huge_memory.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. /*
  24. * By default transparent hugepage support is enabled for all mappings
  25. * and khugepaged scans all mappings. Defrag is only invoked by
  26. * khugepaged hugepage allocations and by page faults inside
  27. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  28. * allocations.
  29. */
  30. unsigned long transparent_hugepage_flags __read_mostly =
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  32. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  33. #endif
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  35. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  36. #endif
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  39. /* default scan 8*512 pte (or vmas) every 30 second */
  40. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  41. static unsigned int khugepaged_pages_collapsed;
  42. static unsigned int khugepaged_full_scans;
  43. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  44. /* during fragmentation poll the hugepage allocator once every minute */
  45. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  46. static struct task_struct *khugepaged_thread __read_mostly;
  47. static unsigned long huge_zero_pfn __read_mostly;
  48. static DEFINE_MUTEX(khugepaged_mutex);
  49. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  50. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  51. /*
  52. * default collapse hugepages if there is at least one pte mapped like
  53. * it would have happened if the vma was large enough during page
  54. * fault.
  55. */
  56. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  57. static int khugepaged(void *none);
  58. static int mm_slots_hash_init(void);
  59. static int khugepaged_slab_init(void);
  60. static void khugepaged_slab_free(void);
  61. #define MM_SLOTS_HASH_HEADS 1024
  62. static struct hlist_head *mm_slots_hash __read_mostly;
  63. static struct kmem_cache *mm_slot_cache __read_mostly;
  64. /**
  65. * struct mm_slot - hash lookup from mm to mm_slot
  66. * @hash: hash collision list
  67. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  68. * @mm: the mm that this information is valid for
  69. */
  70. struct mm_slot {
  71. struct hlist_node hash;
  72. struct list_head mm_node;
  73. struct mm_struct *mm;
  74. };
  75. /**
  76. * struct khugepaged_scan - cursor for scanning
  77. * @mm_head: the head of the mm list to scan
  78. * @mm_slot: the current mm_slot we are scanning
  79. * @address: the next address inside that to be scanned
  80. *
  81. * There is only the one khugepaged_scan instance of this cursor structure.
  82. */
  83. struct khugepaged_scan {
  84. struct list_head mm_head;
  85. struct mm_slot *mm_slot;
  86. unsigned long address;
  87. };
  88. static struct khugepaged_scan khugepaged_scan = {
  89. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  90. };
  91. static int set_recommended_min_free_kbytes(void)
  92. {
  93. struct zone *zone;
  94. int nr_zones = 0;
  95. unsigned long recommended_min;
  96. extern int min_free_kbytes;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static int init_huge_zero_pfn(void)
  144. {
  145. struct page *hpage;
  146. unsigned long pfn;
  147. hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  148. HPAGE_PMD_ORDER);
  149. if (!hpage)
  150. return -ENOMEM;
  151. pfn = page_to_pfn(hpage);
  152. if (cmpxchg(&huge_zero_pfn, 0, pfn))
  153. __free_page(hpage);
  154. return 0;
  155. }
  156. static inline bool is_huge_zero_pfn(unsigned long pfn)
  157. {
  158. return huge_zero_pfn && pfn == huge_zero_pfn;
  159. }
  160. static inline bool is_huge_zero_pmd(pmd_t pmd)
  161. {
  162. return is_huge_zero_pfn(pmd_pfn(pmd));
  163. }
  164. #ifdef CONFIG_SYSFS
  165. static ssize_t double_flag_show(struct kobject *kobj,
  166. struct kobj_attribute *attr, char *buf,
  167. enum transparent_hugepage_flag enabled,
  168. enum transparent_hugepage_flag req_madv)
  169. {
  170. if (test_bit(enabled, &transparent_hugepage_flags)) {
  171. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  172. return sprintf(buf, "[always] madvise never\n");
  173. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  174. return sprintf(buf, "always [madvise] never\n");
  175. else
  176. return sprintf(buf, "always madvise [never]\n");
  177. }
  178. static ssize_t double_flag_store(struct kobject *kobj,
  179. struct kobj_attribute *attr,
  180. const char *buf, size_t count,
  181. enum transparent_hugepage_flag enabled,
  182. enum transparent_hugepage_flag req_madv)
  183. {
  184. if (!memcmp("always", buf,
  185. min(sizeof("always")-1, count))) {
  186. set_bit(enabled, &transparent_hugepage_flags);
  187. clear_bit(req_madv, &transparent_hugepage_flags);
  188. } else if (!memcmp("madvise", buf,
  189. min(sizeof("madvise")-1, count))) {
  190. clear_bit(enabled, &transparent_hugepage_flags);
  191. set_bit(req_madv, &transparent_hugepage_flags);
  192. } else if (!memcmp("never", buf,
  193. min(sizeof("never")-1, count))) {
  194. clear_bit(enabled, &transparent_hugepage_flags);
  195. clear_bit(req_madv, &transparent_hugepage_flags);
  196. } else
  197. return -EINVAL;
  198. return count;
  199. }
  200. static ssize_t enabled_show(struct kobject *kobj,
  201. struct kobj_attribute *attr, char *buf)
  202. {
  203. return double_flag_show(kobj, attr, buf,
  204. TRANSPARENT_HUGEPAGE_FLAG,
  205. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  206. }
  207. static ssize_t enabled_store(struct kobject *kobj,
  208. struct kobj_attribute *attr,
  209. const char *buf, size_t count)
  210. {
  211. ssize_t ret;
  212. ret = double_flag_store(kobj, attr, buf, count,
  213. TRANSPARENT_HUGEPAGE_FLAG,
  214. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  215. if (ret > 0) {
  216. int err;
  217. mutex_lock(&khugepaged_mutex);
  218. err = start_khugepaged();
  219. mutex_unlock(&khugepaged_mutex);
  220. if (err)
  221. ret = err;
  222. }
  223. return ret;
  224. }
  225. static struct kobj_attribute enabled_attr =
  226. __ATTR(enabled, 0644, enabled_show, enabled_store);
  227. static ssize_t single_flag_show(struct kobject *kobj,
  228. struct kobj_attribute *attr, char *buf,
  229. enum transparent_hugepage_flag flag)
  230. {
  231. return sprintf(buf, "%d\n",
  232. !!test_bit(flag, &transparent_hugepage_flags));
  233. }
  234. static ssize_t single_flag_store(struct kobject *kobj,
  235. struct kobj_attribute *attr,
  236. const char *buf, size_t count,
  237. enum transparent_hugepage_flag flag)
  238. {
  239. unsigned long value;
  240. int ret;
  241. ret = kstrtoul(buf, 10, &value);
  242. if (ret < 0)
  243. return ret;
  244. if (value > 1)
  245. return -EINVAL;
  246. if (value)
  247. set_bit(flag, &transparent_hugepage_flags);
  248. else
  249. clear_bit(flag, &transparent_hugepage_flags);
  250. return count;
  251. }
  252. /*
  253. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  254. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  255. * memory just to allocate one more hugepage.
  256. */
  257. static ssize_t defrag_show(struct kobject *kobj,
  258. struct kobj_attribute *attr, char *buf)
  259. {
  260. return double_flag_show(kobj, attr, buf,
  261. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  262. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  263. }
  264. static ssize_t defrag_store(struct kobject *kobj,
  265. struct kobj_attribute *attr,
  266. const char *buf, size_t count)
  267. {
  268. return double_flag_store(kobj, attr, buf, count,
  269. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  270. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  271. }
  272. static struct kobj_attribute defrag_attr =
  273. __ATTR(defrag, 0644, defrag_show, defrag_store);
  274. #ifdef CONFIG_DEBUG_VM
  275. static ssize_t debug_cow_show(struct kobject *kobj,
  276. struct kobj_attribute *attr, char *buf)
  277. {
  278. return single_flag_show(kobj, attr, buf,
  279. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  280. }
  281. static ssize_t debug_cow_store(struct kobject *kobj,
  282. struct kobj_attribute *attr,
  283. const char *buf, size_t count)
  284. {
  285. return single_flag_store(kobj, attr, buf, count,
  286. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  287. }
  288. static struct kobj_attribute debug_cow_attr =
  289. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  290. #endif /* CONFIG_DEBUG_VM */
  291. static struct attribute *hugepage_attr[] = {
  292. &enabled_attr.attr,
  293. &defrag_attr.attr,
  294. #ifdef CONFIG_DEBUG_VM
  295. &debug_cow_attr.attr,
  296. #endif
  297. NULL,
  298. };
  299. static struct attribute_group hugepage_attr_group = {
  300. .attrs = hugepage_attr,
  301. };
  302. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  303. struct kobj_attribute *attr,
  304. char *buf)
  305. {
  306. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  307. }
  308. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  309. struct kobj_attribute *attr,
  310. const char *buf, size_t count)
  311. {
  312. unsigned long msecs;
  313. int err;
  314. err = strict_strtoul(buf, 10, &msecs);
  315. if (err || msecs > UINT_MAX)
  316. return -EINVAL;
  317. khugepaged_scan_sleep_millisecs = msecs;
  318. wake_up_interruptible(&khugepaged_wait);
  319. return count;
  320. }
  321. static struct kobj_attribute scan_sleep_millisecs_attr =
  322. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  323. scan_sleep_millisecs_store);
  324. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  325. struct kobj_attribute *attr,
  326. char *buf)
  327. {
  328. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  329. }
  330. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  331. struct kobj_attribute *attr,
  332. const char *buf, size_t count)
  333. {
  334. unsigned long msecs;
  335. int err;
  336. err = strict_strtoul(buf, 10, &msecs);
  337. if (err || msecs > UINT_MAX)
  338. return -EINVAL;
  339. khugepaged_alloc_sleep_millisecs = msecs;
  340. wake_up_interruptible(&khugepaged_wait);
  341. return count;
  342. }
  343. static struct kobj_attribute alloc_sleep_millisecs_attr =
  344. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  345. alloc_sleep_millisecs_store);
  346. static ssize_t pages_to_scan_show(struct kobject *kobj,
  347. struct kobj_attribute *attr,
  348. char *buf)
  349. {
  350. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  351. }
  352. static ssize_t pages_to_scan_store(struct kobject *kobj,
  353. struct kobj_attribute *attr,
  354. const char *buf, size_t count)
  355. {
  356. int err;
  357. unsigned long pages;
  358. err = strict_strtoul(buf, 10, &pages);
  359. if (err || !pages || pages > UINT_MAX)
  360. return -EINVAL;
  361. khugepaged_pages_to_scan = pages;
  362. return count;
  363. }
  364. static struct kobj_attribute pages_to_scan_attr =
  365. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  366. pages_to_scan_store);
  367. static ssize_t pages_collapsed_show(struct kobject *kobj,
  368. struct kobj_attribute *attr,
  369. char *buf)
  370. {
  371. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  372. }
  373. static struct kobj_attribute pages_collapsed_attr =
  374. __ATTR_RO(pages_collapsed);
  375. static ssize_t full_scans_show(struct kobject *kobj,
  376. struct kobj_attribute *attr,
  377. char *buf)
  378. {
  379. return sprintf(buf, "%u\n", khugepaged_full_scans);
  380. }
  381. static struct kobj_attribute full_scans_attr =
  382. __ATTR_RO(full_scans);
  383. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  384. struct kobj_attribute *attr, char *buf)
  385. {
  386. return single_flag_show(kobj, attr, buf,
  387. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  388. }
  389. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  390. struct kobj_attribute *attr,
  391. const char *buf, size_t count)
  392. {
  393. return single_flag_store(kobj, attr, buf, count,
  394. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  395. }
  396. static struct kobj_attribute khugepaged_defrag_attr =
  397. __ATTR(defrag, 0644, khugepaged_defrag_show,
  398. khugepaged_defrag_store);
  399. /*
  400. * max_ptes_none controls if khugepaged should collapse hugepages over
  401. * any unmapped ptes in turn potentially increasing the memory
  402. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  403. * reduce the available free memory in the system as it
  404. * runs. Increasing max_ptes_none will instead potentially reduce the
  405. * free memory in the system during the khugepaged scan.
  406. */
  407. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  408. struct kobj_attribute *attr,
  409. char *buf)
  410. {
  411. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  412. }
  413. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  414. struct kobj_attribute *attr,
  415. const char *buf, size_t count)
  416. {
  417. int err;
  418. unsigned long max_ptes_none;
  419. err = strict_strtoul(buf, 10, &max_ptes_none);
  420. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  421. return -EINVAL;
  422. khugepaged_max_ptes_none = max_ptes_none;
  423. return count;
  424. }
  425. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  426. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  427. khugepaged_max_ptes_none_store);
  428. static struct attribute *khugepaged_attr[] = {
  429. &khugepaged_defrag_attr.attr,
  430. &khugepaged_max_ptes_none_attr.attr,
  431. &pages_to_scan_attr.attr,
  432. &pages_collapsed_attr.attr,
  433. &full_scans_attr.attr,
  434. &scan_sleep_millisecs_attr.attr,
  435. &alloc_sleep_millisecs_attr.attr,
  436. NULL,
  437. };
  438. static struct attribute_group khugepaged_attr_group = {
  439. .attrs = khugepaged_attr,
  440. .name = "khugepaged",
  441. };
  442. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  443. {
  444. int err;
  445. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  446. if (unlikely(!*hugepage_kobj)) {
  447. printk(KERN_ERR "hugepage: failed kobject create\n");
  448. return -ENOMEM;
  449. }
  450. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  451. if (err) {
  452. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  453. goto delete_obj;
  454. }
  455. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  456. if (err) {
  457. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  458. goto remove_hp_group;
  459. }
  460. return 0;
  461. remove_hp_group:
  462. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  463. delete_obj:
  464. kobject_put(*hugepage_kobj);
  465. return err;
  466. }
  467. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  468. {
  469. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  470. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  471. kobject_put(hugepage_kobj);
  472. }
  473. #else
  474. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  475. {
  476. return 0;
  477. }
  478. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  479. {
  480. }
  481. #endif /* CONFIG_SYSFS */
  482. static int __init hugepage_init(void)
  483. {
  484. int err;
  485. struct kobject *hugepage_kobj;
  486. if (!has_transparent_hugepage()) {
  487. transparent_hugepage_flags = 0;
  488. return -EINVAL;
  489. }
  490. err = hugepage_init_sysfs(&hugepage_kobj);
  491. if (err)
  492. return err;
  493. err = khugepaged_slab_init();
  494. if (err)
  495. goto out;
  496. err = mm_slots_hash_init();
  497. if (err) {
  498. khugepaged_slab_free();
  499. goto out;
  500. }
  501. /*
  502. * By default disable transparent hugepages on smaller systems,
  503. * where the extra memory used could hurt more than TLB overhead
  504. * is likely to save. The admin can still enable it through /sys.
  505. */
  506. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  507. transparent_hugepage_flags = 0;
  508. start_khugepaged();
  509. return 0;
  510. out:
  511. hugepage_exit_sysfs(hugepage_kobj);
  512. return err;
  513. }
  514. module_init(hugepage_init)
  515. static int __init setup_transparent_hugepage(char *str)
  516. {
  517. int ret = 0;
  518. if (!str)
  519. goto out;
  520. if (!strcmp(str, "always")) {
  521. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  522. &transparent_hugepage_flags);
  523. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  524. &transparent_hugepage_flags);
  525. ret = 1;
  526. } else if (!strcmp(str, "madvise")) {
  527. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  528. &transparent_hugepage_flags);
  529. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  530. &transparent_hugepage_flags);
  531. ret = 1;
  532. } else if (!strcmp(str, "never")) {
  533. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  534. &transparent_hugepage_flags);
  535. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  536. &transparent_hugepage_flags);
  537. ret = 1;
  538. }
  539. out:
  540. if (!ret)
  541. printk(KERN_WARNING
  542. "transparent_hugepage= cannot parse, ignored\n");
  543. return ret;
  544. }
  545. __setup("transparent_hugepage=", setup_transparent_hugepage);
  546. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  547. {
  548. if (likely(vma->vm_flags & VM_WRITE))
  549. pmd = pmd_mkwrite(pmd);
  550. return pmd;
  551. }
  552. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  553. {
  554. pmd_t entry;
  555. entry = mk_pmd(page, vma->vm_page_prot);
  556. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  557. entry = pmd_mkhuge(entry);
  558. return entry;
  559. }
  560. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  561. struct vm_area_struct *vma,
  562. unsigned long haddr, pmd_t *pmd,
  563. struct page *page)
  564. {
  565. pgtable_t pgtable;
  566. VM_BUG_ON(!PageCompound(page));
  567. pgtable = pte_alloc_one(mm, haddr);
  568. if (unlikely(!pgtable))
  569. return VM_FAULT_OOM;
  570. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  571. __SetPageUptodate(page);
  572. spin_lock(&mm->page_table_lock);
  573. if (unlikely(!pmd_none(*pmd))) {
  574. spin_unlock(&mm->page_table_lock);
  575. mem_cgroup_uncharge_page(page);
  576. put_page(page);
  577. pte_free(mm, pgtable);
  578. } else {
  579. pmd_t entry;
  580. entry = mk_huge_pmd(page, vma);
  581. /*
  582. * The spinlocking to take the lru_lock inside
  583. * page_add_new_anon_rmap() acts as a full memory
  584. * barrier to be sure clear_huge_page writes become
  585. * visible after the set_pmd_at() write.
  586. */
  587. page_add_new_anon_rmap(page, vma, haddr);
  588. set_pmd_at(mm, haddr, pmd, entry);
  589. pgtable_trans_huge_deposit(mm, pgtable);
  590. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  591. mm->nr_ptes++;
  592. spin_unlock(&mm->page_table_lock);
  593. }
  594. return 0;
  595. }
  596. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  597. {
  598. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  599. }
  600. static inline struct page *alloc_hugepage_vma(int defrag,
  601. struct vm_area_struct *vma,
  602. unsigned long haddr, int nd,
  603. gfp_t extra_gfp)
  604. {
  605. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  606. HPAGE_PMD_ORDER, vma, haddr, nd);
  607. }
  608. #ifndef CONFIG_NUMA
  609. static inline struct page *alloc_hugepage(int defrag)
  610. {
  611. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  612. HPAGE_PMD_ORDER);
  613. }
  614. #endif
  615. static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  616. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd)
  617. {
  618. pmd_t entry;
  619. entry = pfn_pmd(huge_zero_pfn, vma->vm_page_prot);
  620. entry = pmd_wrprotect(entry);
  621. entry = pmd_mkhuge(entry);
  622. set_pmd_at(mm, haddr, pmd, entry);
  623. pgtable_trans_huge_deposit(mm, pgtable);
  624. mm->nr_ptes++;
  625. }
  626. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  627. unsigned long address, pmd_t *pmd,
  628. unsigned int flags)
  629. {
  630. struct page *page;
  631. unsigned long haddr = address & HPAGE_PMD_MASK;
  632. pte_t *pte;
  633. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  634. if (unlikely(anon_vma_prepare(vma)))
  635. return VM_FAULT_OOM;
  636. if (unlikely(khugepaged_enter(vma)))
  637. return VM_FAULT_OOM;
  638. if (!(flags & FAULT_FLAG_WRITE)) {
  639. pgtable_t pgtable;
  640. if (unlikely(!huge_zero_pfn && init_huge_zero_pfn())) {
  641. count_vm_event(THP_FAULT_FALLBACK);
  642. goto out;
  643. }
  644. pgtable = pte_alloc_one(mm, haddr);
  645. if (unlikely(!pgtable))
  646. return VM_FAULT_OOM;
  647. spin_lock(&mm->page_table_lock);
  648. set_huge_zero_page(pgtable, mm, vma, haddr, pmd);
  649. spin_unlock(&mm->page_table_lock);
  650. return 0;
  651. }
  652. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  653. vma, haddr, numa_node_id(), 0);
  654. if (unlikely(!page)) {
  655. count_vm_event(THP_FAULT_FALLBACK);
  656. goto out;
  657. }
  658. count_vm_event(THP_FAULT_ALLOC);
  659. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  660. put_page(page);
  661. goto out;
  662. }
  663. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  664. page))) {
  665. mem_cgroup_uncharge_page(page);
  666. put_page(page);
  667. goto out;
  668. }
  669. return 0;
  670. }
  671. out:
  672. /*
  673. * Use __pte_alloc instead of pte_alloc_map, because we can't
  674. * run pte_offset_map on the pmd, if an huge pmd could
  675. * materialize from under us from a different thread.
  676. */
  677. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  678. return VM_FAULT_OOM;
  679. /* if an huge pmd materialized from under us just retry later */
  680. if (unlikely(pmd_trans_huge(*pmd)))
  681. return 0;
  682. /*
  683. * A regular pmd is established and it can't morph into a huge pmd
  684. * from under us anymore at this point because we hold the mmap_sem
  685. * read mode and khugepaged takes it in write mode. So now it's
  686. * safe to run pte_offset_map().
  687. */
  688. pte = pte_offset_map(pmd, address);
  689. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  690. }
  691. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  692. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  693. struct vm_area_struct *vma)
  694. {
  695. struct page *src_page;
  696. pmd_t pmd;
  697. pgtable_t pgtable;
  698. int ret;
  699. ret = -ENOMEM;
  700. pgtable = pte_alloc_one(dst_mm, addr);
  701. if (unlikely(!pgtable))
  702. goto out;
  703. spin_lock(&dst_mm->page_table_lock);
  704. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  705. ret = -EAGAIN;
  706. pmd = *src_pmd;
  707. if (unlikely(!pmd_trans_huge(pmd))) {
  708. pte_free(dst_mm, pgtable);
  709. goto out_unlock;
  710. }
  711. /*
  712. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  713. * under splitting since we don't split the page itself, only pmd to
  714. * a page table.
  715. */
  716. if (is_huge_zero_pmd(pmd)) {
  717. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd);
  718. ret = 0;
  719. goto out_unlock;
  720. }
  721. if (unlikely(pmd_trans_splitting(pmd))) {
  722. /* split huge page running from under us */
  723. spin_unlock(&src_mm->page_table_lock);
  724. spin_unlock(&dst_mm->page_table_lock);
  725. pte_free(dst_mm, pgtable);
  726. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  727. goto out;
  728. }
  729. src_page = pmd_page(pmd);
  730. VM_BUG_ON(!PageHead(src_page));
  731. get_page(src_page);
  732. page_dup_rmap(src_page);
  733. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  734. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  735. pmd = pmd_mkold(pmd_wrprotect(pmd));
  736. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  737. pgtable_trans_huge_deposit(dst_mm, pgtable);
  738. dst_mm->nr_ptes++;
  739. ret = 0;
  740. out_unlock:
  741. spin_unlock(&src_mm->page_table_lock);
  742. spin_unlock(&dst_mm->page_table_lock);
  743. out:
  744. return ret;
  745. }
  746. void huge_pmd_set_accessed(struct mm_struct *mm,
  747. struct vm_area_struct *vma,
  748. unsigned long address,
  749. pmd_t *pmd, pmd_t orig_pmd,
  750. int dirty)
  751. {
  752. pmd_t entry;
  753. unsigned long haddr;
  754. spin_lock(&mm->page_table_lock);
  755. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  756. goto unlock;
  757. entry = pmd_mkyoung(orig_pmd);
  758. haddr = address & HPAGE_PMD_MASK;
  759. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  760. update_mmu_cache_pmd(vma, address, pmd);
  761. unlock:
  762. spin_unlock(&mm->page_table_lock);
  763. }
  764. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  765. struct vm_area_struct *vma, unsigned long address,
  766. pmd_t *pmd, unsigned long haddr)
  767. {
  768. pgtable_t pgtable;
  769. pmd_t _pmd;
  770. struct page *page;
  771. int i, ret = 0;
  772. unsigned long mmun_start; /* For mmu_notifiers */
  773. unsigned long mmun_end; /* For mmu_notifiers */
  774. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  775. if (!page) {
  776. ret |= VM_FAULT_OOM;
  777. goto out;
  778. }
  779. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  780. put_page(page);
  781. ret |= VM_FAULT_OOM;
  782. goto out;
  783. }
  784. clear_user_highpage(page, address);
  785. __SetPageUptodate(page);
  786. mmun_start = haddr;
  787. mmun_end = haddr + HPAGE_PMD_SIZE;
  788. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  789. spin_lock(&mm->page_table_lock);
  790. pmdp_clear_flush(vma, haddr, pmd);
  791. /* leave pmd empty until pte is filled */
  792. pgtable = pgtable_trans_huge_withdraw(mm);
  793. pmd_populate(mm, &_pmd, pgtable);
  794. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  795. pte_t *pte, entry;
  796. if (haddr == (address & PAGE_MASK)) {
  797. entry = mk_pte(page, vma->vm_page_prot);
  798. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  799. page_add_new_anon_rmap(page, vma, haddr);
  800. } else {
  801. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  802. entry = pte_mkspecial(entry);
  803. }
  804. pte = pte_offset_map(&_pmd, haddr);
  805. VM_BUG_ON(!pte_none(*pte));
  806. set_pte_at(mm, haddr, pte, entry);
  807. pte_unmap(pte);
  808. }
  809. smp_wmb(); /* make pte visible before pmd */
  810. pmd_populate(mm, pmd, pgtable);
  811. spin_unlock(&mm->page_table_lock);
  812. inc_mm_counter(mm, MM_ANONPAGES);
  813. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  814. ret |= VM_FAULT_WRITE;
  815. out:
  816. return ret;
  817. }
  818. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  819. struct vm_area_struct *vma,
  820. unsigned long address,
  821. pmd_t *pmd, pmd_t orig_pmd,
  822. struct page *page,
  823. unsigned long haddr)
  824. {
  825. pgtable_t pgtable;
  826. pmd_t _pmd;
  827. int ret = 0, i;
  828. struct page **pages;
  829. unsigned long mmun_start; /* For mmu_notifiers */
  830. unsigned long mmun_end; /* For mmu_notifiers */
  831. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  832. GFP_KERNEL);
  833. if (unlikely(!pages)) {
  834. ret |= VM_FAULT_OOM;
  835. goto out;
  836. }
  837. for (i = 0; i < HPAGE_PMD_NR; i++) {
  838. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  839. __GFP_OTHER_NODE,
  840. vma, address, page_to_nid(page));
  841. if (unlikely(!pages[i] ||
  842. mem_cgroup_newpage_charge(pages[i], mm,
  843. GFP_KERNEL))) {
  844. if (pages[i])
  845. put_page(pages[i]);
  846. mem_cgroup_uncharge_start();
  847. while (--i >= 0) {
  848. mem_cgroup_uncharge_page(pages[i]);
  849. put_page(pages[i]);
  850. }
  851. mem_cgroup_uncharge_end();
  852. kfree(pages);
  853. ret |= VM_FAULT_OOM;
  854. goto out;
  855. }
  856. }
  857. for (i = 0; i < HPAGE_PMD_NR; i++) {
  858. copy_user_highpage(pages[i], page + i,
  859. haddr + PAGE_SIZE * i, vma);
  860. __SetPageUptodate(pages[i]);
  861. cond_resched();
  862. }
  863. mmun_start = haddr;
  864. mmun_end = haddr + HPAGE_PMD_SIZE;
  865. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  866. spin_lock(&mm->page_table_lock);
  867. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  868. goto out_free_pages;
  869. VM_BUG_ON(!PageHead(page));
  870. pmdp_clear_flush(vma, haddr, pmd);
  871. /* leave pmd empty until pte is filled */
  872. pgtable = pgtable_trans_huge_withdraw(mm);
  873. pmd_populate(mm, &_pmd, pgtable);
  874. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  875. pte_t *pte, entry;
  876. entry = mk_pte(pages[i], vma->vm_page_prot);
  877. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  878. page_add_new_anon_rmap(pages[i], vma, haddr);
  879. pte = pte_offset_map(&_pmd, haddr);
  880. VM_BUG_ON(!pte_none(*pte));
  881. set_pte_at(mm, haddr, pte, entry);
  882. pte_unmap(pte);
  883. }
  884. kfree(pages);
  885. smp_wmb(); /* make pte visible before pmd */
  886. pmd_populate(mm, pmd, pgtable);
  887. page_remove_rmap(page);
  888. spin_unlock(&mm->page_table_lock);
  889. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  890. ret |= VM_FAULT_WRITE;
  891. put_page(page);
  892. out:
  893. return ret;
  894. out_free_pages:
  895. spin_unlock(&mm->page_table_lock);
  896. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  897. mem_cgroup_uncharge_start();
  898. for (i = 0; i < HPAGE_PMD_NR; i++) {
  899. mem_cgroup_uncharge_page(pages[i]);
  900. put_page(pages[i]);
  901. }
  902. mem_cgroup_uncharge_end();
  903. kfree(pages);
  904. goto out;
  905. }
  906. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  907. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  908. {
  909. int ret = 0;
  910. struct page *page = NULL, *new_page;
  911. unsigned long haddr;
  912. unsigned long mmun_start; /* For mmu_notifiers */
  913. unsigned long mmun_end; /* For mmu_notifiers */
  914. VM_BUG_ON(!vma->anon_vma);
  915. haddr = address & HPAGE_PMD_MASK;
  916. if (is_huge_zero_pmd(orig_pmd))
  917. goto alloc;
  918. spin_lock(&mm->page_table_lock);
  919. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  920. goto out_unlock;
  921. page = pmd_page(orig_pmd);
  922. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  923. if (page_mapcount(page) == 1) {
  924. pmd_t entry;
  925. entry = pmd_mkyoung(orig_pmd);
  926. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  927. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  928. update_mmu_cache_pmd(vma, address, pmd);
  929. ret |= VM_FAULT_WRITE;
  930. goto out_unlock;
  931. }
  932. get_page(page);
  933. spin_unlock(&mm->page_table_lock);
  934. alloc:
  935. if (transparent_hugepage_enabled(vma) &&
  936. !transparent_hugepage_debug_cow())
  937. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  938. vma, haddr, numa_node_id(), 0);
  939. else
  940. new_page = NULL;
  941. if (unlikely(!new_page)) {
  942. count_vm_event(THP_FAULT_FALLBACK);
  943. if (is_huge_zero_pmd(orig_pmd)) {
  944. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  945. address, pmd, haddr);
  946. } else {
  947. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  948. pmd, orig_pmd, page, haddr);
  949. if (ret & VM_FAULT_OOM)
  950. split_huge_page(page);
  951. put_page(page);
  952. }
  953. goto out;
  954. }
  955. count_vm_event(THP_FAULT_ALLOC);
  956. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  957. put_page(new_page);
  958. if (page) {
  959. split_huge_page(page);
  960. put_page(page);
  961. }
  962. ret |= VM_FAULT_OOM;
  963. goto out;
  964. }
  965. if (is_huge_zero_pmd(orig_pmd))
  966. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  967. else
  968. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  969. __SetPageUptodate(new_page);
  970. mmun_start = haddr;
  971. mmun_end = haddr + HPAGE_PMD_SIZE;
  972. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  973. spin_lock(&mm->page_table_lock);
  974. if (page)
  975. put_page(page);
  976. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  977. spin_unlock(&mm->page_table_lock);
  978. mem_cgroup_uncharge_page(new_page);
  979. put_page(new_page);
  980. goto out_mn;
  981. } else {
  982. pmd_t entry;
  983. entry = mk_huge_pmd(new_page, vma);
  984. pmdp_clear_flush(vma, haddr, pmd);
  985. page_add_new_anon_rmap(new_page, vma, haddr);
  986. set_pmd_at(mm, haddr, pmd, entry);
  987. update_mmu_cache_pmd(vma, address, pmd);
  988. if (is_huge_zero_pmd(orig_pmd))
  989. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  990. else {
  991. VM_BUG_ON(!PageHead(page));
  992. page_remove_rmap(page);
  993. put_page(page);
  994. }
  995. ret |= VM_FAULT_WRITE;
  996. }
  997. spin_unlock(&mm->page_table_lock);
  998. out_mn:
  999. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1000. out:
  1001. return ret;
  1002. out_unlock:
  1003. spin_unlock(&mm->page_table_lock);
  1004. return ret;
  1005. }
  1006. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1007. unsigned long addr,
  1008. pmd_t *pmd,
  1009. unsigned int flags)
  1010. {
  1011. struct mm_struct *mm = vma->vm_mm;
  1012. struct page *page = NULL;
  1013. assert_spin_locked(&mm->page_table_lock);
  1014. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1015. goto out;
  1016. page = pmd_page(*pmd);
  1017. VM_BUG_ON(!PageHead(page));
  1018. if (flags & FOLL_TOUCH) {
  1019. pmd_t _pmd;
  1020. /*
  1021. * We should set the dirty bit only for FOLL_WRITE but
  1022. * for now the dirty bit in the pmd is meaningless.
  1023. * And if the dirty bit will become meaningful and
  1024. * we'll only set it with FOLL_WRITE, an atomic
  1025. * set_bit will be required on the pmd to set the
  1026. * young bit, instead of the current set_pmd_at.
  1027. */
  1028. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1029. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  1030. }
  1031. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1032. if (page->mapping && trylock_page(page)) {
  1033. lru_add_drain();
  1034. if (page->mapping)
  1035. mlock_vma_page(page);
  1036. unlock_page(page);
  1037. }
  1038. }
  1039. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1040. VM_BUG_ON(!PageCompound(page));
  1041. if (flags & FOLL_GET)
  1042. get_page_foll(page);
  1043. out:
  1044. return page;
  1045. }
  1046. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1047. pmd_t *pmd, unsigned long addr)
  1048. {
  1049. int ret = 0;
  1050. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1051. struct page *page;
  1052. pgtable_t pgtable;
  1053. pmd_t orig_pmd;
  1054. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  1055. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1056. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1057. if (is_huge_zero_pmd(orig_pmd)) {
  1058. tlb->mm->nr_ptes--;
  1059. spin_unlock(&tlb->mm->page_table_lock);
  1060. } else {
  1061. page = pmd_page(orig_pmd);
  1062. page_remove_rmap(page);
  1063. VM_BUG_ON(page_mapcount(page) < 0);
  1064. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1065. VM_BUG_ON(!PageHead(page));
  1066. tlb->mm->nr_ptes--;
  1067. spin_unlock(&tlb->mm->page_table_lock);
  1068. tlb_remove_page(tlb, page);
  1069. }
  1070. pte_free(tlb->mm, pgtable);
  1071. ret = 1;
  1072. }
  1073. return ret;
  1074. }
  1075. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1076. unsigned long addr, unsigned long end,
  1077. unsigned char *vec)
  1078. {
  1079. int ret = 0;
  1080. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1081. /*
  1082. * All logical pages in the range are present
  1083. * if backed by a huge page.
  1084. */
  1085. spin_unlock(&vma->vm_mm->page_table_lock);
  1086. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1087. ret = 1;
  1088. }
  1089. return ret;
  1090. }
  1091. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1092. unsigned long old_addr,
  1093. unsigned long new_addr, unsigned long old_end,
  1094. pmd_t *old_pmd, pmd_t *new_pmd)
  1095. {
  1096. int ret = 0;
  1097. pmd_t pmd;
  1098. struct mm_struct *mm = vma->vm_mm;
  1099. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1100. (new_addr & ~HPAGE_PMD_MASK) ||
  1101. old_end - old_addr < HPAGE_PMD_SIZE ||
  1102. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1103. goto out;
  1104. /*
  1105. * The destination pmd shouldn't be established, free_pgtables()
  1106. * should have release it.
  1107. */
  1108. if (WARN_ON(!pmd_none(*new_pmd))) {
  1109. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1110. goto out;
  1111. }
  1112. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1113. if (ret == 1) {
  1114. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1115. VM_BUG_ON(!pmd_none(*new_pmd));
  1116. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1117. spin_unlock(&mm->page_table_lock);
  1118. }
  1119. out:
  1120. return ret;
  1121. }
  1122. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1123. unsigned long addr, pgprot_t newprot)
  1124. {
  1125. struct mm_struct *mm = vma->vm_mm;
  1126. int ret = 0;
  1127. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1128. pmd_t entry;
  1129. entry = pmdp_get_and_clear(mm, addr, pmd);
  1130. entry = pmd_modify(entry, newprot);
  1131. BUG_ON(pmd_write(entry));
  1132. set_pmd_at(mm, addr, pmd, entry);
  1133. spin_unlock(&vma->vm_mm->page_table_lock);
  1134. ret = 1;
  1135. }
  1136. return ret;
  1137. }
  1138. /*
  1139. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1140. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1141. *
  1142. * Note that if it returns 1, this routine returns without unlocking page
  1143. * table locks. So callers must unlock them.
  1144. */
  1145. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1146. {
  1147. spin_lock(&vma->vm_mm->page_table_lock);
  1148. if (likely(pmd_trans_huge(*pmd))) {
  1149. if (unlikely(pmd_trans_splitting(*pmd))) {
  1150. spin_unlock(&vma->vm_mm->page_table_lock);
  1151. wait_split_huge_page(vma->anon_vma, pmd);
  1152. return -1;
  1153. } else {
  1154. /* Thp mapped by 'pmd' is stable, so we can
  1155. * handle it as it is. */
  1156. return 1;
  1157. }
  1158. }
  1159. spin_unlock(&vma->vm_mm->page_table_lock);
  1160. return 0;
  1161. }
  1162. pmd_t *page_check_address_pmd(struct page *page,
  1163. struct mm_struct *mm,
  1164. unsigned long address,
  1165. enum page_check_address_pmd_flag flag)
  1166. {
  1167. pmd_t *pmd, *ret = NULL;
  1168. if (address & ~HPAGE_PMD_MASK)
  1169. goto out;
  1170. pmd = mm_find_pmd(mm, address);
  1171. if (!pmd)
  1172. goto out;
  1173. if (pmd_none(*pmd))
  1174. goto out;
  1175. if (pmd_page(*pmd) != page)
  1176. goto out;
  1177. /*
  1178. * split_vma() may create temporary aliased mappings. There is
  1179. * no risk as long as all huge pmd are found and have their
  1180. * splitting bit set before __split_huge_page_refcount
  1181. * runs. Finding the same huge pmd more than once during the
  1182. * same rmap walk is not a problem.
  1183. */
  1184. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1185. pmd_trans_splitting(*pmd))
  1186. goto out;
  1187. if (pmd_trans_huge(*pmd)) {
  1188. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1189. !pmd_trans_splitting(*pmd));
  1190. ret = pmd;
  1191. }
  1192. out:
  1193. return ret;
  1194. }
  1195. static int __split_huge_page_splitting(struct page *page,
  1196. struct vm_area_struct *vma,
  1197. unsigned long address)
  1198. {
  1199. struct mm_struct *mm = vma->vm_mm;
  1200. pmd_t *pmd;
  1201. int ret = 0;
  1202. /* For mmu_notifiers */
  1203. const unsigned long mmun_start = address;
  1204. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1205. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1206. spin_lock(&mm->page_table_lock);
  1207. pmd = page_check_address_pmd(page, mm, address,
  1208. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1209. if (pmd) {
  1210. /*
  1211. * We can't temporarily set the pmd to null in order
  1212. * to split it, the pmd must remain marked huge at all
  1213. * times or the VM won't take the pmd_trans_huge paths
  1214. * and it won't wait on the anon_vma->root->mutex to
  1215. * serialize against split_huge_page*.
  1216. */
  1217. pmdp_splitting_flush(vma, address, pmd);
  1218. ret = 1;
  1219. }
  1220. spin_unlock(&mm->page_table_lock);
  1221. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1222. return ret;
  1223. }
  1224. static void __split_huge_page_refcount(struct page *page)
  1225. {
  1226. int i;
  1227. struct zone *zone = page_zone(page);
  1228. struct lruvec *lruvec;
  1229. int tail_count = 0;
  1230. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1231. spin_lock_irq(&zone->lru_lock);
  1232. lruvec = mem_cgroup_page_lruvec(page, zone);
  1233. compound_lock(page);
  1234. /* complete memcg works before add pages to LRU */
  1235. mem_cgroup_split_huge_fixup(page);
  1236. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1237. struct page *page_tail = page + i;
  1238. /* tail_page->_mapcount cannot change */
  1239. BUG_ON(page_mapcount(page_tail) < 0);
  1240. tail_count += page_mapcount(page_tail);
  1241. /* check for overflow */
  1242. BUG_ON(tail_count < 0);
  1243. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1244. /*
  1245. * tail_page->_count is zero and not changing from
  1246. * under us. But get_page_unless_zero() may be running
  1247. * from under us on the tail_page. If we used
  1248. * atomic_set() below instead of atomic_add(), we
  1249. * would then run atomic_set() concurrently with
  1250. * get_page_unless_zero(), and atomic_set() is
  1251. * implemented in C not using locked ops. spin_unlock
  1252. * on x86 sometime uses locked ops because of PPro
  1253. * errata 66, 92, so unless somebody can guarantee
  1254. * atomic_set() here would be safe on all archs (and
  1255. * not only on x86), it's safer to use atomic_add().
  1256. */
  1257. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1258. &page_tail->_count);
  1259. /* after clearing PageTail the gup refcount can be released */
  1260. smp_mb();
  1261. /*
  1262. * retain hwpoison flag of the poisoned tail page:
  1263. * fix for the unsuitable process killed on Guest Machine(KVM)
  1264. * by the memory-failure.
  1265. */
  1266. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1267. page_tail->flags |= (page->flags &
  1268. ((1L << PG_referenced) |
  1269. (1L << PG_swapbacked) |
  1270. (1L << PG_mlocked) |
  1271. (1L << PG_uptodate)));
  1272. page_tail->flags |= (1L << PG_dirty);
  1273. /* clear PageTail before overwriting first_page */
  1274. smp_wmb();
  1275. /*
  1276. * __split_huge_page_splitting() already set the
  1277. * splitting bit in all pmd that could map this
  1278. * hugepage, that will ensure no CPU can alter the
  1279. * mapcount on the head page. The mapcount is only
  1280. * accounted in the head page and it has to be
  1281. * transferred to all tail pages in the below code. So
  1282. * for this code to be safe, the split the mapcount
  1283. * can't change. But that doesn't mean userland can't
  1284. * keep changing and reading the page contents while
  1285. * we transfer the mapcount, so the pmd splitting
  1286. * status is achieved setting a reserved bit in the
  1287. * pmd, not by clearing the present bit.
  1288. */
  1289. page_tail->_mapcount = page->_mapcount;
  1290. BUG_ON(page_tail->mapping);
  1291. page_tail->mapping = page->mapping;
  1292. page_tail->index = page->index + i;
  1293. BUG_ON(!PageAnon(page_tail));
  1294. BUG_ON(!PageUptodate(page_tail));
  1295. BUG_ON(!PageDirty(page_tail));
  1296. BUG_ON(!PageSwapBacked(page_tail));
  1297. lru_add_page_tail(page, page_tail, lruvec);
  1298. }
  1299. atomic_sub(tail_count, &page->_count);
  1300. BUG_ON(atomic_read(&page->_count) <= 0);
  1301. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1302. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1303. ClearPageCompound(page);
  1304. compound_unlock(page);
  1305. spin_unlock_irq(&zone->lru_lock);
  1306. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1307. struct page *page_tail = page + i;
  1308. BUG_ON(page_count(page_tail) <= 0);
  1309. /*
  1310. * Tail pages may be freed if there wasn't any mapping
  1311. * like if add_to_swap() is running on a lru page that
  1312. * had its mapping zapped. And freeing these pages
  1313. * requires taking the lru_lock so we do the put_page
  1314. * of the tail pages after the split is complete.
  1315. */
  1316. put_page(page_tail);
  1317. }
  1318. /*
  1319. * Only the head page (now become a regular page) is required
  1320. * to be pinned by the caller.
  1321. */
  1322. BUG_ON(page_count(page) <= 0);
  1323. }
  1324. static int __split_huge_page_map(struct page *page,
  1325. struct vm_area_struct *vma,
  1326. unsigned long address)
  1327. {
  1328. struct mm_struct *mm = vma->vm_mm;
  1329. pmd_t *pmd, _pmd;
  1330. int ret = 0, i;
  1331. pgtable_t pgtable;
  1332. unsigned long haddr;
  1333. spin_lock(&mm->page_table_lock);
  1334. pmd = page_check_address_pmd(page, mm, address,
  1335. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1336. if (pmd) {
  1337. pgtable = pgtable_trans_huge_withdraw(mm);
  1338. pmd_populate(mm, &_pmd, pgtable);
  1339. haddr = address;
  1340. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1341. pte_t *pte, entry;
  1342. BUG_ON(PageCompound(page+i));
  1343. entry = mk_pte(page + i, vma->vm_page_prot);
  1344. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1345. if (!pmd_write(*pmd))
  1346. entry = pte_wrprotect(entry);
  1347. else
  1348. BUG_ON(page_mapcount(page) != 1);
  1349. if (!pmd_young(*pmd))
  1350. entry = pte_mkold(entry);
  1351. pte = pte_offset_map(&_pmd, haddr);
  1352. BUG_ON(!pte_none(*pte));
  1353. set_pte_at(mm, haddr, pte, entry);
  1354. pte_unmap(pte);
  1355. }
  1356. smp_wmb(); /* make pte visible before pmd */
  1357. /*
  1358. * Up to this point the pmd is present and huge and
  1359. * userland has the whole access to the hugepage
  1360. * during the split (which happens in place). If we
  1361. * overwrite the pmd with the not-huge version
  1362. * pointing to the pte here (which of course we could
  1363. * if all CPUs were bug free), userland could trigger
  1364. * a small page size TLB miss on the small sized TLB
  1365. * while the hugepage TLB entry is still established
  1366. * in the huge TLB. Some CPU doesn't like that. See
  1367. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1368. * Erratum 383 on page 93. Intel should be safe but is
  1369. * also warns that it's only safe if the permission
  1370. * and cache attributes of the two entries loaded in
  1371. * the two TLB is identical (which should be the case
  1372. * here). But it is generally safer to never allow
  1373. * small and huge TLB entries for the same virtual
  1374. * address to be loaded simultaneously. So instead of
  1375. * doing "pmd_populate(); flush_tlb_range();" we first
  1376. * mark the current pmd notpresent (atomically because
  1377. * here the pmd_trans_huge and pmd_trans_splitting
  1378. * must remain set at all times on the pmd until the
  1379. * split is complete for this pmd), then we flush the
  1380. * SMP TLB and finally we write the non-huge version
  1381. * of the pmd entry with pmd_populate.
  1382. */
  1383. pmdp_invalidate(vma, address, pmd);
  1384. pmd_populate(mm, pmd, pgtable);
  1385. ret = 1;
  1386. }
  1387. spin_unlock(&mm->page_table_lock);
  1388. return ret;
  1389. }
  1390. /* must be called with anon_vma->root->mutex hold */
  1391. static void __split_huge_page(struct page *page,
  1392. struct anon_vma *anon_vma)
  1393. {
  1394. int mapcount, mapcount2;
  1395. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1396. struct anon_vma_chain *avc;
  1397. BUG_ON(!PageHead(page));
  1398. BUG_ON(PageTail(page));
  1399. mapcount = 0;
  1400. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1401. struct vm_area_struct *vma = avc->vma;
  1402. unsigned long addr = vma_address(page, vma);
  1403. BUG_ON(is_vma_temporary_stack(vma));
  1404. mapcount += __split_huge_page_splitting(page, vma, addr);
  1405. }
  1406. /*
  1407. * It is critical that new vmas are added to the tail of the
  1408. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1409. * and establishes a child pmd before
  1410. * __split_huge_page_splitting() freezes the parent pmd (so if
  1411. * we fail to prevent copy_huge_pmd() from running until the
  1412. * whole __split_huge_page() is complete), we will still see
  1413. * the newly established pmd of the child later during the
  1414. * walk, to be able to set it as pmd_trans_splitting too.
  1415. */
  1416. if (mapcount != page_mapcount(page))
  1417. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1418. mapcount, page_mapcount(page));
  1419. BUG_ON(mapcount != page_mapcount(page));
  1420. __split_huge_page_refcount(page);
  1421. mapcount2 = 0;
  1422. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1423. struct vm_area_struct *vma = avc->vma;
  1424. unsigned long addr = vma_address(page, vma);
  1425. BUG_ON(is_vma_temporary_stack(vma));
  1426. mapcount2 += __split_huge_page_map(page, vma, addr);
  1427. }
  1428. if (mapcount != mapcount2)
  1429. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1430. mapcount, mapcount2, page_mapcount(page));
  1431. BUG_ON(mapcount != mapcount2);
  1432. }
  1433. int split_huge_page(struct page *page)
  1434. {
  1435. struct anon_vma *anon_vma;
  1436. int ret = 1;
  1437. BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
  1438. BUG_ON(!PageAnon(page));
  1439. anon_vma = page_lock_anon_vma(page);
  1440. if (!anon_vma)
  1441. goto out;
  1442. ret = 0;
  1443. if (!PageCompound(page))
  1444. goto out_unlock;
  1445. BUG_ON(!PageSwapBacked(page));
  1446. __split_huge_page(page, anon_vma);
  1447. count_vm_event(THP_SPLIT);
  1448. BUG_ON(PageCompound(page));
  1449. out_unlock:
  1450. page_unlock_anon_vma(anon_vma);
  1451. out:
  1452. return ret;
  1453. }
  1454. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1455. int hugepage_madvise(struct vm_area_struct *vma,
  1456. unsigned long *vm_flags, int advice)
  1457. {
  1458. struct mm_struct *mm = vma->vm_mm;
  1459. switch (advice) {
  1460. case MADV_HUGEPAGE:
  1461. /*
  1462. * Be somewhat over-protective like KSM for now!
  1463. */
  1464. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1465. return -EINVAL;
  1466. if (mm->def_flags & VM_NOHUGEPAGE)
  1467. return -EINVAL;
  1468. *vm_flags &= ~VM_NOHUGEPAGE;
  1469. *vm_flags |= VM_HUGEPAGE;
  1470. /*
  1471. * If the vma become good for khugepaged to scan,
  1472. * register it here without waiting a page fault that
  1473. * may not happen any time soon.
  1474. */
  1475. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1476. return -ENOMEM;
  1477. break;
  1478. case MADV_NOHUGEPAGE:
  1479. /*
  1480. * Be somewhat over-protective like KSM for now!
  1481. */
  1482. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1483. return -EINVAL;
  1484. *vm_flags &= ~VM_HUGEPAGE;
  1485. *vm_flags |= VM_NOHUGEPAGE;
  1486. /*
  1487. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1488. * this vma even if we leave the mm registered in khugepaged if
  1489. * it got registered before VM_NOHUGEPAGE was set.
  1490. */
  1491. break;
  1492. }
  1493. return 0;
  1494. }
  1495. static int __init khugepaged_slab_init(void)
  1496. {
  1497. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1498. sizeof(struct mm_slot),
  1499. __alignof__(struct mm_slot), 0, NULL);
  1500. if (!mm_slot_cache)
  1501. return -ENOMEM;
  1502. return 0;
  1503. }
  1504. static void __init khugepaged_slab_free(void)
  1505. {
  1506. kmem_cache_destroy(mm_slot_cache);
  1507. mm_slot_cache = NULL;
  1508. }
  1509. static inline struct mm_slot *alloc_mm_slot(void)
  1510. {
  1511. if (!mm_slot_cache) /* initialization failed */
  1512. return NULL;
  1513. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1514. }
  1515. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1516. {
  1517. kmem_cache_free(mm_slot_cache, mm_slot);
  1518. }
  1519. static int __init mm_slots_hash_init(void)
  1520. {
  1521. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1522. GFP_KERNEL);
  1523. if (!mm_slots_hash)
  1524. return -ENOMEM;
  1525. return 0;
  1526. }
  1527. #if 0
  1528. static void __init mm_slots_hash_free(void)
  1529. {
  1530. kfree(mm_slots_hash);
  1531. mm_slots_hash = NULL;
  1532. }
  1533. #endif
  1534. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1535. {
  1536. struct mm_slot *mm_slot;
  1537. struct hlist_head *bucket;
  1538. struct hlist_node *node;
  1539. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1540. % MM_SLOTS_HASH_HEADS];
  1541. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1542. if (mm == mm_slot->mm)
  1543. return mm_slot;
  1544. }
  1545. return NULL;
  1546. }
  1547. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1548. struct mm_slot *mm_slot)
  1549. {
  1550. struct hlist_head *bucket;
  1551. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1552. % MM_SLOTS_HASH_HEADS];
  1553. mm_slot->mm = mm;
  1554. hlist_add_head(&mm_slot->hash, bucket);
  1555. }
  1556. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1557. {
  1558. return atomic_read(&mm->mm_users) == 0;
  1559. }
  1560. int __khugepaged_enter(struct mm_struct *mm)
  1561. {
  1562. struct mm_slot *mm_slot;
  1563. int wakeup;
  1564. mm_slot = alloc_mm_slot();
  1565. if (!mm_slot)
  1566. return -ENOMEM;
  1567. /* __khugepaged_exit() must not run from under us */
  1568. VM_BUG_ON(khugepaged_test_exit(mm));
  1569. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1570. free_mm_slot(mm_slot);
  1571. return 0;
  1572. }
  1573. spin_lock(&khugepaged_mm_lock);
  1574. insert_to_mm_slots_hash(mm, mm_slot);
  1575. /*
  1576. * Insert just behind the scanning cursor, to let the area settle
  1577. * down a little.
  1578. */
  1579. wakeup = list_empty(&khugepaged_scan.mm_head);
  1580. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1581. spin_unlock(&khugepaged_mm_lock);
  1582. atomic_inc(&mm->mm_count);
  1583. if (wakeup)
  1584. wake_up_interruptible(&khugepaged_wait);
  1585. return 0;
  1586. }
  1587. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1588. {
  1589. unsigned long hstart, hend;
  1590. if (!vma->anon_vma)
  1591. /*
  1592. * Not yet faulted in so we will register later in the
  1593. * page fault if needed.
  1594. */
  1595. return 0;
  1596. if (vma->vm_ops)
  1597. /* khugepaged not yet working on file or special mappings */
  1598. return 0;
  1599. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1600. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1601. hend = vma->vm_end & HPAGE_PMD_MASK;
  1602. if (hstart < hend)
  1603. return khugepaged_enter(vma);
  1604. return 0;
  1605. }
  1606. void __khugepaged_exit(struct mm_struct *mm)
  1607. {
  1608. struct mm_slot *mm_slot;
  1609. int free = 0;
  1610. spin_lock(&khugepaged_mm_lock);
  1611. mm_slot = get_mm_slot(mm);
  1612. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1613. hlist_del(&mm_slot->hash);
  1614. list_del(&mm_slot->mm_node);
  1615. free = 1;
  1616. }
  1617. spin_unlock(&khugepaged_mm_lock);
  1618. if (free) {
  1619. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1620. free_mm_slot(mm_slot);
  1621. mmdrop(mm);
  1622. } else if (mm_slot) {
  1623. /*
  1624. * This is required to serialize against
  1625. * khugepaged_test_exit() (which is guaranteed to run
  1626. * under mmap sem read mode). Stop here (after we
  1627. * return all pagetables will be destroyed) until
  1628. * khugepaged has finished working on the pagetables
  1629. * under the mmap_sem.
  1630. */
  1631. down_write(&mm->mmap_sem);
  1632. up_write(&mm->mmap_sem);
  1633. }
  1634. }
  1635. static void release_pte_page(struct page *page)
  1636. {
  1637. /* 0 stands for page_is_file_cache(page) == false */
  1638. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1639. unlock_page(page);
  1640. putback_lru_page(page);
  1641. }
  1642. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1643. {
  1644. while (--_pte >= pte) {
  1645. pte_t pteval = *_pte;
  1646. if (!pte_none(pteval))
  1647. release_pte_page(pte_page(pteval));
  1648. }
  1649. }
  1650. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1651. unsigned long address,
  1652. pte_t *pte)
  1653. {
  1654. struct page *page;
  1655. pte_t *_pte;
  1656. int referenced = 0, none = 0;
  1657. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1658. _pte++, address += PAGE_SIZE) {
  1659. pte_t pteval = *_pte;
  1660. if (pte_none(pteval)) {
  1661. if (++none <= khugepaged_max_ptes_none)
  1662. continue;
  1663. else
  1664. goto out;
  1665. }
  1666. if (!pte_present(pteval) || !pte_write(pteval))
  1667. goto out;
  1668. page = vm_normal_page(vma, address, pteval);
  1669. if (unlikely(!page))
  1670. goto out;
  1671. VM_BUG_ON(PageCompound(page));
  1672. BUG_ON(!PageAnon(page));
  1673. VM_BUG_ON(!PageSwapBacked(page));
  1674. /* cannot use mapcount: can't collapse if there's a gup pin */
  1675. if (page_count(page) != 1)
  1676. goto out;
  1677. /*
  1678. * We can do it before isolate_lru_page because the
  1679. * page can't be freed from under us. NOTE: PG_lock
  1680. * is needed to serialize against split_huge_page
  1681. * when invoked from the VM.
  1682. */
  1683. if (!trylock_page(page))
  1684. goto out;
  1685. /*
  1686. * Isolate the page to avoid collapsing an hugepage
  1687. * currently in use by the VM.
  1688. */
  1689. if (isolate_lru_page(page)) {
  1690. unlock_page(page);
  1691. goto out;
  1692. }
  1693. /* 0 stands for page_is_file_cache(page) == false */
  1694. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1695. VM_BUG_ON(!PageLocked(page));
  1696. VM_BUG_ON(PageLRU(page));
  1697. /* If there is no mapped pte young don't collapse the page */
  1698. if (pte_young(pteval) || PageReferenced(page) ||
  1699. mmu_notifier_test_young(vma->vm_mm, address))
  1700. referenced = 1;
  1701. }
  1702. if (likely(referenced))
  1703. return 1;
  1704. out:
  1705. release_pte_pages(pte, _pte);
  1706. return 0;
  1707. }
  1708. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1709. struct vm_area_struct *vma,
  1710. unsigned long address,
  1711. spinlock_t *ptl)
  1712. {
  1713. pte_t *_pte;
  1714. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1715. pte_t pteval = *_pte;
  1716. struct page *src_page;
  1717. if (pte_none(pteval)) {
  1718. clear_user_highpage(page, address);
  1719. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1720. } else {
  1721. src_page = pte_page(pteval);
  1722. copy_user_highpage(page, src_page, address, vma);
  1723. VM_BUG_ON(page_mapcount(src_page) != 1);
  1724. release_pte_page(src_page);
  1725. /*
  1726. * ptl mostly unnecessary, but preempt has to
  1727. * be disabled to update the per-cpu stats
  1728. * inside page_remove_rmap().
  1729. */
  1730. spin_lock(ptl);
  1731. /*
  1732. * paravirt calls inside pte_clear here are
  1733. * superfluous.
  1734. */
  1735. pte_clear(vma->vm_mm, address, _pte);
  1736. page_remove_rmap(src_page);
  1737. spin_unlock(ptl);
  1738. free_page_and_swap_cache(src_page);
  1739. }
  1740. address += PAGE_SIZE;
  1741. page++;
  1742. }
  1743. }
  1744. static void khugepaged_alloc_sleep(void)
  1745. {
  1746. wait_event_freezable_timeout(khugepaged_wait, false,
  1747. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1748. }
  1749. #ifdef CONFIG_NUMA
  1750. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1751. {
  1752. if (IS_ERR(*hpage)) {
  1753. if (!*wait)
  1754. return false;
  1755. *wait = false;
  1756. *hpage = NULL;
  1757. khugepaged_alloc_sleep();
  1758. } else if (*hpage) {
  1759. put_page(*hpage);
  1760. *hpage = NULL;
  1761. }
  1762. return true;
  1763. }
  1764. static struct page
  1765. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1766. struct vm_area_struct *vma, unsigned long address,
  1767. int node)
  1768. {
  1769. VM_BUG_ON(*hpage);
  1770. /*
  1771. * Allocate the page while the vma is still valid and under
  1772. * the mmap_sem read mode so there is no memory allocation
  1773. * later when we take the mmap_sem in write mode. This is more
  1774. * friendly behavior (OTOH it may actually hide bugs) to
  1775. * filesystems in userland with daemons allocating memory in
  1776. * the userland I/O paths. Allocating memory with the
  1777. * mmap_sem in read mode is good idea also to allow greater
  1778. * scalability.
  1779. */
  1780. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1781. node, __GFP_OTHER_NODE);
  1782. /*
  1783. * After allocating the hugepage, release the mmap_sem read lock in
  1784. * preparation for taking it in write mode.
  1785. */
  1786. up_read(&mm->mmap_sem);
  1787. if (unlikely(!*hpage)) {
  1788. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1789. *hpage = ERR_PTR(-ENOMEM);
  1790. return NULL;
  1791. }
  1792. count_vm_event(THP_COLLAPSE_ALLOC);
  1793. return *hpage;
  1794. }
  1795. #else
  1796. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1797. {
  1798. struct page *hpage;
  1799. do {
  1800. hpage = alloc_hugepage(khugepaged_defrag());
  1801. if (!hpage) {
  1802. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1803. if (!*wait)
  1804. return NULL;
  1805. *wait = false;
  1806. khugepaged_alloc_sleep();
  1807. } else
  1808. count_vm_event(THP_COLLAPSE_ALLOC);
  1809. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1810. return hpage;
  1811. }
  1812. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1813. {
  1814. if (!*hpage)
  1815. *hpage = khugepaged_alloc_hugepage(wait);
  1816. if (unlikely(!*hpage))
  1817. return false;
  1818. return true;
  1819. }
  1820. static struct page
  1821. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1822. struct vm_area_struct *vma, unsigned long address,
  1823. int node)
  1824. {
  1825. up_read(&mm->mmap_sem);
  1826. VM_BUG_ON(!*hpage);
  1827. return *hpage;
  1828. }
  1829. #endif
  1830. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1831. {
  1832. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1833. (vma->vm_flags & VM_NOHUGEPAGE))
  1834. return false;
  1835. if (!vma->anon_vma || vma->vm_ops)
  1836. return false;
  1837. if (is_vma_temporary_stack(vma))
  1838. return false;
  1839. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1840. return true;
  1841. }
  1842. static void collapse_huge_page(struct mm_struct *mm,
  1843. unsigned long address,
  1844. struct page **hpage,
  1845. struct vm_area_struct *vma,
  1846. int node)
  1847. {
  1848. pmd_t *pmd, _pmd;
  1849. pte_t *pte;
  1850. pgtable_t pgtable;
  1851. struct page *new_page;
  1852. spinlock_t *ptl;
  1853. int isolated;
  1854. unsigned long hstart, hend;
  1855. unsigned long mmun_start; /* For mmu_notifiers */
  1856. unsigned long mmun_end; /* For mmu_notifiers */
  1857. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1858. /* release the mmap_sem read lock. */
  1859. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1860. if (!new_page)
  1861. return;
  1862. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1863. return;
  1864. /*
  1865. * Prevent all access to pagetables with the exception of
  1866. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1867. * handled by the anon_vma lock + PG_lock.
  1868. */
  1869. down_write(&mm->mmap_sem);
  1870. if (unlikely(khugepaged_test_exit(mm)))
  1871. goto out;
  1872. vma = find_vma(mm, address);
  1873. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1874. hend = vma->vm_end & HPAGE_PMD_MASK;
  1875. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1876. goto out;
  1877. if (!hugepage_vma_check(vma))
  1878. goto out;
  1879. pmd = mm_find_pmd(mm, address);
  1880. if (!pmd)
  1881. goto out;
  1882. if (pmd_trans_huge(*pmd))
  1883. goto out;
  1884. anon_vma_lock(vma->anon_vma);
  1885. pte = pte_offset_map(pmd, address);
  1886. ptl = pte_lockptr(mm, pmd);
  1887. mmun_start = address;
  1888. mmun_end = address + HPAGE_PMD_SIZE;
  1889. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1890. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1891. /*
  1892. * After this gup_fast can't run anymore. This also removes
  1893. * any huge TLB entry from the CPU so we won't allow
  1894. * huge and small TLB entries for the same virtual address
  1895. * to avoid the risk of CPU bugs in that area.
  1896. */
  1897. _pmd = pmdp_clear_flush(vma, address, pmd);
  1898. spin_unlock(&mm->page_table_lock);
  1899. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1900. spin_lock(ptl);
  1901. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1902. spin_unlock(ptl);
  1903. if (unlikely(!isolated)) {
  1904. pte_unmap(pte);
  1905. spin_lock(&mm->page_table_lock);
  1906. BUG_ON(!pmd_none(*pmd));
  1907. set_pmd_at(mm, address, pmd, _pmd);
  1908. spin_unlock(&mm->page_table_lock);
  1909. anon_vma_unlock(vma->anon_vma);
  1910. goto out;
  1911. }
  1912. /*
  1913. * All pages are isolated and locked so anon_vma rmap
  1914. * can't run anymore.
  1915. */
  1916. anon_vma_unlock(vma->anon_vma);
  1917. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1918. pte_unmap(pte);
  1919. __SetPageUptodate(new_page);
  1920. pgtable = pmd_pgtable(_pmd);
  1921. _pmd = mk_huge_pmd(new_page, vma);
  1922. /*
  1923. * spin_lock() below is not the equivalent of smp_wmb(), so
  1924. * this is needed to avoid the copy_huge_page writes to become
  1925. * visible after the set_pmd_at() write.
  1926. */
  1927. smp_wmb();
  1928. spin_lock(&mm->page_table_lock);
  1929. BUG_ON(!pmd_none(*pmd));
  1930. page_add_new_anon_rmap(new_page, vma, address);
  1931. set_pmd_at(mm, address, pmd, _pmd);
  1932. update_mmu_cache_pmd(vma, address, pmd);
  1933. pgtable_trans_huge_deposit(mm, pgtable);
  1934. spin_unlock(&mm->page_table_lock);
  1935. *hpage = NULL;
  1936. khugepaged_pages_collapsed++;
  1937. out_up_write:
  1938. up_write(&mm->mmap_sem);
  1939. return;
  1940. out:
  1941. mem_cgroup_uncharge_page(new_page);
  1942. goto out_up_write;
  1943. }
  1944. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1945. struct vm_area_struct *vma,
  1946. unsigned long address,
  1947. struct page **hpage)
  1948. {
  1949. pmd_t *pmd;
  1950. pte_t *pte, *_pte;
  1951. int ret = 0, referenced = 0, none = 0;
  1952. struct page *page;
  1953. unsigned long _address;
  1954. spinlock_t *ptl;
  1955. int node = -1;
  1956. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1957. pmd = mm_find_pmd(mm, address);
  1958. if (!pmd)
  1959. goto out;
  1960. if (pmd_trans_huge(*pmd))
  1961. goto out;
  1962. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1963. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1964. _pte++, _address += PAGE_SIZE) {
  1965. pte_t pteval = *_pte;
  1966. if (pte_none(pteval)) {
  1967. if (++none <= khugepaged_max_ptes_none)
  1968. continue;
  1969. else
  1970. goto out_unmap;
  1971. }
  1972. if (!pte_present(pteval) || !pte_write(pteval))
  1973. goto out_unmap;
  1974. page = vm_normal_page(vma, _address, pteval);
  1975. if (unlikely(!page))
  1976. goto out_unmap;
  1977. /*
  1978. * Chose the node of the first page. This could
  1979. * be more sophisticated and look at more pages,
  1980. * but isn't for now.
  1981. */
  1982. if (node == -1)
  1983. node = page_to_nid(page);
  1984. VM_BUG_ON(PageCompound(page));
  1985. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1986. goto out_unmap;
  1987. /* cannot use mapcount: can't collapse if there's a gup pin */
  1988. if (page_count(page) != 1)
  1989. goto out_unmap;
  1990. if (pte_young(pteval) || PageReferenced(page) ||
  1991. mmu_notifier_test_young(vma->vm_mm, address))
  1992. referenced = 1;
  1993. }
  1994. if (referenced)
  1995. ret = 1;
  1996. out_unmap:
  1997. pte_unmap_unlock(pte, ptl);
  1998. if (ret)
  1999. /* collapse_huge_page will return with the mmap_sem released */
  2000. collapse_huge_page(mm, address, hpage, vma, node);
  2001. out:
  2002. return ret;
  2003. }
  2004. static void collect_mm_slot(struct mm_slot *mm_slot)
  2005. {
  2006. struct mm_struct *mm = mm_slot->mm;
  2007. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2008. if (khugepaged_test_exit(mm)) {
  2009. /* free mm_slot */
  2010. hlist_del(&mm_slot->hash);
  2011. list_del(&mm_slot->mm_node);
  2012. /*
  2013. * Not strictly needed because the mm exited already.
  2014. *
  2015. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2016. */
  2017. /* khugepaged_mm_lock actually not necessary for the below */
  2018. free_mm_slot(mm_slot);
  2019. mmdrop(mm);
  2020. }
  2021. }
  2022. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2023. struct page **hpage)
  2024. __releases(&khugepaged_mm_lock)
  2025. __acquires(&khugepaged_mm_lock)
  2026. {
  2027. struct mm_slot *mm_slot;
  2028. struct mm_struct *mm;
  2029. struct vm_area_struct *vma;
  2030. int progress = 0;
  2031. VM_BUG_ON(!pages);
  2032. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2033. if (khugepaged_scan.mm_slot)
  2034. mm_slot = khugepaged_scan.mm_slot;
  2035. else {
  2036. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2037. struct mm_slot, mm_node);
  2038. khugepaged_scan.address = 0;
  2039. khugepaged_scan.mm_slot = mm_slot;
  2040. }
  2041. spin_unlock(&khugepaged_mm_lock);
  2042. mm = mm_slot->mm;
  2043. down_read(&mm->mmap_sem);
  2044. if (unlikely(khugepaged_test_exit(mm)))
  2045. vma = NULL;
  2046. else
  2047. vma = find_vma(mm, khugepaged_scan.address);
  2048. progress++;
  2049. for (; vma; vma = vma->vm_next) {
  2050. unsigned long hstart, hend;
  2051. cond_resched();
  2052. if (unlikely(khugepaged_test_exit(mm))) {
  2053. progress++;
  2054. break;
  2055. }
  2056. if (!hugepage_vma_check(vma)) {
  2057. skip:
  2058. progress++;
  2059. continue;
  2060. }
  2061. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2062. hend = vma->vm_end & HPAGE_PMD_MASK;
  2063. if (hstart >= hend)
  2064. goto skip;
  2065. if (khugepaged_scan.address > hend)
  2066. goto skip;
  2067. if (khugepaged_scan.address < hstart)
  2068. khugepaged_scan.address = hstart;
  2069. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2070. while (khugepaged_scan.address < hend) {
  2071. int ret;
  2072. cond_resched();
  2073. if (unlikely(khugepaged_test_exit(mm)))
  2074. goto breakouterloop;
  2075. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2076. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2077. hend);
  2078. ret = khugepaged_scan_pmd(mm, vma,
  2079. khugepaged_scan.address,
  2080. hpage);
  2081. /* move to next address */
  2082. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2083. progress += HPAGE_PMD_NR;
  2084. if (ret)
  2085. /* we released mmap_sem so break loop */
  2086. goto breakouterloop_mmap_sem;
  2087. if (progress >= pages)
  2088. goto breakouterloop;
  2089. }
  2090. }
  2091. breakouterloop:
  2092. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2093. breakouterloop_mmap_sem:
  2094. spin_lock(&khugepaged_mm_lock);
  2095. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2096. /*
  2097. * Release the current mm_slot if this mm is about to die, or
  2098. * if we scanned all vmas of this mm.
  2099. */
  2100. if (khugepaged_test_exit(mm) || !vma) {
  2101. /*
  2102. * Make sure that if mm_users is reaching zero while
  2103. * khugepaged runs here, khugepaged_exit will find
  2104. * mm_slot not pointing to the exiting mm.
  2105. */
  2106. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2107. khugepaged_scan.mm_slot = list_entry(
  2108. mm_slot->mm_node.next,
  2109. struct mm_slot, mm_node);
  2110. khugepaged_scan.address = 0;
  2111. } else {
  2112. khugepaged_scan.mm_slot = NULL;
  2113. khugepaged_full_scans++;
  2114. }
  2115. collect_mm_slot(mm_slot);
  2116. }
  2117. return progress;
  2118. }
  2119. static int khugepaged_has_work(void)
  2120. {
  2121. return !list_empty(&khugepaged_scan.mm_head) &&
  2122. khugepaged_enabled();
  2123. }
  2124. static int khugepaged_wait_event(void)
  2125. {
  2126. return !list_empty(&khugepaged_scan.mm_head) ||
  2127. kthread_should_stop();
  2128. }
  2129. static void khugepaged_do_scan(void)
  2130. {
  2131. struct page *hpage = NULL;
  2132. unsigned int progress = 0, pass_through_head = 0;
  2133. unsigned int pages = khugepaged_pages_to_scan;
  2134. bool wait = true;
  2135. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2136. while (progress < pages) {
  2137. if (!khugepaged_prealloc_page(&hpage, &wait))
  2138. break;
  2139. cond_resched();
  2140. if (unlikely(kthread_should_stop() || freezing(current)))
  2141. break;
  2142. spin_lock(&khugepaged_mm_lock);
  2143. if (!khugepaged_scan.mm_slot)
  2144. pass_through_head++;
  2145. if (khugepaged_has_work() &&
  2146. pass_through_head < 2)
  2147. progress += khugepaged_scan_mm_slot(pages - progress,
  2148. &hpage);
  2149. else
  2150. progress = pages;
  2151. spin_unlock(&khugepaged_mm_lock);
  2152. }
  2153. if (!IS_ERR_OR_NULL(hpage))
  2154. put_page(hpage);
  2155. }
  2156. static void khugepaged_wait_work(void)
  2157. {
  2158. try_to_freeze();
  2159. if (khugepaged_has_work()) {
  2160. if (!khugepaged_scan_sleep_millisecs)
  2161. return;
  2162. wait_event_freezable_timeout(khugepaged_wait,
  2163. kthread_should_stop(),
  2164. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2165. return;
  2166. }
  2167. if (khugepaged_enabled())
  2168. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2169. }
  2170. static int khugepaged(void *none)
  2171. {
  2172. struct mm_slot *mm_slot;
  2173. set_freezable();
  2174. set_user_nice(current, 19);
  2175. while (!kthread_should_stop()) {
  2176. khugepaged_do_scan();
  2177. khugepaged_wait_work();
  2178. }
  2179. spin_lock(&khugepaged_mm_lock);
  2180. mm_slot = khugepaged_scan.mm_slot;
  2181. khugepaged_scan.mm_slot = NULL;
  2182. if (mm_slot)
  2183. collect_mm_slot(mm_slot);
  2184. spin_unlock(&khugepaged_mm_lock);
  2185. return 0;
  2186. }
  2187. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2188. unsigned long haddr, pmd_t *pmd)
  2189. {
  2190. struct mm_struct *mm = vma->vm_mm;
  2191. pgtable_t pgtable;
  2192. pmd_t _pmd;
  2193. int i;
  2194. pmdp_clear_flush(vma, haddr, pmd);
  2195. /* leave pmd empty until pte is filled */
  2196. pgtable = pgtable_trans_huge_withdraw(mm);
  2197. pmd_populate(mm, &_pmd, pgtable);
  2198. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2199. pte_t *pte, entry;
  2200. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2201. entry = pte_mkspecial(entry);
  2202. pte = pte_offset_map(&_pmd, haddr);
  2203. VM_BUG_ON(!pte_none(*pte));
  2204. set_pte_at(mm, haddr, pte, entry);
  2205. pte_unmap(pte);
  2206. }
  2207. smp_wmb(); /* make pte visible before pmd */
  2208. pmd_populate(mm, pmd, pgtable);
  2209. }
  2210. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2211. pmd_t *pmd)
  2212. {
  2213. struct page *page;
  2214. struct mm_struct *mm = vma->vm_mm;
  2215. unsigned long haddr = address & HPAGE_PMD_MASK;
  2216. unsigned long mmun_start; /* For mmu_notifiers */
  2217. unsigned long mmun_end; /* For mmu_notifiers */
  2218. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2219. mmun_start = haddr;
  2220. mmun_end = haddr + HPAGE_PMD_SIZE;
  2221. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2222. spin_lock(&mm->page_table_lock);
  2223. if (unlikely(!pmd_trans_huge(*pmd))) {
  2224. spin_unlock(&mm->page_table_lock);
  2225. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2226. return;
  2227. }
  2228. if (is_huge_zero_pmd(*pmd)) {
  2229. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2230. spin_unlock(&mm->page_table_lock);
  2231. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2232. return;
  2233. }
  2234. page = pmd_page(*pmd);
  2235. VM_BUG_ON(!page_count(page));
  2236. get_page(page);
  2237. spin_unlock(&mm->page_table_lock);
  2238. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2239. split_huge_page(page);
  2240. put_page(page);
  2241. BUG_ON(pmd_trans_huge(*pmd));
  2242. }
  2243. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2244. pmd_t *pmd)
  2245. {
  2246. struct vm_area_struct *vma;
  2247. vma = find_vma(mm, address);
  2248. BUG_ON(vma == NULL);
  2249. split_huge_page_pmd(vma, address, pmd);
  2250. }
  2251. static void split_huge_page_address(struct mm_struct *mm,
  2252. unsigned long address)
  2253. {
  2254. pmd_t *pmd;
  2255. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2256. pmd = mm_find_pmd(mm, address);
  2257. if (!pmd)
  2258. return;
  2259. /*
  2260. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2261. * materialize from under us.
  2262. */
  2263. split_huge_page_pmd_mm(mm, address, pmd);
  2264. }
  2265. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2266. unsigned long start,
  2267. unsigned long end,
  2268. long adjust_next)
  2269. {
  2270. /*
  2271. * If the new start address isn't hpage aligned and it could
  2272. * previously contain an hugepage: check if we need to split
  2273. * an huge pmd.
  2274. */
  2275. if (start & ~HPAGE_PMD_MASK &&
  2276. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2277. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2278. split_huge_page_address(vma->vm_mm, start);
  2279. /*
  2280. * If the new end address isn't hpage aligned and it could
  2281. * previously contain an hugepage: check if we need to split
  2282. * an huge pmd.
  2283. */
  2284. if (end & ~HPAGE_PMD_MASK &&
  2285. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2286. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2287. split_huge_page_address(vma->vm_mm, end);
  2288. /*
  2289. * If we're also updating the vma->vm_next->vm_start, if the new
  2290. * vm_next->vm_start isn't page aligned and it could previously
  2291. * contain an hugepage: check if we need to split an huge pmd.
  2292. */
  2293. if (adjust_next > 0) {
  2294. struct vm_area_struct *next = vma->vm_next;
  2295. unsigned long nstart = next->vm_start;
  2296. nstart += adjust_next << PAGE_SHIFT;
  2297. if (nstart & ~HPAGE_PMD_MASK &&
  2298. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2299. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2300. split_huge_page_address(next->vm_mm, nstart);
  2301. }
  2302. }