delayed-inode.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 512
  24. #define BTRFS_DELAYED_BACKGROUND 128
  25. #define BTRFS_DELAYED_BATCH 16
  26. static struct kmem_cache *delayed_node_cache;
  27. int __init btrfs_delayed_inode_init(void)
  28. {
  29. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  30. sizeof(struct btrfs_delayed_node),
  31. 0,
  32. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  33. NULL);
  34. if (!delayed_node_cache)
  35. return -ENOMEM;
  36. return 0;
  37. }
  38. void btrfs_delayed_inode_exit(void)
  39. {
  40. if (delayed_node_cache)
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->count = 0;
  51. delayed_node->in_list = 0;
  52. delayed_node->inode_dirty = 0;
  53. delayed_node->ins_root = RB_ROOT;
  54. delayed_node->del_root = RB_ROOT;
  55. mutex_init(&delayed_node->mutex);
  56. delayed_node->index_cnt = 0;
  57. INIT_LIST_HEAD(&delayed_node->n_list);
  58. INIT_LIST_HEAD(&delayed_node->p_list);
  59. delayed_node->bytes_reserved = 0;
  60. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  61. }
  62. static inline int btrfs_is_continuous_delayed_item(
  63. struct btrfs_delayed_item *item1,
  64. struct btrfs_delayed_item *item2)
  65. {
  66. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  67. item1->key.objectid == item2->key.objectid &&
  68. item1->key.type == item2->key.type &&
  69. item1->key.offset + 1 == item2->key.offset)
  70. return 1;
  71. return 0;
  72. }
  73. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  74. struct btrfs_root *root)
  75. {
  76. return root->fs_info->delayed_root;
  77. }
  78. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  79. {
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. struct btrfs_delayed_node *node;
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs);
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. atomic_inc(&node->refs); /* can be accessed */
  94. BUG_ON(btrfs_inode->delayed_node != node);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. btrfs_inode->delayed_node = node;
  99. atomic_inc(&node->refs); /* can be accessed */
  100. atomic_inc(&node->refs); /* cached in the inode */
  101. spin_unlock(&root->inode_lock);
  102. return node;
  103. }
  104. spin_unlock(&root->inode_lock);
  105. return NULL;
  106. }
  107. /* Will return either the node or PTR_ERR(-ENOMEM) */
  108. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  109. struct inode *inode)
  110. {
  111. struct btrfs_delayed_node *node;
  112. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  113. struct btrfs_root *root = btrfs_inode->root;
  114. u64 ino = btrfs_ino(inode);
  115. int ret;
  116. again:
  117. node = btrfs_get_delayed_node(inode);
  118. if (node)
  119. return node;
  120. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  121. if (!node)
  122. return ERR_PTR(-ENOMEM);
  123. btrfs_init_delayed_node(node, root, ino);
  124. atomic_inc(&node->refs); /* cached in the btrfs inode */
  125. atomic_inc(&node->refs); /* can be accessed */
  126. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  127. if (ret) {
  128. kmem_cache_free(delayed_node_cache, node);
  129. return ERR_PTR(ret);
  130. }
  131. spin_lock(&root->inode_lock);
  132. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  133. if (ret == -EEXIST) {
  134. kmem_cache_free(delayed_node_cache, node);
  135. spin_unlock(&root->inode_lock);
  136. radix_tree_preload_end();
  137. goto again;
  138. }
  139. btrfs_inode->delayed_node = node;
  140. spin_unlock(&root->inode_lock);
  141. radix_tree_preload_end();
  142. return node;
  143. }
  144. /*
  145. * Call it when holding delayed_node->mutex
  146. *
  147. * If mod = 1, add this node into the prepared list.
  148. */
  149. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  150. struct btrfs_delayed_node *node,
  151. int mod)
  152. {
  153. spin_lock(&root->lock);
  154. if (node->in_list) {
  155. if (!list_empty(&node->p_list))
  156. list_move_tail(&node->p_list, &root->prepare_list);
  157. else if (mod)
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. } else {
  160. list_add_tail(&node->n_list, &root->node_list);
  161. list_add_tail(&node->p_list, &root->prepare_list);
  162. atomic_inc(&node->refs); /* inserted into list */
  163. root->nodes++;
  164. node->in_list = 1;
  165. }
  166. spin_unlock(&root->lock);
  167. }
  168. /* Call it when holding delayed_node->mutex */
  169. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  170. struct btrfs_delayed_node *node)
  171. {
  172. spin_lock(&root->lock);
  173. if (node->in_list) {
  174. root->nodes--;
  175. atomic_dec(&node->refs); /* not in the list */
  176. list_del_init(&node->n_list);
  177. if (!list_empty(&node->p_list))
  178. list_del_init(&node->p_list);
  179. node->in_list = 0;
  180. }
  181. spin_unlock(&root->lock);
  182. }
  183. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  184. struct btrfs_delayed_root *delayed_root)
  185. {
  186. struct list_head *p;
  187. struct btrfs_delayed_node *node = NULL;
  188. spin_lock(&delayed_root->lock);
  189. if (list_empty(&delayed_root->node_list))
  190. goto out;
  191. p = delayed_root->node_list.next;
  192. node = list_entry(p, struct btrfs_delayed_node, n_list);
  193. atomic_inc(&node->refs);
  194. out:
  195. spin_unlock(&delayed_root->lock);
  196. return node;
  197. }
  198. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  199. struct btrfs_delayed_node *node)
  200. {
  201. struct btrfs_delayed_root *delayed_root;
  202. struct list_head *p;
  203. struct btrfs_delayed_node *next = NULL;
  204. delayed_root = node->root->fs_info->delayed_root;
  205. spin_lock(&delayed_root->lock);
  206. if (!node->in_list) { /* not in the list */
  207. if (list_empty(&delayed_root->node_list))
  208. goto out;
  209. p = delayed_root->node_list.next;
  210. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  211. goto out;
  212. else
  213. p = node->n_list.next;
  214. next = list_entry(p, struct btrfs_delayed_node, n_list);
  215. atomic_inc(&next->refs);
  216. out:
  217. spin_unlock(&delayed_root->lock);
  218. return next;
  219. }
  220. static void __btrfs_release_delayed_node(
  221. struct btrfs_delayed_node *delayed_node,
  222. int mod)
  223. {
  224. struct btrfs_delayed_root *delayed_root;
  225. if (!delayed_node)
  226. return;
  227. delayed_root = delayed_node->root->fs_info->delayed_root;
  228. mutex_lock(&delayed_node->mutex);
  229. if (delayed_node->count)
  230. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  231. else
  232. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  233. mutex_unlock(&delayed_node->mutex);
  234. if (atomic_dec_and_test(&delayed_node->refs)) {
  235. struct btrfs_root *root = delayed_node->root;
  236. spin_lock(&root->inode_lock);
  237. if (atomic_read(&delayed_node->refs) == 0) {
  238. radix_tree_delete(&root->delayed_nodes_tree,
  239. delayed_node->inode_id);
  240. kmem_cache_free(delayed_node_cache, delayed_node);
  241. }
  242. spin_unlock(&root->inode_lock);
  243. }
  244. }
  245. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  246. {
  247. __btrfs_release_delayed_node(node, 0);
  248. }
  249. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  250. struct btrfs_delayed_root *delayed_root)
  251. {
  252. struct list_head *p;
  253. struct btrfs_delayed_node *node = NULL;
  254. spin_lock(&delayed_root->lock);
  255. if (list_empty(&delayed_root->prepare_list))
  256. goto out;
  257. p = delayed_root->prepare_list.next;
  258. list_del_init(p);
  259. node = list_entry(p, struct btrfs_delayed_node, p_list);
  260. atomic_inc(&node->refs);
  261. out:
  262. spin_unlock(&delayed_root->lock);
  263. return node;
  264. }
  265. static inline void btrfs_release_prepared_delayed_node(
  266. struct btrfs_delayed_node *node)
  267. {
  268. __btrfs_release_delayed_node(node, 1);
  269. }
  270. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  271. {
  272. struct btrfs_delayed_item *item;
  273. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  274. if (item) {
  275. item->data_len = data_len;
  276. item->ins_or_del = 0;
  277. item->bytes_reserved = 0;
  278. item->delayed_node = NULL;
  279. atomic_set(&item->refs, 1);
  280. }
  281. return item;
  282. }
  283. /*
  284. * __btrfs_lookup_delayed_item - look up the delayed item by key
  285. * @delayed_node: pointer to the delayed node
  286. * @key: the key to look up
  287. * @prev: used to store the prev item if the right item isn't found
  288. * @next: used to store the next item if the right item isn't found
  289. *
  290. * Note: if we don't find the right item, we will return the prev item and
  291. * the next item.
  292. */
  293. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  294. struct rb_root *root,
  295. struct btrfs_key *key,
  296. struct btrfs_delayed_item **prev,
  297. struct btrfs_delayed_item **next)
  298. {
  299. struct rb_node *node, *prev_node = NULL;
  300. struct btrfs_delayed_item *delayed_item = NULL;
  301. int ret = 0;
  302. node = root->rb_node;
  303. while (node) {
  304. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  305. rb_node);
  306. prev_node = node;
  307. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  308. if (ret < 0)
  309. node = node->rb_right;
  310. else if (ret > 0)
  311. node = node->rb_left;
  312. else
  313. return delayed_item;
  314. }
  315. if (prev) {
  316. if (!prev_node)
  317. *prev = NULL;
  318. else if (ret < 0)
  319. *prev = delayed_item;
  320. else if ((node = rb_prev(prev_node)) != NULL) {
  321. *prev = rb_entry(node, struct btrfs_delayed_item,
  322. rb_node);
  323. } else
  324. *prev = NULL;
  325. }
  326. if (next) {
  327. if (!prev_node)
  328. *next = NULL;
  329. else if (ret > 0)
  330. *next = delayed_item;
  331. else if ((node = rb_next(prev_node)) != NULL) {
  332. *next = rb_entry(node, struct btrfs_delayed_item,
  333. rb_node);
  334. } else
  335. *next = NULL;
  336. }
  337. return NULL;
  338. }
  339. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  340. struct btrfs_delayed_node *delayed_node,
  341. struct btrfs_key *key)
  342. {
  343. struct btrfs_delayed_item *item;
  344. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  345. NULL, NULL);
  346. return item;
  347. }
  348. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  349. struct btrfs_delayed_item *ins,
  350. int action)
  351. {
  352. struct rb_node **p, *node;
  353. struct rb_node *parent_node = NULL;
  354. struct rb_root *root;
  355. struct btrfs_delayed_item *item;
  356. int cmp;
  357. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  358. root = &delayed_node->ins_root;
  359. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  360. root = &delayed_node->del_root;
  361. else
  362. BUG();
  363. p = &root->rb_node;
  364. node = &ins->rb_node;
  365. while (*p) {
  366. parent_node = *p;
  367. item = rb_entry(parent_node, struct btrfs_delayed_item,
  368. rb_node);
  369. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  370. if (cmp < 0)
  371. p = &(*p)->rb_right;
  372. else if (cmp > 0)
  373. p = &(*p)->rb_left;
  374. else
  375. return -EEXIST;
  376. }
  377. rb_link_node(node, parent_node, p);
  378. rb_insert_color(node, root);
  379. ins->delayed_node = delayed_node;
  380. ins->ins_or_del = action;
  381. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  382. action == BTRFS_DELAYED_INSERTION_ITEM &&
  383. ins->key.offset >= delayed_node->index_cnt)
  384. delayed_node->index_cnt = ins->key.offset + 1;
  385. delayed_node->count++;
  386. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  387. return 0;
  388. }
  389. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  390. struct btrfs_delayed_item *item)
  391. {
  392. return __btrfs_add_delayed_item(node, item,
  393. BTRFS_DELAYED_INSERTION_ITEM);
  394. }
  395. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  396. struct btrfs_delayed_item *item)
  397. {
  398. return __btrfs_add_delayed_item(node, item,
  399. BTRFS_DELAYED_DELETION_ITEM);
  400. }
  401. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  402. {
  403. int seq = atomic_inc_return(&delayed_root->items_seq);
  404. if ((atomic_dec_return(&delayed_root->items) <
  405. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  406. waitqueue_active(&delayed_root->wait))
  407. wake_up(&delayed_root->wait);
  408. }
  409. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  410. {
  411. struct rb_root *root;
  412. struct btrfs_delayed_root *delayed_root;
  413. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  414. BUG_ON(!delayed_root);
  415. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  416. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  417. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  418. root = &delayed_item->delayed_node->ins_root;
  419. else
  420. root = &delayed_item->delayed_node->del_root;
  421. rb_erase(&delayed_item->rb_node, root);
  422. delayed_item->delayed_node->count--;
  423. finish_one_item(delayed_root);
  424. }
  425. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  426. {
  427. if (item) {
  428. __btrfs_remove_delayed_item(item);
  429. if (atomic_dec_and_test(&item->refs))
  430. kfree(item);
  431. }
  432. }
  433. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  434. struct btrfs_delayed_node *delayed_node)
  435. {
  436. struct rb_node *p;
  437. struct btrfs_delayed_item *item = NULL;
  438. p = rb_first(&delayed_node->ins_root);
  439. if (p)
  440. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  441. return item;
  442. }
  443. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  444. struct btrfs_delayed_node *delayed_node)
  445. {
  446. struct rb_node *p;
  447. struct btrfs_delayed_item *item = NULL;
  448. p = rb_first(&delayed_node->del_root);
  449. if (p)
  450. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  451. return item;
  452. }
  453. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  454. struct btrfs_delayed_item *item)
  455. {
  456. struct rb_node *p;
  457. struct btrfs_delayed_item *next = NULL;
  458. p = rb_next(&item->rb_node);
  459. if (p)
  460. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  461. return next;
  462. }
  463. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  464. struct btrfs_root *root,
  465. struct btrfs_delayed_item *item)
  466. {
  467. struct btrfs_block_rsv *src_rsv;
  468. struct btrfs_block_rsv *dst_rsv;
  469. u64 num_bytes;
  470. int ret;
  471. if (!trans->bytes_reserved)
  472. return 0;
  473. src_rsv = trans->block_rsv;
  474. dst_rsv = &root->fs_info->delayed_block_rsv;
  475. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  476. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  477. if (!ret) {
  478. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  479. item->key.objectid,
  480. num_bytes, 1);
  481. item->bytes_reserved = num_bytes;
  482. }
  483. return ret;
  484. }
  485. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  486. struct btrfs_delayed_item *item)
  487. {
  488. struct btrfs_block_rsv *rsv;
  489. if (!item->bytes_reserved)
  490. return;
  491. rsv = &root->fs_info->delayed_block_rsv;
  492. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  493. item->key.objectid, item->bytes_reserved,
  494. 0);
  495. btrfs_block_rsv_release(root, rsv,
  496. item->bytes_reserved);
  497. }
  498. static int btrfs_delayed_inode_reserve_metadata(
  499. struct btrfs_trans_handle *trans,
  500. struct btrfs_root *root,
  501. struct inode *inode,
  502. struct btrfs_delayed_node *node)
  503. {
  504. struct btrfs_block_rsv *src_rsv;
  505. struct btrfs_block_rsv *dst_rsv;
  506. u64 num_bytes;
  507. int ret;
  508. bool release = false;
  509. src_rsv = trans->block_rsv;
  510. dst_rsv = &root->fs_info->delayed_block_rsv;
  511. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  512. /*
  513. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  514. * which doesn't reserve space for speed. This is a problem since we
  515. * still need to reserve space for this update, so try to reserve the
  516. * space.
  517. *
  518. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  519. * we're accounted for.
  520. */
  521. if (!src_rsv || (!trans->bytes_reserved &&
  522. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  523. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  524. BTRFS_RESERVE_NO_FLUSH);
  525. /*
  526. * Since we're under a transaction reserve_metadata_bytes could
  527. * try to commit the transaction which will make it return
  528. * EAGAIN to make us stop the transaction we have, so return
  529. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  530. */
  531. if (ret == -EAGAIN)
  532. ret = -ENOSPC;
  533. if (!ret) {
  534. node->bytes_reserved = num_bytes;
  535. trace_btrfs_space_reservation(root->fs_info,
  536. "delayed_inode",
  537. btrfs_ino(inode),
  538. num_bytes, 1);
  539. }
  540. return ret;
  541. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  542. spin_lock(&BTRFS_I(inode)->lock);
  543. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  544. &BTRFS_I(inode)->runtime_flags)) {
  545. spin_unlock(&BTRFS_I(inode)->lock);
  546. release = true;
  547. goto migrate;
  548. }
  549. spin_unlock(&BTRFS_I(inode)->lock);
  550. /* Ok we didn't have space pre-reserved. This shouldn't happen
  551. * too often but it can happen if we do delalloc to an existing
  552. * inode which gets dirtied because of the time update, and then
  553. * isn't touched again until after the transaction commits and
  554. * then we try to write out the data. First try to be nice and
  555. * reserve something strictly for us. If not be a pain and try
  556. * to steal from the delalloc block rsv.
  557. */
  558. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  559. BTRFS_RESERVE_NO_FLUSH);
  560. if (!ret)
  561. goto out;
  562. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  563. if (!ret)
  564. goto out;
  565. /*
  566. * Ok this is a problem, let's just steal from the global rsv
  567. * since this really shouldn't happen that often.
  568. */
  569. WARN_ON(1);
  570. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  571. dst_rsv, num_bytes);
  572. goto out;
  573. }
  574. migrate:
  575. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  576. out:
  577. /*
  578. * Migrate only takes a reservation, it doesn't touch the size of the
  579. * block_rsv. This is to simplify people who don't normally have things
  580. * migrated from their block rsv. If they go to release their
  581. * reservation, that will decrease the size as well, so if migrate
  582. * reduced size we'd end up with a negative size. But for the
  583. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  584. * but we could in fact do this reserve/migrate dance several times
  585. * between the time we did the original reservation and we'd clean it
  586. * up. So to take care of this, release the space for the meta
  587. * reservation here. I think it may be time for a documentation page on
  588. * how block rsvs. work.
  589. */
  590. if (!ret) {
  591. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  592. btrfs_ino(inode), num_bytes, 1);
  593. node->bytes_reserved = num_bytes;
  594. }
  595. if (release) {
  596. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  597. btrfs_ino(inode), num_bytes, 0);
  598. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  599. }
  600. return ret;
  601. }
  602. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  603. struct btrfs_delayed_node *node)
  604. {
  605. struct btrfs_block_rsv *rsv;
  606. if (!node->bytes_reserved)
  607. return;
  608. rsv = &root->fs_info->delayed_block_rsv;
  609. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  610. node->inode_id, node->bytes_reserved, 0);
  611. btrfs_block_rsv_release(root, rsv,
  612. node->bytes_reserved);
  613. node->bytes_reserved = 0;
  614. }
  615. /*
  616. * This helper will insert some continuous items into the same leaf according
  617. * to the free space of the leaf.
  618. */
  619. static int btrfs_batch_insert_items(struct btrfs_root *root,
  620. struct btrfs_path *path,
  621. struct btrfs_delayed_item *item)
  622. {
  623. struct btrfs_delayed_item *curr, *next;
  624. int free_space;
  625. int total_data_size = 0, total_size = 0;
  626. struct extent_buffer *leaf;
  627. char *data_ptr;
  628. struct btrfs_key *keys;
  629. u32 *data_size;
  630. struct list_head head;
  631. int slot;
  632. int nitems;
  633. int i;
  634. int ret = 0;
  635. BUG_ON(!path->nodes[0]);
  636. leaf = path->nodes[0];
  637. free_space = btrfs_leaf_free_space(root, leaf);
  638. INIT_LIST_HEAD(&head);
  639. next = item;
  640. nitems = 0;
  641. /*
  642. * count the number of the continuous items that we can insert in batch
  643. */
  644. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  645. free_space) {
  646. total_data_size += next->data_len;
  647. total_size += next->data_len + sizeof(struct btrfs_item);
  648. list_add_tail(&next->tree_list, &head);
  649. nitems++;
  650. curr = next;
  651. next = __btrfs_next_delayed_item(curr);
  652. if (!next)
  653. break;
  654. if (!btrfs_is_continuous_delayed_item(curr, next))
  655. break;
  656. }
  657. if (!nitems) {
  658. ret = 0;
  659. goto out;
  660. }
  661. /*
  662. * we need allocate some memory space, but it might cause the task
  663. * to sleep, so we set all locked nodes in the path to blocking locks
  664. * first.
  665. */
  666. btrfs_set_path_blocking(path);
  667. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  668. if (!keys) {
  669. ret = -ENOMEM;
  670. goto out;
  671. }
  672. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  673. if (!data_size) {
  674. ret = -ENOMEM;
  675. goto error;
  676. }
  677. /* get keys of all the delayed items */
  678. i = 0;
  679. list_for_each_entry(next, &head, tree_list) {
  680. keys[i] = next->key;
  681. data_size[i] = next->data_len;
  682. i++;
  683. }
  684. /* reset all the locked nodes in the patch to spinning locks. */
  685. btrfs_clear_path_blocking(path, NULL, 0);
  686. /* insert the keys of the items */
  687. setup_items_for_insert(root, path, keys, data_size,
  688. total_data_size, total_size, nitems);
  689. /* insert the dir index items */
  690. slot = path->slots[0];
  691. list_for_each_entry_safe(curr, next, &head, tree_list) {
  692. data_ptr = btrfs_item_ptr(leaf, slot, char);
  693. write_extent_buffer(leaf, &curr->data,
  694. (unsigned long)data_ptr,
  695. curr->data_len);
  696. slot++;
  697. btrfs_delayed_item_release_metadata(root, curr);
  698. list_del(&curr->tree_list);
  699. btrfs_release_delayed_item(curr);
  700. }
  701. error:
  702. kfree(data_size);
  703. kfree(keys);
  704. out:
  705. return ret;
  706. }
  707. /*
  708. * This helper can just do simple insertion that needn't extend item for new
  709. * data, such as directory name index insertion, inode insertion.
  710. */
  711. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  712. struct btrfs_root *root,
  713. struct btrfs_path *path,
  714. struct btrfs_delayed_item *delayed_item)
  715. {
  716. struct extent_buffer *leaf;
  717. char *ptr;
  718. int ret;
  719. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  720. delayed_item->data_len);
  721. if (ret < 0 && ret != -EEXIST)
  722. return ret;
  723. leaf = path->nodes[0];
  724. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  725. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  726. delayed_item->data_len);
  727. btrfs_mark_buffer_dirty(leaf);
  728. btrfs_delayed_item_release_metadata(root, delayed_item);
  729. return 0;
  730. }
  731. /*
  732. * we insert an item first, then if there are some continuous items, we try
  733. * to insert those items into the same leaf.
  734. */
  735. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  736. struct btrfs_path *path,
  737. struct btrfs_root *root,
  738. struct btrfs_delayed_node *node)
  739. {
  740. struct btrfs_delayed_item *curr, *prev;
  741. int ret = 0;
  742. do_again:
  743. mutex_lock(&node->mutex);
  744. curr = __btrfs_first_delayed_insertion_item(node);
  745. if (!curr)
  746. goto insert_end;
  747. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  748. if (ret < 0) {
  749. btrfs_release_path(path);
  750. goto insert_end;
  751. }
  752. prev = curr;
  753. curr = __btrfs_next_delayed_item(prev);
  754. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  755. /* insert the continuous items into the same leaf */
  756. path->slots[0]++;
  757. btrfs_batch_insert_items(root, path, curr);
  758. }
  759. btrfs_release_delayed_item(prev);
  760. btrfs_mark_buffer_dirty(path->nodes[0]);
  761. btrfs_release_path(path);
  762. mutex_unlock(&node->mutex);
  763. goto do_again;
  764. insert_end:
  765. mutex_unlock(&node->mutex);
  766. return ret;
  767. }
  768. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  769. struct btrfs_root *root,
  770. struct btrfs_path *path,
  771. struct btrfs_delayed_item *item)
  772. {
  773. struct btrfs_delayed_item *curr, *next;
  774. struct extent_buffer *leaf;
  775. struct btrfs_key key;
  776. struct list_head head;
  777. int nitems, i, last_item;
  778. int ret = 0;
  779. BUG_ON(!path->nodes[0]);
  780. leaf = path->nodes[0];
  781. i = path->slots[0];
  782. last_item = btrfs_header_nritems(leaf) - 1;
  783. if (i > last_item)
  784. return -ENOENT; /* FIXME: Is errno suitable? */
  785. next = item;
  786. INIT_LIST_HEAD(&head);
  787. btrfs_item_key_to_cpu(leaf, &key, i);
  788. nitems = 0;
  789. /*
  790. * count the number of the dir index items that we can delete in batch
  791. */
  792. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  793. list_add_tail(&next->tree_list, &head);
  794. nitems++;
  795. curr = next;
  796. next = __btrfs_next_delayed_item(curr);
  797. if (!next)
  798. break;
  799. if (!btrfs_is_continuous_delayed_item(curr, next))
  800. break;
  801. i++;
  802. if (i > last_item)
  803. break;
  804. btrfs_item_key_to_cpu(leaf, &key, i);
  805. }
  806. if (!nitems)
  807. return 0;
  808. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  809. if (ret)
  810. goto out;
  811. list_for_each_entry_safe(curr, next, &head, tree_list) {
  812. btrfs_delayed_item_release_metadata(root, curr);
  813. list_del(&curr->tree_list);
  814. btrfs_release_delayed_item(curr);
  815. }
  816. out:
  817. return ret;
  818. }
  819. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  820. struct btrfs_path *path,
  821. struct btrfs_root *root,
  822. struct btrfs_delayed_node *node)
  823. {
  824. struct btrfs_delayed_item *curr, *prev;
  825. int ret = 0;
  826. do_again:
  827. mutex_lock(&node->mutex);
  828. curr = __btrfs_first_delayed_deletion_item(node);
  829. if (!curr)
  830. goto delete_fail;
  831. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  832. if (ret < 0)
  833. goto delete_fail;
  834. else if (ret > 0) {
  835. /*
  836. * can't find the item which the node points to, so this node
  837. * is invalid, just drop it.
  838. */
  839. prev = curr;
  840. curr = __btrfs_next_delayed_item(prev);
  841. btrfs_release_delayed_item(prev);
  842. ret = 0;
  843. btrfs_release_path(path);
  844. if (curr) {
  845. mutex_unlock(&node->mutex);
  846. goto do_again;
  847. } else
  848. goto delete_fail;
  849. }
  850. btrfs_batch_delete_items(trans, root, path, curr);
  851. btrfs_release_path(path);
  852. mutex_unlock(&node->mutex);
  853. goto do_again;
  854. delete_fail:
  855. btrfs_release_path(path);
  856. mutex_unlock(&node->mutex);
  857. return ret;
  858. }
  859. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  860. {
  861. struct btrfs_delayed_root *delayed_root;
  862. if (delayed_node && delayed_node->inode_dirty) {
  863. BUG_ON(!delayed_node->root);
  864. delayed_node->inode_dirty = 0;
  865. delayed_node->count--;
  866. delayed_root = delayed_node->root->fs_info->delayed_root;
  867. finish_one_item(delayed_root);
  868. }
  869. }
  870. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  871. struct btrfs_root *root,
  872. struct btrfs_path *path,
  873. struct btrfs_delayed_node *node)
  874. {
  875. struct btrfs_key key;
  876. struct btrfs_inode_item *inode_item;
  877. struct extent_buffer *leaf;
  878. int ret;
  879. key.objectid = node->inode_id;
  880. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  881. key.offset = 0;
  882. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  883. if (ret > 0) {
  884. btrfs_release_path(path);
  885. return -ENOENT;
  886. } else if (ret < 0) {
  887. return ret;
  888. }
  889. btrfs_unlock_up_safe(path, 1);
  890. leaf = path->nodes[0];
  891. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  892. struct btrfs_inode_item);
  893. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  894. sizeof(struct btrfs_inode_item));
  895. btrfs_mark_buffer_dirty(leaf);
  896. btrfs_release_path(path);
  897. btrfs_delayed_inode_release_metadata(root, node);
  898. btrfs_release_delayed_inode(node);
  899. return 0;
  900. }
  901. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  902. struct btrfs_root *root,
  903. struct btrfs_path *path,
  904. struct btrfs_delayed_node *node)
  905. {
  906. int ret;
  907. mutex_lock(&node->mutex);
  908. if (!node->inode_dirty) {
  909. mutex_unlock(&node->mutex);
  910. return 0;
  911. }
  912. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  913. mutex_unlock(&node->mutex);
  914. return ret;
  915. }
  916. static inline int
  917. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  918. struct btrfs_path *path,
  919. struct btrfs_delayed_node *node)
  920. {
  921. int ret;
  922. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  923. if (ret)
  924. return ret;
  925. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  926. if (ret)
  927. return ret;
  928. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  929. return ret;
  930. }
  931. /*
  932. * Called when committing the transaction.
  933. * Returns 0 on success.
  934. * Returns < 0 on error and returns with an aborted transaction with any
  935. * outstanding delayed items cleaned up.
  936. */
  937. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  938. struct btrfs_root *root, int nr)
  939. {
  940. struct btrfs_delayed_root *delayed_root;
  941. struct btrfs_delayed_node *curr_node, *prev_node;
  942. struct btrfs_path *path;
  943. struct btrfs_block_rsv *block_rsv;
  944. int ret = 0;
  945. bool count = (nr > 0);
  946. if (trans->aborted)
  947. return -EIO;
  948. path = btrfs_alloc_path();
  949. if (!path)
  950. return -ENOMEM;
  951. path->leave_spinning = 1;
  952. block_rsv = trans->block_rsv;
  953. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  954. delayed_root = btrfs_get_delayed_root(root);
  955. curr_node = btrfs_first_delayed_node(delayed_root);
  956. while (curr_node && (!count || (count && nr--))) {
  957. ret = __btrfs_commit_inode_delayed_items(trans, path,
  958. curr_node);
  959. if (ret) {
  960. btrfs_release_delayed_node(curr_node);
  961. curr_node = NULL;
  962. btrfs_abort_transaction(trans, root, ret);
  963. break;
  964. }
  965. prev_node = curr_node;
  966. curr_node = btrfs_next_delayed_node(curr_node);
  967. btrfs_release_delayed_node(prev_node);
  968. }
  969. if (curr_node)
  970. btrfs_release_delayed_node(curr_node);
  971. btrfs_free_path(path);
  972. trans->block_rsv = block_rsv;
  973. return ret;
  974. }
  975. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  976. struct btrfs_root *root)
  977. {
  978. return __btrfs_run_delayed_items(trans, root, -1);
  979. }
  980. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  981. struct btrfs_root *root, int nr)
  982. {
  983. return __btrfs_run_delayed_items(trans, root, nr);
  984. }
  985. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  986. struct inode *inode)
  987. {
  988. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  989. struct btrfs_path *path;
  990. struct btrfs_block_rsv *block_rsv;
  991. int ret;
  992. if (!delayed_node)
  993. return 0;
  994. mutex_lock(&delayed_node->mutex);
  995. if (!delayed_node->count) {
  996. mutex_unlock(&delayed_node->mutex);
  997. btrfs_release_delayed_node(delayed_node);
  998. return 0;
  999. }
  1000. mutex_unlock(&delayed_node->mutex);
  1001. path = btrfs_alloc_path();
  1002. if (!path)
  1003. return -ENOMEM;
  1004. path->leave_spinning = 1;
  1005. block_rsv = trans->block_rsv;
  1006. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1007. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1008. btrfs_release_delayed_node(delayed_node);
  1009. btrfs_free_path(path);
  1010. trans->block_rsv = block_rsv;
  1011. return ret;
  1012. }
  1013. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1014. {
  1015. struct btrfs_trans_handle *trans;
  1016. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1017. struct btrfs_path *path;
  1018. struct btrfs_block_rsv *block_rsv;
  1019. int ret;
  1020. if (!delayed_node)
  1021. return 0;
  1022. mutex_lock(&delayed_node->mutex);
  1023. if (!delayed_node->inode_dirty) {
  1024. mutex_unlock(&delayed_node->mutex);
  1025. btrfs_release_delayed_node(delayed_node);
  1026. return 0;
  1027. }
  1028. mutex_unlock(&delayed_node->mutex);
  1029. trans = btrfs_join_transaction(delayed_node->root);
  1030. if (IS_ERR(trans)) {
  1031. ret = PTR_ERR(trans);
  1032. goto out;
  1033. }
  1034. path = btrfs_alloc_path();
  1035. if (!path) {
  1036. ret = -ENOMEM;
  1037. goto trans_out;
  1038. }
  1039. path->leave_spinning = 1;
  1040. block_rsv = trans->block_rsv;
  1041. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1042. mutex_lock(&delayed_node->mutex);
  1043. if (delayed_node->inode_dirty)
  1044. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1045. path, delayed_node);
  1046. else
  1047. ret = 0;
  1048. mutex_unlock(&delayed_node->mutex);
  1049. btrfs_free_path(path);
  1050. trans->block_rsv = block_rsv;
  1051. trans_out:
  1052. btrfs_end_transaction(trans, delayed_node->root);
  1053. btrfs_btree_balance_dirty(delayed_node->root);
  1054. out:
  1055. btrfs_release_delayed_node(delayed_node);
  1056. return ret;
  1057. }
  1058. void btrfs_remove_delayed_node(struct inode *inode)
  1059. {
  1060. struct btrfs_delayed_node *delayed_node;
  1061. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1062. if (!delayed_node)
  1063. return;
  1064. BTRFS_I(inode)->delayed_node = NULL;
  1065. btrfs_release_delayed_node(delayed_node);
  1066. }
  1067. struct btrfs_async_delayed_work {
  1068. struct btrfs_delayed_root *delayed_root;
  1069. int nr;
  1070. struct btrfs_work work;
  1071. };
  1072. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1073. {
  1074. struct btrfs_async_delayed_work *async_work;
  1075. struct btrfs_delayed_root *delayed_root;
  1076. struct btrfs_trans_handle *trans;
  1077. struct btrfs_path *path;
  1078. struct btrfs_delayed_node *delayed_node = NULL;
  1079. struct btrfs_root *root;
  1080. struct btrfs_block_rsv *block_rsv;
  1081. int total_done = 0;
  1082. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1083. delayed_root = async_work->delayed_root;
  1084. path = btrfs_alloc_path();
  1085. if (!path)
  1086. goto out;
  1087. again:
  1088. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1089. goto free_path;
  1090. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1091. if (!delayed_node)
  1092. goto free_path;
  1093. path->leave_spinning = 1;
  1094. root = delayed_node->root;
  1095. trans = btrfs_join_transaction(root);
  1096. if (IS_ERR(trans))
  1097. goto release_path;
  1098. block_rsv = trans->block_rsv;
  1099. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1100. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1101. /*
  1102. * Maybe new delayed items have been inserted, so we need requeue
  1103. * the work. Besides that, we must dequeue the empty delayed nodes
  1104. * to avoid the race between delayed items balance and the worker.
  1105. * The race like this:
  1106. * Task1 Worker thread
  1107. * count == 0, needn't requeue
  1108. * also needn't insert the
  1109. * delayed node into prepare
  1110. * list again.
  1111. * add lots of delayed items
  1112. * queue the delayed node
  1113. * already in the list,
  1114. * and not in the prepare
  1115. * list, it means the delayed
  1116. * node is being dealt with
  1117. * by the worker.
  1118. * do delayed items balance
  1119. * the delayed node is being
  1120. * dealt with by the worker
  1121. * now, just wait.
  1122. * the worker goto idle.
  1123. * Task1 will sleep until the transaction is commited.
  1124. */
  1125. mutex_lock(&delayed_node->mutex);
  1126. btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
  1127. mutex_unlock(&delayed_node->mutex);
  1128. trans->block_rsv = block_rsv;
  1129. btrfs_end_transaction_dmeta(trans, root);
  1130. btrfs_btree_balance_dirty_nodelay(root);
  1131. release_path:
  1132. btrfs_release_path(path);
  1133. total_done++;
  1134. btrfs_release_prepared_delayed_node(delayed_node);
  1135. if (async_work->nr == 0 || total_done < async_work->nr)
  1136. goto again;
  1137. free_path:
  1138. btrfs_free_path(path);
  1139. out:
  1140. wake_up(&delayed_root->wait);
  1141. kfree(async_work);
  1142. }
  1143. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1144. struct btrfs_root *root, int nr)
  1145. {
  1146. struct btrfs_async_delayed_work *async_work;
  1147. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1148. return 0;
  1149. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1150. if (!async_work)
  1151. return -ENOMEM;
  1152. async_work->delayed_root = delayed_root;
  1153. async_work->work.func = btrfs_async_run_delayed_root;
  1154. async_work->work.flags = 0;
  1155. async_work->nr = nr;
  1156. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
  1157. return 0;
  1158. }
  1159. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1160. {
  1161. struct btrfs_delayed_root *delayed_root;
  1162. delayed_root = btrfs_get_delayed_root(root);
  1163. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1164. }
  1165. static int refs_newer(struct btrfs_delayed_root *delayed_root,
  1166. int seq, int count)
  1167. {
  1168. int val = atomic_read(&delayed_root->items_seq);
  1169. if (val < seq || val >= seq + count)
  1170. return 1;
  1171. return 0;
  1172. }
  1173. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1174. {
  1175. struct btrfs_delayed_root *delayed_root;
  1176. int seq;
  1177. delayed_root = btrfs_get_delayed_root(root);
  1178. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1179. return;
  1180. seq = atomic_read(&delayed_root->items_seq);
  1181. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1182. int ret;
  1183. DEFINE_WAIT(__wait);
  1184. ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1185. if (ret)
  1186. return;
  1187. while (1) {
  1188. prepare_to_wait(&delayed_root->wait, &__wait,
  1189. TASK_INTERRUPTIBLE);
  1190. if (refs_newer(delayed_root, seq,
  1191. BTRFS_DELAYED_BATCH) ||
  1192. atomic_read(&delayed_root->items) <
  1193. BTRFS_DELAYED_BACKGROUND) {
  1194. break;
  1195. }
  1196. if (!signal_pending(current))
  1197. schedule();
  1198. else
  1199. break;
  1200. }
  1201. finish_wait(&delayed_root->wait, &__wait);
  1202. }
  1203. btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
  1204. }
  1205. /* Will return 0 or -ENOMEM */
  1206. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1207. struct btrfs_root *root, const char *name,
  1208. int name_len, struct inode *dir,
  1209. struct btrfs_disk_key *disk_key, u8 type,
  1210. u64 index)
  1211. {
  1212. struct btrfs_delayed_node *delayed_node;
  1213. struct btrfs_delayed_item *delayed_item;
  1214. struct btrfs_dir_item *dir_item;
  1215. int ret;
  1216. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1217. if (IS_ERR(delayed_node))
  1218. return PTR_ERR(delayed_node);
  1219. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1220. if (!delayed_item) {
  1221. ret = -ENOMEM;
  1222. goto release_node;
  1223. }
  1224. delayed_item->key.objectid = btrfs_ino(dir);
  1225. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1226. delayed_item->key.offset = index;
  1227. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1228. dir_item->location = *disk_key;
  1229. dir_item->transid = cpu_to_le64(trans->transid);
  1230. dir_item->data_len = 0;
  1231. dir_item->name_len = cpu_to_le16(name_len);
  1232. dir_item->type = type;
  1233. memcpy((char *)(dir_item + 1), name, name_len);
  1234. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1235. /*
  1236. * we have reserved enough space when we start a new transaction,
  1237. * so reserving metadata failure is impossible
  1238. */
  1239. BUG_ON(ret);
  1240. mutex_lock(&delayed_node->mutex);
  1241. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1242. if (unlikely(ret)) {
  1243. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1244. "the insertion tree of the delayed node"
  1245. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1246. name,
  1247. (unsigned long long)delayed_node->root->objectid,
  1248. (unsigned long long)delayed_node->inode_id,
  1249. ret);
  1250. BUG();
  1251. }
  1252. mutex_unlock(&delayed_node->mutex);
  1253. release_node:
  1254. btrfs_release_delayed_node(delayed_node);
  1255. return ret;
  1256. }
  1257. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1258. struct btrfs_delayed_node *node,
  1259. struct btrfs_key *key)
  1260. {
  1261. struct btrfs_delayed_item *item;
  1262. mutex_lock(&node->mutex);
  1263. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1264. if (!item) {
  1265. mutex_unlock(&node->mutex);
  1266. return 1;
  1267. }
  1268. btrfs_delayed_item_release_metadata(root, item);
  1269. btrfs_release_delayed_item(item);
  1270. mutex_unlock(&node->mutex);
  1271. return 0;
  1272. }
  1273. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1274. struct btrfs_root *root, struct inode *dir,
  1275. u64 index)
  1276. {
  1277. struct btrfs_delayed_node *node;
  1278. struct btrfs_delayed_item *item;
  1279. struct btrfs_key item_key;
  1280. int ret;
  1281. node = btrfs_get_or_create_delayed_node(dir);
  1282. if (IS_ERR(node))
  1283. return PTR_ERR(node);
  1284. item_key.objectid = btrfs_ino(dir);
  1285. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1286. item_key.offset = index;
  1287. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1288. if (!ret)
  1289. goto end;
  1290. item = btrfs_alloc_delayed_item(0);
  1291. if (!item) {
  1292. ret = -ENOMEM;
  1293. goto end;
  1294. }
  1295. item->key = item_key;
  1296. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1297. /*
  1298. * we have reserved enough space when we start a new transaction,
  1299. * so reserving metadata failure is impossible.
  1300. */
  1301. BUG_ON(ret);
  1302. mutex_lock(&node->mutex);
  1303. ret = __btrfs_add_delayed_deletion_item(node, item);
  1304. if (unlikely(ret)) {
  1305. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1306. "into the deletion tree of the delayed node"
  1307. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1308. (unsigned long long)index,
  1309. (unsigned long long)node->root->objectid,
  1310. (unsigned long long)node->inode_id,
  1311. ret);
  1312. BUG();
  1313. }
  1314. mutex_unlock(&node->mutex);
  1315. end:
  1316. btrfs_release_delayed_node(node);
  1317. return ret;
  1318. }
  1319. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1320. {
  1321. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1322. if (!delayed_node)
  1323. return -ENOENT;
  1324. /*
  1325. * Since we have held i_mutex of this directory, it is impossible that
  1326. * a new directory index is added into the delayed node and index_cnt
  1327. * is updated now. So we needn't lock the delayed node.
  1328. */
  1329. if (!delayed_node->index_cnt) {
  1330. btrfs_release_delayed_node(delayed_node);
  1331. return -EINVAL;
  1332. }
  1333. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1334. btrfs_release_delayed_node(delayed_node);
  1335. return 0;
  1336. }
  1337. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1338. struct list_head *del_list)
  1339. {
  1340. struct btrfs_delayed_node *delayed_node;
  1341. struct btrfs_delayed_item *item;
  1342. delayed_node = btrfs_get_delayed_node(inode);
  1343. if (!delayed_node)
  1344. return;
  1345. mutex_lock(&delayed_node->mutex);
  1346. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1347. while (item) {
  1348. atomic_inc(&item->refs);
  1349. list_add_tail(&item->readdir_list, ins_list);
  1350. item = __btrfs_next_delayed_item(item);
  1351. }
  1352. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1353. while (item) {
  1354. atomic_inc(&item->refs);
  1355. list_add_tail(&item->readdir_list, del_list);
  1356. item = __btrfs_next_delayed_item(item);
  1357. }
  1358. mutex_unlock(&delayed_node->mutex);
  1359. /*
  1360. * This delayed node is still cached in the btrfs inode, so refs
  1361. * must be > 1 now, and we needn't check it is going to be freed
  1362. * or not.
  1363. *
  1364. * Besides that, this function is used to read dir, we do not
  1365. * insert/delete delayed items in this period. So we also needn't
  1366. * requeue or dequeue this delayed node.
  1367. */
  1368. atomic_dec(&delayed_node->refs);
  1369. }
  1370. void btrfs_put_delayed_items(struct list_head *ins_list,
  1371. struct list_head *del_list)
  1372. {
  1373. struct btrfs_delayed_item *curr, *next;
  1374. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1375. list_del(&curr->readdir_list);
  1376. if (atomic_dec_and_test(&curr->refs))
  1377. kfree(curr);
  1378. }
  1379. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1380. list_del(&curr->readdir_list);
  1381. if (atomic_dec_and_test(&curr->refs))
  1382. kfree(curr);
  1383. }
  1384. }
  1385. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1386. u64 index)
  1387. {
  1388. struct btrfs_delayed_item *curr, *next;
  1389. int ret;
  1390. if (list_empty(del_list))
  1391. return 0;
  1392. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1393. if (curr->key.offset > index)
  1394. break;
  1395. list_del(&curr->readdir_list);
  1396. ret = (curr->key.offset == index);
  1397. if (atomic_dec_and_test(&curr->refs))
  1398. kfree(curr);
  1399. if (ret)
  1400. return 1;
  1401. else
  1402. continue;
  1403. }
  1404. return 0;
  1405. }
  1406. /*
  1407. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1408. *
  1409. */
  1410. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1411. filldir_t filldir,
  1412. struct list_head *ins_list)
  1413. {
  1414. struct btrfs_dir_item *di;
  1415. struct btrfs_delayed_item *curr, *next;
  1416. struct btrfs_key location;
  1417. char *name;
  1418. int name_len;
  1419. int over = 0;
  1420. unsigned char d_type;
  1421. if (list_empty(ins_list))
  1422. return 0;
  1423. /*
  1424. * Changing the data of the delayed item is impossible. So
  1425. * we needn't lock them. And we have held i_mutex of the
  1426. * directory, nobody can delete any directory indexes now.
  1427. */
  1428. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1429. list_del(&curr->readdir_list);
  1430. if (curr->key.offset < filp->f_pos) {
  1431. if (atomic_dec_and_test(&curr->refs))
  1432. kfree(curr);
  1433. continue;
  1434. }
  1435. filp->f_pos = curr->key.offset;
  1436. di = (struct btrfs_dir_item *)curr->data;
  1437. name = (char *)(di + 1);
  1438. name_len = le16_to_cpu(di->name_len);
  1439. d_type = btrfs_filetype_table[di->type];
  1440. btrfs_disk_key_to_cpu(&location, &di->location);
  1441. over = filldir(dirent, name, name_len, curr->key.offset,
  1442. location.objectid, d_type);
  1443. if (atomic_dec_and_test(&curr->refs))
  1444. kfree(curr);
  1445. if (over)
  1446. return 1;
  1447. }
  1448. return 0;
  1449. }
  1450. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1451. generation, 64);
  1452. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1453. sequence, 64);
  1454. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1455. transid, 64);
  1456. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1457. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1458. nbytes, 64);
  1459. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1460. block_group, 64);
  1461. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1462. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1463. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1464. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1465. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1466. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1467. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1468. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1469. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1470. struct btrfs_inode_item *inode_item,
  1471. struct inode *inode)
  1472. {
  1473. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1474. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1475. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1476. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1477. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1478. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1479. btrfs_set_stack_inode_generation(inode_item,
  1480. BTRFS_I(inode)->generation);
  1481. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1482. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1483. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1484. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1485. btrfs_set_stack_inode_block_group(inode_item, 0);
  1486. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1487. inode->i_atime.tv_sec);
  1488. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1489. inode->i_atime.tv_nsec);
  1490. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1491. inode->i_mtime.tv_sec);
  1492. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1493. inode->i_mtime.tv_nsec);
  1494. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1495. inode->i_ctime.tv_sec);
  1496. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1497. inode->i_ctime.tv_nsec);
  1498. }
  1499. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1500. {
  1501. struct btrfs_delayed_node *delayed_node;
  1502. struct btrfs_inode_item *inode_item;
  1503. struct btrfs_timespec *tspec;
  1504. delayed_node = btrfs_get_delayed_node(inode);
  1505. if (!delayed_node)
  1506. return -ENOENT;
  1507. mutex_lock(&delayed_node->mutex);
  1508. if (!delayed_node->inode_dirty) {
  1509. mutex_unlock(&delayed_node->mutex);
  1510. btrfs_release_delayed_node(delayed_node);
  1511. return -ENOENT;
  1512. }
  1513. inode_item = &delayed_node->inode_item;
  1514. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1515. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1516. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1517. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1518. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1519. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1520. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1521. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1522. inode->i_rdev = 0;
  1523. *rdev = btrfs_stack_inode_rdev(inode_item);
  1524. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1525. tspec = btrfs_inode_atime(inode_item);
  1526. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1527. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1528. tspec = btrfs_inode_mtime(inode_item);
  1529. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1530. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1531. tspec = btrfs_inode_ctime(inode_item);
  1532. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1533. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1534. inode->i_generation = BTRFS_I(inode)->generation;
  1535. BTRFS_I(inode)->index_cnt = (u64)-1;
  1536. mutex_unlock(&delayed_node->mutex);
  1537. btrfs_release_delayed_node(delayed_node);
  1538. return 0;
  1539. }
  1540. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1541. struct btrfs_root *root, struct inode *inode)
  1542. {
  1543. struct btrfs_delayed_node *delayed_node;
  1544. int ret = 0;
  1545. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1546. if (IS_ERR(delayed_node))
  1547. return PTR_ERR(delayed_node);
  1548. mutex_lock(&delayed_node->mutex);
  1549. if (delayed_node->inode_dirty) {
  1550. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1551. goto release_node;
  1552. }
  1553. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1554. delayed_node);
  1555. if (ret)
  1556. goto release_node;
  1557. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1558. delayed_node->inode_dirty = 1;
  1559. delayed_node->count++;
  1560. atomic_inc(&root->fs_info->delayed_root->items);
  1561. release_node:
  1562. mutex_unlock(&delayed_node->mutex);
  1563. btrfs_release_delayed_node(delayed_node);
  1564. return ret;
  1565. }
  1566. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1567. {
  1568. struct btrfs_root *root = delayed_node->root;
  1569. struct btrfs_delayed_item *curr_item, *prev_item;
  1570. mutex_lock(&delayed_node->mutex);
  1571. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1572. while (curr_item) {
  1573. btrfs_delayed_item_release_metadata(root, curr_item);
  1574. prev_item = curr_item;
  1575. curr_item = __btrfs_next_delayed_item(prev_item);
  1576. btrfs_release_delayed_item(prev_item);
  1577. }
  1578. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1579. while (curr_item) {
  1580. btrfs_delayed_item_release_metadata(root, curr_item);
  1581. prev_item = curr_item;
  1582. curr_item = __btrfs_next_delayed_item(prev_item);
  1583. btrfs_release_delayed_item(prev_item);
  1584. }
  1585. if (delayed_node->inode_dirty) {
  1586. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1587. btrfs_release_delayed_inode(delayed_node);
  1588. }
  1589. mutex_unlock(&delayed_node->mutex);
  1590. }
  1591. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1592. {
  1593. struct btrfs_delayed_node *delayed_node;
  1594. delayed_node = btrfs_get_delayed_node(inode);
  1595. if (!delayed_node)
  1596. return;
  1597. __btrfs_kill_delayed_node(delayed_node);
  1598. btrfs_release_delayed_node(delayed_node);
  1599. }
  1600. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1601. {
  1602. u64 inode_id = 0;
  1603. struct btrfs_delayed_node *delayed_nodes[8];
  1604. int i, n;
  1605. while (1) {
  1606. spin_lock(&root->inode_lock);
  1607. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1608. (void **)delayed_nodes, inode_id,
  1609. ARRAY_SIZE(delayed_nodes));
  1610. if (!n) {
  1611. spin_unlock(&root->inode_lock);
  1612. break;
  1613. }
  1614. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1615. for (i = 0; i < n; i++)
  1616. atomic_inc(&delayed_nodes[i]->refs);
  1617. spin_unlock(&root->inode_lock);
  1618. for (i = 0; i < n; i++) {
  1619. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1620. btrfs_release_delayed_node(delayed_nodes[i]);
  1621. }
  1622. }
  1623. }
  1624. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1625. {
  1626. struct btrfs_delayed_root *delayed_root;
  1627. struct btrfs_delayed_node *curr_node, *prev_node;
  1628. delayed_root = btrfs_get_delayed_root(root);
  1629. curr_node = btrfs_first_delayed_node(delayed_root);
  1630. while (curr_node) {
  1631. __btrfs_kill_delayed_node(curr_node);
  1632. prev_node = curr_node;
  1633. curr_node = btrfs_next_delayed_node(curr_node);
  1634. btrfs_release_delayed_node(prev_node);
  1635. }
  1636. }