  81. em->block_start = 0;
  82. em->block_end = em->end;
  83. em->bdev = inode->i_sb->s_bdev;
  84. ret = add_extent_mapping(em_tree, em);
  85. if (ret == -EEXIST) {
  86. free_extent_map(em);
  87. em = NULL;
  88. goto again;
  89. } else if (ret) {
  90. em = ERR_PTR(ret);
  91. }
  92. out:
  93. return em;
  94. }
  95. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  96. {
  97. return crc32c(seed, data, len);
  98. }
  99. void btrfs_csum_final(u32 crc, char *result)
  100. {
  101. *(__le32 *)result = ~cpu_to_le32(crc);
  102. }
  103. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  104. int verify)
  105. {
  106. char result[BTRFS_CRC32_SIZE];
  107. unsigned long len;
  108. unsigned long cur_len;
  109. unsigned long offset = BTRFS_CSUM_SIZE;
  110. char *map_token = NULL;
  111. char *kaddr;
  112. unsigned long map_start;
  113. unsigned long map_len;
  114. int err;
  115. u32 crc = ~(u32)0;
  116. len = buf->len - offset;
  117. while(len > 0) {
  118. err = map_private_extent_buffer(buf, offset, 32,
  119. &map_token, &kaddr,
  120. &map_start, &map_len, KM_USER0);
  121. if (err) {
  122. printk("failed to map extent buffer! %lu\n",
  123. offset);
  124. return 1;
  125. }
  126. cur_len = min(len, map_len - (offset - map_start));
  127. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  128. crc, cur_len);
  129. len -= cur_len;
  130. offset += cur_len;
  131. unmap_extent_buffer(buf, map_token, KM_USER0);
  132. }
  133. btrfs_csum_final(crc, result);
  134. if (verify) {
  135. if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  136. printk("btrfs: %s checksum verify failed on %llu\n",
  137. root->fs_info->sb->s_id,
  138. buf->start);
  139. return 1;
  140. }
  141. } else {
  142. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  143. }
  144. return 0;
  145. }
  146. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  147. {
  148. struct extent_map_tree *tree;
  149. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  150. u64 found_start;
  151. int found_level;
  152. unsigned long len;
  153. struct extent_buffer *eb;
  154. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  155. if (page->private == EXTENT_PAGE_PRIVATE)
  156. goto out;
  157. if (!page->private)
  158. goto out;
  159. len = page->private >> 2;
  160. if (len == 0) {
  161. WARN_ON(1);
  162. }
  163. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  164. read_extent_buffer_pages(tree, eb, start + PAGE_CACHE_SIZE, 1);
  165. found_start = btrfs_header_bytenr(eb);
  166. if (found_start != start) {
  167. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  168. start, found_start, len);
  169. }
  170. found_level = btrfs_header_level(eb);
  171. csum_tree_block(root, eb, 0);
  172. free_extent_buffer(eb);
  173. out:
  174. return 0;
  175. }
  176. static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
  177. {
  178. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  179. csum_dirty_buffer(root, page);
  180. return 0;
  181. }
  182. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  183. {
  184. struct extent_map_tree *tree;
  185. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  186. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  187. }
  188. static int btree_writepages(struct address_space *mapping,
  189. struct writeback_control *wbc)
  190. {
  191. struct extent_map_tree *tree;
  192. tree = &BTRFS_I(mapping->host)->extent_tree;
  193. if (wbc->sync_mode == WB_SYNC_NONE) {
  194. u64 num_dirty;
  195. u64 start = 0;
  196. unsigned long thresh = 96 * 1024 * 1024;
  197. num_dirty = count_range_bits(tree, &start, thresh, EXTENT_DIRTY);
  198. if (num_dirty < thresh) {
  199. return 0;
  200. }
  201. }
  202. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  203. }
  204. int btree_readpage(struct file *file, struct page *page)
  205. {
  206. struct extent_map_tree *tree;
  207. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  208. return extent_read_full_page(tree, page, btree_get_extent);
  209. }
  210. static int btree_releasepage(struct page *page, gfp_t unused_gfp_flags)
  211. {
  212. struct extent_map_tree *tree;
  213. int ret;
  214. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  215. ret = try_release_extent_mapping(tree, page);
  216. if (ret == 1) {
  217. ClearPagePrivate(page);
  218. set_page_private(page, 0);
  219. page_cache_release(page);
  220. }
  221. return ret;
  222. }
  223. static void btree_invalidatepage(struct page *page, unsigned long offset)
  224. {
  225. struct extent_map_tree *tree;
  226. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  227. extent_invalidatepage(tree, page, offset);
  228. btree_releasepage(page, GFP_NOFS);
  229. }
  230. #if 0
  231. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  232. {
  233. struct buffer_head *bh;
  234. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  235. struct buffer_head *head;
  236. if (!page_has_buffers(page)) {
  237. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  238. (1 << BH_Dirty)|(1 << BH_Uptodate));
  239. }
  240. head = page_buffers(page);
  241. bh = head;
  242. do {
  243. if (buffer_dirty(bh))
  244. csum_tree_block(root, bh, 0);
  245. bh = bh->b_this_page;
  246. } while (bh != head);
  247. return block_write_full_page(page, btree_get_block, wbc);
  248. }
  249. #endif
  250. static struct address_space_operations btree_aops = {
  251. .readpage = btree_readpage,
  252. .writepage = btree_writepage,
  253. .writepages = btree_writepages,
  254. .releasepage = btree_releasepage,
  255. .invalidatepage = btree_invalidatepage,
  256. .sync_page = block_sync_page,
  257. };
  258. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
  259. {
  260. struct extent_buffer *buf = NULL;
  261. struct inode *btree_inode = root->fs_info->btree_inode;
  262. int ret = 0;
  263. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  264. if (!buf)
  265. return 0;
  266. read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree,
  267. buf, 0, 0);
  268. free_extent_buffer(buf);
  269. return ret;
  270. }
  271. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  272. u32 blocksize)
  273. {
  274. struct extent_buffer *buf = NULL;
  275. struct inode *btree_inode = root->fs_info->btree_inode;
  276. struct extent_map_tree *extent_tree;
  277. int ret;
  278. extent_tree = &BTRFS_I(btree_inode)->extent_tree;
  279. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  280. if (!buf)
  281. return NULL;
  282. read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree,
  283. buf, 0, 1);
  284. if (buf->flags & EXTENT_CSUM) {
  285. return buf;
  286. }
  287. if (test_range_bit(extent_tree, buf->start, buf->start + buf->len - 1,
  288. EXTENT_CSUM, 1)) {
  289. buf->flags |= EXTENT_CSUM;
  290. return buf;
  291. }
  292. ret = csum_tree_block(root, buf, 1);
  293. set_extent_bits(extent_tree, buf->start,
  294. buf->start + buf->len - 1,
  295. EXTENT_CSUM, GFP_NOFS);
  296. buf->flags |= EXTENT_CSUM;
  297. return buf;
  298. }
  299. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  300. struct extent_buffer *buf)
  301. {
  302. struct inode *btree_inode = root->fs_info->btree_inode;
  303. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, buf);
  304. return 0;
  305. }
  306. int wait_on_tree_block_writeback(struct btrfs_root *root,
  307. struct extent_buffer *buf)
  308. {
  309. struct inode *btree_inode = root->fs_info->btree_inode;
  310. wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->extent_tree,
  311. buf);
  312. return 0;
  313. }
  314. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  315. struct btrfs_root *root,
  316. struct btrfs_fs_info *fs_info,
  317. u64 objectid)
  318. {
  319. root->node = NULL;
  320. root->inode = NULL;
  321. root->commit_root = NULL;
  322. root->sectorsize = sectorsize;
  323. root->nodesize = nodesize;
  324. root->leafsize = leafsize;
  325. root->ref_cows = 0;
  326. root->fs_info = fs_info;
  327. root->objectid = objectid;
  328. root->last_trans = 0;
  329. root->highest_inode = 0;
  330. root->last_inode_alloc = 0;
  331. root->name = NULL;
  332. memset(&root->root_key, 0, sizeof(root->root_key));
  333. memset(&root->root_item, 0, sizeof(root->root_item));
  334. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  335. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  336. init_completion(&root->kobj_unregister);
  337. init_rwsem(&root->snap_sem);
  338. root->defrag_running = 0;
  339. root->defrag_level = 0;
  340. root->root_key.objectid = objectid;
  341. return 0;
  342. }
  343. static int find_and_setup_root(struct btrfs_root *tree_root,
  344. struct btrfs_fs_info *fs_info,
  345. u64 objectid,
  346. struct btrfs_root *root)
  347. {
  348. int ret;
  349. u32 blocksize;
  350. __setup_root(tree_root->nodesize, tree_root->leafsize,
  351. tree_root->sectorsize, root, fs_info, objectid);
  352. ret = btrfs_find_last_root(tree_root, objectid,
  353. &root->root_item, &root->root_key);
  354. BUG_ON(ret);
  355. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  356. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  357. blocksize);
  358. BUG_ON(!root->node);
  359. return 0;
  360. }
  361. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
  362. struct btrfs_key *location)
  363. {
  364. struct btrfs_root *root;
  365. struct btrfs_root *tree_root = fs_info->tree_root;
  366. struct btrfs_path *path;
  367. struct extent_buffer *l;
  368. u64 highest_inode;
  369. u32 blocksize;
  370. int ret = 0;
  371. root = kzalloc(sizeof(*root), GFP_NOFS);
  372. if (!root)
  373. return ERR_PTR(-ENOMEM);
  374. if (location->offset == (u64)-1) {
  375. ret = find_and_setup_root(tree_root, fs_info,
  376. location->objectid, root);
  377. if (ret) {
  378. kfree(root);
  379. return ERR_PTR(ret);
  380. }
  381. goto insert;
  382. }
  383. __setup_root(tree_root->nodesize, tree_root->leafsize,
  384. tree_root->sectorsize, root, fs_info,
  385. location->objectid);
  386. path = btrfs_alloc_path();
  387. BUG_ON(!path);
  388. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  389. if (ret != 0) {
  390. if (ret > 0)
  391. ret = -ENOENT;
  392. goto out;
  393. }
  394. l = path->nodes[0];
  395. read_extent_buffer(l, &root->root_item,
  396. btrfs_item_ptr_offset(l, path->slots[0]),
  397. sizeof(root->root_item));
  398. memcpy(&root->root_key, location, sizeof(*location));
  399. ret = 0;
  400. out:
  401. btrfs_release_path(root, path);
  402. btrfs_free_path(path);
  403. if (ret) {
  404. kfree(root);
  405. return ERR_PTR(ret);
  406. }
  407. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  408. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  409. blocksize);
  410. BUG_ON(!root->node);
  411. insert:
  412. root->ref_cows = 1;
  413. ret = btrfs_find_highest_inode(root, &highest_inode);
  414. if (ret == 0) {
  415. root->highest_inode = highest_inode;
  416. root->last_inode_alloc = highest_inode;
  417. }
  418. return root;
  419. }
  420. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  421. struct btrfs_key *location,
  422. const char *name, int namelen)
  423. {
  424. struct btrfs_root *root;
  425. int ret;
  426. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  427. (unsigned long)location->objectid);
  428. if (root)
  429. return root;
  430. root = btrfs_read_fs_root_no_radix(fs_info, location);
  431. if (IS_ERR(root))
  432. return root;
  433. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  434. (unsigned long)root->root_key.objectid,
  435. root);
  436. if (ret) {
  437. free_extent_buffer(root->node);
  438. kfree(root);
  439. return ERR_PTR(ret);
  440. }
  441. ret = btrfs_set_root_name(root, name, namelen);
  442. if (ret) {
  443. free_extent_buffer(root->node);
  444. kfree(root);
  445. return ERR_PTR(ret);
  446. }
  447. ret = btrfs_sysfs_add_root(root);
  448. if (ret) {
  449. free_extent_buffer(root->node);
  450. kfree(root->name);
  451. kfree(root);
  452. return ERR_PTR(ret);
  453. }
  454. ret = btrfs_find_dead_roots(fs_info->tree_root,
  455. root->root_key.objectid, root);
  456. BUG_ON(ret);
  457. return root;
  458. }
  459. #if 0
  460. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  461. struct btrfs_hasher *hasher;
  462. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  463. if (!hasher)
  464. return -ENOMEM;
  465. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  466. if (!hasher->hash_tfm) {
  467. kfree(hasher);
  468. return -EINVAL;
  469. }
  470. spin_lock(&info->hash_lock);
  471. list_add(&hasher->list, &info->hashers);
  472. spin_unlock(&info->hash_lock);
  473. return 0;
  474. }
  475. #endif
  476. struct btrfs_root *open_ctree(struct super_block *sb)
  477. {
  478. u32 sectorsize;
  479. u32 nodesize;
  480. u32 leafsize;
  481. u32 blocksize;
  482. struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
  483. GFP_NOFS);
  484. struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
  485. GFP_NOFS);
  486. struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
  487. GFP_NOFS);
  488. int ret;
  489. int err = -EIO;
  490. struct btrfs_super_block *disk_super;
  491. if (!extent_root || !tree_root || !fs_info) {
  492. err = -ENOMEM;
  493. goto fail;
  494. }
  495. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  496. INIT_LIST_HEAD(&fs_info->trans_list);
  497. INIT_LIST_HEAD(&fs_info->dead_roots);
  498. INIT_LIST_HEAD(&fs_info->hashers);
  499. spin_lock_init(&fs_info->hash_lock);
  500. memset(&fs_info->super_kobj, 0, sizeof(fs_info->super_kobj));
  501. init_completion(&fs_info->kobj_unregister);
  502. sb_set_blocksize(sb, 4096);
  503. fs_info->running_transaction = NULL;
  504. fs_info->last_trans_committed = 0;
  505. fs_info->tree_root = tree_root;
  506. fs_info->extent_root = extent_root;
  507. fs_info->sb = sb;
  508. fs_info->btree_inode = new_inode(sb);
  509. fs_info->btree_inode->i_ino = 1;
  510. fs_info->btree_inode->i_nlink = 1;
  511. fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
  512. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  513. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  514. fs_info->btree_inode->i_mapping,
  515. GFP_NOFS);
  516. BTRFS_I(fs_info->btree_inode)->extent_tree.ops = &btree_extent_map_ops;
  517. extent_map_tree_init(&fs_info->free_space_cache,
  518. fs_info->btree_inode->i_mapping, GFP_NOFS);
  519. extent_map_tree_init(&fs_info->block_group_cache,
  520. fs_info->btree_inode->i_mapping, GFP_NOFS);
  521. extent_map_tree_init(&fs_info->pinned_extents,
  522. fs_info->btree_inode->i_mapping, GFP_NOFS);
  523. extent_map_tree_init(&fs_info->pending_del,
  524. fs_info->btree_inode->i_mapping, GFP_NOFS);
  525. extent_map_tree_init(&fs_info->extent_ins,
  526. fs_info->btree_inode->i_mapping, GFP_NOFS);
  527. fs_info->do_barriers = 1;
  528. fs_info->closing = 0;
  529. fs_info->total_pinned = 0;
  530. INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
  531. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  532. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  533. sizeof(struct btrfs_key));
  534. insert_inode_hash(fs_info->btree_inode);
  535. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  536. mutex_init(&fs_info->trans_mutex);
  537. mutex_init(&fs_info->fs_mutex);
  538. #if 0
  539. ret = add_hasher(fs_info, "crc32c");
  540. if (ret) {
  541. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  542. err = -ENOMEM;
  543. goto fail_iput;
  544. }
  545. #endif
  546. __setup_root(512, 512, 512, tree_root,
  547. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  548. fs_info->sb_buffer = read_tree_block(tree_root,
  549. BTRFS_SUPER_INFO_OFFSET,
  550. 512);
  551. if (!fs_info->sb_buffer)
  552. goto fail_iput;
  553. read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
  554. sizeof(fs_info->super_copy));
  555. read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
  556. (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
  557. BTRFS_FSID_SIZE);
  558. disk_super = &fs_info->super_copy;
  559. if (!btrfs_super_root(disk_super))
  560. goto fail_sb_buffer;
  561. nodesize = btrfs_super_nodesize(disk_super);
  562. leafsize = btrfs_super_leafsize(disk_super);
  563. sectorsize = btrfs_super_sectorsize(disk_super);
  564. tree_root->nodesize = nodesize;
  565. tree_root->leafsize = leafsize;
  566. tree_root->sectorsize = sectorsize;
  567. sb_set_blocksize(sb, sectorsize);
  568. i_size_write(fs_info->btree_inode,
  569. btrfs_super_total_bytes(disk_super));
  570. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  571. sizeof(disk_super->magic))) {
  572. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  573. goto fail_sb_buffer;
  574. }
  575. blocksize = btrfs_level_size(tree_root,
  576. btrfs_super_root_level(disk_super));
  577. tree_root->node = read_tree_block(tree_root,
  578. btrfs_super_root(disk_super),
  579. blocksize);
  580. if (!tree_root->node)
  581. goto fail_sb_buffer;
  582. mutex_lock(&fs_info->fs_mutex);
  583. ret = find_and_setup_root(tree_root, fs_info,
  584. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  585. if (ret) {
  586. mutex_unlock(&fs_info->fs_mutex);
  587. goto fail_tree_root;
  588. }
  589. btrfs_read_block_groups(extent_root);
  590. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  591. mutex_unlock(&fs_info->fs_mutex);
  592. return tree_root;
  593. fail_tree_root:
  594. free_extent_buffer(tree_root->node);
  595. fail_sb_buffer:
  596. free_extent_buffer(fs_info->sb_buffer);
  597. fail_iput:
  598. iput(fs_info->btree_inode);
  599. fail:
  600. kfree(extent_root);
  601. kfree(tree_root);
  602. kfree(fs_info);
  603. return ERR_PTR(err);
  604. }
  605. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  606. *root)
  607. {
  608. int ret;
  609. struct extent_buffer *super = root->fs_info->sb_buffer;
  610. struct inode *btree_inode = root->fs_info->btree_inode;
  611. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, super);
  612. ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
  613. super->start, super->len);
  614. return ret;
  615. }
  616. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  617. {
  618. radix_tree_delete(&fs_info->fs_roots_radix,
  619. (unsigned long)root->root_key.objectid);
  620. btrfs_sysfs_del_root(root);
  621. if (root->inode)
  622. iput(root->inode);
  623. if (root->node)
  624. free_extent_buffer(root->node);
  625. if (root->commit_root)
  626. free_extent_buffer(root->commit_root);
  627. if (root->name)
  628. kfree(root->name);
  629. kfree(root);
  630. return 0;
  631. }
  632. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  633. {
  634. int ret;
  635. struct btrfs_root *gang[8];
  636. int i;
  637. while(1) {
  638. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  639. (void **)gang, 0,
  640. ARRAY_SIZE(gang));
  641. if (!ret)
  642. break;
  643. for (i = 0; i < ret; i++)
  644. btrfs_free_fs_root(fs_info, gang[i]);
  645. }
  646. return 0;
  647. }
  648. int close_ctree(struct btrfs_root *root)
  649. {
  650. int ret;
  651. struct btrfs_trans_handle *trans;
  652. struct btrfs_fs_info *fs_info = root->fs_info;
  653. fs_info->closing = 1;
  654. btrfs_transaction_flush_work(root);
  655. mutex_lock(&fs_info->fs_mutex);
  656. btrfs_defrag_dirty_roots(root->fs_info);
  657. trans = btrfs_start_transaction(root, 1);
  658. ret = btrfs_commit_transaction(trans, root);
  659. /* run commit again to drop the original snapshot */
  660. trans = btrfs_start_transaction(root, 1);
  661. btrfs_commit_transaction(trans, root);
  662. ret = btrfs_write_and_wait_transaction(NULL, root);
  663. BUG_ON(ret);
  664. write_ctree_super(NULL, root);
  665. mutex_unlock(&fs_info->fs_mutex);
  666. if (fs_info->extent_root->node)
  667. free_extent_buffer(fs_info->extent_root->node);
  668. if (fs_info->tree_root->node)
  669. free_extent_buffer(fs_info->tree_root->node);
  670. free_extent_buffer(fs_info->sb_buffer);
  671. btrfs_free_block_groups(root->fs_info);
  672. del_fs_roots(fs_info);
  673. extent_map_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  674. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  675. iput(fs_info->btree_inode);
  676. #if 0
  677. while(!list_empty(&fs_info->hashers)) {
  678. struct btrfs_hasher *hasher;
  679. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  680. hashers);
  681. list_del(&hasher->hashers);
  682. crypto_free_hash(&fs_info->hash_tfm);
  683. kfree(hasher);
  684. }
  685. #endif
  686. kfree(fs_info->extent_root);
  687. kfree(fs_info->tree_root);
  688. return 0;
  689. }
  690. int btrfs_buffer_uptodate(struct extent_buffer *buf)
  691. {
  692. struct inode *btree_inode = buf->first_page->mapping->host;
  693. return extent_buffer_uptodate(&BTRFS_I(btree_inode)->extent_tree, buf);
  694. }
  695. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  696. {
  697. struct inode *btree_inode = buf->first_page->mapping->host;
  698. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->extent_tree,
  699. buf);
  700. }
  701. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  702. {
  703. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  704. u64 transid = btrfs_header_generation(buf);
  705. struct inode *btree_inode = root->fs_info->btree_inode;
  706. if (transid != root->fs_info->generation) {
  707. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  708. (unsigned long long)buf->start,
  709. transid, root->fs_info->generation);
  710. WARN_ON(1);
  711. }
  712. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, buf);
  713. }
  714. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  715. {
  716. balance_dirty_pages_ratelimited_nr(
  717. root->fs_info->btree_inode->i_mapping, 1);
  718. }
  719. void btrfs_set_buffer_defrag(struct extent_buffer *buf)
  720. {
  721. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  722. struct inode *btree_inode = root->fs_info->btree_inode;
  723. set_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start,
  724. buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
  725. }
  726. void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
  727. {
  728. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  729. struct inode *btree_inode = root->fs_info->btree_inode;
  730. set_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start,
  731. buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
  732. GFP_NOFS);
  733. }
  734. int btrfs_buffer_defrag(struct extent_buffer *buf)
  735. {
  736. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  737. struct inode *btree_inode = root->fs_info->btree_inode;
  738. return test_range_bit(&BTRFS_I(btree_inode)->extent_tree,
  739. buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
  740. }
  741. int btrfs_buffer_defrag_done(struct extent_buffer *buf)
  742. {
  743. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  744. struct inode *btree_inode = root->fs_info->btree_inode;
  745. return test_range_bit(&BTRFS_I(btree_inode)->extent_tree,
  746. buf->start, buf->start + buf->len - 1,
  747. EXTENT_DEFRAG_DONE, 0);
  748. }
  749. int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
  750. {
  751. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  752. struct inode *btree_inode = root->fs_info->btree_inode;
  753. return clear_extent_bits(&BTRFS_I(btree_inode)->extent_tree,
  754. buf->start, buf->start + buf->len - 1,
  755. EXTENT_DEFRAG_DONE, GFP_NOFS);
  756. }
  757. int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
  758. {
  759. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  760. struct inode *btree_inode = root->fs_info->btree_inode;
  761. return clear_extent_bits(&BTRFS_I(btree_inode)->extent_tree,
  762. buf->start, buf->start + buf->len - 1,
  763. EXTENT_DEFRAG, GFP_NOFS);
  764. }
  765. int btrfs_read_buffer(struct extent_buffer *buf)
  766. {
  767. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  768. struct inode *btree_inode = root->fs_info->btree_inode;
  769. return read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree,
  770. buf, 0, 1);
  771. }
  772. static struct extent_map_ops btree_extent_map_ops = {
  773. .writepage_io_hook = btree_writepage_io_hook,
  774. };