jiffies.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. #ifndef _LINUX_JIFFIES_H
  2. #define _LINUX_JIFFIES_H
  3. #include <linux/math64.h>
  4. #include <linux/kernel.h>
  5. #include <linux/types.h>
  6. #include <linux/time.h>
  7. #include <linux/timex.h>
  8. #include <asm/param.h> /* for HZ */
  9. /*
  10. * The following defines establish the engineering parameters of the PLL
  11. * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  12. * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  13. * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  14. * nearest power of two in order to avoid hardware multiply operations.
  15. */
  16. #if HZ >= 12 && HZ < 24
  17. # define SHIFT_HZ 4
  18. #elif HZ >= 24 && HZ < 48
  19. # define SHIFT_HZ 5
  20. #elif HZ >= 48 && HZ < 96
  21. # define SHIFT_HZ 6
  22. #elif HZ >= 96 && HZ < 192
  23. # define SHIFT_HZ 7
  24. #elif HZ >= 192 && HZ < 384
  25. # define SHIFT_HZ 8
  26. #elif HZ >= 384 && HZ < 768
  27. # define SHIFT_HZ 9
  28. #elif HZ >= 768 && HZ < 1536
  29. # define SHIFT_HZ 10
  30. #elif HZ >= 1536 && HZ < 3072
  31. # define SHIFT_HZ 11
  32. #elif HZ >= 3072 && HZ < 6144
  33. # define SHIFT_HZ 12
  34. #elif HZ >= 6144 && HZ < 12288
  35. # define SHIFT_HZ 13
  36. #else
  37. # error Invalid value of HZ.
  38. #endif
  39. /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  40. * improve accuracy by shifting LSH bits, hence calculating:
  41. * (NOM << LSH) / DEN
  42. * This however means trouble for large NOM, because (NOM << LSH) may no
  43. * longer fit in 32 bits. The following way of calculating this gives us
  44. * some slack, under the following conditions:
  45. * - (NOM / DEN) fits in (32 - LSH) bits.
  46. * - (NOM % DEN) fits in (32 - LSH) bits.
  47. */
  48. #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
  49. + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  50. #ifdef CLOCK_TICK_RATE
  51. /* LATCH is used in the interval timer and ftape setup. */
  52. # define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
  53. /*
  54. * HZ is the requested value. However the CLOCK_TICK_RATE may not allow
  55. * for exactly HZ. So SHIFTED_HZ is high res HZ ("<< 8" is for accuracy)
  56. */
  57. # define SHIFTED_HZ (SH_DIV(CLOCK_TICK_RATE, LATCH, 8))
  58. #else
  59. # define SHIFTED_HZ (HZ << 8)
  60. #endif
  61. /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  62. #define TICK_NSEC (SH_DIV(1000000UL * 1000, SHIFTED_HZ, 8))
  63. /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  64. #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  65. /* some arch's have a small-data section that can be accessed register-relative
  66. * but that can only take up to, say, 4-byte variables. jiffies being part of
  67. * an 8-byte variable may not be correctly accessed unless we force the issue
  68. */
  69. #define __jiffy_data __attribute__((section(".data")))
  70. /*
  71. * The 64-bit value is not atomic - you MUST NOT read it
  72. * without sampling the sequence number in xtime_lock.
  73. * get_jiffies_64() will do this for you as appropriate.
  74. */
  75. extern u64 __jiffy_data jiffies_64;
  76. extern unsigned long volatile __jiffy_data jiffies;
  77. #if (BITS_PER_LONG < 64)
  78. u64 get_jiffies_64(void);
  79. #else
  80. static inline u64 get_jiffies_64(void)
  81. {
  82. return (u64)jiffies;
  83. }
  84. #endif
  85. /*
  86. * These inlines deal with timer wrapping correctly. You are
  87. * strongly encouraged to use them
  88. * 1. Because people otherwise forget
  89. * 2. Because if the timer wrap changes in future you won't have to
  90. * alter your driver code.
  91. *
  92. * time_after(a,b) returns true if the time a is after time b.
  93. *
  94. * Do this with "<0" and ">=0" to only test the sign of the result. A
  95. * good compiler would generate better code (and a really good compiler
  96. * wouldn't care). Gcc is currently neither.
  97. */
  98. #define time_after(a,b) \
  99. (typecheck(unsigned long, a) && \
  100. typecheck(unsigned long, b) && \
  101. ((long)(b) - (long)(a) < 0))
  102. #define time_before(a,b) time_after(b,a)
  103. #define time_after_eq(a,b) \
  104. (typecheck(unsigned long, a) && \
  105. typecheck(unsigned long, b) && \
  106. ((long)(a) - (long)(b) >= 0))
  107. #define time_before_eq(a,b) time_after_eq(b,a)
  108. /*
  109. * Calculate whether a is in the range of [b, c].
  110. */
  111. #define time_in_range(a,b,c) \
  112. (time_after_eq(a,b) && \
  113. time_before_eq(a,c))
  114. /*
  115. * Calculate whether a is in the range of [b, c).
  116. */
  117. #define time_in_range_open(a,b,c) \
  118. (time_after_eq(a,b) && \
  119. time_before(a,c))
  120. /* Same as above, but does so with platform independent 64bit types.
  121. * These must be used when utilizing jiffies_64 (i.e. return value of
  122. * get_jiffies_64() */
  123. #define time_after64(a,b) \
  124. (typecheck(__u64, a) && \
  125. typecheck(__u64, b) && \
  126. ((__s64)(b) - (__s64)(a) < 0))
  127. #define time_before64(a,b) time_after64(b,a)
  128. #define time_after_eq64(a,b) \
  129. (typecheck(__u64, a) && \
  130. typecheck(__u64, b) && \
  131. ((__s64)(a) - (__s64)(b) >= 0))
  132. #define time_before_eq64(a,b) time_after_eq64(b,a)
  133. /*
  134. * These four macros compare jiffies and 'a' for convenience.
  135. */
  136. /* time_is_before_jiffies(a) return true if a is before jiffies */
  137. #define time_is_before_jiffies(a) time_after(jiffies, a)
  138. /* time_is_after_jiffies(a) return true if a is after jiffies */
  139. #define time_is_after_jiffies(a) time_before(jiffies, a)
  140. /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
  141. #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
  142. /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
  143. #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
  144. /*
  145. * Have the 32 bit jiffies value wrap 5 minutes after boot
  146. * so jiffies wrap bugs show up earlier.
  147. */
  148. #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
  149. /*
  150. * Change timeval to jiffies, trying to avoid the
  151. * most obvious overflows..
  152. *
  153. * And some not so obvious.
  154. *
  155. * Note that we don't want to return LONG_MAX, because
  156. * for various timeout reasons we often end up having
  157. * to wait "jiffies+1" in order to guarantee that we wait
  158. * at _least_ "jiffies" - so "jiffies+1" had better still
  159. * be positive.
  160. */
  161. #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
  162. extern unsigned long preset_lpj;
  163. /*
  164. * We want to do realistic conversions of time so we need to use the same
  165. * values the update wall clock code uses as the jiffies size. This value
  166. * is: TICK_NSEC (which is defined in timex.h). This
  167. * is a constant and is in nanoseconds. We will use scaled math
  168. * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
  169. * NSEC_JIFFIE_SC. Note that these defines contain nothing but
  170. * constants and so are computed at compile time. SHIFT_HZ (computed in
  171. * timex.h) adjusts the scaling for different HZ values.
  172. * Scaled math??? What is that?
  173. *
  174. * Scaled math is a way to do integer math on values that would,
  175. * otherwise, either overflow, underflow, or cause undesired div
  176. * instructions to appear in the execution path. In short, we "scale"
  177. * up the operands so they take more bits (more precision, less
  178. * underflow), do the desired operation and then "scale" the result back
  179. * by the same amount. If we do the scaling by shifting we avoid the
  180. * costly mpy and the dastardly div instructions.
  181. * Suppose, for example, we want to convert from seconds to jiffies
  182. * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
  183. * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
  184. * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
  185. * might calculate at compile time, however, the result will only have
  186. * about 3-4 bits of precision (less for smaller values of HZ).
  187. *
  188. * So, we scale as follows:
  189. * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
  190. * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
  191. * Then we make SCALE a power of two so:
  192. * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
  193. * Now we define:
  194. * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
  195. * jiff = (sec * SEC_CONV) >> SCALE;
  196. *
  197. * Often the math we use will expand beyond 32-bits so we tell C how to
  198. * do this and pass the 64-bit result of the mpy through the ">> SCALE"
  199. * which should take the result back to 32-bits. We want this expansion
  200. * to capture as much precision as possible. At the same time we don't
  201. * want to overflow so we pick the SCALE to avoid this. In this file,
  202. * that means using a different scale for each range of HZ values (as
  203. * defined in timex.h).
  204. *
  205. * For those who want to know, gcc will give a 64-bit result from a "*"
  206. * operator if the result is a long long AND at least one of the
  207. * operands is cast to long long (usually just prior to the "*" so as
  208. * not to confuse it into thinking it really has a 64-bit operand,
  209. * which, buy the way, it can do, but it takes more code and at least 2
  210. * mpys).
  211. * We also need to be aware that one second in nanoseconds is only a
  212. * couple of bits away from overflowing a 32-bit word, so we MUST use
  213. * 64-bits to get the full range time in nanoseconds.
  214. */
  215. /*
  216. * Here are the scales we will use. One for seconds, nanoseconds and
  217. * microseconds.
  218. *
  219. * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
  220. * check if the sign bit is set. If not, we bump the shift count by 1.
  221. * (Gets an extra bit of precision where we can use it.)
  222. * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
  223. * Haven't tested others.
  224. * Limits of cpp (for #if expressions) only long (no long long), but
  225. * then we only need the most signicant bit.
  226. */
  227. #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
  228. #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
  229. #undef SEC_JIFFIE_SC
  230. #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
  231. #endif
  232. #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
  233. #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
  234. #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
  235. TICK_NSEC -1) / (u64)TICK_NSEC))
  236. #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
  237. TICK_NSEC -1) / (u64)TICK_NSEC))
  238. #define USEC_CONVERSION \
  239. ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
  240. TICK_NSEC -1) / (u64)TICK_NSEC))
  241. /*
  242. * USEC_ROUND is used in the timeval to jiffie conversion. See there
  243. * for more details. It is the scaled resolution rounding value. Note
  244. * that it is a 64-bit value. Since, when it is applied, we are already
  245. * in jiffies (albit scaled), it is nothing but the bits we will shift
  246. * off.
  247. */
  248. #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
  249. /*
  250. * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
  251. * into seconds. The 64-bit case will overflow if we are not careful,
  252. * so use the messy SH_DIV macro to do it. Still all constants.
  253. */
  254. #if BITS_PER_LONG < 64
  255. # define MAX_SEC_IN_JIFFIES \
  256. (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
  257. #else /* take care of overflow on 64 bits machines */
  258. # define MAX_SEC_IN_JIFFIES \
  259. (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
  260. #endif
  261. /*
  262. * Convert various time units to each other:
  263. */
  264. extern unsigned int jiffies_to_msecs(const unsigned long j);
  265. extern unsigned int jiffies_to_usecs(const unsigned long j);
  266. extern unsigned long msecs_to_jiffies(const unsigned int m);
  267. extern unsigned long usecs_to_jiffies(const unsigned int u);
  268. extern unsigned long timespec_to_jiffies(const struct timespec *value);
  269. extern void jiffies_to_timespec(const unsigned long jiffies,
  270. struct timespec *value);
  271. extern unsigned long timeval_to_jiffies(const struct timeval *value);
  272. extern void jiffies_to_timeval(const unsigned long jiffies,
  273. struct timeval *value);
  274. extern clock_t jiffies_to_clock_t(unsigned long x);
  275. extern unsigned long clock_t_to_jiffies(unsigned long x);
  276. extern u64 jiffies_64_to_clock_t(u64 x);
  277. extern u64 nsec_to_clock_t(u64 x);
  278. extern u64 nsecs_to_jiffies64(u64 n);
  279. extern unsigned long nsecs_to_jiffies(u64 n);
  280. #define TIMESTAMP_SIZE 30
  281. #endif