af9035.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514
  1. /*
  2. * Afatech AF9035 DVB USB driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9035.h"
  22. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  23. static u16 af9035_checksum(const u8 *buf, size_t len)
  24. {
  25. size_t i;
  26. u16 checksum = 0;
  27. for (i = 1; i < len; i++) {
  28. if (i % 2)
  29. checksum += buf[i] << 8;
  30. else
  31. checksum += buf[i];
  32. }
  33. checksum = ~checksum;
  34. return checksum;
  35. }
  36. static int af9035_ctrl_msg(struct dvb_usb_device *d, struct usb_req *req)
  37. {
  38. #define REQ_HDR_LEN 4 /* send header size */
  39. #define ACK_HDR_LEN 3 /* rece header size */
  40. #define CHECKSUM_LEN 2
  41. #define USB_TIMEOUT 2000
  42. struct state *state = d_to_priv(d);
  43. int ret, wlen, rlen;
  44. u16 checksum, tmp_checksum;
  45. mutex_lock(&d->usb_mutex);
  46. /* buffer overflow check */
  47. if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) ||
  48. req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) {
  49. dev_err(&d->udev->dev, "%s: too much data wlen=%d rlen=%d\n",
  50. __func__, req->wlen, req->rlen);
  51. ret = -EINVAL;
  52. goto err;
  53. }
  54. state->buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1;
  55. state->buf[1] = req->mbox;
  56. state->buf[2] = req->cmd;
  57. state->buf[3] = state->seq++;
  58. memcpy(&state->buf[REQ_HDR_LEN], req->wbuf, req->wlen);
  59. wlen = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN;
  60. rlen = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN;
  61. /* calc and add checksum */
  62. checksum = af9035_checksum(state->buf, state->buf[0] - 1);
  63. state->buf[state->buf[0] - 1] = (checksum >> 8);
  64. state->buf[state->buf[0] - 0] = (checksum & 0xff);
  65. /* no ack for these packets */
  66. if (req->cmd == CMD_FW_DL)
  67. rlen = 0;
  68. ret = dvb_usbv2_generic_rw_locked(d,
  69. state->buf, wlen, state->buf, rlen);
  70. if (ret)
  71. goto err;
  72. /* no ack for those packets */
  73. if (req->cmd == CMD_FW_DL)
  74. goto exit;
  75. /* verify checksum */
  76. checksum = af9035_checksum(state->buf, rlen - 2);
  77. tmp_checksum = (state->buf[rlen - 2] << 8) | state->buf[rlen - 1];
  78. if (tmp_checksum != checksum) {
  79. dev_err(&d->udev->dev, "%s: command=%02x checksum mismatch " \
  80. "(%04x != %04x)\n", KBUILD_MODNAME, req->cmd,
  81. tmp_checksum, checksum);
  82. ret = -EIO;
  83. goto err;
  84. }
  85. /* check status */
  86. if (state->buf[2]) {
  87. /* fw returns status 1 when IR code was not received */
  88. if (req->cmd == CMD_IR_GET || state->buf[2] == 1)
  89. return 1;
  90. dev_dbg(&d->udev->dev, "%s: command=%02x failed fw error=%d\n",
  91. __func__, req->cmd, state->buf[2]);
  92. ret = -EIO;
  93. goto err;
  94. }
  95. /* read request, copy returned data to return buf */
  96. if (req->rlen)
  97. memcpy(req->rbuf, &state->buf[ACK_HDR_LEN], req->rlen);
  98. exit:
  99. err:
  100. mutex_unlock(&d->usb_mutex);
  101. if (ret)
  102. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  103. return ret;
  104. }
  105. /* write multiple registers */
  106. static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  107. {
  108. u8 wbuf[6 + len];
  109. u8 mbox = (reg >> 16) & 0xff;
  110. struct usb_req req = { CMD_MEM_WR, mbox, sizeof(wbuf), wbuf, 0, NULL };
  111. wbuf[0] = len;
  112. wbuf[1] = 2;
  113. wbuf[2] = 0;
  114. wbuf[3] = 0;
  115. wbuf[4] = (reg >> 8) & 0xff;
  116. wbuf[5] = (reg >> 0) & 0xff;
  117. memcpy(&wbuf[6], val, len);
  118. return af9035_ctrl_msg(d, &req);
  119. }
  120. /* read multiple registers */
  121. static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  122. {
  123. u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff };
  124. u8 mbox = (reg >> 16) & 0xff;
  125. struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val };
  126. return af9035_ctrl_msg(d, &req);
  127. }
  128. /* write single register */
  129. static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val)
  130. {
  131. return af9035_wr_regs(d, reg, &val, 1);
  132. }
  133. /* read single register */
  134. static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val)
  135. {
  136. return af9035_rd_regs(d, reg, val, 1);
  137. }
  138. /* write single register with mask */
  139. static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val,
  140. u8 mask)
  141. {
  142. int ret;
  143. u8 tmp;
  144. /* no need for read if whole reg is written */
  145. if (mask != 0xff) {
  146. ret = af9035_rd_regs(d, reg, &tmp, 1);
  147. if (ret)
  148. return ret;
  149. val &= mask;
  150. tmp &= ~mask;
  151. val |= tmp;
  152. }
  153. return af9035_wr_regs(d, reg, &val, 1);
  154. }
  155. static int af9035_i2c_master_xfer(struct i2c_adapter *adap,
  156. struct i2c_msg msg[], int num)
  157. {
  158. struct dvb_usb_device *d = i2c_get_adapdata(adap);
  159. struct state *state = d_to_priv(d);
  160. int ret;
  161. if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
  162. return -EAGAIN;
  163. /*
  164. * I2C sub header is 5 bytes long. Meaning of those bytes are:
  165. * 0: data len
  166. * 1: I2C addr << 1
  167. * 2: reg addr len
  168. * byte 3 and 4 can be used as reg addr
  169. * 3: reg addr MSB
  170. * used when reg addr len is set to 2
  171. * 4: reg addr LSB
  172. * used when reg addr len is set to 1 or 2
  173. *
  174. * For the simplify we do not use register addr at all.
  175. * NOTE: As a firmware knows tuner type there is very small possibility
  176. * there could be some tuner I2C hacks done by firmware and this may
  177. * lead problems if firmware expects those bytes are used.
  178. */
  179. if (num == 2 && !(msg[0].flags & I2C_M_RD) &&
  180. (msg[1].flags & I2C_M_RD)) {
  181. if (msg[0].len > 40 || msg[1].len > 40) {
  182. /* TODO: correct limits > 40 */
  183. ret = -EOPNOTSUPP;
  184. } else if ((msg[0].addr == state->af9033_config[0].i2c_addr) ||
  185. (msg[0].addr == state->af9033_config[1].i2c_addr)) {
  186. /* demod access via firmware interface */
  187. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  188. msg[0].buf[2];
  189. if (msg[0].addr == state->af9033_config[1].i2c_addr)
  190. reg |= 0x100000;
  191. ret = af9035_rd_regs(d, reg, &msg[1].buf[0],
  192. msg[1].len);
  193. } else {
  194. /* I2C */
  195. u8 buf[5 + msg[0].len];
  196. struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf),
  197. buf, msg[1].len, msg[1].buf };
  198. req.mbox |= ((msg[0].addr & 0x80) >> 3);
  199. buf[0] = msg[1].len;
  200. buf[1] = msg[0].addr << 1;
  201. buf[2] = 0x00; /* reg addr len */
  202. buf[3] = 0x00; /* reg addr MSB */
  203. buf[4] = 0x00; /* reg addr LSB */
  204. memcpy(&buf[5], msg[0].buf, msg[0].len);
  205. ret = af9035_ctrl_msg(d, &req);
  206. }
  207. } else if (num == 1 && !(msg[0].flags & I2C_M_RD)) {
  208. if (msg[0].len > 40) {
  209. /* TODO: correct limits > 40 */
  210. ret = -EOPNOTSUPP;
  211. } else if ((msg[0].addr == state->af9033_config[0].i2c_addr) ||
  212. (msg[0].addr == state->af9033_config[1].i2c_addr)) {
  213. /* demod access via firmware interface */
  214. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  215. msg[0].buf[2];
  216. if (msg[0].addr == state->af9033_config[1].i2c_addr)
  217. reg |= 0x100000;
  218. ret = af9035_wr_regs(d, reg, &msg[0].buf[3],
  219. msg[0].len - 3);
  220. } else {
  221. /* I2C */
  222. u8 buf[5 + msg[0].len];
  223. struct usb_req req = { CMD_I2C_WR, 0, sizeof(buf), buf,
  224. 0, NULL };
  225. req.mbox |= ((msg[0].addr & 0x80) >> 3);
  226. buf[0] = msg[0].len;
  227. buf[1] = msg[0].addr << 1;
  228. buf[2] = 0x00; /* reg addr len */
  229. buf[3] = 0x00; /* reg addr MSB */
  230. buf[4] = 0x00; /* reg addr LSB */
  231. memcpy(&buf[5], msg[0].buf, msg[0].len);
  232. ret = af9035_ctrl_msg(d, &req);
  233. }
  234. } else {
  235. /*
  236. * We support only two kind of I2C transactions:
  237. * 1) 1 x read + 1 x write
  238. * 2) 1 x write
  239. */
  240. ret = -EOPNOTSUPP;
  241. }
  242. mutex_unlock(&d->i2c_mutex);
  243. if (ret < 0)
  244. return ret;
  245. else
  246. return num;
  247. }
  248. static u32 af9035_i2c_functionality(struct i2c_adapter *adapter)
  249. {
  250. return I2C_FUNC_I2C;
  251. }
  252. static struct i2c_algorithm af9035_i2c_algo = {
  253. .master_xfer = af9035_i2c_master_xfer,
  254. .functionality = af9035_i2c_functionality,
  255. };
  256. static int af9035_identify_state(struct dvb_usb_device *d, const char **name)
  257. {
  258. struct state *state = d_to_priv(d);
  259. int ret;
  260. u8 wbuf[1] = { 1 };
  261. u8 rbuf[4];
  262. struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf,
  263. sizeof(rbuf), rbuf };
  264. ret = af9035_rd_regs(d, 0x1222, rbuf, 3);
  265. if (ret < 0)
  266. goto err;
  267. state->chip_version = rbuf[0];
  268. state->chip_type = rbuf[2] << 8 | rbuf[1] << 0;
  269. ret = af9035_rd_reg(d, 0x384f, &state->prechip_version);
  270. if (ret < 0)
  271. goto err;
  272. dev_info(&d->udev->dev,
  273. "%s: prechip_version=%02x chip_version=%02x chip_type=%04x\n",
  274. __func__, state->prechip_version, state->chip_version,
  275. state->chip_type);
  276. if (state->chip_type == 0x9135) {
  277. if (state->chip_version == 0x02)
  278. *name = AF9035_FIRMWARE_IT9135_V2;
  279. else
  280. *name = AF9035_FIRMWARE_IT9135_V1;
  281. state->eeprom_addr = EEPROM_BASE_IT9135;
  282. } else {
  283. *name = AF9035_FIRMWARE_AF9035;
  284. state->eeprom_addr = EEPROM_BASE_AF9035;
  285. }
  286. ret = af9035_ctrl_msg(d, &req);
  287. if (ret < 0)
  288. goto err;
  289. dev_dbg(&d->udev->dev, "%s: reply=%*ph\n", __func__, 4, rbuf);
  290. if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])
  291. ret = WARM;
  292. else
  293. ret = COLD;
  294. return ret;
  295. err:
  296. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  297. return ret;
  298. }
  299. static int af9035_download_firmware_old(struct dvb_usb_device *d,
  300. const struct firmware *fw)
  301. {
  302. int ret, i, j, len;
  303. u8 wbuf[1];
  304. struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
  305. struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL };
  306. u8 hdr_core;
  307. u16 hdr_addr, hdr_data_len, hdr_checksum;
  308. #define MAX_DATA 58
  309. #define HDR_SIZE 7
  310. /*
  311. * Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info!
  312. *
  313. * byte 0: MCS 51 core
  314. * There are two inside the AF9035 (1=Link and 2=OFDM) with separate
  315. * address spaces
  316. * byte 1-2: Big endian destination address
  317. * byte 3-4: Big endian number of data bytes following the header
  318. * byte 5-6: Big endian header checksum, apparently ignored by the chip
  319. * Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256)
  320. */
  321. for (i = fw->size; i > HDR_SIZE;) {
  322. hdr_core = fw->data[fw->size - i + 0];
  323. hdr_addr = fw->data[fw->size - i + 1] << 8;
  324. hdr_addr |= fw->data[fw->size - i + 2] << 0;
  325. hdr_data_len = fw->data[fw->size - i + 3] << 8;
  326. hdr_data_len |= fw->data[fw->size - i + 4] << 0;
  327. hdr_checksum = fw->data[fw->size - i + 5] << 8;
  328. hdr_checksum |= fw->data[fw->size - i + 6] << 0;
  329. dev_dbg(&d->udev->dev, "%s: core=%d addr=%04x data_len=%d " \
  330. "checksum=%04x\n", __func__, hdr_core, hdr_addr,
  331. hdr_data_len, hdr_checksum);
  332. if (((hdr_core != 1) && (hdr_core != 2)) ||
  333. (hdr_data_len > i)) {
  334. dev_dbg(&d->udev->dev, "%s: bad firmware\n", __func__);
  335. break;
  336. }
  337. /* download begin packet */
  338. req.cmd = CMD_FW_DL_BEGIN;
  339. ret = af9035_ctrl_msg(d, &req);
  340. if (ret < 0)
  341. goto err;
  342. /* download firmware packet(s) */
  343. for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) {
  344. len = j;
  345. if (len > MAX_DATA)
  346. len = MAX_DATA;
  347. req_fw_dl.wlen = len;
  348. req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i +
  349. HDR_SIZE + hdr_data_len - j];
  350. ret = af9035_ctrl_msg(d, &req_fw_dl);
  351. if (ret < 0)
  352. goto err;
  353. }
  354. /* download end packet */
  355. req.cmd = CMD_FW_DL_END;
  356. ret = af9035_ctrl_msg(d, &req);
  357. if (ret < 0)
  358. goto err;
  359. i -= hdr_data_len + HDR_SIZE;
  360. dev_dbg(&d->udev->dev, "%s: data uploaded=%zu\n",
  361. __func__, fw->size - i);
  362. }
  363. /* print warn if firmware is bad, continue and see what happens */
  364. if (i)
  365. dev_warn(&d->udev->dev, "%s: bad firmware\n", KBUILD_MODNAME);
  366. return 0;
  367. err:
  368. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  369. return ret;
  370. }
  371. static int af9035_download_firmware_new(struct dvb_usb_device *d,
  372. const struct firmware *fw)
  373. {
  374. int ret, i, i_prev;
  375. struct usb_req req_fw_dl = { CMD_FW_SCATTER_WR, 0, 0, NULL, 0, NULL };
  376. #define HDR_SIZE 7
  377. /*
  378. * There seems to be following firmware header. Meaning of bytes 0-3
  379. * is unknown.
  380. *
  381. * 0: 3
  382. * 1: 0, 1
  383. * 2: 0
  384. * 3: 1, 2, 3
  385. * 4: addr MSB
  386. * 5: addr LSB
  387. * 6: count of data bytes ?
  388. */
  389. for (i = HDR_SIZE, i_prev = 0; i <= fw->size; i++) {
  390. if (i == fw->size ||
  391. (fw->data[i + 0] == 0x03 &&
  392. (fw->data[i + 1] == 0x00 ||
  393. fw->data[i + 1] == 0x01) &&
  394. fw->data[i + 2] == 0x00)) {
  395. req_fw_dl.wlen = i - i_prev;
  396. req_fw_dl.wbuf = (u8 *) &fw->data[i_prev];
  397. i_prev = i;
  398. ret = af9035_ctrl_msg(d, &req_fw_dl);
  399. if (ret < 0)
  400. goto err;
  401. dev_dbg(&d->udev->dev, "%s: data uploaded=%d\n",
  402. __func__, i);
  403. }
  404. }
  405. return 0;
  406. err:
  407. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  408. return ret;
  409. }
  410. static int af9035_download_firmware(struct dvb_usb_device *d,
  411. const struct firmware *fw)
  412. {
  413. struct state *state = d_to_priv(d);
  414. int ret;
  415. u8 wbuf[1];
  416. u8 rbuf[4];
  417. u8 tmp;
  418. struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
  419. struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ;
  420. dev_dbg(&d->udev->dev, "%s:\n", __func__);
  421. /*
  422. * In case of dual tuner configuration we need to do some extra
  423. * initialization in order to download firmware to slave demod too,
  424. * which is done by master demod.
  425. * Master feeds also clock and controls power via GPIO.
  426. */
  427. ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_DUAL_MODE, &tmp);
  428. if (ret < 0)
  429. goto err;
  430. if (tmp) {
  431. /* configure gpioh1, reset & power slave demod */
  432. ret = af9035_wr_reg_mask(d, 0x00d8b0, 0x01, 0x01);
  433. if (ret < 0)
  434. goto err;
  435. ret = af9035_wr_reg_mask(d, 0x00d8b1, 0x01, 0x01);
  436. if (ret < 0)
  437. goto err;
  438. ret = af9035_wr_reg_mask(d, 0x00d8af, 0x00, 0x01);
  439. if (ret < 0)
  440. goto err;
  441. usleep_range(10000, 50000);
  442. ret = af9035_wr_reg_mask(d, 0x00d8af, 0x01, 0x01);
  443. if (ret < 0)
  444. goto err;
  445. /* tell the slave I2C address */
  446. ret = af9035_rd_reg(d,
  447. state->eeprom_addr + EEPROM_2ND_DEMOD_ADDR,
  448. &tmp);
  449. if (ret < 0)
  450. goto err;
  451. if (state->chip_type == 0x9135) {
  452. ret = af9035_wr_reg(d, 0x004bfb, tmp);
  453. if (ret < 0)
  454. goto err;
  455. } else {
  456. ret = af9035_wr_reg(d, 0x00417f, tmp);
  457. if (ret < 0)
  458. goto err;
  459. /* enable clock out */
  460. ret = af9035_wr_reg_mask(d, 0x00d81a, 0x01, 0x01);
  461. if (ret < 0)
  462. goto err;
  463. }
  464. }
  465. if (fw->data[0] == 0x01)
  466. ret = af9035_download_firmware_old(d, fw);
  467. else
  468. ret = af9035_download_firmware_new(d, fw);
  469. if (ret < 0)
  470. goto err;
  471. /* firmware loaded, request boot */
  472. req.cmd = CMD_FW_BOOT;
  473. ret = af9035_ctrl_msg(d, &req);
  474. if (ret < 0)
  475. goto err;
  476. /* ensure firmware starts */
  477. wbuf[0] = 1;
  478. ret = af9035_ctrl_msg(d, &req_fw_ver);
  479. if (ret < 0)
  480. goto err;
  481. if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
  482. dev_err(&d->udev->dev, "%s: firmware did not run\n",
  483. KBUILD_MODNAME);
  484. ret = -ENODEV;
  485. goto err;
  486. }
  487. dev_info(&d->udev->dev, "%s: firmware version=%d.%d.%d.%d",
  488. KBUILD_MODNAME, rbuf[0], rbuf[1], rbuf[2], rbuf[3]);
  489. return 0;
  490. err:
  491. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  492. return ret;
  493. }
  494. static int af9035_read_config(struct dvb_usb_device *d)
  495. {
  496. struct state *state = d_to_priv(d);
  497. int ret, i;
  498. u8 tmp;
  499. u16 tmp16, addr;
  500. /* demod I2C "address" */
  501. state->af9033_config[0].i2c_addr = 0x38;
  502. state->af9033_config[0].adc_multiplier = AF9033_ADC_MULTIPLIER_2X;
  503. state->af9033_config[1].adc_multiplier = AF9033_ADC_MULTIPLIER_2X;
  504. state->af9033_config[0].ts_mode = AF9033_TS_MODE_USB;
  505. state->af9033_config[1].ts_mode = AF9033_TS_MODE_SERIAL;
  506. /* eeprom memory mapped location */
  507. if (state->chip_type == 0x9135) {
  508. if (state->chip_version == 0x02) {
  509. state->af9033_config[0].tuner = AF9033_TUNER_IT9135_60;
  510. state->af9033_config[1].tuner = AF9033_TUNER_IT9135_60;
  511. tmp16 = 0x00461d;
  512. } else {
  513. state->af9033_config[0].tuner = AF9033_TUNER_IT9135_38;
  514. state->af9033_config[1].tuner = AF9033_TUNER_IT9135_38;
  515. tmp16 = 0x00461b;
  516. }
  517. /* check if eeprom exists */
  518. ret = af9035_rd_reg(d, tmp16, &tmp);
  519. if (ret < 0)
  520. goto err;
  521. if (tmp == 0x00) {
  522. dev_dbg(&d->udev->dev, "%s: no eeprom\n", __func__);
  523. goto skip_eeprom;
  524. }
  525. }
  526. /* check if there is dual tuners */
  527. ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_DUAL_MODE, &tmp);
  528. if (ret < 0)
  529. goto err;
  530. state->dual_mode = tmp;
  531. dev_dbg(&d->udev->dev, "%s: dual mode=%d\n", __func__,
  532. state->dual_mode);
  533. if (state->dual_mode) {
  534. /* read 2nd demodulator I2C address */
  535. ret = af9035_rd_reg(d,
  536. state->eeprom_addr + EEPROM_2ND_DEMOD_ADDR,
  537. &tmp);
  538. if (ret < 0)
  539. goto err;
  540. state->af9033_config[1].i2c_addr = tmp;
  541. dev_dbg(&d->udev->dev, "%s: 2nd demod I2C addr=%02x\n",
  542. __func__, tmp);
  543. }
  544. addr = state->eeprom_addr;
  545. for (i = 0; i < state->dual_mode + 1; i++) {
  546. /* tuner */
  547. ret = af9035_rd_reg(d, addr + EEPROM_1_TUNER_ID, &tmp);
  548. if (ret < 0)
  549. goto err;
  550. if (tmp == 0x00)
  551. dev_dbg(&d->udev->dev,
  552. "%s: [%d]tuner not set, using default\n",
  553. __func__, i);
  554. else
  555. state->af9033_config[i].tuner = tmp;
  556. dev_dbg(&d->udev->dev, "%s: [%d]tuner=%02x\n",
  557. __func__, i, state->af9033_config[i].tuner);
  558. switch (state->af9033_config[i].tuner) {
  559. case AF9033_TUNER_TUA9001:
  560. case AF9033_TUNER_FC0011:
  561. case AF9033_TUNER_MXL5007T:
  562. case AF9033_TUNER_TDA18218:
  563. case AF9033_TUNER_FC2580:
  564. case AF9033_TUNER_FC0012:
  565. state->af9033_config[i].spec_inv = 1;
  566. break;
  567. case AF9033_TUNER_IT9135_38:
  568. case AF9033_TUNER_IT9135_51:
  569. case AF9033_TUNER_IT9135_52:
  570. case AF9033_TUNER_IT9135_60:
  571. case AF9033_TUNER_IT9135_61:
  572. case AF9033_TUNER_IT9135_62:
  573. break;
  574. default:
  575. dev_warn(&d->udev->dev,
  576. "%s: tuner id=%02x not supported, please report!",
  577. KBUILD_MODNAME, tmp);
  578. }
  579. /* disable dual mode if driver does not support it */
  580. if (i == 1)
  581. switch (state->af9033_config[i].tuner) {
  582. case AF9033_TUNER_FC0012:
  583. case AF9033_TUNER_IT9135_38:
  584. case AF9033_TUNER_IT9135_51:
  585. case AF9033_TUNER_IT9135_52:
  586. case AF9033_TUNER_IT9135_60:
  587. case AF9033_TUNER_IT9135_61:
  588. case AF9033_TUNER_IT9135_62:
  589. case AF9033_TUNER_MXL5007T:
  590. break;
  591. default:
  592. state->dual_mode = false;
  593. dev_info(&d->udev->dev,
  594. "%s: driver does not support 2nd tuner and will disable it",
  595. KBUILD_MODNAME);
  596. }
  597. /* tuner IF frequency */
  598. ret = af9035_rd_reg(d, addr + EEPROM_1_IF_L, &tmp);
  599. if (ret < 0)
  600. goto err;
  601. tmp16 = tmp;
  602. ret = af9035_rd_reg(d, addr + EEPROM_1_IF_H, &tmp);
  603. if (ret < 0)
  604. goto err;
  605. tmp16 |= tmp << 8;
  606. dev_dbg(&d->udev->dev, "%s: [%d]IF=%d\n", __func__, i, tmp16);
  607. addr += 0x10; /* shift for the 2nd tuner params */
  608. }
  609. skip_eeprom:
  610. /* get demod clock */
  611. ret = af9035_rd_reg(d, 0x00d800, &tmp);
  612. if (ret < 0)
  613. goto err;
  614. tmp = (tmp >> 0) & 0x0f;
  615. for (i = 0; i < ARRAY_SIZE(state->af9033_config); i++) {
  616. if (state->chip_type == 0x9135)
  617. state->af9033_config[i].clock = clock_lut_it9135[tmp];
  618. else
  619. state->af9033_config[i].clock = clock_lut_af9035[tmp];
  620. }
  621. return 0;
  622. err:
  623. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  624. return ret;
  625. }
  626. static int af9035_tua9001_tuner_callback(struct dvb_usb_device *d,
  627. int cmd, int arg)
  628. {
  629. int ret;
  630. u8 val;
  631. dev_dbg(&d->udev->dev, "%s: cmd=%d arg=%d\n", __func__, cmd, arg);
  632. /*
  633. * CEN always enabled by hardware wiring
  634. * RESETN GPIOT3
  635. * RXEN GPIOT2
  636. */
  637. switch (cmd) {
  638. case TUA9001_CMD_RESETN:
  639. if (arg)
  640. val = 0x00;
  641. else
  642. val = 0x01;
  643. ret = af9035_wr_reg_mask(d, 0x00d8e7, val, 0x01);
  644. if (ret < 0)
  645. goto err;
  646. break;
  647. case TUA9001_CMD_RXEN:
  648. if (arg)
  649. val = 0x01;
  650. else
  651. val = 0x00;
  652. ret = af9035_wr_reg_mask(d, 0x00d8eb, val, 0x01);
  653. if (ret < 0)
  654. goto err;
  655. break;
  656. }
  657. return 0;
  658. err:
  659. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  660. return ret;
  661. }
  662. static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d,
  663. int cmd, int arg)
  664. {
  665. int ret;
  666. switch (cmd) {
  667. case FC0011_FE_CALLBACK_POWER:
  668. /* Tuner enable */
  669. ret = af9035_wr_reg_mask(d, 0xd8eb, 1, 1);
  670. if (ret < 0)
  671. goto err;
  672. ret = af9035_wr_reg_mask(d, 0xd8ec, 1, 1);
  673. if (ret < 0)
  674. goto err;
  675. ret = af9035_wr_reg_mask(d, 0xd8ed, 1, 1);
  676. if (ret < 0)
  677. goto err;
  678. /* LED */
  679. ret = af9035_wr_reg_mask(d, 0xd8d0, 1, 1);
  680. if (ret < 0)
  681. goto err;
  682. ret = af9035_wr_reg_mask(d, 0xd8d1, 1, 1);
  683. if (ret < 0)
  684. goto err;
  685. usleep_range(10000, 50000);
  686. break;
  687. case FC0011_FE_CALLBACK_RESET:
  688. ret = af9035_wr_reg(d, 0xd8e9, 1);
  689. if (ret < 0)
  690. goto err;
  691. ret = af9035_wr_reg(d, 0xd8e8, 1);
  692. if (ret < 0)
  693. goto err;
  694. ret = af9035_wr_reg(d, 0xd8e7, 1);
  695. if (ret < 0)
  696. goto err;
  697. usleep_range(10000, 20000);
  698. ret = af9035_wr_reg(d, 0xd8e7, 0);
  699. if (ret < 0)
  700. goto err;
  701. usleep_range(10000, 20000);
  702. break;
  703. default:
  704. ret = -EINVAL;
  705. goto err;
  706. }
  707. return 0;
  708. err:
  709. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  710. return ret;
  711. }
  712. static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg)
  713. {
  714. struct state *state = d_to_priv(d);
  715. switch (state->af9033_config[0].tuner) {
  716. case AF9033_TUNER_FC0011:
  717. return af9035_fc0011_tuner_callback(d, cmd, arg);
  718. case AF9033_TUNER_TUA9001:
  719. return af9035_tua9001_tuner_callback(d, cmd, arg);
  720. default:
  721. break;
  722. }
  723. return 0;
  724. }
  725. static int af9035_frontend_callback(void *adapter_priv, int component,
  726. int cmd, int arg)
  727. {
  728. struct i2c_adapter *adap = adapter_priv;
  729. struct dvb_usb_device *d = i2c_get_adapdata(adap);
  730. dev_dbg(&d->udev->dev, "%s: component=%d cmd=%d arg=%d\n",
  731. __func__, component, cmd, arg);
  732. switch (component) {
  733. case DVB_FRONTEND_COMPONENT_TUNER:
  734. return af9035_tuner_callback(d, cmd, arg);
  735. default:
  736. break;
  737. }
  738. return 0;
  739. }
  740. static int af9035_get_adapter_count(struct dvb_usb_device *d)
  741. {
  742. struct state *state = d_to_priv(d);
  743. /* disable 2nd adapter as we don't have PID filters implemented */
  744. if (d->udev->speed == USB_SPEED_FULL)
  745. return 1;
  746. else
  747. return state->dual_mode + 1;
  748. }
  749. static int af9035_frontend_attach(struct dvb_usb_adapter *adap)
  750. {
  751. struct state *state = adap_to_priv(adap);
  752. struct dvb_usb_device *d = adap_to_d(adap);
  753. int ret;
  754. dev_dbg(&d->udev->dev, "%s:\n", __func__);
  755. if (!state->af9033_config[adap->id].tuner) {
  756. /* unsupported tuner */
  757. ret = -ENODEV;
  758. goto err;
  759. }
  760. /* attach demodulator */
  761. adap->fe[0] = dvb_attach(af9033_attach, &state->af9033_config[adap->id],
  762. &d->i2c_adap);
  763. if (adap->fe[0] == NULL) {
  764. ret = -ENODEV;
  765. goto err;
  766. }
  767. /* disable I2C-gate */
  768. adap->fe[0]->ops.i2c_gate_ctrl = NULL;
  769. adap->fe[0]->callback = af9035_frontend_callback;
  770. return 0;
  771. err:
  772. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  773. return ret;
  774. }
  775. static struct tua9001_config af9035_tua9001_config = {
  776. .i2c_addr = 0x60,
  777. };
  778. static const struct fc0011_config af9035_fc0011_config = {
  779. .i2c_address = 0x60,
  780. };
  781. static struct mxl5007t_config af9035_mxl5007t_config[] = {
  782. {
  783. .xtal_freq_hz = MxL_XTAL_24_MHZ,
  784. .if_freq_hz = MxL_IF_4_57_MHZ,
  785. .invert_if = 0,
  786. .loop_thru_enable = 0,
  787. .clk_out_enable = 0,
  788. .clk_out_amp = MxL_CLKOUT_AMP_0_94V,
  789. }, {
  790. .xtal_freq_hz = MxL_XTAL_24_MHZ,
  791. .if_freq_hz = MxL_IF_4_57_MHZ,
  792. .invert_if = 0,
  793. .loop_thru_enable = 1,
  794. .clk_out_enable = 1,
  795. .clk_out_amp = MxL_CLKOUT_AMP_0_94V,
  796. }
  797. };
  798. static struct tda18218_config af9035_tda18218_config = {
  799. .i2c_address = 0x60,
  800. .i2c_wr_max = 21,
  801. };
  802. static const struct fc2580_config af9035_fc2580_config = {
  803. .i2c_addr = 0x56,
  804. .clock = 16384000,
  805. };
  806. static const struct fc0012_config af9035_fc0012_config[] = {
  807. {
  808. .i2c_address = 0x63,
  809. .xtal_freq = FC_XTAL_36_MHZ,
  810. .dual_master = true,
  811. .loop_through = true,
  812. .clock_out = true,
  813. }, {
  814. .i2c_address = 0x63 | 0x80, /* I2C bus select hack */
  815. .xtal_freq = FC_XTAL_36_MHZ,
  816. .dual_master = true,
  817. }
  818. };
  819. static int af9035_tuner_attach(struct dvb_usb_adapter *adap)
  820. {
  821. struct state *state = adap_to_priv(adap);
  822. struct dvb_usb_device *d = adap_to_d(adap);
  823. int ret;
  824. struct dvb_frontend *fe;
  825. struct i2c_msg msg[1];
  826. u8 tuner_addr;
  827. dev_dbg(&d->udev->dev, "%s:\n", __func__);
  828. /*
  829. * XXX: Hack used in that function: we abuse unused I2C address bit [7]
  830. * to carry info about used I2C bus for dual tuner configuration.
  831. */
  832. switch (state->af9033_config[adap->id].tuner) {
  833. case AF9033_TUNER_TUA9001:
  834. /* AF9035 gpiot3 = TUA9001 RESETN
  835. AF9035 gpiot2 = TUA9001 RXEN */
  836. /* configure gpiot2 and gpiot2 as output */
  837. ret = af9035_wr_reg_mask(d, 0x00d8ec, 0x01, 0x01);
  838. if (ret < 0)
  839. goto err;
  840. ret = af9035_wr_reg_mask(d, 0x00d8ed, 0x01, 0x01);
  841. if (ret < 0)
  842. goto err;
  843. ret = af9035_wr_reg_mask(d, 0x00d8e8, 0x01, 0x01);
  844. if (ret < 0)
  845. goto err;
  846. ret = af9035_wr_reg_mask(d, 0x00d8e9, 0x01, 0x01);
  847. if (ret < 0)
  848. goto err;
  849. /* attach tuner */
  850. fe = dvb_attach(tua9001_attach, adap->fe[0],
  851. &d->i2c_adap, &af9035_tua9001_config);
  852. break;
  853. case AF9033_TUNER_FC0011:
  854. fe = dvb_attach(fc0011_attach, adap->fe[0],
  855. &d->i2c_adap, &af9035_fc0011_config);
  856. break;
  857. case AF9033_TUNER_MXL5007T:
  858. if (adap->id == 0) {
  859. ret = af9035_wr_reg(d, 0x00d8e0, 1);
  860. if (ret < 0)
  861. goto err;
  862. ret = af9035_wr_reg(d, 0x00d8e1, 1);
  863. if (ret < 0)
  864. goto err;
  865. ret = af9035_wr_reg(d, 0x00d8df, 0);
  866. if (ret < 0)
  867. goto err;
  868. msleep(30);
  869. ret = af9035_wr_reg(d, 0x00d8df, 1);
  870. if (ret < 0)
  871. goto err;
  872. msleep(300);
  873. ret = af9035_wr_reg(d, 0x00d8c0, 1);
  874. if (ret < 0)
  875. goto err;
  876. ret = af9035_wr_reg(d, 0x00d8c1, 1);
  877. if (ret < 0)
  878. goto err;
  879. ret = af9035_wr_reg(d, 0x00d8bf, 0);
  880. if (ret < 0)
  881. goto err;
  882. ret = af9035_wr_reg(d, 0x00d8b4, 1);
  883. if (ret < 0)
  884. goto err;
  885. ret = af9035_wr_reg(d, 0x00d8b5, 1);
  886. if (ret < 0)
  887. goto err;
  888. ret = af9035_wr_reg(d, 0x00d8b3, 1);
  889. if (ret < 0)
  890. goto err;
  891. tuner_addr = 0x60;
  892. } else {
  893. tuner_addr = 0x60 | 0x80; /* I2C bus hack */
  894. }
  895. /* attach tuner */
  896. fe = dvb_attach(mxl5007t_attach, adap->fe[0], &d->i2c_adap,
  897. tuner_addr, &af9035_mxl5007t_config[adap->id]);
  898. break;
  899. case AF9033_TUNER_TDA18218:
  900. /* attach tuner */
  901. fe = dvb_attach(tda18218_attach, adap->fe[0],
  902. &d->i2c_adap, &af9035_tda18218_config);
  903. break;
  904. case AF9033_TUNER_FC2580:
  905. /* Tuner enable using gpiot2_o, gpiot2_en and gpiot2_on */
  906. ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01);
  907. if (ret < 0)
  908. goto err;
  909. ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01);
  910. if (ret < 0)
  911. goto err;
  912. ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01);
  913. if (ret < 0)
  914. goto err;
  915. usleep_range(10000, 50000);
  916. /* attach tuner */
  917. fe = dvb_attach(fc2580_attach, adap->fe[0],
  918. &d->i2c_adap, &af9035_fc2580_config);
  919. break;
  920. case AF9033_TUNER_FC0012:
  921. /*
  922. * AF9035 gpiot2 = FC0012 enable
  923. * XXX: there seems to be something on gpioh8 too, but on my
  924. * my test I didn't find any difference.
  925. */
  926. if (adap->id == 0) {
  927. /* configure gpiot2 as output and high */
  928. ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01);
  929. if (ret < 0)
  930. goto err;
  931. ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01);
  932. if (ret < 0)
  933. goto err;
  934. ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01);
  935. if (ret < 0)
  936. goto err;
  937. } else {
  938. /*
  939. * FIXME: That belongs for the FC0012 driver.
  940. * Write 02 to FC0012 master tuner register 0d directly
  941. * in order to make slave tuner working.
  942. */
  943. msg[0].addr = 0x63;
  944. msg[0].flags = 0;
  945. msg[0].len = 2;
  946. msg[0].buf = "\x0d\x02";
  947. ret = i2c_transfer(&d->i2c_adap, msg, 1);
  948. if (ret < 0)
  949. goto err;
  950. }
  951. usleep_range(10000, 50000);
  952. fe = dvb_attach(fc0012_attach, adap->fe[0], &d->i2c_adap,
  953. &af9035_fc0012_config[adap->id]);
  954. break;
  955. case AF9033_TUNER_IT9135_38:
  956. case AF9033_TUNER_IT9135_51:
  957. case AF9033_TUNER_IT9135_52:
  958. case AF9033_TUNER_IT9135_60:
  959. case AF9033_TUNER_IT9135_61:
  960. case AF9033_TUNER_IT9135_62:
  961. /* attach tuner */
  962. fe = dvb_attach(it913x_attach, adap->fe[0], &d->i2c_adap,
  963. state->af9033_config[adap->id].i2c_addr,
  964. state->af9033_config[0].tuner);
  965. break;
  966. default:
  967. fe = NULL;
  968. }
  969. if (fe == NULL) {
  970. ret = -ENODEV;
  971. goto err;
  972. }
  973. return 0;
  974. err:
  975. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  976. return ret;
  977. }
  978. static int af9035_init(struct dvb_usb_device *d)
  979. {
  980. struct state *state = d_to_priv(d);
  981. int ret, i;
  982. u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 87) * 188 / 4;
  983. u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4;
  984. struct reg_val_mask tab[] = {
  985. { 0x80f99d, 0x01, 0x01 },
  986. { 0x80f9a4, 0x01, 0x01 },
  987. { 0x00dd11, 0x00, 0x20 },
  988. { 0x00dd11, 0x00, 0x40 },
  989. { 0x00dd13, 0x00, 0x20 },
  990. { 0x00dd13, 0x00, 0x40 },
  991. { 0x00dd11, 0x20, 0x20 },
  992. { 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
  993. { 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
  994. { 0x00dd0c, packet_size, 0xff},
  995. { 0x00dd11, state->dual_mode << 6, 0x40 },
  996. { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
  997. { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
  998. { 0x00dd0d, packet_size, 0xff },
  999. { 0x80f9a3, state->dual_mode, 0x01 },
  1000. { 0x80f9cd, state->dual_mode, 0x01 },
  1001. { 0x80f99d, 0x00, 0x01 },
  1002. { 0x80f9a4, 0x00, 0x01 },
  1003. };
  1004. dev_dbg(&d->udev->dev, "%s: USB speed=%d frame_size=%04x " \
  1005. "packet_size=%02x\n", __func__,
  1006. d->udev->speed, frame_size, packet_size);
  1007. /* init endpoints */
  1008. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  1009. ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val,
  1010. tab[i].mask);
  1011. if (ret < 0)
  1012. goto err;
  1013. }
  1014. return 0;
  1015. err:
  1016. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  1017. return ret;
  1018. }
  1019. #if IS_ENABLED(CONFIG_RC_CORE)
  1020. static int af9035_rc_query(struct dvb_usb_device *d)
  1021. {
  1022. int ret;
  1023. u32 key;
  1024. u8 buf[4];
  1025. struct usb_req req = { CMD_IR_GET, 0, 0, NULL, 4, buf };
  1026. ret = af9035_ctrl_msg(d, &req);
  1027. if (ret == 1)
  1028. return 0;
  1029. else if (ret < 0)
  1030. goto err;
  1031. if ((buf[2] + buf[3]) == 0xff) {
  1032. if ((buf[0] + buf[1]) == 0xff) {
  1033. /* NEC standard 16bit */
  1034. key = buf[0] << 8 | buf[2];
  1035. } else {
  1036. /* NEC extended 24bit */
  1037. key = buf[0] << 16 | buf[1] << 8 | buf[2];
  1038. }
  1039. } else {
  1040. /* NEC full code 32bit */
  1041. key = buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3];
  1042. }
  1043. dev_dbg(&d->udev->dev, "%s: %*ph\n", __func__, 4, buf);
  1044. rc_keydown(d->rc_dev, key, 0);
  1045. return 0;
  1046. err:
  1047. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  1048. return ret;
  1049. }
  1050. static int af9035_get_rc_config(struct dvb_usb_device *d, struct dvb_usb_rc *rc)
  1051. {
  1052. struct state *state = d_to_priv(d);
  1053. int ret;
  1054. u8 tmp;
  1055. ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_IR_MODE, &tmp);
  1056. if (ret < 0)
  1057. goto err;
  1058. dev_dbg(&d->udev->dev, "%s: ir_mode=%02x\n", __func__, tmp);
  1059. /* don't activate rc if in HID mode or if not available */
  1060. if (tmp == 5) {
  1061. ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_IR_TYPE,
  1062. &tmp);
  1063. if (ret < 0)
  1064. goto err;
  1065. dev_dbg(&d->udev->dev, "%s: ir_type=%02x\n", __func__, tmp);
  1066. switch (tmp) {
  1067. case 0: /* NEC */
  1068. default:
  1069. rc->allowed_protos = RC_BIT_NEC;
  1070. break;
  1071. case 1: /* RC6 */
  1072. rc->allowed_protos = RC_BIT_RC6_MCE;
  1073. break;
  1074. }
  1075. rc->query = af9035_rc_query;
  1076. rc->interval = 500;
  1077. /* load empty to enable rc */
  1078. if (!rc->map_name)
  1079. rc->map_name = RC_MAP_EMPTY;
  1080. }
  1081. return 0;
  1082. err:
  1083. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  1084. return ret;
  1085. }
  1086. #else
  1087. #define af9035_get_rc_config NULL
  1088. #endif
  1089. static int af9035_get_stream_config(struct dvb_frontend *fe, u8 *ts_type,
  1090. struct usb_data_stream_properties *stream)
  1091. {
  1092. struct dvb_usb_device *d = fe_to_d(fe);
  1093. dev_dbg(&d->udev->dev, "%s: adap=%d\n", __func__, fe_to_adap(fe)->id);
  1094. if (d->udev->speed == USB_SPEED_FULL)
  1095. stream->u.bulk.buffersize = 5 * 188;
  1096. return 0;
  1097. }
  1098. /*
  1099. * FIXME: PID filter is property of demodulator and should be moved to the
  1100. * correct driver. Also we support only adapter #0 PID filter and will
  1101. * disable adapter #1 if USB1.1 is used.
  1102. */
  1103. static int af9035_pid_filter_ctrl(struct dvb_usb_adapter *adap, int onoff)
  1104. {
  1105. struct dvb_usb_device *d = adap_to_d(adap);
  1106. int ret;
  1107. dev_dbg(&d->udev->dev, "%s: onoff=%d\n", __func__, onoff);
  1108. ret = af9035_wr_reg_mask(d, 0x80f993, onoff, 0x01);
  1109. if (ret < 0)
  1110. goto err;
  1111. return 0;
  1112. err:
  1113. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  1114. return ret;
  1115. }
  1116. static int af9035_pid_filter(struct dvb_usb_adapter *adap, int index, u16 pid,
  1117. int onoff)
  1118. {
  1119. struct dvb_usb_device *d = adap_to_d(adap);
  1120. int ret;
  1121. u8 wbuf[2] = {(pid >> 0) & 0xff, (pid >> 8) & 0xff};
  1122. dev_dbg(&d->udev->dev, "%s: index=%d pid=%04x onoff=%d\n",
  1123. __func__, index, pid, onoff);
  1124. ret = af9035_wr_regs(d, 0x80f996, wbuf, 2);
  1125. if (ret < 0)
  1126. goto err;
  1127. ret = af9035_wr_reg(d, 0x80f994, onoff);
  1128. if (ret < 0)
  1129. goto err;
  1130. ret = af9035_wr_reg(d, 0x80f995, index);
  1131. if (ret < 0)
  1132. goto err;
  1133. return 0;
  1134. err:
  1135. dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret);
  1136. return ret;
  1137. }
  1138. static int af9035_probe(struct usb_interface *intf,
  1139. const struct usb_device_id *id)
  1140. {
  1141. struct usb_device *udev = interface_to_usbdev(intf);
  1142. char manufacturer[sizeof("Afatech")];
  1143. memset(manufacturer, 0, sizeof(manufacturer));
  1144. usb_string(udev, udev->descriptor.iManufacturer,
  1145. manufacturer, sizeof(manufacturer));
  1146. /*
  1147. * There is two devices having same ID but different chipset. One uses
  1148. * AF9015 and the other IT9135 chipset. Only difference seen on lsusb
  1149. * is iManufacturer string.
  1150. *
  1151. * idVendor 0x0ccd TerraTec Electronic GmbH
  1152. * idProduct 0x0099
  1153. * bcdDevice 2.00
  1154. * iManufacturer 1 Afatech
  1155. * iProduct 2 DVB-T 2
  1156. *
  1157. * idVendor 0x0ccd TerraTec Electronic GmbH
  1158. * idProduct 0x0099
  1159. * bcdDevice 2.00
  1160. * iManufacturer 1 ITE Technologies, Inc.
  1161. * iProduct 2 DVB-T TV Stick
  1162. */
  1163. if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VID_TERRATEC) &&
  1164. (le16_to_cpu(udev->descriptor.idProduct) == 0x0099)) {
  1165. if (!strcmp("Afatech", manufacturer)) {
  1166. dev_dbg(&udev->dev, "%s: rejecting device\n", __func__);
  1167. return -ENODEV;
  1168. }
  1169. }
  1170. return dvb_usbv2_probe(intf, id);
  1171. }
  1172. /* interface 0 is used by DVB-T receiver and
  1173. interface 1 is for remote controller (HID) */
  1174. static const struct dvb_usb_device_properties af9035_props = {
  1175. .driver_name = KBUILD_MODNAME,
  1176. .owner = THIS_MODULE,
  1177. .adapter_nr = adapter_nr,
  1178. .size_of_priv = sizeof(struct state),
  1179. .generic_bulk_ctrl_endpoint = 0x02,
  1180. .generic_bulk_ctrl_endpoint_response = 0x81,
  1181. .identify_state = af9035_identify_state,
  1182. .download_firmware = af9035_download_firmware,
  1183. .i2c_algo = &af9035_i2c_algo,
  1184. .read_config = af9035_read_config,
  1185. .frontend_attach = af9035_frontend_attach,
  1186. .tuner_attach = af9035_tuner_attach,
  1187. .init = af9035_init,
  1188. .get_rc_config = af9035_get_rc_config,
  1189. .get_stream_config = af9035_get_stream_config,
  1190. .get_adapter_count = af9035_get_adapter_count,
  1191. .adapter = {
  1192. {
  1193. .caps = DVB_USB_ADAP_HAS_PID_FILTER |
  1194. DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF,
  1195. .pid_filter_count = 32,
  1196. .pid_filter_ctrl = af9035_pid_filter_ctrl,
  1197. .pid_filter = af9035_pid_filter,
  1198. .stream = DVB_USB_STREAM_BULK(0x84, 6, 87 * 188),
  1199. }, {
  1200. .stream = DVB_USB_STREAM_BULK(0x85, 6, 87 * 188),
  1201. },
  1202. },
  1203. };
  1204. static const struct usb_device_id af9035_id_table[] = {
  1205. /* AF9035 devices */
  1206. { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_9035,
  1207. &af9035_props, "Afatech AF9035 reference design", NULL) },
  1208. { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1000,
  1209. &af9035_props, "Afatech AF9035 reference design", NULL) },
  1210. { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1001,
  1211. &af9035_props, "Afatech AF9035 reference design", NULL) },
  1212. { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1002,
  1213. &af9035_props, "Afatech AF9035 reference design", NULL) },
  1214. { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1003,
  1215. &af9035_props, "Afatech AF9035 reference design", NULL) },
  1216. { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK,
  1217. &af9035_props, "TerraTec Cinergy T Stick", NULL) },
  1218. { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835,
  1219. &af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) },
  1220. { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_B835,
  1221. &af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) },
  1222. { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_1867,
  1223. &af9035_props, "AVerMedia HD Volar (A867)", NULL) },
  1224. { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A867,
  1225. &af9035_props, "AVerMedia HD Volar (A867)", NULL) },
  1226. { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TWINSTAR,
  1227. &af9035_props, "AVerMedia Twinstar (A825)", NULL) },
  1228. { DVB_USB_DEVICE(USB_VID_ASUS, USB_PID_ASUS_U3100MINI_PLUS,
  1229. &af9035_props, "Asus U3100Mini Plus", NULL) },
  1230. { DVB_USB_DEVICE(USB_VID_TERRATEC, 0x00aa,
  1231. &af9035_props, "TerraTec Cinergy T Stick (rev. 2)", NULL) },
  1232. /* IT9135 devices */
  1233. #if 0
  1234. { DVB_USB_DEVICE(0x048d, 0x9135,
  1235. &af9035_props, "IT9135 reference design", NULL) },
  1236. { DVB_USB_DEVICE(0x048d, 0x9006,
  1237. &af9035_props, "IT9135 reference design", NULL) },
  1238. #endif
  1239. /* XXX: that same ID [0ccd:0099] is used by af9015 driver too */
  1240. { DVB_USB_DEVICE(USB_VID_TERRATEC, 0x0099,
  1241. &af9035_props, "TerraTec Cinergy T Stick Dual RC (rev. 2)", NULL) },
  1242. { }
  1243. };
  1244. MODULE_DEVICE_TABLE(usb, af9035_id_table);
  1245. static struct usb_driver af9035_usb_driver = {
  1246. .name = KBUILD_MODNAME,
  1247. .id_table = af9035_id_table,
  1248. .probe = af9035_probe,
  1249. .disconnect = dvb_usbv2_disconnect,
  1250. .suspend = dvb_usbv2_suspend,
  1251. .resume = dvb_usbv2_resume,
  1252. .reset_resume = dvb_usbv2_reset_resume,
  1253. .no_dynamic_id = 1,
  1254. .soft_unbind = 1,
  1255. };
  1256. module_usb_driver(af9035_usb_driver);
  1257. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1258. MODULE_DESCRIPTION("Afatech AF9035 driver");
  1259. MODULE_LICENSE("GPL");
  1260. MODULE_FIRMWARE(AF9035_FIRMWARE_AF9035);
  1261. MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V1);
  1262. MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V2);