page_alloc.c 138 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <trace/events/kmem.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/div64.h>
  53. #include "internal.h"
  54. /*
  55. * Array of node states.
  56. */
  57. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  58. [N_POSSIBLE] = NODE_MASK_ALL,
  59. [N_ONLINE] = { { [0] = 1UL } },
  60. #ifndef CONFIG_NUMA
  61. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  62. #ifdef CONFIG_HIGHMEM
  63. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  64. #endif
  65. [N_CPU] = { { [0] = 1UL } },
  66. #endif /* NUMA */
  67. };
  68. EXPORT_SYMBOL(node_states);
  69. unsigned long totalram_pages __read_mostly;
  70. unsigned long totalreserve_pages __read_mostly;
  71. unsigned long highest_memmap_pfn __read_mostly;
  72. int percpu_pagelist_fraction;
  73. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  74. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  75. int pageblock_order __read_mostly;
  76. #endif
  77. static void __free_pages_ok(struct page *page, unsigned int order);
  78. /*
  79. * results with 256, 32 in the lowmem_reserve sysctl:
  80. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  81. * 1G machine -> (16M dma, 784M normal, 224M high)
  82. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  83. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  84. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  85. *
  86. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  87. * don't need any ZONE_NORMAL reservation
  88. */
  89. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  90. #ifdef CONFIG_ZONE_DMA
  91. 256,
  92. #endif
  93. #ifdef CONFIG_ZONE_DMA32
  94. 256,
  95. #endif
  96. #ifdef CONFIG_HIGHMEM
  97. 32,
  98. #endif
  99. 32,
  100. };
  101. EXPORT_SYMBOL(totalram_pages);
  102. static char * const zone_names[MAX_NR_ZONES] = {
  103. #ifdef CONFIG_ZONE_DMA
  104. "DMA",
  105. #endif
  106. #ifdef CONFIG_ZONE_DMA32
  107. "DMA32",
  108. #endif
  109. "Normal",
  110. #ifdef CONFIG_HIGHMEM
  111. "HighMem",
  112. #endif
  113. "Movable",
  114. };
  115. int min_free_kbytes = 1024;
  116. unsigned long __meminitdata nr_kernel_pages;
  117. unsigned long __meminitdata nr_all_pages;
  118. static unsigned long __meminitdata dma_reserve;
  119. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  120. /*
  121. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  122. * ranges of memory (RAM) that may be registered with add_active_range().
  123. * Ranges passed to add_active_range() will be merged if possible
  124. * so the number of times add_active_range() can be called is
  125. * related to the number of nodes and the number of holes
  126. */
  127. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  128. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  129. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  130. #else
  131. #if MAX_NUMNODES >= 32
  132. /* If there can be many nodes, allow up to 50 holes per node */
  133. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  134. #else
  135. /* By default, allow up to 256 distinct regions */
  136. #define MAX_ACTIVE_REGIONS 256
  137. #endif
  138. #endif
  139. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  140. static int __meminitdata nr_nodemap_entries;
  141. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  142. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. int nr_online_nodes __read_mostly = 1;
  153. EXPORT_SYMBOL(nr_node_ids);
  154. EXPORT_SYMBOL(nr_online_nodes);
  155. #endif
  156. int page_group_by_mobility_disabled __read_mostly;
  157. static void set_pageblock_migratetype(struct page *page, int migratetype)
  158. {
  159. if (unlikely(page_group_by_mobility_disabled))
  160. migratetype = MIGRATE_UNMOVABLE;
  161. set_pageblock_flags_group(page, (unsigned long)migratetype,
  162. PB_migrate, PB_migrate_end);
  163. }
  164. bool oom_killer_disabled __read_mostly;
  165. #ifdef CONFIG_DEBUG_VM
  166. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  167. {
  168. int ret = 0;
  169. unsigned seq;
  170. unsigned long pfn = page_to_pfn(page);
  171. do {
  172. seq = zone_span_seqbegin(zone);
  173. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  174. ret = 1;
  175. else if (pfn < zone->zone_start_pfn)
  176. ret = 1;
  177. } while (zone_span_seqretry(zone, seq));
  178. return ret;
  179. }
  180. static int page_is_consistent(struct zone *zone, struct page *page)
  181. {
  182. if (!pfn_valid_within(page_to_pfn(page)))
  183. return 0;
  184. if (zone != page_zone(page))
  185. return 0;
  186. return 1;
  187. }
  188. /*
  189. * Temporary debugging check for pages not lying within a given zone.
  190. */
  191. static int bad_range(struct zone *zone, struct page *page)
  192. {
  193. if (page_outside_zone_boundaries(zone, page))
  194. return 1;
  195. if (!page_is_consistent(zone, page))
  196. return 1;
  197. return 0;
  198. }
  199. #else
  200. static inline int bad_range(struct zone *zone, struct page *page)
  201. {
  202. return 0;
  203. }
  204. #endif
  205. static void bad_page(struct page *page)
  206. {
  207. static unsigned long resume;
  208. static unsigned long nr_shown;
  209. static unsigned long nr_unshown;
  210. /*
  211. * Allow a burst of 60 reports, then keep quiet for that minute;
  212. * or allow a steady drip of one report per second.
  213. */
  214. if (nr_shown == 60) {
  215. if (time_before(jiffies, resume)) {
  216. nr_unshown++;
  217. goto out;
  218. }
  219. if (nr_unshown) {
  220. printk(KERN_ALERT
  221. "BUG: Bad page state: %lu messages suppressed\n",
  222. nr_unshown);
  223. nr_unshown = 0;
  224. }
  225. nr_shown = 0;
  226. }
  227. if (nr_shown++ == 0)
  228. resume = jiffies + 60 * HZ;
  229. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  230. current->comm, page_to_pfn(page));
  231. printk(KERN_ALERT
  232. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  233. page, (void *)page->flags, page_count(page),
  234. page_mapcount(page), page->mapping, page->index);
  235. dump_stack();
  236. out:
  237. /* Leave bad fields for debug, except PageBuddy could make trouble */
  238. __ClearPageBuddy(page);
  239. add_taint(TAINT_BAD_PAGE);
  240. }
  241. /*
  242. * Higher-order pages are called "compound pages". They are structured thusly:
  243. *
  244. * The first PAGE_SIZE page is called the "head page".
  245. *
  246. * The remaining PAGE_SIZE pages are called "tail pages".
  247. *
  248. * All pages have PG_compound set. All pages have their ->private pointing at
  249. * the head page (even the head page has this).
  250. *
  251. * The first tail page's ->lru.next holds the address of the compound page's
  252. * put_page() function. Its ->lru.prev holds the order of allocation.
  253. * This usage means that zero-order pages may not be compound.
  254. */
  255. static void free_compound_page(struct page *page)
  256. {
  257. __free_pages_ok(page, compound_order(page));
  258. }
  259. void prep_compound_page(struct page *page, unsigned long order)
  260. {
  261. int i;
  262. int nr_pages = 1 << order;
  263. set_compound_page_dtor(page, free_compound_page);
  264. set_compound_order(page, order);
  265. __SetPageHead(page);
  266. for (i = 1; i < nr_pages; i++) {
  267. struct page *p = page + i;
  268. __SetPageTail(p);
  269. p->first_page = page;
  270. }
  271. }
  272. static int destroy_compound_page(struct page *page, unsigned long order)
  273. {
  274. int i;
  275. int nr_pages = 1 << order;
  276. int bad = 0;
  277. if (unlikely(compound_order(page) != order) ||
  278. unlikely(!PageHead(page))) {
  279. bad_page(page);
  280. bad++;
  281. }
  282. __ClearPageHead(page);
  283. for (i = 1; i < nr_pages; i++) {
  284. struct page *p = page + i;
  285. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  286. bad_page(page);
  287. bad++;
  288. }
  289. __ClearPageTail(p);
  290. }
  291. return bad;
  292. }
  293. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  294. {
  295. int i;
  296. /*
  297. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  298. * and __GFP_HIGHMEM from hard or soft interrupt context.
  299. */
  300. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  301. for (i = 0; i < (1 << order); i++)
  302. clear_highpage(page + i);
  303. }
  304. static inline void set_page_order(struct page *page, int order)
  305. {
  306. set_page_private(page, order);
  307. __SetPageBuddy(page);
  308. }
  309. static inline void rmv_page_order(struct page *page)
  310. {
  311. __ClearPageBuddy(page);
  312. set_page_private(page, 0);
  313. }
  314. /*
  315. * Locate the struct page for both the matching buddy in our
  316. * pair (buddy1) and the combined O(n+1) page they form (page).
  317. *
  318. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  319. * the following equation:
  320. * B2 = B1 ^ (1 << O)
  321. * For example, if the starting buddy (buddy2) is #8 its order
  322. * 1 buddy is #10:
  323. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  324. *
  325. * 2) Any buddy B will have an order O+1 parent P which
  326. * satisfies the following equation:
  327. * P = B & ~(1 << O)
  328. *
  329. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  330. */
  331. static inline struct page *
  332. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  333. {
  334. unsigned long buddy_idx = page_idx ^ (1 << order);
  335. return page + (buddy_idx - page_idx);
  336. }
  337. static inline unsigned long
  338. __find_combined_index(unsigned long page_idx, unsigned int order)
  339. {
  340. return (page_idx & ~(1 << order));
  341. }
  342. /*
  343. * This function checks whether a page is free && is the buddy
  344. * we can do coalesce a page and its buddy if
  345. * (a) the buddy is not in a hole &&
  346. * (b) the buddy is in the buddy system &&
  347. * (c) a page and its buddy have the same order &&
  348. * (d) a page and its buddy are in the same zone.
  349. *
  350. * For recording whether a page is in the buddy system, we use PG_buddy.
  351. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  352. *
  353. * For recording page's order, we use page_private(page).
  354. */
  355. static inline int page_is_buddy(struct page *page, struct page *buddy,
  356. int order)
  357. {
  358. if (!pfn_valid_within(page_to_pfn(buddy)))
  359. return 0;
  360. if (page_zone_id(page) != page_zone_id(buddy))
  361. return 0;
  362. if (PageBuddy(buddy) && page_order(buddy) == order) {
  363. VM_BUG_ON(page_count(buddy) != 0);
  364. return 1;
  365. }
  366. return 0;
  367. }
  368. /*
  369. * Freeing function for a buddy system allocator.
  370. *
  371. * The concept of a buddy system is to maintain direct-mapped table
  372. * (containing bit values) for memory blocks of various "orders".
  373. * The bottom level table contains the map for the smallest allocatable
  374. * units of memory (here, pages), and each level above it describes
  375. * pairs of units from the levels below, hence, "buddies".
  376. * At a high level, all that happens here is marking the table entry
  377. * at the bottom level available, and propagating the changes upward
  378. * as necessary, plus some accounting needed to play nicely with other
  379. * parts of the VM system.
  380. * At each level, we keep a list of pages, which are heads of continuous
  381. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  382. * order is recorded in page_private(page) field.
  383. * So when we are allocating or freeing one, we can derive the state of the
  384. * other. That is, if we allocate a small block, and both were
  385. * free, the remainder of the region must be split into blocks.
  386. * If a block is freed, and its buddy is also free, then this
  387. * triggers coalescing into a block of larger size.
  388. *
  389. * -- wli
  390. */
  391. static inline void __free_one_page(struct page *page,
  392. struct zone *zone, unsigned int order,
  393. int migratetype)
  394. {
  395. unsigned long page_idx;
  396. if (unlikely(PageCompound(page)))
  397. if (unlikely(destroy_compound_page(page, order)))
  398. return;
  399. VM_BUG_ON(migratetype == -1);
  400. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  401. VM_BUG_ON(page_idx & ((1 << order) - 1));
  402. VM_BUG_ON(bad_range(zone, page));
  403. while (order < MAX_ORDER-1) {
  404. unsigned long combined_idx;
  405. struct page *buddy;
  406. buddy = __page_find_buddy(page, page_idx, order);
  407. if (!page_is_buddy(page, buddy, order))
  408. break;
  409. /* Our buddy is free, merge with it and move up one order. */
  410. list_del(&buddy->lru);
  411. zone->free_area[order].nr_free--;
  412. rmv_page_order(buddy);
  413. combined_idx = __find_combined_index(page_idx, order);
  414. page = page + (combined_idx - page_idx);
  415. page_idx = combined_idx;
  416. order++;
  417. }
  418. set_page_order(page, order);
  419. list_add(&page->lru,
  420. &zone->free_area[order].free_list[migratetype]);
  421. zone->free_area[order].nr_free++;
  422. }
  423. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  424. /*
  425. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  426. * Page should not be on lru, so no need to fix that up.
  427. * free_pages_check() will verify...
  428. */
  429. static inline void free_page_mlock(struct page *page)
  430. {
  431. __dec_zone_page_state(page, NR_MLOCK);
  432. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  433. }
  434. #else
  435. static void free_page_mlock(struct page *page) { }
  436. #endif
  437. static inline int free_pages_check(struct page *page)
  438. {
  439. if (unlikely(page_mapcount(page) |
  440. (page->mapping != NULL) |
  441. (atomic_read(&page->_count) != 0) |
  442. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  443. bad_page(page);
  444. return 1;
  445. }
  446. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  447. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  448. return 0;
  449. }
  450. /*
  451. * Frees a list of pages.
  452. * Assumes all pages on list are in same zone, and of same order.
  453. * count is the number of pages to free.
  454. *
  455. * If the zone was previously in an "all pages pinned" state then look to
  456. * see if this freeing clears that state.
  457. *
  458. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  459. * pinned" detection logic.
  460. */
  461. static void free_pages_bulk(struct zone *zone, int count,
  462. struct list_head *list, int order)
  463. {
  464. spin_lock(&zone->lock);
  465. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  466. zone->pages_scanned = 0;
  467. __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
  468. while (count--) {
  469. struct page *page;
  470. VM_BUG_ON(list_empty(list));
  471. page = list_entry(list->prev, struct page, lru);
  472. /* have to delete it as __free_one_page list manipulates */
  473. list_del(&page->lru);
  474. trace_mm_page_pcpu_drain(page, order, page_private(page));
  475. __free_one_page(page, zone, order, page_private(page));
  476. }
  477. spin_unlock(&zone->lock);
  478. }
  479. static void free_one_page(struct zone *zone, struct page *page, int order,
  480. int migratetype)
  481. {
  482. spin_lock(&zone->lock);
  483. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  484. zone->pages_scanned = 0;
  485. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  486. __free_one_page(page, zone, order, migratetype);
  487. spin_unlock(&zone->lock);
  488. }
  489. static void __free_pages_ok(struct page *page, unsigned int order)
  490. {
  491. unsigned long flags;
  492. int i;
  493. int bad = 0;
  494. int wasMlocked = __TestClearPageMlocked(page);
  495. kmemcheck_free_shadow(page, order);
  496. for (i = 0 ; i < (1 << order) ; ++i)
  497. bad += free_pages_check(page + i);
  498. if (bad)
  499. return;
  500. if (!PageHighMem(page)) {
  501. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  502. debug_check_no_obj_freed(page_address(page),
  503. PAGE_SIZE << order);
  504. }
  505. arch_free_page(page, order);
  506. kernel_map_pages(page, 1 << order, 0);
  507. local_irq_save(flags);
  508. if (unlikely(wasMlocked))
  509. free_page_mlock(page);
  510. __count_vm_events(PGFREE, 1 << order);
  511. free_one_page(page_zone(page), page, order,
  512. get_pageblock_migratetype(page));
  513. local_irq_restore(flags);
  514. }
  515. /*
  516. * permit the bootmem allocator to evade page validation on high-order frees
  517. */
  518. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  519. {
  520. if (order == 0) {
  521. __ClearPageReserved(page);
  522. set_page_count(page, 0);
  523. set_page_refcounted(page);
  524. __free_page(page);
  525. } else {
  526. int loop;
  527. prefetchw(page);
  528. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  529. struct page *p = &page[loop];
  530. if (loop + 1 < BITS_PER_LONG)
  531. prefetchw(p + 1);
  532. __ClearPageReserved(p);
  533. set_page_count(p, 0);
  534. }
  535. set_page_refcounted(page);
  536. __free_pages(page, order);
  537. }
  538. }
  539. /*
  540. * The order of subdivision here is critical for the IO subsystem.
  541. * Please do not alter this order without good reasons and regression
  542. * testing. Specifically, as large blocks of memory are subdivided,
  543. * the order in which smaller blocks are delivered depends on the order
  544. * they're subdivided in this function. This is the primary factor
  545. * influencing the order in which pages are delivered to the IO
  546. * subsystem according to empirical testing, and this is also justified
  547. * by considering the behavior of a buddy system containing a single
  548. * large block of memory acted on by a series of small allocations.
  549. * This behavior is a critical factor in sglist merging's success.
  550. *
  551. * -- wli
  552. */
  553. static inline void expand(struct zone *zone, struct page *page,
  554. int low, int high, struct free_area *area,
  555. int migratetype)
  556. {
  557. unsigned long size = 1 << high;
  558. while (high > low) {
  559. area--;
  560. high--;
  561. size >>= 1;
  562. VM_BUG_ON(bad_range(zone, &page[size]));
  563. list_add(&page[size].lru, &area->free_list[migratetype]);
  564. area->nr_free++;
  565. set_page_order(&page[size], high);
  566. }
  567. }
  568. /*
  569. * This page is about to be returned from the page allocator
  570. */
  571. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  572. {
  573. if (unlikely(page_mapcount(page) |
  574. (page->mapping != NULL) |
  575. (atomic_read(&page->_count) != 0) |
  576. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  577. bad_page(page);
  578. return 1;
  579. }
  580. set_page_private(page, 0);
  581. set_page_refcounted(page);
  582. arch_alloc_page(page, order);
  583. kernel_map_pages(page, 1 << order, 1);
  584. if (gfp_flags & __GFP_ZERO)
  585. prep_zero_page(page, order, gfp_flags);
  586. if (order && (gfp_flags & __GFP_COMP))
  587. prep_compound_page(page, order);
  588. return 0;
  589. }
  590. /*
  591. * Go through the free lists for the given migratetype and remove
  592. * the smallest available page from the freelists
  593. */
  594. static inline
  595. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  596. int migratetype)
  597. {
  598. unsigned int current_order;
  599. struct free_area * area;
  600. struct page *page;
  601. /* Find a page of the appropriate size in the preferred list */
  602. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  603. area = &(zone->free_area[current_order]);
  604. if (list_empty(&area->free_list[migratetype]))
  605. continue;
  606. page = list_entry(area->free_list[migratetype].next,
  607. struct page, lru);
  608. list_del(&page->lru);
  609. rmv_page_order(page);
  610. area->nr_free--;
  611. expand(zone, page, order, current_order, area, migratetype);
  612. return page;
  613. }
  614. return NULL;
  615. }
  616. /*
  617. * This array describes the order lists are fallen back to when
  618. * the free lists for the desirable migrate type are depleted
  619. */
  620. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  621. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  622. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  623. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  624. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  625. };
  626. /*
  627. * Move the free pages in a range to the free lists of the requested type.
  628. * Note that start_page and end_pages are not aligned on a pageblock
  629. * boundary. If alignment is required, use move_freepages_block()
  630. */
  631. static int move_freepages(struct zone *zone,
  632. struct page *start_page, struct page *end_page,
  633. int migratetype)
  634. {
  635. struct page *page;
  636. unsigned long order;
  637. int pages_moved = 0;
  638. #ifndef CONFIG_HOLES_IN_ZONE
  639. /*
  640. * page_zone is not safe to call in this context when
  641. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  642. * anyway as we check zone boundaries in move_freepages_block().
  643. * Remove at a later date when no bug reports exist related to
  644. * grouping pages by mobility
  645. */
  646. BUG_ON(page_zone(start_page) != page_zone(end_page));
  647. #endif
  648. for (page = start_page; page <= end_page;) {
  649. /* Make sure we are not inadvertently changing nodes */
  650. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  651. if (!pfn_valid_within(page_to_pfn(page))) {
  652. page++;
  653. continue;
  654. }
  655. if (!PageBuddy(page)) {
  656. page++;
  657. continue;
  658. }
  659. order = page_order(page);
  660. list_del(&page->lru);
  661. list_add(&page->lru,
  662. &zone->free_area[order].free_list[migratetype]);
  663. page += 1 << order;
  664. pages_moved += 1 << order;
  665. }
  666. return pages_moved;
  667. }
  668. static int move_freepages_block(struct zone *zone, struct page *page,
  669. int migratetype)
  670. {
  671. unsigned long start_pfn, end_pfn;
  672. struct page *start_page, *end_page;
  673. start_pfn = page_to_pfn(page);
  674. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  675. start_page = pfn_to_page(start_pfn);
  676. end_page = start_page + pageblock_nr_pages - 1;
  677. end_pfn = start_pfn + pageblock_nr_pages - 1;
  678. /* Do not cross zone boundaries */
  679. if (start_pfn < zone->zone_start_pfn)
  680. start_page = page;
  681. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  682. return 0;
  683. return move_freepages(zone, start_page, end_page, migratetype);
  684. }
  685. static void change_pageblock_range(struct page *pageblock_page,
  686. int start_order, int migratetype)
  687. {
  688. int nr_pageblocks = 1 << (start_order - pageblock_order);
  689. while (nr_pageblocks--) {
  690. set_pageblock_migratetype(pageblock_page, migratetype);
  691. pageblock_page += pageblock_nr_pages;
  692. }
  693. }
  694. /* Remove an element from the buddy allocator from the fallback list */
  695. static inline struct page *
  696. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  697. {
  698. struct free_area * area;
  699. int current_order;
  700. struct page *page;
  701. int migratetype, i;
  702. /* Find the largest possible block of pages in the other list */
  703. for (current_order = MAX_ORDER-1; current_order >= order;
  704. --current_order) {
  705. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  706. migratetype = fallbacks[start_migratetype][i];
  707. /* MIGRATE_RESERVE handled later if necessary */
  708. if (migratetype == MIGRATE_RESERVE)
  709. continue;
  710. area = &(zone->free_area[current_order]);
  711. if (list_empty(&area->free_list[migratetype]))
  712. continue;
  713. page = list_entry(area->free_list[migratetype].next,
  714. struct page, lru);
  715. area->nr_free--;
  716. /*
  717. * If breaking a large block of pages, move all free
  718. * pages to the preferred allocation list. If falling
  719. * back for a reclaimable kernel allocation, be more
  720. * agressive about taking ownership of free pages
  721. */
  722. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  723. start_migratetype == MIGRATE_RECLAIMABLE ||
  724. page_group_by_mobility_disabled) {
  725. unsigned long pages;
  726. pages = move_freepages_block(zone, page,
  727. start_migratetype);
  728. /* Claim the whole block if over half of it is free */
  729. if (pages >= (1 << (pageblock_order-1)) ||
  730. page_group_by_mobility_disabled)
  731. set_pageblock_migratetype(page,
  732. start_migratetype);
  733. migratetype = start_migratetype;
  734. }
  735. /* Remove the page from the freelists */
  736. list_del(&page->lru);
  737. rmv_page_order(page);
  738. /* Take ownership for orders >= pageblock_order */
  739. if (current_order >= pageblock_order)
  740. change_pageblock_range(page, current_order,
  741. start_migratetype);
  742. expand(zone, page, order, current_order, area, migratetype);
  743. trace_mm_page_alloc_extfrag(page, order, current_order,
  744. start_migratetype, migratetype);
  745. return page;
  746. }
  747. }
  748. return NULL;
  749. }
  750. /*
  751. * Do the hard work of removing an element from the buddy allocator.
  752. * Call me with the zone->lock already held.
  753. */
  754. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  755. int migratetype)
  756. {
  757. struct page *page;
  758. retry_reserve:
  759. page = __rmqueue_smallest(zone, order, migratetype);
  760. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  761. page = __rmqueue_fallback(zone, order, migratetype);
  762. /*
  763. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  764. * is used because __rmqueue_smallest is an inline function
  765. * and we want just one call site
  766. */
  767. if (!page) {
  768. migratetype = MIGRATE_RESERVE;
  769. goto retry_reserve;
  770. }
  771. }
  772. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  773. return page;
  774. }
  775. /*
  776. * Obtain a specified number of elements from the buddy allocator, all under
  777. * a single hold of the lock, for efficiency. Add them to the supplied list.
  778. * Returns the number of new pages which were placed at *list.
  779. */
  780. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  781. unsigned long count, struct list_head *list,
  782. int migratetype, int cold)
  783. {
  784. int i;
  785. spin_lock(&zone->lock);
  786. for (i = 0; i < count; ++i) {
  787. struct page *page = __rmqueue(zone, order, migratetype);
  788. if (unlikely(page == NULL))
  789. break;
  790. /*
  791. * Split buddy pages returned by expand() are received here
  792. * in physical page order. The page is added to the callers and
  793. * list and the list head then moves forward. From the callers
  794. * perspective, the linked list is ordered by page number in
  795. * some conditions. This is useful for IO devices that can
  796. * merge IO requests if the physical pages are ordered
  797. * properly.
  798. */
  799. if (likely(cold == 0))
  800. list_add(&page->lru, list);
  801. else
  802. list_add_tail(&page->lru, list);
  803. set_page_private(page, migratetype);
  804. list = &page->lru;
  805. }
  806. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  807. spin_unlock(&zone->lock);
  808. return i;
  809. }
  810. #ifdef CONFIG_NUMA
  811. /*
  812. * Called from the vmstat counter updater to drain pagesets of this
  813. * currently executing processor on remote nodes after they have
  814. * expired.
  815. *
  816. * Note that this function must be called with the thread pinned to
  817. * a single processor.
  818. */
  819. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  820. {
  821. unsigned long flags;
  822. int to_drain;
  823. local_irq_save(flags);
  824. if (pcp->count >= pcp->batch)
  825. to_drain = pcp->batch;
  826. else
  827. to_drain = pcp->count;
  828. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  829. pcp->count -= to_drain;
  830. local_irq_restore(flags);
  831. }
  832. #endif
  833. /*
  834. * Drain pages of the indicated processor.
  835. *
  836. * The processor must either be the current processor and the
  837. * thread pinned to the current processor or a processor that
  838. * is not online.
  839. */
  840. static void drain_pages(unsigned int cpu)
  841. {
  842. unsigned long flags;
  843. struct zone *zone;
  844. for_each_populated_zone(zone) {
  845. struct per_cpu_pageset *pset;
  846. struct per_cpu_pages *pcp;
  847. pset = zone_pcp(zone, cpu);
  848. pcp = &pset->pcp;
  849. local_irq_save(flags);
  850. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  851. pcp->count = 0;
  852. local_irq_restore(flags);
  853. }
  854. }
  855. /*
  856. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  857. */
  858. void drain_local_pages(void *arg)
  859. {
  860. drain_pages(smp_processor_id());
  861. }
  862. /*
  863. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  864. */
  865. void drain_all_pages(void)
  866. {
  867. on_each_cpu(drain_local_pages, NULL, 1);
  868. }
  869. #ifdef CONFIG_HIBERNATION
  870. void mark_free_pages(struct zone *zone)
  871. {
  872. unsigned long pfn, max_zone_pfn;
  873. unsigned long flags;
  874. int order, t;
  875. struct list_head *curr;
  876. if (!zone->spanned_pages)
  877. return;
  878. spin_lock_irqsave(&zone->lock, flags);
  879. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  880. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  881. if (pfn_valid(pfn)) {
  882. struct page *page = pfn_to_page(pfn);
  883. if (!swsusp_page_is_forbidden(page))
  884. swsusp_unset_page_free(page);
  885. }
  886. for_each_migratetype_order(order, t) {
  887. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  888. unsigned long i;
  889. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  890. for (i = 0; i < (1UL << order); i++)
  891. swsusp_set_page_free(pfn_to_page(pfn + i));
  892. }
  893. }
  894. spin_unlock_irqrestore(&zone->lock, flags);
  895. }
  896. #endif /* CONFIG_PM */
  897. /*
  898. * Free a 0-order page
  899. */
  900. static void free_hot_cold_page(struct page *page, int cold)
  901. {
  902. struct zone *zone = page_zone(page);
  903. struct per_cpu_pages *pcp;
  904. unsigned long flags;
  905. int wasMlocked = __TestClearPageMlocked(page);
  906. kmemcheck_free_shadow(page, 0);
  907. if (PageAnon(page))
  908. page->mapping = NULL;
  909. if (free_pages_check(page))
  910. return;
  911. if (!PageHighMem(page)) {
  912. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  913. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  914. }
  915. arch_free_page(page, 0);
  916. kernel_map_pages(page, 1, 0);
  917. pcp = &zone_pcp(zone, get_cpu())->pcp;
  918. set_page_private(page, get_pageblock_migratetype(page));
  919. local_irq_save(flags);
  920. if (unlikely(wasMlocked))
  921. free_page_mlock(page);
  922. __count_vm_event(PGFREE);
  923. if (cold)
  924. list_add_tail(&page->lru, &pcp->list);
  925. else
  926. list_add(&page->lru, &pcp->list);
  927. pcp->count++;
  928. if (pcp->count >= pcp->high) {
  929. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  930. pcp->count -= pcp->batch;
  931. }
  932. local_irq_restore(flags);
  933. put_cpu();
  934. }
  935. void free_hot_page(struct page *page)
  936. {
  937. trace_mm_page_free_direct(page, 0);
  938. free_hot_cold_page(page, 0);
  939. }
  940. /*
  941. * split_page takes a non-compound higher-order page, and splits it into
  942. * n (1<<order) sub-pages: page[0..n]
  943. * Each sub-page must be freed individually.
  944. *
  945. * Note: this is probably too low level an operation for use in drivers.
  946. * Please consult with lkml before using this in your driver.
  947. */
  948. void split_page(struct page *page, unsigned int order)
  949. {
  950. int i;
  951. VM_BUG_ON(PageCompound(page));
  952. VM_BUG_ON(!page_count(page));
  953. #ifdef CONFIG_KMEMCHECK
  954. /*
  955. * Split shadow pages too, because free(page[0]) would
  956. * otherwise free the whole shadow.
  957. */
  958. if (kmemcheck_page_is_tracked(page))
  959. split_page(virt_to_page(page[0].shadow), order);
  960. #endif
  961. for (i = 1; i < (1 << order); i++)
  962. set_page_refcounted(page + i);
  963. }
  964. /*
  965. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  966. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  967. * or two.
  968. */
  969. static inline
  970. struct page *buffered_rmqueue(struct zone *preferred_zone,
  971. struct zone *zone, int order, gfp_t gfp_flags,
  972. int migratetype)
  973. {
  974. unsigned long flags;
  975. struct page *page;
  976. int cold = !!(gfp_flags & __GFP_COLD);
  977. int cpu;
  978. again:
  979. cpu = get_cpu();
  980. if (likely(order == 0)) {
  981. struct per_cpu_pages *pcp;
  982. pcp = &zone_pcp(zone, cpu)->pcp;
  983. local_irq_save(flags);
  984. if (!pcp->count) {
  985. pcp->count = rmqueue_bulk(zone, 0,
  986. pcp->batch, &pcp->list,
  987. migratetype, cold);
  988. if (unlikely(!pcp->count))
  989. goto failed;
  990. }
  991. /* Find a page of the appropriate migrate type */
  992. if (cold) {
  993. list_for_each_entry_reverse(page, &pcp->list, lru)
  994. if (page_private(page) == migratetype)
  995. break;
  996. } else {
  997. list_for_each_entry(page, &pcp->list, lru)
  998. if (page_private(page) == migratetype)
  999. break;
  1000. }
  1001. /* Allocate more to the pcp list if necessary */
  1002. if (unlikely(&page->lru == &pcp->list)) {
  1003. int get_one_page = 0;
  1004. pcp->count += rmqueue_bulk(zone, 0,
  1005. pcp->batch, &pcp->list,
  1006. migratetype, cold);
  1007. list_for_each_entry(page, &pcp->list, lru) {
  1008. if (get_pageblock_migratetype(page) !=
  1009. MIGRATE_ISOLATE) {
  1010. get_one_page = 1;
  1011. break;
  1012. }
  1013. }
  1014. if (!get_one_page)
  1015. goto failed;
  1016. }
  1017. list_del(&page->lru);
  1018. pcp->count--;
  1019. } else {
  1020. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1021. /*
  1022. * __GFP_NOFAIL is not to be used in new code.
  1023. *
  1024. * All __GFP_NOFAIL callers should be fixed so that they
  1025. * properly detect and handle allocation failures.
  1026. *
  1027. * We most definitely don't want callers attempting to
  1028. * allocate greater than order-1 page units with
  1029. * __GFP_NOFAIL.
  1030. */
  1031. WARN_ON_ONCE(order > 1);
  1032. }
  1033. spin_lock_irqsave(&zone->lock, flags);
  1034. page = __rmqueue(zone, order, migratetype);
  1035. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1036. spin_unlock(&zone->lock);
  1037. if (!page)
  1038. goto failed;
  1039. }
  1040. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1041. zone_statistics(preferred_zone, zone);
  1042. local_irq_restore(flags);
  1043. put_cpu();
  1044. VM_BUG_ON(bad_range(zone, page));
  1045. if (prep_new_page(page, order, gfp_flags))
  1046. goto again;
  1047. return page;
  1048. failed:
  1049. local_irq_restore(flags);
  1050. put_cpu();
  1051. return NULL;
  1052. }
  1053. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1054. #define ALLOC_WMARK_MIN WMARK_MIN
  1055. #define ALLOC_WMARK_LOW WMARK_LOW
  1056. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1057. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1058. /* Mask to get the watermark bits */
  1059. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1060. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1061. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1062. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1063. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1064. static struct fail_page_alloc_attr {
  1065. struct fault_attr attr;
  1066. u32 ignore_gfp_highmem;
  1067. u32 ignore_gfp_wait;
  1068. u32 min_order;
  1069. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1070. struct dentry *ignore_gfp_highmem_file;
  1071. struct dentry *ignore_gfp_wait_file;
  1072. struct dentry *min_order_file;
  1073. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1074. } fail_page_alloc = {
  1075. .attr = FAULT_ATTR_INITIALIZER,
  1076. .ignore_gfp_wait = 1,
  1077. .ignore_gfp_highmem = 1,
  1078. .min_order = 1,
  1079. };
  1080. static int __init setup_fail_page_alloc(char *str)
  1081. {
  1082. return setup_fault_attr(&fail_page_alloc.attr, str);
  1083. }
  1084. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1085. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1086. {
  1087. if (order < fail_page_alloc.min_order)
  1088. return 0;
  1089. if (gfp_mask & __GFP_NOFAIL)
  1090. return 0;
  1091. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1092. return 0;
  1093. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1094. return 0;
  1095. return should_fail(&fail_page_alloc.attr, 1 << order);
  1096. }
  1097. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1098. static int __init fail_page_alloc_debugfs(void)
  1099. {
  1100. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1101. struct dentry *dir;
  1102. int err;
  1103. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1104. "fail_page_alloc");
  1105. if (err)
  1106. return err;
  1107. dir = fail_page_alloc.attr.dentries.dir;
  1108. fail_page_alloc.ignore_gfp_wait_file =
  1109. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1110. &fail_page_alloc.ignore_gfp_wait);
  1111. fail_page_alloc.ignore_gfp_highmem_file =
  1112. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1113. &fail_page_alloc.ignore_gfp_highmem);
  1114. fail_page_alloc.min_order_file =
  1115. debugfs_create_u32("min-order", mode, dir,
  1116. &fail_page_alloc.min_order);
  1117. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1118. !fail_page_alloc.ignore_gfp_highmem_file ||
  1119. !fail_page_alloc.min_order_file) {
  1120. err = -ENOMEM;
  1121. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1122. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1123. debugfs_remove(fail_page_alloc.min_order_file);
  1124. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1125. }
  1126. return err;
  1127. }
  1128. late_initcall(fail_page_alloc_debugfs);
  1129. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1130. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1131. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1132. {
  1133. return 0;
  1134. }
  1135. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1136. /*
  1137. * Return 1 if free pages are above 'mark'. This takes into account the order
  1138. * of the allocation.
  1139. */
  1140. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1141. int classzone_idx, int alloc_flags)
  1142. {
  1143. /* free_pages my go negative - that's OK */
  1144. long min = mark;
  1145. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1146. int o;
  1147. if (alloc_flags & ALLOC_HIGH)
  1148. min -= min / 2;
  1149. if (alloc_flags & ALLOC_HARDER)
  1150. min -= min / 4;
  1151. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1152. return 0;
  1153. for (o = 0; o < order; o++) {
  1154. /* At the next order, this order's pages become unavailable */
  1155. free_pages -= z->free_area[o].nr_free << o;
  1156. /* Require fewer higher order pages to be free */
  1157. min >>= 1;
  1158. if (free_pages <= min)
  1159. return 0;
  1160. }
  1161. return 1;
  1162. }
  1163. #ifdef CONFIG_NUMA
  1164. /*
  1165. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1166. * skip over zones that are not allowed by the cpuset, or that have
  1167. * been recently (in last second) found to be nearly full. See further
  1168. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1169. * that have to skip over a lot of full or unallowed zones.
  1170. *
  1171. * If the zonelist cache is present in the passed in zonelist, then
  1172. * returns a pointer to the allowed node mask (either the current
  1173. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1174. *
  1175. * If the zonelist cache is not available for this zonelist, does
  1176. * nothing and returns NULL.
  1177. *
  1178. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1179. * a second since last zap'd) then we zap it out (clear its bits.)
  1180. *
  1181. * We hold off even calling zlc_setup, until after we've checked the
  1182. * first zone in the zonelist, on the theory that most allocations will
  1183. * be satisfied from that first zone, so best to examine that zone as
  1184. * quickly as we can.
  1185. */
  1186. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1187. {
  1188. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1189. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1190. zlc = zonelist->zlcache_ptr;
  1191. if (!zlc)
  1192. return NULL;
  1193. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1194. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1195. zlc->last_full_zap = jiffies;
  1196. }
  1197. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1198. &cpuset_current_mems_allowed :
  1199. &node_states[N_HIGH_MEMORY];
  1200. return allowednodes;
  1201. }
  1202. /*
  1203. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1204. * if it is worth looking at further for free memory:
  1205. * 1) Check that the zone isn't thought to be full (doesn't have its
  1206. * bit set in the zonelist_cache fullzones BITMAP).
  1207. * 2) Check that the zones node (obtained from the zonelist_cache
  1208. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1209. * Return true (non-zero) if zone is worth looking at further, or
  1210. * else return false (zero) if it is not.
  1211. *
  1212. * This check -ignores- the distinction between various watermarks,
  1213. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1214. * found to be full for any variation of these watermarks, it will
  1215. * be considered full for up to one second by all requests, unless
  1216. * we are so low on memory on all allowed nodes that we are forced
  1217. * into the second scan of the zonelist.
  1218. *
  1219. * In the second scan we ignore this zonelist cache and exactly
  1220. * apply the watermarks to all zones, even it is slower to do so.
  1221. * We are low on memory in the second scan, and should leave no stone
  1222. * unturned looking for a free page.
  1223. */
  1224. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1225. nodemask_t *allowednodes)
  1226. {
  1227. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1228. int i; /* index of *z in zonelist zones */
  1229. int n; /* node that zone *z is on */
  1230. zlc = zonelist->zlcache_ptr;
  1231. if (!zlc)
  1232. return 1;
  1233. i = z - zonelist->_zonerefs;
  1234. n = zlc->z_to_n[i];
  1235. /* This zone is worth trying if it is allowed but not full */
  1236. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1237. }
  1238. /*
  1239. * Given 'z' scanning a zonelist, set the corresponding bit in
  1240. * zlc->fullzones, so that subsequent attempts to allocate a page
  1241. * from that zone don't waste time re-examining it.
  1242. */
  1243. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1244. {
  1245. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1246. int i; /* index of *z in zonelist zones */
  1247. zlc = zonelist->zlcache_ptr;
  1248. if (!zlc)
  1249. return;
  1250. i = z - zonelist->_zonerefs;
  1251. set_bit(i, zlc->fullzones);
  1252. }
  1253. #else /* CONFIG_NUMA */
  1254. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1255. {
  1256. return NULL;
  1257. }
  1258. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1259. nodemask_t *allowednodes)
  1260. {
  1261. return 1;
  1262. }
  1263. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1264. {
  1265. }
  1266. #endif /* CONFIG_NUMA */
  1267. /*
  1268. * get_page_from_freelist goes through the zonelist trying to allocate
  1269. * a page.
  1270. */
  1271. static struct page *
  1272. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1273. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1274. struct zone *preferred_zone, int migratetype)
  1275. {
  1276. struct zoneref *z;
  1277. struct page *page = NULL;
  1278. int classzone_idx;
  1279. struct zone *zone;
  1280. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1281. int zlc_active = 0; /* set if using zonelist_cache */
  1282. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1283. classzone_idx = zone_idx(preferred_zone);
  1284. zonelist_scan:
  1285. /*
  1286. * Scan zonelist, looking for a zone with enough free.
  1287. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1288. */
  1289. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1290. high_zoneidx, nodemask) {
  1291. if (NUMA_BUILD && zlc_active &&
  1292. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1293. continue;
  1294. if ((alloc_flags & ALLOC_CPUSET) &&
  1295. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1296. goto try_next_zone;
  1297. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1298. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1299. unsigned long mark;
  1300. int ret;
  1301. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1302. if (zone_watermark_ok(zone, order, mark,
  1303. classzone_idx, alloc_flags))
  1304. goto try_this_zone;
  1305. if (zone_reclaim_mode == 0)
  1306. goto this_zone_full;
  1307. ret = zone_reclaim(zone, gfp_mask, order);
  1308. switch (ret) {
  1309. case ZONE_RECLAIM_NOSCAN:
  1310. /* did not scan */
  1311. goto try_next_zone;
  1312. case ZONE_RECLAIM_FULL:
  1313. /* scanned but unreclaimable */
  1314. goto this_zone_full;
  1315. default:
  1316. /* did we reclaim enough */
  1317. if (!zone_watermark_ok(zone, order, mark,
  1318. classzone_idx, alloc_flags))
  1319. goto this_zone_full;
  1320. }
  1321. }
  1322. try_this_zone:
  1323. page = buffered_rmqueue(preferred_zone, zone, order,
  1324. gfp_mask, migratetype);
  1325. if (page)
  1326. break;
  1327. this_zone_full:
  1328. if (NUMA_BUILD)
  1329. zlc_mark_zone_full(zonelist, z);
  1330. try_next_zone:
  1331. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1332. /*
  1333. * we do zlc_setup after the first zone is tried but only
  1334. * if there are multiple nodes make it worthwhile
  1335. */
  1336. allowednodes = zlc_setup(zonelist, alloc_flags);
  1337. zlc_active = 1;
  1338. did_zlc_setup = 1;
  1339. }
  1340. }
  1341. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1342. /* Disable zlc cache for second zonelist scan */
  1343. zlc_active = 0;
  1344. goto zonelist_scan;
  1345. }
  1346. return page;
  1347. }
  1348. static inline int
  1349. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1350. unsigned long pages_reclaimed)
  1351. {
  1352. /* Do not loop if specifically requested */
  1353. if (gfp_mask & __GFP_NORETRY)
  1354. return 0;
  1355. /*
  1356. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1357. * means __GFP_NOFAIL, but that may not be true in other
  1358. * implementations.
  1359. */
  1360. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1361. return 1;
  1362. /*
  1363. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1364. * specified, then we retry until we no longer reclaim any pages
  1365. * (above), or we've reclaimed an order of pages at least as
  1366. * large as the allocation's order. In both cases, if the
  1367. * allocation still fails, we stop retrying.
  1368. */
  1369. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1370. return 1;
  1371. /*
  1372. * Don't let big-order allocations loop unless the caller
  1373. * explicitly requests that.
  1374. */
  1375. if (gfp_mask & __GFP_NOFAIL)
  1376. return 1;
  1377. return 0;
  1378. }
  1379. static inline struct page *
  1380. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1381. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1382. nodemask_t *nodemask, struct zone *preferred_zone,
  1383. int migratetype)
  1384. {
  1385. struct page *page;
  1386. /* Acquire the OOM killer lock for the zones in zonelist */
  1387. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1388. schedule_timeout_uninterruptible(1);
  1389. return NULL;
  1390. }
  1391. /*
  1392. * Go through the zonelist yet one more time, keep very high watermark
  1393. * here, this is only to catch a parallel oom killing, we must fail if
  1394. * we're still under heavy pressure.
  1395. */
  1396. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1397. order, zonelist, high_zoneidx,
  1398. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1399. preferred_zone, migratetype);
  1400. if (page)
  1401. goto out;
  1402. /* The OOM killer will not help higher order allocs */
  1403. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
  1404. goto out;
  1405. /* Exhausted what can be done so it's blamo time */
  1406. out_of_memory(zonelist, gfp_mask, order);
  1407. out:
  1408. clear_zonelist_oom(zonelist, gfp_mask);
  1409. return page;
  1410. }
  1411. /* The really slow allocator path where we enter direct reclaim */
  1412. static inline struct page *
  1413. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1414. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1415. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1416. int migratetype, unsigned long *did_some_progress)
  1417. {
  1418. struct page *page = NULL;
  1419. struct reclaim_state reclaim_state;
  1420. struct task_struct *p = current;
  1421. cond_resched();
  1422. /* We now go into synchronous reclaim */
  1423. cpuset_memory_pressure_bump();
  1424. p->flags |= PF_MEMALLOC;
  1425. lockdep_set_current_reclaim_state(gfp_mask);
  1426. reclaim_state.reclaimed_slab = 0;
  1427. p->reclaim_state = &reclaim_state;
  1428. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1429. p->reclaim_state = NULL;
  1430. lockdep_clear_current_reclaim_state();
  1431. p->flags &= ~PF_MEMALLOC;
  1432. cond_resched();
  1433. if (order != 0)
  1434. drain_all_pages();
  1435. if (likely(*did_some_progress))
  1436. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1437. zonelist, high_zoneidx,
  1438. alloc_flags, preferred_zone,
  1439. migratetype);
  1440. return page;
  1441. }
  1442. /*
  1443. * This is called in the allocator slow-path if the allocation request is of
  1444. * sufficient urgency to ignore watermarks and take other desperate measures
  1445. */
  1446. static inline struct page *
  1447. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1448. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1449. nodemask_t *nodemask, struct zone *preferred_zone,
  1450. int migratetype)
  1451. {
  1452. struct page *page;
  1453. do {
  1454. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1455. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1456. preferred_zone, migratetype);
  1457. if (!page && gfp_mask & __GFP_NOFAIL)
  1458. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1459. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1460. return page;
  1461. }
  1462. static inline
  1463. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1464. enum zone_type high_zoneidx)
  1465. {
  1466. struct zoneref *z;
  1467. struct zone *zone;
  1468. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1469. wakeup_kswapd(zone, order);
  1470. }
  1471. static inline int
  1472. gfp_to_alloc_flags(gfp_t gfp_mask)
  1473. {
  1474. struct task_struct *p = current;
  1475. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1476. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1477. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1478. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1479. /*
  1480. * The caller may dip into page reserves a bit more if the caller
  1481. * cannot run direct reclaim, or if the caller has realtime scheduling
  1482. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1483. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1484. */
  1485. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1486. if (!wait) {
  1487. alloc_flags |= ALLOC_HARDER;
  1488. /*
  1489. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1490. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1491. */
  1492. alloc_flags &= ~ALLOC_CPUSET;
  1493. } else if (unlikely(rt_task(p)))
  1494. alloc_flags |= ALLOC_HARDER;
  1495. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1496. if (!in_interrupt() &&
  1497. ((p->flags & PF_MEMALLOC) ||
  1498. unlikely(test_thread_flag(TIF_MEMDIE))))
  1499. alloc_flags |= ALLOC_NO_WATERMARKS;
  1500. }
  1501. return alloc_flags;
  1502. }
  1503. static inline struct page *
  1504. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1505. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1506. nodemask_t *nodemask, struct zone *preferred_zone,
  1507. int migratetype)
  1508. {
  1509. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1510. struct page *page = NULL;
  1511. int alloc_flags;
  1512. unsigned long pages_reclaimed = 0;
  1513. unsigned long did_some_progress;
  1514. struct task_struct *p = current;
  1515. /*
  1516. * In the slowpath, we sanity check order to avoid ever trying to
  1517. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1518. * be using allocators in order of preference for an area that is
  1519. * too large.
  1520. */
  1521. if (order >= MAX_ORDER) {
  1522. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1523. return NULL;
  1524. }
  1525. /*
  1526. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1527. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1528. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1529. * using a larger set of nodes after it has established that the
  1530. * allowed per node queues are empty and that nodes are
  1531. * over allocated.
  1532. */
  1533. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1534. goto nopage;
  1535. wake_all_kswapd(order, zonelist, high_zoneidx);
  1536. restart:
  1537. /*
  1538. * OK, we're below the kswapd watermark and have kicked background
  1539. * reclaim. Now things get more complex, so set up alloc_flags according
  1540. * to how we want to proceed.
  1541. */
  1542. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1543. /* This is the last chance, in general, before the goto nopage. */
  1544. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1545. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1546. preferred_zone, migratetype);
  1547. if (page)
  1548. goto got_pg;
  1549. rebalance:
  1550. /* Allocate without watermarks if the context allows */
  1551. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1552. page = __alloc_pages_high_priority(gfp_mask, order,
  1553. zonelist, high_zoneidx, nodemask,
  1554. preferred_zone, migratetype);
  1555. if (page)
  1556. goto got_pg;
  1557. }
  1558. /* Atomic allocations - we can't balance anything */
  1559. if (!wait)
  1560. goto nopage;
  1561. /* Avoid recursion of direct reclaim */
  1562. if (p->flags & PF_MEMALLOC)
  1563. goto nopage;
  1564. /* Avoid allocations with no watermarks from looping endlessly */
  1565. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1566. goto nopage;
  1567. /* Try direct reclaim and then allocating */
  1568. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1569. zonelist, high_zoneidx,
  1570. nodemask,
  1571. alloc_flags, preferred_zone,
  1572. migratetype, &did_some_progress);
  1573. if (page)
  1574. goto got_pg;
  1575. /*
  1576. * If we failed to make any progress reclaiming, then we are
  1577. * running out of options and have to consider going OOM
  1578. */
  1579. if (!did_some_progress) {
  1580. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1581. if (oom_killer_disabled)
  1582. goto nopage;
  1583. page = __alloc_pages_may_oom(gfp_mask, order,
  1584. zonelist, high_zoneidx,
  1585. nodemask, preferred_zone,
  1586. migratetype);
  1587. if (page)
  1588. goto got_pg;
  1589. /*
  1590. * The OOM killer does not trigger for high-order
  1591. * ~__GFP_NOFAIL allocations so if no progress is being
  1592. * made, there are no other options and retrying is
  1593. * unlikely to help.
  1594. */
  1595. if (order > PAGE_ALLOC_COSTLY_ORDER &&
  1596. !(gfp_mask & __GFP_NOFAIL))
  1597. goto nopage;
  1598. goto restart;
  1599. }
  1600. }
  1601. /* Check if we should retry the allocation */
  1602. pages_reclaimed += did_some_progress;
  1603. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1604. /* Wait for some write requests to complete then retry */
  1605. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1606. goto rebalance;
  1607. }
  1608. nopage:
  1609. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1610. printk(KERN_WARNING "%s: page allocation failure."
  1611. " order:%d, mode:0x%x\n",
  1612. p->comm, order, gfp_mask);
  1613. dump_stack();
  1614. show_mem();
  1615. }
  1616. return page;
  1617. got_pg:
  1618. if (kmemcheck_enabled)
  1619. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1620. return page;
  1621. }
  1622. /*
  1623. * This is the 'heart' of the zoned buddy allocator.
  1624. */
  1625. struct page *
  1626. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1627. struct zonelist *zonelist, nodemask_t *nodemask)
  1628. {
  1629. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1630. struct zone *preferred_zone;
  1631. struct page *page;
  1632. int migratetype = allocflags_to_migratetype(gfp_mask);
  1633. gfp_mask &= gfp_allowed_mask;
  1634. lockdep_trace_alloc(gfp_mask);
  1635. might_sleep_if(gfp_mask & __GFP_WAIT);
  1636. if (should_fail_alloc_page(gfp_mask, order))
  1637. return NULL;
  1638. /*
  1639. * Check the zones suitable for the gfp_mask contain at least one
  1640. * valid zone. It's possible to have an empty zonelist as a result
  1641. * of GFP_THISNODE and a memoryless node
  1642. */
  1643. if (unlikely(!zonelist->_zonerefs->zone))
  1644. return NULL;
  1645. /* The preferred zone is used for statistics later */
  1646. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1647. if (!preferred_zone)
  1648. return NULL;
  1649. /* First allocation attempt */
  1650. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1651. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1652. preferred_zone, migratetype);
  1653. if (unlikely(!page))
  1654. page = __alloc_pages_slowpath(gfp_mask, order,
  1655. zonelist, high_zoneidx, nodemask,
  1656. preferred_zone, migratetype);
  1657. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1658. return page;
  1659. }
  1660. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1661. /*
  1662. * Common helper functions.
  1663. */
  1664. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1665. {
  1666. struct page *page;
  1667. /*
  1668. * __get_free_pages() returns a 32-bit address, which cannot represent
  1669. * a highmem page
  1670. */
  1671. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1672. page = alloc_pages(gfp_mask, order);
  1673. if (!page)
  1674. return 0;
  1675. return (unsigned long) page_address(page);
  1676. }
  1677. EXPORT_SYMBOL(__get_free_pages);
  1678. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1679. {
  1680. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1681. }
  1682. EXPORT_SYMBOL(get_zeroed_page);
  1683. void __pagevec_free(struct pagevec *pvec)
  1684. {
  1685. int i = pagevec_count(pvec);
  1686. while (--i >= 0) {
  1687. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1688. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1689. }
  1690. }
  1691. void __free_pages(struct page *page, unsigned int order)
  1692. {
  1693. if (put_page_testzero(page)) {
  1694. trace_mm_page_free_direct(page, order);
  1695. if (order == 0)
  1696. free_hot_page(page);
  1697. else
  1698. __free_pages_ok(page, order);
  1699. }
  1700. }
  1701. EXPORT_SYMBOL(__free_pages);
  1702. void free_pages(unsigned long addr, unsigned int order)
  1703. {
  1704. if (addr != 0) {
  1705. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1706. __free_pages(virt_to_page((void *)addr), order);
  1707. }
  1708. }
  1709. EXPORT_SYMBOL(free_pages);
  1710. /**
  1711. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1712. * @size: the number of bytes to allocate
  1713. * @gfp_mask: GFP flags for the allocation
  1714. *
  1715. * This function is similar to alloc_pages(), except that it allocates the
  1716. * minimum number of pages to satisfy the request. alloc_pages() can only
  1717. * allocate memory in power-of-two pages.
  1718. *
  1719. * This function is also limited by MAX_ORDER.
  1720. *
  1721. * Memory allocated by this function must be released by free_pages_exact().
  1722. */
  1723. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1724. {
  1725. unsigned int order = get_order(size);
  1726. unsigned long addr;
  1727. addr = __get_free_pages(gfp_mask, order);
  1728. if (addr) {
  1729. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1730. unsigned long used = addr + PAGE_ALIGN(size);
  1731. split_page(virt_to_page((void *)addr), order);
  1732. while (used < alloc_end) {
  1733. free_page(used);
  1734. used += PAGE_SIZE;
  1735. }
  1736. }
  1737. return (void *)addr;
  1738. }
  1739. EXPORT_SYMBOL(alloc_pages_exact);
  1740. /**
  1741. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1742. * @virt: the value returned by alloc_pages_exact.
  1743. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1744. *
  1745. * Release the memory allocated by a previous call to alloc_pages_exact.
  1746. */
  1747. void free_pages_exact(void *virt, size_t size)
  1748. {
  1749. unsigned long addr = (unsigned long)virt;
  1750. unsigned long end = addr + PAGE_ALIGN(size);
  1751. while (addr < end) {
  1752. free_page(addr);
  1753. addr += PAGE_SIZE;
  1754. }
  1755. }
  1756. EXPORT_SYMBOL(free_pages_exact);
  1757. static unsigned int nr_free_zone_pages(int offset)
  1758. {
  1759. struct zoneref *z;
  1760. struct zone *zone;
  1761. /* Just pick one node, since fallback list is circular */
  1762. unsigned int sum = 0;
  1763. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1764. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1765. unsigned long size = zone->present_pages;
  1766. unsigned long high = high_wmark_pages(zone);
  1767. if (size > high)
  1768. sum += size - high;
  1769. }
  1770. return sum;
  1771. }
  1772. /*
  1773. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1774. */
  1775. unsigned int nr_free_buffer_pages(void)
  1776. {
  1777. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1778. }
  1779. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1780. /*
  1781. * Amount of free RAM allocatable within all zones
  1782. */
  1783. unsigned int nr_free_pagecache_pages(void)
  1784. {
  1785. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1786. }
  1787. static inline void show_node(struct zone *zone)
  1788. {
  1789. if (NUMA_BUILD)
  1790. printk("Node %d ", zone_to_nid(zone));
  1791. }
  1792. void si_meminfo(struct sysinfo *val)
  1793. {
  1794. val->totalram = totalram_pages;
  1795. val->sharedram = 0;
  1796. val->freeram = global_page_state(NR_FREE_PAGES);
  1797. val->bufferram = nr_blockdev_pages();
  1798. val->totalhigh = totalhigh_pages;
  1799. val->freehigh = nr_free_highpages();
  1800. val->mem_unit = PAGE_SIZE;
  1801. }
  1802. EXPORT_SYMBOL(si_meminfo);
  1803. #ifdef CONFIG_NUMA
  1804. void si_meminfo_node(struct sysinfo *val, int nid)
  1805. {
  1806. pg_data_t *pgdat = NODE_DATA(nid);
  1807. val->totalram = pgdat->node_present_pages;
  1808. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1809. #ifdef CONFIG_HIGHMEM
  1810. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1811. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1812. NR_FREE_PAGES);
  1813. #else
  1814. val->totalhigh = 0;
  1815. val->freehigh = 0;
  1816. #endif
  1817. val->mem_unit = PAGE_SIZE;
  1818. }
  1819. #endif
  1820. #define K(x) ((x) << (PAGE_SHIFT-10))
  1821. /*
  1822. * Show free area list (used inside shift_scroll-lock stuff)
  1823. * We also calculate the percentage fragmentation. We do this by counting the
  1824. * memory on each free list with the exception of the first item on the list.
  1825. */
  1826. void show_free_areas(void)
  1827. {
  1828. int cpu;
  1829. struct zone *zone;
  1830. for_each_populated_zone(zone) {
  1831. show_node(zone);
  1832. printk("%s per-cpu:\n", zone->name);
  1833. for_each_online_cpu(cpu) {
  1834. struct per_cpu_pageset *pageset;
  1835. pageset = zone_pcp(zone, cpu);
  1836. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1837. cpu, pageset->pcp.high,
  1838. pageset->pcp.batch, pageset->pcp.count);
  1839. }
  1840. }
  1841. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  1842. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  1843. " unevictable:%lu"
  1844. " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
  1845. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  1846. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  1847. global_page_state(NR_ACTIVE_ANON),
  1848. global_page_state(NR_INACTIVE_ANON),
  1849. global_page_state(NR_ISOLATED_ANON),
  1850. global_page_state(NR_ACTIVE_FILE),
  1851. global_page_state(NR_INACTIVE_FILE),
  1852. global_page_state(NR_ISOLATED_FILE),
  1853. global_page_state(NR_UNEVICTABLE),
  1854. global_page_state(NR_FILE_DIRTY),
  1855. global_page_state(NR_WRITEBACK),
  1856. global_page_state(NR_UNSTABLE_NFS),
  1857. nr_blockdev_pages(),
  1858. global_page_state(NR_FREE_PAGES),
  1859. global_page_state(NR_SLAB_RECLAIMABLE),
  1860. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1861. global_page_state(NR_FILE_MAPPED),
  1862. global_page_state(NR_SHMEM),
  1863. global_page_state(NR_PAGETABLE),
  1864. global_page_state(NR_BOUNCE));
  1865. for_each_populated_zone(zone) {
  1866. int i;
  1867. show_node(zone);
  1868. printk("%s"
  1869. " free:%lukB"
  1870. " min:%lukB"
  1871. " low:%lukB"
  1872. " high:%lukB"
  1873. " active_anon:%lukB"
  1874. " inactive_anon:%lukB"
  1875. " active_file:%lukB"
  1876. " inactive_file:%lukB"
  1877. " unevictable:%lukB"
  1878. " isolated(anon):%lukB"
  1879. " isolated(file):%lukB"
  1880. " present:%lukB"
  1881. " mlocked:%lukB"
  1882. " dirty:%lukB"
  1883. " writeback:%lukB"
  1884. " mapped:%lukB"
  1885. " shmem:%lukB"
  1886. " slab_reclaimable:%lukB"
  1887. " slab_unreclaimable:%lukB"
  1888. " kernel_stack:%lukB"
  1889. " pagetables:%lukB"
  1890. " unstable:%lukB"
  1891. " bounce:%lukB"
  1892. " writeback_tmp:%lukB"
  1893. " pages_scanned:%lu"
  1894. " all_unreclaimable? %s"
  1895. "\n",
  1896. zone->name,
  1897. K(zone_page_state(zone, NR_FREE_PAGES)),
  1898. K(min_wmark_pages(zone)),
  1899. K(low_wmark_pages(zone)),
  1900. K(high_wmark_pages(zone)),
  1901. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1902. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1903. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1904. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1905. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1906. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  1907. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  1908. K(zone->present_pages),
  1909. K(zone_page_state(zone, NR_MLOCK)),
  1910. K(zone_page_state(zone, NR_FILE_DIRTY)),
  1911. K(zone_page_state(zone, NR_WRITEBACK)),
  1912. K(zone_page_state(zone, NR_FILE_MAPPED)),
  1913. K(zone_page_state(zone, NR_SHMEM)),
  1914. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  1915. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  1916. zone_page_state(zone, NR_KERNEL_STACK) *
  1917. THREAD_SIZE / 1024,
  1918. K(zone_page_state(zone, NR_PAGETABLE)),
  1919. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  1920. K(zone_page_state(zone, NR_BOUNCE)),
  1921. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  1922. zone->pages_scanned,
  1923. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1924. );
  1925. printk("lowmem_reserve[]:");
  1926. for (i = 0; i < MAX_NR_ZONES; i++)
  1927. printk(" %lu", zone->lowmem_reserve[i]);
  1928. printk("\n");
  1929. }
  1930. for_each_populated_zone(zone) {
  1931. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1932. show_node(zone);
  1933. printk("%s: ", zone->name);
  1934. spin_lock_irqsave(&zone->lock, flags);
  1935. for (order = 0; order < MAX_ORDER; order++) {
  1936. nr[order] = zone->free_area[order].nr_free;
  1937. total += nr[order] << order;
  1938. }
  1939. spin_unlock_irqrestore(&zone->lock, flags);
  1940. for (order = 0; order < MAX_ORDER; order++)
  1941. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1942. printk("= %lukB\n", K(total));
  1943. }
  1944. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1945. show_swap_cache_info();
  1946. }
  1947. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1948. {
  1949. zoneref->zone = zone;
  1950. zoneref->zone_idx = zone_idx(zone);
  1951. }
  1952. /*
  1953. * Builds allocation fallback zone lists.
  1954. *
  1955. * Add all populated zones of a node to the zonelist.
  1956. */
  1957. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1958. int nr_zones, enum zone_type zone_type)
  1959. {
  1960. struct zone *zone;
  1961. BUG_ON(zone_type >= MAX_NR_ZONES);
  1962. zone_type++;
  1963. do {
  1964. zone_type--;
  1965. zone = pgdat->node_zones + zone_type;
  1966. if (populated_zone(zone)) {
  1967. zoneref_set_zone(zone,
  1968. &zonelist->_zonerefs[nr_zones++]);
  1969. check_highest_zone(zone_type);
  1970. }
  1971. } while (zone_type);
  1972. return nr_zones;
  1973. }
  1974. /*
  1975. * zonelist_order:
  1976. * 0 = automatic detection of better ordering.
  1977. * 1 = order by ([node] distance, -zonetype)
  1978. * 2 = order by (-zonetype, [node] distance)
  1979. *
  1980. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1981. * the same zonelist. So only NUMA can configure this param.
  1982. */
  1983. #define ZONELIST_ORDER_DEFAULT 0
  1984. #define ZONELIST_ORDER_NODE 1
  1985. #define ZONELIST_ORDER_ZONE 2
  1986. /* zonelist order in the kernel.
  1987. * set_zonelist_order() will set this to NODE or ZONE.
  1988. */
  1989. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1990. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1991. #ifdef CONFIG_NUMA
  1992. /* The value user specified ....changed by config */
  1993. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1994. /* string for sysctl */
  1995. #define NUMA_ZONELIST_ORDER_LEN 16
  1996. char numa_zonelist_order[16] = "default";
  1997. /*
  1998. * interface for configure zonelist ordering.
  1999. * command line option "numa_zonelist_order"
  2000. * = "[dD]efault - default, automatic configuration.
  2001. * = "[nN]ode - order by node locality, then by zone within node
  2002. * = "[zZ]one - order by zone, then by locality within zone
  2003. */
  2004. static int __parse_numa_zonelist_order(char *s)
  2005. {
  2006. if (*s == 'd' || *s == 'D') {
  2007. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2008. } else if (*s == 'n' || *s == 'N') {
  2009. user_zonelist_order = ZONELIST_ORDER_NODE;
  2010. } else if (*s == 'z' || *s == 'Z') {
  2011. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2012. } else {
  2013. printk(KERN_WARNING
  2014. "Ignoring invalid numa_zonelist_order value: "
  2015. "%s\n", s);
  2016. return -EINVAL;
  2017. }
  2018. return 0;
  2019. }
  2020. static __init int setup_numa_zonelist_order(char *s)
  2021. {
  2022. if (s)
  2023. return __parse_numa_zonelist_order(s);
  2024. return 0;
  2025. }
  2026. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2027. /*
  2028. * sysctl handler for numa_zonelist_order
  2029. */
  2030. int numa_zonelist_order_handler(ctl_table *table, int write,
  2031. struct file *file, void __user *buffer, size_t *length,
  2032. loff_t *ppos)
  2033. {
  2034. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2035. int ret;
  2036. if (write)
  2037. strncpy(saved_string, (char*)table->data,
  2038. NUMA_ZONELIST_ORDER_LEN);
  2039. ret = proc_dostring(table, write, file, buffer, length, ppos);
  2040. if (ret)
  2041. return ret;
  2042. if (write) {
  2043. int oldval = user_zonelist_order;
  2044. if (__parse_numa_zonelist_order((char*)table->data)) {
  2045. /*
  2046. * bogus value. restore saved string
  2047. */
  2048. strncpy((char*)table->data, saved_string,
  2049. NUMA_ZONELIST_ORDER_LEN);
  2050. user_zonelist_order = oldval;
  2051. } else if (oldval != user_zonelist_order)
  2052. build_all_zonelists();
  2053. }
  2054. return 0;
  2055. }
  2056. #define MAX_NODE_LOAD (nr_online_nodes)
  2057. static int node_load[MAX_NUMNODES];
  2058. /**
  2059. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2060. * @node: node whose fallback list we're appending
  2061. * @used_node_mask: nodemask_t of already used nodes
  2062. *
  2063. * We use a number of factors to determine which is the next node that should
  2064. * appear on a given node's fallback list. The node should not have appeared
  2065. * already in @node's fallback list, and it should be the next closest node
  2066. * according to the distance array (which contains arbitrary distance values
  2067. * from each node to each node in the system), and should also prefer nodes
  2068. * with no CPUs, since presumably they'll have very little allocation pressure
  2069. * on them otherwise.
  2070. * It returns -1 if no node is found.
  2071. */
  2072. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2073. {
  2074. int n, val;
  2075. int min_val = INT_MAX;
  2076. int best_node = -1;
  2077. const struct cpumask *tmp = cpumask_of_node(0);
  2078. /* Use the local node if we haven't already */
  2079. if (!node_isset(node, *used_node_mask)) {
  2080. node_set(node, *used_node_mask);
  2081. return node;
  2082. }
  2083. for_each_node_state(n, N_HIGH_MEMORY) {
  2084. /* Don't want a node to appear more than once */
  2085. if (node_isset(n, *used_node_mask))
  2086. continue;
  2087. /* Use the distance array to find the distance */
  2088. val = node_distance(node, n);
  2089. /* Penalize nodes under us ("prefer the next node") */
  2090. val += (n < node);
  2091. /* Give preference to headless and unused nodes */
  2092. tmp = cpumask_of_node(n);
  2093. if (!cpumask_empty(tmp))
  2094. val += PENALTY_FOR_NODE_WITH_CPUS;
  2095. /* Slight preference for less loaded node */
  2096. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2097. val += node_load[n];
  2098. if (val < min_val) {
  2099. min_val = val;
  2100. best_node = n;
  2101. }
  2102. }
  2103. if (best_node >= 0)
  2104. node_set(best_node, *used_node_mask);
  2105. return best_node;
  2106. }
  2107. /*
  2108. * Build zonelists ordered by node and zones within node.
  2109. * This results in maximum locality--normal zone overflows into local
  2110. * DMA zone, if any--but risks exhausting DMA zone.
  2111. */
  2112. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2113. {
  2114. int j;
  2115. struct zonelist *zonelist;
  2116. zonelist = &pgdat->node_zonelists[0];
  2117. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2118. ;
  2119. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2120. MAX_NR_ZONES - 1);
  2121. zonelist->_zonerefs[j].zone = NULL;
  2122. zonelist->_zonerefs[j].zone_idx = 0;
  2123. }
  2124. /*
  2125. * Build gfp_thisnode zonelists
  2126. */
  2127. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2128. {
  2129. int j;
  2130. struct zonelist *zonelist;
  2131. zonelist = &pgdat->node_zonelists[1];
  2132. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2133. zonelist->_zonerefs[j].zone = NULL;
  2134. zonelist->_zonerefs[j].zone_idx = 0;
  2135. }
  2136. /*
  2137. * Build zonelists ordered by zone and nodes within zones.
  2138. * This results in conserving DMA zone[s] until all Normal memory is
  2139. * exhausted, but results in overflowing to remote node while memory
  2140. * may still exist in local DMA zone.
  2141. */
  2142. static int node_order[MAX_NUMNODES];
  2143. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2144. {
  2145. int pos, j, node;
  2146. int zone_type; /* needs to be signed */
  2147. struct zone *z;
  2148. struct zonelist *zonelist;
  2149. zonelist = &pgdat->node_zonelists[0];
  2150. pos = 0;
  2151. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2152. for (j = 0; j < nr_nodes; j++) {
  2153. node = node_order[j];
  2154. z = &NODE_DATA(node)->node_zones[zone_type];
  2155. if (populated_zone(z)) {
  2156. zoneref_set_zone(z,
  2157. &zonelist->_zonerefs[pos++]);
  2158. check_highest_zone(zone_type);
  2159. }
  2160. }
  2161. }
  2162. zonelist->_zonerefs[pos].zone = NULL;
  2163. zonelist->_zonerefs[pos].zone_idx = 0;
  2164. }
  2165. static int default_zonelist_order(void)
  2166. {
  2167. int nid, zone_type;
  2168. unsigned long low_kmem_size,total_size;
  2169. struct zone *z;
  2170. int average_size;
  2171. /*
  2172. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2173. * If they are really small and used heavily, the system can fall
  2174. * into OOM very easily.
  2175. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2176. */
  2177. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2178. low_kmem_size = 0;
  2179. total_size = 0;
  2180. for_each_online_node(nid) {
  2181. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2182. z = &NODE_DATA(nid)->node_zones[zone_type];
  2183. if (populated_zone(z)) {
  2184. if (zone_type < ZONE_NORMAL)
  2185. low_kmem_size += z->present_pages;
  2186. total_size += z->present_pages;
  2187. }
  2188. }
  2189. }
  2190. if (!low_kmem_size || /* there are no DMA area. */
  2191. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2192. return ZONELIST_ORDER_NODE;
  2193. /*
  2194. * look into each node's config.
  2195. * If there is a node whose DMA/DMA32 memory is very big area on
  2196. * local memory, NODE_ORDER may be suitable.
  2197. */
  2198. average_size = total_size /
  2199. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2200. for_each_online_node(nid) {
  2201. low_kmem_size = 0;
  2202. total_size = 0;
  2203. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2204. z = &NODE_DATA(nid)->node_zones[zone_type];
  2205. if (populated_zone(z)) {
  2206. if (zone_type < ZONE_NORMAL)
  2207. low_kmem_size += z->present_pages;
  2208. total_size += z->present_pages;
  2209. }
  2210. }
  2211. if (low_kmem_size &&
  2212. total_size > average_size && /* ignore small node */
  2213. low_kmem_size > total_size * 70/100)
  2214. return ZONELIST_ORDER_NODE;
  2215. }
  2216. return ZONELIST_ORDER_ZONE;
  2217. }
  2218. static void set_zonelist_order(void)
  2219. {
  2220. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2221. current_zonelist_order = default_zonelist_order();
  2222. else
  2223. current_zonelist_order = user_zonelist_order;
  2224. }
  2225. static void build_zonelists(pg_data_t *pgdat)
  2226. {
  2227. int j, node, load;
  2228. enum zone_type i;
  2229. nodemask_t used_mask;
  2230. int local_node, prev_node;
  2231. struct zonelist *zonelist;
  2232. int order = current_zonelist_order;
  2233. /* initialize zonelists */
  2234. for (i = 0; i < MAX_ZONELISTS; i++) {
  2235. zonelist = pgdat->node_zonelists + i;
  2236. zonelist->_zonerefs[0].zone = NULL;
  2237. zonelist->_zonerefs[0].zone_idx = 0;
  2238. }
  2239. /* NUMA-aware ordering of nodes */
  2240. local_node = pgdat->node_id;
  2241. load = nr_online_nodes;
  2242. prev_node = local_node;
  2243. nodes_clear(used_mask);
  2244. memset(node_order, 0, sizeof(node_order));
  2245. j = 0;
  2246. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2247. int distance = node_distance(local_node, node);
  2248. /*
  2249. * If another node is sufficiently far away then it is better
  2250. * to reclaim pages in a zone before going off node.
  2251. */
  2252. if (distance > RECLAIM_DISTANCE)
  2253. zone_reclaim_mode = 1;
  2254. /*
  2255. * We don't want to pressure a particular node.
  2256. * So adding penalty to the first node in same
  2257. * distance group to make it round-robin.
  2258. */
  2259. if (distance != node_distance(local_node, prev_node))
  2260. node_load[node] = load;
  2261. prev_node = node;
  2262. load--;
  2263. if (order == ZONELIST_ORDER_NODE)
  2264. build_zonelists_in_node_order(pgdat, node);
  2265. else
  2266. node_order[j++] = node; /* remember order */
  2267. }
  2268. if (order == ZONELIST_ORDER_ZONE) {
  2269. /* calculate node order -- i.e., DMA last! */
  2270. build_zonelists_in_zone_order(pgdat, j);
  2271. }
  2272. build_thisnode_zonelists(pgdat);
  2273. }
  2274. /* Construct the zonelist performance cache - see further mmzone.h */
  2275. static void build_zonelist_cache(pg_data_t *pgdat)
  2276. {
  2277. struct zonelist *zonelist;
  2278. struct zonelist_cache *zlc;
  2279. struct zoneref *z;
  2280. zonelist = &pgdat->node_zonelists[0];
  2281. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2282. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2283. for (z = zonelist->_zonerefs; z->zone; z++)
  2284. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2285. }
  2286. #else /* CONFIG_NUMA */
  2287. static void set_zonelist_order(void)
  2288. {
  2289. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2290. }
  2291. static void build_zonelists(pg_data_t *pgdat)
  2292. {
  2293. int node, local_node;
  2294. enum zone_type j;
  2295. struct zonelist *zonelist;
  2296. local_node = pgdat->node_id;
  2297. zonelist = &pgdat->node_zonelists[0];
  2298. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2299. /*
  2300. * Now we build the zonelist so that it contains the zones
  2301. * of all the other nodes.
  2302. * We don't want to pressure a particular node, so when
  2303. * building the zones for node N, we make sure that the
  2304. * zones coming right after the local ones are those from
  2305. * node N+1 (modulo N)
  2306. */
  2307. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2308. if (!node_online(node))
  2309. continue;
  2310. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2311. MAX_NR_ZONES - 1);
  2312. }
  2313. for (node = 0; node < local_node; node++) {
  2314. if (!node_online(node))
  2315. continue;
  2316. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2317. MAX_NR_ZONES - 1);
  2318. }
  2319. zonelist->_zonerefs[j].zone = NULL;
  2320. zonelist->_zonerefs[j].zone_idx = 0;
  2321. }
  2322. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2323. static void build_zonelist_cache(pg_data_t *pgdat)
  2324. {
  2325. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2326. }
  2327. #endif /* CONFIG_NUMA */
  2328. /* return values int ....just for stop_machine() */
  2329. static int __build_all_zonelists(void *dummy)
  2330. {
  2331. int nid;
  2332. #ifdef CONFIG_NUMA
  2333. memset(node_load, 0, sizeof(node_load));
  2334. #endif
  2335. for_each_online_node(nid) {
  2336. pg_data_t *pgdat = NODE_DATA(nid);
  2337. build_zonelists(pgdat);
  2338. build_zonelist_cache(pgdat);
  2339. }
  2340. return 0;
  2341. }
  2342. void build_all_zonelists(void)
  2343. {
  2344. set_zonelist_order();
  2345. if (system_state == SYSTEM_BOOTING) {
  2346. __build_all_zonelists(NULL);
  2347. mminit_verify_zonelist();
  2348. cpuset_init_current_mems_allowed();
  2349. } else {
  2350. /* we have to stop all cpus to guarantee there is no user
  2351. of zonelist */
  2352. stop_machine(__build_all_zonelists, NULL, NULL);
  2353. /* cpuset refresh routine should be here */
  2354. }
  2355. vm_total_pages = nr_free_pagecache_pages();
  2356. /*
  2357. * Disable grouping by mobility if the number of pages in the
  2358. * system is too low to allow the mechanism to work. It would be
  2359. * more accurate, but expensive to check per-zone. This check is
  2360. * made on memory-hotadd so a system can start with mobility
  2361. * disabled and enable it later
  2362. */
  2363. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2364. page_group_by_mobility_disabled = 1;
  2365. else
  2366. page_group_by_mobility_disabled = 0;
  2367. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2368. "Total pages: %ld\n",
  2369. nr_online_nodes,
  2370. zonelist_order_name[current_zonelist_order],
  2371. page_group_by_mobility_disabled ? "off" : "on",
  2372. vm_total_pages);
  2373. #ifdef CONFIG_NUMA
  2374. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2375. #endif
  2376. }
  2377. /*
  2378. * Helper functions to size the waitqueue hash table.
  2379. * Essentially these want to choose hash table sizes sufficiently
  2380. * large so that collisions trying to wait on pages are rare.
  2381. * But in fact, the number of active page waitqueues on typical
  2382. * systems is ridiculously low, less than 200. So this is even
  2383. * conservative, even though it seems large.
  2384. *
  2385. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2386. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2387. */
  2388. #define PAGES_PER_WAITQUEUE 256
  2389. #ifndef CONFIG_MEMORY_HOTPLUG
  2390. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2391. {
  2392. unsigned long size = 1;
  2393. pages /= PAGES_PER_WAITQUEUE;
  2394. while (size < pages)
  2395. size <<= 1;
  2396. /*
  2397. * Once we have dozens or even hundreds of threads sleeping
  2398. * on IO we've got bigger problems than wait queue collision.
  2399. * Limit the size of the wait table to a reasonable size.
  2400. */
  2401. size = min(size, 4096UL);
  2402. return max(size, 4UL);
  2403. }
  2404. #else
  2405. /*
  2406. * A zone's size might be changed by hot-add, so it is not possible to determine
  2407. * a suitable size for its wait_table. So we use the maximum size now.
  2408. *
  2409. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2410. *
  2411. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2412. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2413. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2414. *
  2415. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2416. * or more by the traditional way. (See above). It equals:
  2417. *
  2418. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2419. * ia64(16K page size) : = ( 8G + 4M)byte.
  2420. * powerpc (64K page size) : = (32G +16M)byte.
  2421. */
  2422. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2423. {
  2424. return 4096UL;
  2425. }
  2426. #endif
  2427. /*
  2428. * This is an integer logarithm so that shifts can be used later
  2429. * to extract the more random high bits from the multiplicative
  2430. * hash function before the remainder is taken.
  2431. */
  2432. static inline unsigned long wait_table_bits(unsigned long size)
  2433. {
  2434. return ffz(~size);
  2435. }
  2436. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2437. /*
  2438. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2439. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2440. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2441. * higher will lead to a bigger reserve which will get freed as contiguous
  2442. * blocks as reclaim kicks in
  2443. */
  2444. static void setup_zone_migrate_reserve(struct zone *zone)
  2445. {
  2446. unsigned long start_pfn, pfn, end_pfn;
  2447. struct page *page;
  2448. unsigned long block_migratetype;
  2449. int reserve;
  2450. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2451. start_pfn = zone->zone_start_pfn;
  2452. end_pfn = start_pfn + zone->spanned_pages;
  2453. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2454. pageblock_order;
  2455. /*
  2456. * Reserve blocks are generally in place to help high-order atomic
  2457. * allocations that are short-lived. A min_free_kbytes value that
  2458. * would result in more than 2 reserve blocks for atomic allocations
  2459. * is assumed to be in place to help anti-fragmentation for the
  2460. * future allocation of hugepages at runtime.
  2461. */
  2462. reserve = min(2, reserve);
  2463. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2464. if (!pfn_valid(pfn))
  2465. continue;
  2466. page = pfn_to_page(pfn);
  2467. /* Watch out for overlapping nodes */
  2468. if (page_to_nid(page) != zone_to_nid(zone))
  2469. continue;
  2470. /* Blocks with reserved pages will never free, skip them. */
  2471. if (PageReserved(page))
  2472. continue;
  2473. block_migratetype = get_pageblock_migratetype(page);
  2474. /* If this block is reserved, account for it */
  2475. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2476. reserve--;
  2477. continue;
  2478. }
  2479. /* Suitable for reserving if this block is movable */
  2480. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2481. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2482. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2483. reserve--;
  2484. continue;
  2485. }
  2486. /*
  2487. * If the reserve is met and this is a previous reserved block,
  2488. * take it back
  2489. */
  2490. if (block_migratetype == MIGRATE_RESERVE) {
  2491. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2492. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2493. }
  2494. }
  2495. }
  2496. /*
  2497. * Initially all pages are reserved - free ones are freed
  2498. * up by free_all_bootmem() once the early boot process is
  2499. * done. Non-atomic initialization, single-pass.
  2500. */
  2501. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2502. unsigned long start_pfn, enum memmap_context context)
  2503. {
  2504. struct page *page;
  2505. unsigned long end_pfn = start_pfn + size;
  2506. unsigned long pfn;
  2507. struct zone *z;
  2508. if (highest_memmap_pfn < end_pfn - 1)
  2509. highest_memmap_pfn = end_pfn - 1;
  2510. z = &NODE_DATA(nid)->node_zones[zone];
  2511. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2512. /*
  2513. * There can be holes in boot-time mem_map[]s
  2514. * handed to this function. They do not
  2515. * exist on hotplugged memory.
  2516. */
  2517. if (context == MEMMAP_EARLY) {
  2518. if (!early_pfn_valid(pfn))
  2519. continue;
  2520. if (!early_pfn_in_nid(pfn, nid))
  2521. continue;
  2522. }
  2523. page = pfn_to_page(pfn);
  2524. set_page_links(page, zone, nid, pfn);
  2525. mminit_verify_page_links(page, zone, nid, pfn);
  2526. init_page_count(page);
  2527. reset_page_mapcount(page);
  2528. SetPageReserved(page);
  2529. /*
  2530. * Mark the block movable so that blocks are reserved for
  2531. * movable at startup. This will force kernel allocations
  2532. * to reserve their blocks rather than leaking throughout
  2533. * the address space during boot when many long-lived
  2534. * kernel allocations are made. Later some blocks near
  2535. * the start are marked MIGRATE_RESERVE by
  2536. * setup_zone_migrate_reserve()
  2537. *
  2538. * bitmap is created for zone's valid pfn range. but memmap
  2539. * can be created for invalid pages (for alignment)
  2540. * check here not to call set_pageblock_migratetype() against
  2541. * pfn out of zone.
  2542. */
  2543. if ((z->zone_start_pfn <= pfn)
  2544. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2545. && !(pfn & (pageblock_nr_pages - 1)))
  2546. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2547. INIT_LIST_HEAD(&page->lru);
  2548. #ifdef WANT_PAGE_VIRTUAL
  2549. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2550. if (!is_highmem_idx(zone))
  2551. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2552. #endif
  2553. }
  2554. }
  2555. static void __meminit zone_init_free_lists(struct zone *zone)
  2556. {
  2557. int order, t;
  2558. for_each_migratetype_order(order, t) {
  2559. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2560. zone->free_area[order].nr_free = 0;
  2561. }
  2562. }
  2563. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2564. #define memmap_init(size, nid, zone, start_pfn) \
  2565. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2566. #endif
  2567. static int zone_batchsize(struct zone *zone)
  2568. {
  2569. #ifdef CONFIG_MMU
  2570. int batch;
  2571. /*
  2572. * The per-cpu-pages pools are set to around 1000th of the
  2573. * size of the zone. But no more than 1/2 of a meg.
  2574. *
  2575. * OK, so we don't know how big the cache is. So guess.
  2576. */
  2577. batch = zone->present_pages / 1024;
  2578. if (batch * PAGE_SIZE > 512 * 1024)
  2579. batch = (512 * 1024) / PAGE_SIZE;
  2580. batch /= 4; /* We effectively *= 4 below */
  2581. if (batch < 1)
  2582. batch = 1;
  2583. /*
  2584. * Clamp the batch to a 2^n - 1 value. Having a power
  2585. * of 2 value was found to be more likely to have
  2586. * suboptimal cache aliasing properties in some cases.
  2587. *
  2588. * For example if 2 tasks are alternately allocating
  2589. * batches of pages, one task can end up with a lot
  2590. * of pages of one half of the possible page colors
  2591. * and the other with pages of the other colors.
  2592. */
  2593. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2594. return batch;
  2595. #else
  2596. /* The deferral and batching of frees should be suppressed under NOMMU
  2597. * conditions.
  2598. *
  2599. * The problem is that NOMMU needs to be able to allocate large chunks
  2600. * of contiguous memory as there's no hardware page translation to
  2601. * assemble apparent contiguous memory from discontiguous pages.
  2602. *
  2603. * Queueing large contiguous runs of pages for batching, however,
  2604. * causes the pages to actually be freed in smaller chunks. As there
  2605. * can be a significant delay between the individual batches being
  2606. * recycled, this leads to the once large chunks of space being
  2607. * fragmented and becoming unavailable for high-order allocations.
  2608. */
  2609. return 0;
  2610. #endif
  2611. }
  2612. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2613. {
  2614. struct per_cpu_pages *pcp;
  2615. memset(p, 0, sizeof(*p));
  2616. pcp = &p->pcp;
  2617. pcp->count = 0;
  2618. pcp->high = 6 * batch;
  2619. pcp->batch = max(1UL, 1 * batch);
  2620. INIT_LIST_HEAD(&pcp->list);
  2621. }
  2622. /*
  2623. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2624. * to the value high for the pageset p.
  2625. */
  2626. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2627. unsigned long high)
  2628. {
  2629. struct per_cpu_pages *pcp;
  2630. pcp = &p->pcp;
  2631. pcp->high = high;
  2632. pcp->batch = max(1UL, high/4);
  2633. if ((high/4) > (PAGE_SHIFT * 8))
  2634. pcp->batch = PAGE_SHIFT * 8;
  2635. }
  2636. #ifdef CONFIG_NUMA
  2637. /*
  2638. * Boot pageset table. One per cpu which is going to be used for all
  2639. * zones and all nodes. The parameters will be set in such a way
  2640. * that an item put on a list will immediately be handed over to
  2641. * the buddy list. This is safe since pageset manipulation is done
  2642. * with interrupts disabled.
  2643. *
  2644. * Some NUMA counter updates may also be caught by the boot pagesets.
  2645. *
  2646. * The boot_pagesets must be kept even after bootup is complete for
  2647. * unused processors and/or zones. They do play a role for bootstrapping
  2648. * hotplugged processors.
  2649. *
  2650. * zoneinfo_show() and maybe other functions do
  2651. * not check if the processor is online before following the pageset pointer.
  2652. * Other parts of the kernel may not check if the zone is available.
  2653. */
  2654. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2655. /*
  2656. * Dynamically allocate memory for the
  2657. * per cpu pageset array in struct zone.
  2658. */
  2659. static int __cpuinit process_zones(int cpu)
  2660. {
  2661. struct zone *zone, *dzone;
  2662. int node = cpu_to_node(cpu);
  2663. node_set_state(node, N_CPU); /* this node has a cpu */
  2664. for_each_populated_zone(zone) {
  2665. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2666. GFP_KERNEL, node);
  2667. if (!zone_pcp(zone, cpu))
  2668. goto bad;
  2669. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2670. if (percpu_pagelist_fraction)
  2671. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2672. (zone->present_pages / percpu_pagelist_fraction));
  2673. }
  2674. return 0;
  2675. bad:
  2676. for_each_zone(dzone) {
  2677. if (!populated_zone(dzone))
  2678. continue;
  2679. if (dzone == zone)
  2680. break;
  2681. kfree(zone_pcp(dzone, cpu));
  2682. zone_pcp(dzone, cpu) = &boot_pageset[cpu];
  2683. }
  2684. return -ENOMEM;
  2685. }
  2686. static inline void free_zone_pagesets(int cpu)
  2687. {
  2688. struct zone *zone;
  2689. for_each_zone(zone) {
  2690. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2691. /* Free per_cpu_pageset if it is slab allocated */
  2692. if (pset != &boot_pageset[cpu])
  2693. kfree(pset);
  2694. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2695. }
  2696. }
  2697. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2698. unsigned long action,
  2699. void *hcpu)
  2700. {
  2701. int cpu = (long)hcpu;
  2702. int ret = NOTIFY_OK;
  2703. switch (action) {
  2704. case CPU_UP_PREPARE:
  2705. case CPU_UP_PREPARE_FROZEN:
  2706. if (process_zones(cpu))
  2707. ret = NOTIFY_BAD;
  2708. break;
  2709. case CPU_UP_CANCELED:
  2710. case CPU_UP_CANCELED_FROZEN:
  2711. case CPU_DEAD:
  2712. case CPU_DEAD_FROZEN:
  2713. free_zone_pagesets(cpu);
  2714. break;
  2715. default:
  2716. break;
  2717. }
  2718. return ret;
  2719. }
  2720. static struct notifier_block __cpuinitdata pageset_notifier =
  2721. { &pageset_cpuup_callback, NULL, 0 };
  2722. void __init setup_per_cpu_pageset(void)
  2723. {
  2724. int err;
  2725. /* Initialize per_cpu_pageset for cpu 0.
  2726. * A cpuup callback will do this for every cpu
  2727. * as it comes online
  2728. */
  2729. err = process_zones(smp_processor_id());
  2730. BUG_ON(err);
  2731. register_cpu_notifier(&pageset_notifier);
  2732. }
  2733. #endif
  2734. static noinline __init_refok
  2735. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2736. {
  2737. int i;
  2738. struct pglist_data *pgdat = zone->zone_pgdat;
  2739. size_t alloc_size;
  2740. /*
  2741. * The per-page waitqueue mechanism uses hashed waitqueues
  2742. * per zone.
  2743. */
  2744. zone->wait_table_hash_nr_entries =
  2745. wait_table_hash_nr_entries(zone_size_pages);
  2746. zone->wait_table_bits =
  2747. wait_table_bits(zone->wait_table_hash_nr_entries);
  2748. alloc_size = zone->wait_table_hash_nr_entries
  2749. * sizeof(wait_queue_head_t);
  2750. if (!slab_is_available()) {
  2751. zone->wait_table = (wait_queue_head_t *)
  2752. alloc_bootmem_node(pgdat, alloc_size);
  2753. } else {
  2754. /*
  2755. * This case means that a zone whose size was 0 gets new memory
  2756. * via memory hot-add.
  2757. * But it may be the case that a new node was hot-added. In
  2758. * this case vmalloc() will not be able to use this new node's
  2759. * memory - this wait_table must be initialized to use this new
  2760. * node itself as well.
  2761. * To use this new node's memory, further consideration will be
  2762. * necessary.
  2763. */
  2764. zone->wait_table = vmalloc(alloc_size);
  2765. }
  2766. if (!zone->wait_table)
  2767. return -ENOMEM;
  2768. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2769. init_waitqueue_head(zone->wait_table + i);
  2770. return 0;
  2771. }
  2772. static int __zone_pcp_update(void *data)
  2773. {
  2774. struct zone *zone = data;
  2775. int cpu;
  2776. unsigned long batch = zone_batchsize(zone), flags;
  2777. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2778. struct per_cpu_pageset *pset;
  2779. struct per_cpu_pages *pcp;
  2780. pset = zone_pcp(zone, cpu);
  2781. pcp = &pset->pcp;
  2782. local_irq_save(flags);
  2783. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  2784. setup_pageset(pset, batch);
  2785. local_irq_restore(flags);
  2786. }
  2787. return 0;
  2788. }
  2789. void zone_pcp_update(struct zone *zone)
  2790. {
  2791. stop_machine(__zone_pcp_update, zone, NULL);
  2792. }
  2793. static __meminit void zone_pcp_init(struct zone *zone)
  2794. {
  2795. int cpu;
  2796. unsigned long batch = zone_batchsize(zone);
  2797. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2798. #ifdef CONFIG_NUMA
  2799. /* Early boot. Slab allocator not functional yet */
  2800. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2801. setup_pageset(&boot_pageset[cpu],0);
  2802. #else
  2803. setup_pageset(zone_pcp(zone,cpu), batch);
  2804. #endif
  2805. }
  2806. if (zone->present_pages)
  2807. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2808. zone->name, zone->present_pages, batch);
  2809. }
  2810. __meminit int init_currently_empty_zone(struct zone *zone,
  2811. unsigned long zone_start_pfn,
  2812. unsigned long size,
  2813. enum memmap_context context)
  2814. {
  2815. struct pglist_data *pgdat = zone->zone_pgdat;
  2816. int ret;
  2817. ret = zone_wait_table_init(zone, size);
  2818. if (ret)
  2819. return ret;
  2820. pgdat->nr_zones = zone_idx(zone) + 1;
  2821. zone->zone_start_pfn = zone_start_pfn;
  2822. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2823. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2824. pgdat->node_id,
  2825. (unsigned long)zone_idx(zone),
  2826. zone_start_pfn, (zone_start_pfn + size));
  2827. zone_init_free_lists(zone);
  2828. return 0;
  2829. }
  2830. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2831. /*
  2832. * Basic iterator support. Return the first range of PFNs for a node
  2833. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2834. */
  2835. static int __meminit first_active_region_index_in_nid(int nid)
  2836. {
  2837. int i;
  2838. for (i = 0; i < nr_nodemap_entries; i++)
  2839. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2840. return i;
  2841. return -1;
  2842. }
  2843. /*
  2844. * Basic iterator support. Return the next active range of PFNs for a node
  2845. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2846. */
  2847. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2848. {
  2849. for (index = index + 1; index < nr_nodemap_entries; index++)
  2850. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2851. return index;
  2852. return -1;
  2853. }
  2854. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2855. /*
  2856. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2857. * Architectures may implement their own version but if add_active_range()
  2858. * was used and there are no special requirements, this is a convenient
  2859. * alternative
  2860. */
  2861. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2862. {
  2863. int i;
  2864. for (i = 0; i < nr_nodemap_entries; i++) {
  2865. unsigned long start_pfn = early_node_map[i].start_pfn;
  2866. unsigned long end_pfn = early_node_map[i].end_pfn;
  2867. if (start_pfn <= pfn && pfn < end_pfn)
  2868. return early_node_map[i].nid;
  2869. }
  2870. /* This is a memory hole */
  2871. return -1;
  2872. }
  2873. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2874. int __meminit early_pfn_to_nid(unsigned long pfn)
  2875. {
  2876. int nid;
  2877. nid = __early_pfn_to_nid(pfn);
  2878. if (nid >= 0)
  2879. return nid;
  2880. /* just returns 0 */
  2881. return 0;
  2882. }
  2883. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2884. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2885. {
  2886. int nid;
  2887. nid = __early_pfn_to_nid(pfn);
  2888. if (nid >= 0 && nid != node)
  2889. return false;
  2890. return true;
  2891. }
  2892. #endif
  2893. /* Basic iterator support to walk early_node_map[] */
  2894. #define for_each_active_range_index_in_nid(i, nid) \
  2895. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2896. i = next_active_region_index_in_nid(i, nid))
  2897. /**
  2898. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2899. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2900. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2901. *
  2902. * If an architecture guarantees that all ranges registered with
  2903. * add_active_ranges() contain no holes and may be freed, this
  2904. * this function may be used instead of calling free_bootmem() manually.
  2905. */
  2906. void __init free_bootmem_with_active_regions(int nid,
  2907. unsigned long max_low_pfn)
  2908. {
  2909. int i;
  2910. for_each_active_range_index_in_nid(i, nid) {
  2911. unsigned long size_pages = 0;
  2912. unsigned long end_pfn = early_node_map[i].end_pfn;
  2913. if (early_node_map[i].start_pfn >= max_low_pfn)
  2914. continue;
  2915. if (end_pfn > max_low_pfn)
  2916. end_pfn = max_low_pfn;
  2917. size_pages = end_pfn - early_node_map[i].start_pfn;
  2918. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2919. PFN_PHYS(early_node_map[i].start_pfn),
  2920. size_pages << PAGE_SHIFT);
  2921. }
  2922. }
  2923. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2924. {
  2925. int i;
  2926. int ret;
  2927. for_each_active_range_index_in_nid(i, nid) {
  2928. ret = work_fn(early_node_map[i].start_pfn,
  2929. early_node_map[i].end_pfn, data);
  2930. if (ret)
  2931. break;
  2932. }
  2933. }
  2934. /**
  2935. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2936. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2937. *
  2938. * If an architecture guarantees that all ranges registered with
  2939. * add_active_ranges() contain no holes and may be freed, this
  2940. * function may be used instead of calling memory_present() manually.
  2941. */
  2942. void __init sparse_memory_present_with_active_regions(int nid)
  2943. {
  2944. int i;
  2945. for_each_active_range_index_in_nid(i, nid)
  2946. memory_present(early_node_map[i].nid,
  2947. early_node_map[i].start_pfn,
  2948. early_node_map[i].end_pfn);
  2949. }
  2950. /**
  2951. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2952. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2953. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2954. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2955. *
  2956. * It returns the start and end page frame of a node based on information
  2957. * provided by an arch calling add_active_range(). If called for a node
  2958. * with no available memory, a warning is printed and the start and end
  2959. * PFNs will be 0.
  2960. */
  2961. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2962. unsigned long *start_pfn, unsigned long *end_pfn)
  2963. {
  2964. int i;
  2965. *start_pfn = -1UL;
  2966. *end_pfn = 0;
  2967. for_each_active_range_index_in_nid(i, nid) {
  2968. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2969. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2970. }
  2971. if (*start_pfn == -1UL)
  2972. *start_pfn = 0;
  2973. }
  2974. /*
  2975. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2976. * assumption is made that zones within a node are ordered in monotonic
  2977. * increasing memory addresses so that the "highest" populated zone is used
  2978. */
  2979. static void __init find_usable_zone_for_movable(void)
  2980. {
  2981. int zone_index;
  2982. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2983. if (zone_index == ZONE_MOVABLE)
  2984. continue;
  2985. if (arch_zone_highest_possible_pfn[zone_index] >
  2986. arch_zone_lowest_possible_pfn[zone_index])
  2987. break;
  2988. }
  2989. VM_BUG_ON(zone_index == -1);
  2990. movable_zone = zone_index;
  2991. }
  2992. /*
  2993. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2994. * because it is sized independant of architecture. Unlike the other zones,
  2995. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2996. * in each node depending on the size of each node and how evenly kernelcore
  2997. * is distributed. This helper function adjusts the zone ranges
  2998. * provided by the architecture for a given node by using the end of the
  2999. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3000. * zones within a node are in order of monotonic increases memory addresses
  3001. */
  3002. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3003. unsigned long zone_type,
  3004. unsigned long node_start_pfn,
  3005. unsigned long node_end_pfn,
  3006. unsigned long *zone_start_pfn,
  3007. unsigned long *zone_end_pfn)
  3008. {
  3009. /* Only adjust if ZONE_MOVABLE is on this node */
  3010. if (zone_movable_pfn[nid]) {
  3011. /* Size ZONE_MOVABLE */
  3012. if (zone_type == ZONE_MOVABLE) {
  3013. *zone_start_pfn = zone_movable_pfn[nid];
  3014. *zone_end_pfn = min(node_end_pfn,
  3015. arch_zone_highest_possible_pfn[movable_zone]);
  3016. /* Adjust for ZONE_MOVABLE starting within this range */
  3017. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3018. *zone_end_pfn > zone_movable_pfn[nid]) {
  3019. *zone_end_pfn = zone_movable_pfn[nid];
  3020. /* Check if this whole range is within ZONE_MOVABLE */
  3021. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3022. *zone_start_pfn = *zone_end_pfn;
  3023. }
  3024. }
  3025. /*
  3026. * Return the number of pages a zone spans in a node, including holes
  3027. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3028. */
  3029. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3030. unsigned long zone_type,
  3031. unsigned long *ignored)
  3032. {
  3033. unsigned long node_start_pfn, node_end_pfn;
  3034. unsigned long zone_start_pfn, zone_end_pfn;
  3035. /* Get the start and end of the node and zone */
  3036. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3037. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3038. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3039. adjust_zone_range_for_zone_movable(nid, zone_type,
  3040. node_start_pfn, node_end_pfn,
  3041. &zone_start_pfn, &zone_end_pfn);
  3042. /* Check that this node has pages within the zone's required range */
  3043. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3044. return 0;
  3045. /* Move the zone boundaries inside the node if necessary */
  3046. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3047. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3048. /* Return the spanned pages */
  3049. return zone_end_pfn - zone_start_pfn;
  3050. }
  3051. /*
  3052. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3053. * then all holes in the requested range will be accounted for.
  3054. */
  3055. static unsigned long __meminit __absent_pages_in_range(int nid,
  3056. unsigned long range_start_pfn,
  3057. unsigned long range_end_pfn)
  3058. {
  3059. int i = 0;
  3060. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3061. unsigned long start_pfn;
  3062. /* Find the end_pfn of the first active range of pfns in the node */
  3063. i = first_active_region_index_in_nid(nid);
  3064. if (i == -1)
  3065. return 0;
  3066. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3067. /* Account for ranges before physical memory on this node */
  3068. if (early_node_map[i].start_pfn > range_start_pfn)
  3069. hole_pages = prev_end_pfn - range_start_pfn;
  3070. /* Find all holes for the zone within the node */
  3071. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3072. /* No need to continue if prev_end_pfn is outside the zone */
  3073. if (prev_end_pfn >= range_end_pfn)
  3074. break;
  3075. /* Make sure the end of the zone is not within the hole */
  3076. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3077. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3078. /* Update the hole size cound and move on */
  3079. if (start_pfn > range_start_pfn) {
  3080. BUG_ON(prev_end_pfn > start_pfn);
  3081. hole_pages += start_pfn - prev_end_pfn;
  3082. }
  3083. prev_end_pfn = early_node_map[i].end_pfn;
  3084. }
  3085. /* Account for ranges past physical memory on this node */
  3086. if (range_end_pfn > prev_end_pfn)
  3087. hole_pages += range_end_pfn -
  3088. max(range_start_pfn, prev_end_pfn);
  3089. return hole_pages;
  3090. }
  3091. /**
  3092. * absent_pages_in_range - Return number of page frames in holes within a range
  3093. * @start_pfn: The start PFN to start searching for holes
  3094. * @end_pfn: The end PFN to stop searching for holes
  3095. *
  3096. * It returns the number of pages frames in memory holes within a range.
  3097. */
  3098. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3099. unsigned long end_pfn)
  3100. {
  3101. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3102. }
  3103. /* Return the number of page frames in holes in a zone on a node */
  3104. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3105. unsigned long zone_type,
  3106. unsigned long *ignored)
  3107. {
  3108. unsigned long node_start_pfn, node_end_pfn;
  3109. unsigned long zone_start_pfn, zone_end_pfn;
  3110. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3111. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3112. node_start_pfn);
  3113. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3114. node_end_pfn);
  3115. adjust_zone_range_for_zone_movable(nid, zone_type,
  3116. node_start_pfn, node_end_pfn,
  3117. &zone_start_pfn, &zone_end_pfn);
  3118. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3119. }
  3120. #else
  3121. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3122. unsigned long zone_type,
  3123. unsigned long *zones_size)
  3124. {
  3125. return zones_size[zone_type];
  3126. }
  3127. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3128. unsigned long zone_type,
  3129. unsigned long *zholes_size)
  3130. {
  3131. if (!zholes_size)
  3132. return 0;
  3133. return zholes_size[zone_type];
  3134. }
  3135. #endif
  3136. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3137. unsigned long *zones_size, unsigned long *zholes_size)
  3138. {
  3139. unsigned long realtotalpages, totalpages = 0;
  3140. enum zone_type i;
  3141. for (i = 0; i < MAX_NR_ZONES; i++)
  3142. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3143. zones_size);
  3144. pgdat->node_spanned_pages = totalpages;
  3145. realtotalpages = totalpages;
  3146. for (i = 0; i < MAX_NR_ZONES; i++)
  3147. realtotalpages -=
  3148. zone_absent_pages_in_node(pgdat->node_id, i,
  3149. zholes_size);
  3150. pgdat->node_present_pages = realtotalpages;
  3151. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3152. realtotalpages);
  3153. }
  3154. #ifndef CONFIG_SPARSEMEM
  3155. /*
  3156. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3157. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3158. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3159. * round what is now in bits to nearest long in bits, then return it in
  3160. * bytes.
  3161. */
  3162. static unsigned long __init usemap_size(unsigned long zonesize)
  3163. {
  3164. unsigned long usemapsize;
  3165. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3166. usemapsize = usemapsize >> pageblock_order;
  3167. usemapsize *= NR_PAGEBLOCK_BITS;
  3168. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3169. return usemapsize / 8;
  3170. }
  3171. static void __init setup_usemap(struct pglist_data *pgdat,
  3172. struct zone *zone, unsigned long zonesize)
  3173. {
  3174. unsigned long usemapsize = usemap_size(zonesize);
  3175. zone->pageblock_flags = NULL;
  3176. if (usemapsize)
  3177. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3178. }
  3179. #else
  3180. static void inline setup_usemap(struct pglist_data *pgdat,
  3181. struct zone *zone, unsigned long zonesize) {}
  3182. #endif /* CONFIG_SPARSEMEM */
  3183. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3184. /* Return a sensible default order for the pageblock size. */
  3185. static inline int pageblock_default_order(void)
  3186. {
  3187. if (HPAGE_SHIFT > PAGE_SHIFT)
  3188. return HUGETLB_PAGE_ORDER;
  3189. return MAX_ORDER-1;
  3190. }
  3191. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3192. static inline void __init set_pageblock_order(unsigned int order)
  3193. {
  3194. /* Check that pageblock_nr_pages has not already been setup */
  3195. if (pageblock_order)
  3196. return;
  3197. /*
  3198. * Assume the largest contiguous order of interest is a huge page.
  3199. * This value may be variable depending on boot parameters on IA64
  3200. */
  3201. pageblock_order = order;
  3202. }
  3203. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3204. /*
  3205. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3206. * and pageblock_default_order() are unused as pageblock_order is set
  3207. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3208. * pageblock_order based on the kernel config
  3209. */
  3210. static inline int pageblock_default_order(unsigned int order)
  3211. {
  3212. return MAX_ORDER-1;
  3213. }
  3214. #define set_pageblock_order(x) do {} while (0)
  3215. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3216. /*
  3217. * Set up the zone data structures:
  3218. * - mark all pages reserved
  3219. * - mark all memory queues empty
  3220. * - clear the memory bitmaps
  3221. */
  3222. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3223. unsigned long *zones_size, unsigned long *zholes_size)
  3224. {
  3225. enum zone_type j;
  3226. int nid = pgdat->node_id;
  3227. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3228. int ret;
  3229. pgdat_resize_init(pgdat);
  3230. pgdat->nr_zones = 0;
  3231. init_waitqueue_head(&pgdat->kswapd_wait);
  3232. pgdat->kswapd_max_order = 0;
  3233. pgdat_page_cgroup_init(pgdat);
  3234. for (j = 0; j < MAX_NR_ZONES; j++) {
  3235. struct zone *zone = pgdat->node_zones + j;
  3236. unsigned long size, realsize, memmap_pages;
  3237. enum lru_list l;
  3238. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3239. realsize = size - zone_absent_pages_in_node(nid, j,
  3240. zholes_size);
  3241. /*
  3242. * Adjust realsize so that it accounts for how much memory
  3243. * is used by this zone for memmap. This affects the watermark
  3244. * and per-cpu initialisations
  3245. */
  3246. memmap_pages =
  3247. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3248. if (realsize >= memmap_pages) {
  3249. realsize -= memmap_pages;
  3250. if (memmap_pages)
  3251. printk(KERN_DEBUG
  3252. " %s zone: %lu pages used for memmap\n",
  3253. zone_names[j], memmap_pages);
  3254. } else
  3255. printk(KERN_WARNING
  3256. " %s zone: %lu pages exceeds realsize %lu\n",
  3257. zone_names[j], memmap_pages, realsize);
  3258. /* Account for reserved pages */
  3259. if (j == 0 && realsize > dma_reserve) {
  3260. realsize -= dma_reserve;
  3261. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3262. zone_names[0], dma_reserve);
  3263. }
  3264. if (!is_highmem_idx(j))
  3265. nr_kernel_pages += realsize;
  3266. nr_all_pages += realsize;
  3267. zone->spanned_pages = size;
  3268. zone->present_pages = realsize;
  3269. #ifdef CONFIG_NUMA
  3270. zone->node = nid;
  3271. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3272. / 100;
  3273. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3274. #endif
  3275. zone->name = zone_names[j];
  3276. spin_lock_init(&zone->lock);
  3277. spin_lock_init(&zone->lru_lock);
  3278. zone_seqlock_init(zone);
  3279. zone->zone_pgdat = pgdat;
  3280. zone->prev_priority = DEF_PRIORITY;
  3281. zone_pcp_init(zone);
  3282. for_each_lru(l) {
  3283. INIT_LIST_HEAD(&zone->lru[l].list);
  3284. zone->lru[l].nr_saved_scan = 0;
  3285. }
  3286. zone->reclaim_stat.recent_rotated[0] = 0;
  3287. zone->reclaim_stat.recent_rotated[1] = 0;
  3288. zone->reclaim_stat.recent_scanned[0] = 0;
  3289. zone->reclaim_stat.recent_scanned[1] = 0;
  3290. zap_zone_vm_stats(zone);
  3291. zone->flags = 0;
  3292. if (!size)
  3293. continue;
  3294. set_pageblock_order(pageblock_default_order());
  3295. setup_usemap(pgdat, zone, size);
  3296. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3297. size, MEMMAP_EARLY);
  3298. BUG_ON(ret);
  3299. memmap_init(size, nid, j, zone_start_pfn);
  3300. zone_start_pfn += size;
  3301. }
  3302. }
  3303. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3304. {
  3305. /* Skip empty nodes */
  3306. if (!pgdat->node_spanned_pages)
  3307. return;
  3308. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3309. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3310. if (!pgdat->node_mem_map) {
  3311. unsigned long size, start, end;
  3312. struct page *map;
  3313. /*
  3314. * The zone's endpoints aren't required to be MAX_ORDER
  3315. * aligned but the node_mem_map endpoints must be in order
  3316. * for the buddy allocator to function correctly.
  3317. */
  3318. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3319. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3320. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3321. size = (end - start) * sizeof(struct page);
  3322. map = alloc_remap(pgdat->node_id, size);
  3323. if (!map)
  3324. map = alloc_bootmem_node(pgdat, size);
  3325. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3326. }
  3327. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3328. /*
  3329. * With no DISCONTIG, the global mem_map is just set as node 0's
  3330. */
  3331. if (pgdat == NODE_DATA(0)) {
  3332. mem_map = NODE_DATA(0)->node_mem_map;
  3333. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3334. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3335. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3336. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3337. }
  3338. #endif
  3339. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3340. }
  3341. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3342. unsigned long node_start_pfn, unsigned long *zholes_size)
  3343. {
  3344. pg_data_t *pgdat = NODE_DATA(nid);
  3345. pgdat->node_id = nid;
  3346. pgdat->node_start_pfn = node_start_pfn;
  3347. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3348. alloc_node_mem_map(pgdat);
  3349. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3350. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3351. nid, (unsigned long)pgdat,
  3352. (unsigned long)pgdat->node_mem_map);
  3353. #endif
  3354. free_area_init_core(pgdat, zones_size, zholes_size);
  3355. }
  3356. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3357. #if MAX_NUMNODES > 1
  3358. /*
  3359. * Figure out the number of possible node ids.
  3360. */
  3361. static void __init setup_nr_node_ids(void)
  3362. {
  3363. unsigned int node;
  3364. unsigned int highest = 0;
  3365. for_each_node_mask(node, node_possible_map)
  3366. highest = node;
  3367. nr_node_ids = highest + 1;
  3368. }
  3369. #else
  3370. static inline void setup_nr_node_ids(void)
  3371. {
  3372. }
  3373. #endif
  3374. /**
  3375. * add_active_range - Register a range of PFNs backed by physical memory
  3376. * @nid: The node ID the range resides on
  3377. * @start_pfn: The start PFN of the available physical memory
  3378. * @end_pfn: The end PFN of the available physical memory
  3379. *
  3380. * These ranges are stored in an early_node_map[] and later used by
  3381. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3382. * range spans a memory hole, it is up to the architecture to ensure
  3383. * the memory is not freed by the bootmem allocator. If possible
  3384. * the range being registered will be merged with existing ranges.
  3385. */
  3386. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3387. unsigned long end_pfn)
  3388. {
  3389. int i;
  3390. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3391. "Entering add_active_range(%d, %#lx, %#lx) "
  3392. "%d entries of %d used\n",
  3393. nid, start_pfn, end_pfn,
  3394. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3395. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3396. /* Merge with existing active regions if possible */
  3397. for (i = 0; i < nr_nodemap_entries; i++) {
  3398. if (early_node_map[i].nid != nid)
  3399. continue;
  3400. /* Skip if an existing region covers this new one */
  3401. if (start_pfn >= early_node_map[i].start_pfn &&
  3402. end_pfn <= early_node_map[i].end_pfn)
  3403. return;
  3404. /* Merge forward if suitable */
  3405. if (start_pfn <= early_node_map[i].end_pfn &&
  3406. end_pfn > early_node_map[i].end_pfn) {
  3407. early_node_map[i].end_pfn = end_pfn;
  3408. return;
  3409. }
  3410. /* Merge backward if suitable */
  3411. if (start_pfn < early_node_map[i].end_pfn &&
  3412. end_pfn >= early_node_map[i].start_pfn) {
  3413. early_node_map[i].start_pfn = start_pfn;
  3414. return;
  3415. }
  3416. }
  3417. /* Check that early_node_map is large enough */
  3418. if (i >= MAX_ACTIVE_REGIONS) {
  3419. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3420. MAX_ACTIVE_REGIONS);
  3421. return;
  3422. }
  3423. early_node_map[i].nid = nid;
  3424. early_node_map[i].start_pfn = start_pfn;
  3425. early_node_map[i].end_pfn = end_pfn;
  3426. nr_nodemap_entries = i + 1;
  3427. }
  3428. /**
  3429. * remove_active_range - Shrink an existing registered range of PFNs
  3430. * @nid: The node id the range is on that should be shrunk
  3431. * @start_pfn: The new PFN of the range
  3432. * @end_pfn: The new PFN of the range
  3433. *
  3434. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3435. * The map is kept near the end physical page range that has already been
  3436. * registered. This function allows an arch to shrink an existing registered
  3437. * range.
  3438. */
  3439. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3440. unsigned long end_pfn)
  3441. {
  3442. int i, j;
  3443. int removed = 0;
  3444. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3445. nid, start_pfn, end_pfn);
  3446. /* Find the old active region end and shrink */
  3447. for_each_active_range_index_in_nid(i, nid) {
  3448. if (early_node_map[i].start_pfn >= start_pfn &&
  3449. early_node_map[i].end_pfn <= end_pfn) {
  3450. /* clear it */
  3451. early_node_map[i].start_pfn = 0;
  3452. early_node_map[i].end_pfn = 0;
  3453. removed = 1;
  3454. continue;
  3455. }
  3456. if (early_node_map[i].start_pfn < start_pfn &&
  3457. early_node_map[i].end_pfn > start_pfn) {
  3458. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3459. early_node_map[i].end_pfn = start_pfn;
  3460. if (temp_end_pfn > end_pfn)
  3461. add_active_range(nid, end_pfn, temp_end_pfn);
  3462. continue;
  3463. }
  3464. if (early_node_map[i].start_pfn >= start_pfn &&
  3465. early_node_map[i].end_pfn > end_pfn &&
  3466. early_node_map[i].start_pfn < end_pfn) {
  3467. early_node_map[i].start_pfn = end_pfn;
  3468. continue;
  3469. }
  3470. }
  3471. if (!removed)
  3472. return;
  3473. /* remove the blank ones */
  3474. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3475. if (early_node_map[i].nid != nid)
  3476. continue;
  3477. if (early_node_map[i].end_pfn)
  3478. continue;
  3479. /* we found it, get rid of it */
  3480. for (j = i; j < nr_nodemap_entries - 1; j++)
  3481. memcpy(&early_node_map[j], &early_node_map[j+1],
  3482. sizeof(early_node_map[j]));
  3483. j = nr_nodemap_entries - 1;
  3484. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3485. nr_nodemap_entries--;
  3486. }
  3487. }
  3488. /**
  3489. * remove_all_active_ranges - Remove all currently registered regions
  3490. *
  3491. * During discovery, it may be found that a table like SRAT is invalid
  3492. * and an alternative discovery method must be used. This function removes
  3493. * all currently registered regions.
  3494. */
  3495. void __init remove_all_active_ranges(void)
  3496. {
  3497. memset(early_node_map, 0, sizeof(early_node_map));
  3498. nr_nodemap_entries = 0;
  3499. }
  3500. /* Compare two active node_active_regions */
  3501. static int __init cmp_node_active_region(const void *a, const void *b)
  3502. {
  3503. struct node_active_region *arange = (struct node_active_region *)a;
  3504. struct node_active_region *brange = (struct node_active_region *)b;
  3505. /* Done this way to avoid overflows */
  3506. if (arange->start_pfn > brange->start_pfn)
  3507. return 1;
  3508. if (arange->start_pfn < brange->start_pfn)
  3509. return -1;
  3510. return 0;
  3511. }
  3512. /* sort the node_map by start_pfn */
  3513. static void __init sort_node_map(void)
  3514. {
  3515. sort(early_node_map, (size_t)nr_nodemap_entries,
  3516. sizeof(struct node_active_region),
  3517. cmp_node_active_region, NULL);
  3518. }
  3519. /* Find the lowest pfn for a node */
  3520. static unsigned long __init find_min_pfn_for_node(int nid)
  3521. {
  3522. int i;
  3523. unsigned long min_pfn = ULONG_MAX;
  3524. /* Assuming a sorted map, the first range found has the starting pfn */
  3525. for_each_active_range_index_in_nid(i, nid)
  3526. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3527. if (min_pfn == ULONG_MAX) {
  3528. printk(KERN_WARNING
  3529. "Could not find start_pfn for node %d\n", nid);
  3530. return 0;
  3531. }
  3532. return min_pfn;
  3533. }
  3534. /**
  3535. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3536. *
  3537. * It returns the minimum PFN based on information provided via
  3538. * add_active_range().
  3539. */
  3540. unsigned long __init find_min_pfn_with_active_regions(void)
  3541. {
  3542. return find_min_pfn_for_node(MAX_NUMNODES);
  3543. }
  3544. /*
  3545. * early_calculate_totalpages()
  3546. * Sum pages in active regions for movable zone.
  3547. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3548. */
  3549. static unsigned long __init early_calculate_totalpages(void)
  3550. {
  3551. int i;
  3552. unsigned long totalpages = 0;
  3553. for (i = 0; i < nr_nodemap_entries; i++) {
  3554. unsigned long pages = early_node_map[i].end_pfn -
  3555. early_node_map[i].start_pfn;
  3556. totalpages += pages;
  3557. if (pages)
  3558. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3559. }
  3560. return totalpages;
  3561. }
  3562. /*
  3563. * Find the PFN the Movable zone begins in each node. Kernel memory
  3564. * is spread evenly between nodes as long as the nodes have enough
  3565. * memory. When they don't, some nodes will have more kernelcore than
  3566. * others
  3567. */
  3568. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3569. {
  3570. int i, nid;
  3571. unsigned long usable_startpfn;
  3572. unsigned long kernelcore_node, kernelcore_remaining;
  3573. /* save the state before borrow the nodemask */
  3574. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3575. unsigned long totalpages = early_calculate_totalpages();
  3576. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3577. /*
  3578. * If movablecore was specified, calculate what size of
  3579. * kernelcore that corresponds so that memory usable for
  3580. * any allocation type is evenly spread. If both kernelcore
  3581. * and movablecore are specified, then the value of kernelcore
  3582. * will be used for required_kernelcore if it's greater than
  3583. * what movablecore would have allowed.
  3584. */
  3585. if (required_movablecore) {
  3586. unsigned long corepages;
  3587. /*
  3588. * Round-up so that ZONE_MOVABLE is at least as large as what
  3589. * was requested by the user
  3590. */
  3591. required_movablecore =
  3592. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3593. corepages = totalpages - required_movablecore;
  3594. required_kernelcore = max(required_kernelcore, corepages);
  3595. }
  3596. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3597. if (!required_kernelcore)
  3598. goto out;
  3599. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3600. find_usable_zone_for_movable();
  3601. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3602. restart:
  3603. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3604. kernelcore_node = required_kernelcore / usable_nodes;
  3605. for_each_node_state(nid, N_HIGH_MEMORY) {
  3606. /*
  3607. * Recalculate kernelcore_node if the division per node
  3608. * now exceeds what is necessary to satisfy the requested
  3609. * amount of memory for the kernel
  3610. */
  3611. if (required_kernelcore < kernelcore_node)
  3612. kernelcore_node = required_kernelcore / usable_nodes;
  3613. /*
  3614. * As the map is walked, we track how much memory is usable
  3615. * by the kernel using kernelcore_remaining. When it is
  3616. * 0, the rest of the node is usable by ZONE_MOVABLE
  3617. */
  3618. kernelcore_remaining = kernelcore_node;
  3619. /* Go through each range of PFNs within this node */
  3620. for_each_active_range_index_in_nid(i, nid) {
  3621. unsigned long start_pfn, end_pfn;
  3622. unsigned long size_pages;
  3623. start_pfn = max(early_node_map[i].start_pfn,
  3624. zone_movable_pfn[nid]);
  3625. end_pfn = early_node_map[i].end_pfn;
  3626. if (start_pfn >= end_pfn)
  3627. continue;
  3628. /* Account for what is only usable for kernelcore */
  3629. if (start_pfn < usable_startpfn) {
  3630. unsigned long kernel_pages;
  3631. kernel_pages = min(end_pfn, usable_startpfn)
  3632. - start_pfn;
  3633. kernelcore_remaining -= min(kernel_pages,
  3634. kernelcore_remaining);
  3635. required_kernelcore -= min(kernel_pages,
  3636. required_kernelcore);
  3637. /* Continue if range is now fully accounted */
  3638. if (end_pfn <= usable_startpfn) {
  3639. /*
  3640. * Push zone_movable_pfn to the end so
  3641. * that if we have to rebalance
  3642. * kernelcore across nodes, we will
  3643. * not double account here
  3644. */
  3645. zone_movable_pfn[nid] = end_pfn;
  3646. continue;
  3647. }
  3648. start_pfn = usable_startpfn;
  3649. }
  3650. /*
  3651. * The usable PFN range for ZONE_MOVABLE is from
  3652. * start_pfn->end_pfn. Calculate size_pages as the
  3653. * number of pages used as kernelcore
  3654. */
  3655. size_pages = end_pfn - start_pfn;
  3656. if (size_pages > kernelcore_remaining)
  3657. size_pages = kernelcore_remaining;
  3658. zone_movable_pfn[nid] = start_pfn + size_pages;
  3659. /*
  3660. * Some kernelcore has been met, update counts and
  3661. * break if the kernelcore for this node has been
  3662. * satisified
  3663. */
  3664. required_kernelcore -= min(required_kernelcore,
  3665. size_pages);
  3666. kernelcore_remaining -= size_pages;
  3667. if (!kernelcore_remaining)
  3668. break;
  3669. }
  3670. }
  3671. /*
  3672. * If there is still required_kernelcore, we do another pass with one
  3673. * less node in the count. This will push zone_movable_pfn[nid] further
  3674. * along on the nodes that still have memory until kernelcore is
  3675. * satisified
  3676. */
  3677. usable_nodes--;
  3678. if (usable_nodes && required_kernelcore > usable_nodes)
  3679. goto restart;
  3680. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3681. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3682. zone_movable_pfn[nid] =
  3683. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3684. out:
  3685. /* restore the node_state */
  3686. node_states[N_HIGH_MEMORY] = saved_node_state;
  3687. }
  3688. /* Any regular memory on that node ? */
  3689. static void check_for_regular_memory(pg_data_t *pgdat)
  3690. {
  3691. #ifdef CONFIG_HIGHMEM
  3692. enum zone_type zone_type;
  3693. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3694. struct zone *zone = &pgdat->node_zones[zone_type];
  3695. if (zone->present_pages)
  3696. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3697. }
  3698. #endif
  3699. }
  3700. /**
  3701. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3702. * @max_zone_pfn: an array of max PFNs for each zone
  3703. *
  3704. * This will call free_area_init_node() for each active node in the system.
  3705. * Using the page ranges provided by add_active_range(), the size of each
  3706. * zone in each node and their holes is calculated. If the maximum PFN
  3707. * between two adjacent zones match, it is assumed that the zone is empty.
  3708. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3709. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3710. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3711. * at arch_max_dma_pfn.
  3712. */
  3713. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3714. {
  3715. unsigned long nid;
  3716. int i;
  3717. /* Sort early_node_map as initialisation assumes it is sorted */
  3718. sort_node_map();
  3719. /* Record where the zone boundaries are */
  3720. memset(arch_zone_lowest_possible_pfn, 0,
  3721. sizeof(arch_zone_lowest_possible_pfn));
  3722. memset(arch_zone_highest_possible_pfn, 0,
  3723. sizeof(arch_zone_highest_possible_pfn));
  3724. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3725. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3726. for (i = 1; i < MAX_NR_ZONES; i++) {
  3727. if (i == ZONE_MOVABLE)
  3728. continue;
  3729. arch_zone_lowest_possible_pfn[i] =
  3730. arch_zone_highest_possible_pfn[i-1];
  3731. arch_zone_highest_possible_pfn[i] =
  3732. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3733. }
  3734. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3735. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3736. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3737. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3738. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3739. /* Print out the zone ranges */
  3740. printk("Zone PFN ranges:\n");
  3741. for (i = 0; i < MAX_NR_ZONES; i++) {
  3742. if (i == ZONE_MOVABLE)
  3743. continue;
  3744. printk(" %-8s %0#10lx -> %0#10lx\n",
  3745. zone_names[i],
  3746. arch_zone_lowest_possible_pfn[i],
  3747. arch_zone_highest_possible_pfn[i]);
  3748. }
  3749. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3750. printk("Movable zone start PFN for each node\n");
  3751. for (i = 0; i < MAX_NUMNODES; i++) {
  3752. if (zone_movable_pfn[i])
  3753. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3754. }
  3755. /* Print out the early_node_map[] */
  3756. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3757. for (i = 0; i < nr_nodemap_entries; i++)
  3758. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3759. early_node_map[i].start_pfn,
  3760. early_node_map[i].end_pfn);
  3761. /* Initialise every node */
  3762. mminit_verify_pageflags_layout();
  3763. setup_nr_node_ids();
  3764. for_each_online_node(nid) {
  3765. pg_data_t *pgdat = NODE_DATA(nid);
  3766. free_area_init_node(nid, NULL,
  3767. find_min_pfn_for_node(nid), NULL);
  3768. /* Any memory on that node */
  3769. if (pgdat->node_present_pages)
  3770. node_set_state(nid, N_HIGH_MEMORY);
  3771. check_for_regular_memory(pgdat);
  3772. }
  3773. }
  3774. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3775. {
  3776. unsigned long long coremem;
  3777. if (!p)
  3778. return -EINVAL;
  3779. coremem = memparse(p, &p);
  3780. *core = coremem >> PAGE_SHIFT;
  3781. /* Paranoid check that UL is enough for the coremem value */
  3782. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3783. return 0;
  3784. }
  3785. /*
  3786. * kernelcore=size sets the amount of memory for use for allocations that
  3787. * cannot be reclaimed or migrated.
  3788. */
  3789. static int __init cmdline_parse_kernelcore(char *p)
  3790. {
  3791. return cmdline_parse_core(p, &required_kernelcore);
  3792. }
  3793. /*
  3794. * movablecore=size sets the amount of memory for use for allocations that
  3795. * can be reclaimed or migrated.
  3796. */
  3797. static int __init cmdline_parse_movablecore(char *p)
  3798. {
  3799. return cmdline_parse_core(p, &required_movablecore);
  3800. }
  3801. early_param("kernelcore", cmdline_parse_kernelcore);
  3802. early_param("movablecore", cmdline_parse_movablecore);
  3803. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3804. /**
  3805. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3806. * @new_dma_reserve: The number of pages to mark reserved
  3807. *
  3808. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3809. * In the DMA zone, a significant percentage may be consumed by kernel image
  3810. * and other unfreeable allocations which can skew the watermarks badly. This
  3811. * function may optionally be used to account for unfreeable pages in the
  3812. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3813. * smaller per-cpu batchsize.
  3814. */
  3815. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3816. {
  3817. dma_reserve = new_dma_reserve;
  3818. }
  3819. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3820. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3821. EXPORT_SYMBOL(contig_page_data);
  3822. #endif
  3823. void __init free_area_init(unsigned long *zones_size)
  3824. {
  3825. free_area_init_node(0, zones_size,
  3826. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3827. }
  3828. static int page_alloc_cpu_notify(struct notifier_block *self,
  3829. unsigned long action, void *hcpu)
  3830. {
  3831. int cpu = (unsigned long)hcpu;
  3832. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3833. drain_pages(cpu);
  3834. /*
  3835. * Spill the event counters of the dead processor
  3836. * into the current processors event counters.
  3837. * This artificially elevates the count of the current
  3838. * processor.
  3839. */
  3840. vm_events_fold_cpu(cpu);
  3841. /*
  3842. * Zero the differential counters of the dead processor
  3843. * so that the vm statistics are consistent.
  3844. *
  3845. * This is only okay since the processor is dead and cannot
  3846. * race with what we are doing.
  3847. */
  3848. refresh_cpu_vm_stats(cpu);
  3849. }
  3850. return NOTIFY_OK;
  3851. }
  3852. void __init page_alloc_init(void)
  3853. {
  3854. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3855. }
  3856. /*
  3857. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3858. * or min_free_kbytes changes.
  3859. */
  3860. static void calculate_totalreserve_pages(void)
  3861. {
  3862. struct pglist_data *pgdat;
  3863. unsigned long reserve_pages = 0;
  3864. enum zone_type i, j;
  3865. for_each_online_pgdat(pgdat) {
  3866. for (i = 0; i < MAX_NR_ZONES; i++) {
  3867. struct zone *zone = pgdat->node_zones + i;
  3868. unsigned long max = 0;
  3869. /* Find valid and maximum lowmem_reserve in the zone */
  3870. for (j = i; j < MAX_NR_ZONES; j++) {
  3871. if (zone->lowmem_reserve[j] > max)
  3872. max = zone->lowmem_reserve[j];
  3873. }
  3874. /* we treat the high watermark as reserved pages. */
  3875. max += high_wmark_pages(zone);
  3876. if (max > zone->present_pages)
  3877. max = zone->present_pages;
  3878. reserve_pages += max;
  3879. }
  3880. }
  3881. totalreserve_pages = reserve_pages;
  3882. }
  3883. /*
  3884. * setup_per_zone_lowmem_reserve - called whenever
  3885. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3886. * has a correct pages reserved value, so an adequate number of
  3887. * pages are left in the zone after a successful __alloc_pages().
  3888. */
  3889. static void setup_per_zone_lowmem_reserve(void)
  3890. {
  3891. struct pglist_data *pgdat;
  3892. enum zone_type j, idx;
  3893. for_each_online_pgdat(pgdat) {
  3894. for (j = 0; j < MAX_NR_ZONES; j++) {
  3895. struct zone *zone = pgdat->node_zones + j;
  3896. unsigned long present_pages = zone->present_pages;
  3897. zone->lowmem_reserve[j] = 0;
  3898. idx = j;
  3899. while (idx) {
  3900. struct zone *lower_zone;
  3901. idx--;
  3902. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3903. sysctl_lowmem_reserve_ratio[idx] = 1;
  3904. lower_zone = pgdat->node_zones + idx;
  3905. lower_zone->lowmem_reserve[j] = present_pages /
  3906. sysctl_lowmem_reserve_ratio[idx];
  3907. present_pages += lower_zone->present_pages;
  3908. }
  3909. }
  3910. }
  3911. /* update totalreserve_pages */
  3912. calculate_totalreserve_pages();
  3913. }
  3914. /**
  3915. * setup_per_zone_wmarks - called when min_free_kbytes changes
  3916. * or when memory is hot-{added|removed}
  3917. *
  3918. * Ensures that the watermark[min,low,high] values for each zone are set
  3919. * correctly with respect to min_free_kbytes.
  3920. */
  3921. void setup_per_zone_wmarks(void)
  3922. {
  3923. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3924. unsigned long lowmem_pages = 0;
  3925. struct zone *zone;
  3926. unsigned long flags;
  3927. /* Calculate total number of !ZONE_HIGHMEM pages */
  3928. for_each_zone(zone) {
  3929. if (!is_highmem(zone))
  3930. lowmem_pages += zone->present_pages;
  3931. }
  3932. for_each_zone(zone) {
  3933. u64 tmp;
  3934. spin_lock_irqsave(&zone->lock, flags);
  3935. tmp = (u64)pages_min * zone->present_pages;
  3936. do_div(tmp, lowmem_pages);
  3937. if (is_highmem(zone)) {
  3938. /*
  3939. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3940. * need highmem pages, so cap pages_min to a small
  3941. * value here.
  3942. *
  3943. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3944. * deltas controls asynch page reclaim, and so should
  3945. * not be capped for highmem.
  3946. */
  3947. int min_pages;
  3948. min_pages = zone->present_pages / 1024;
  3949. if (min_pages < SWAP_CLUSTER_MAX)
  3950. min_pages = SWAP_CLUSTER_MAX;
  3951. if (min_pages > 128)
  3952. min_pages = 128;
  3953. zone->watermark[WMARK_MIN] = min_pages;
  3954. } else {
  3955. /*
  3956. * If it's a lowmem zone, reserve a number of pages
  3957. * proportionate to the zone's size.
  3958. */
  3959. zone->watermark[WMARK_MIN] = tmp;
  3960. }
  3961. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3962. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3963. setup_zone_migrate_reserve(zone);
  3964. spin_unlock_irqrestore(&zone->lock, flags);
  3965. }
  3966. /* update totalreserve_pages */
  3967. calculate_totalreserve_pages();
  3968. }
  3969. /*
  3970. * The inactive anon list should be small enough that the VM never has to
  3971. * do too much work, but large enough that each inactive page has a chance
  3972. * to be referenced again before it is swapped out.
  3973. *
  3974. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3975. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3976. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3977. * the anonymous pages are kept on the inactive list.
  3978. *
  3979. * total target max
  3980. * memory ratio inactive anon
  3981. * -------------------------------------
  3982. * 10MB 1 5MB
  3983. * 100MB 1 50MB
  3984. * 1GB 3 250MB
  3985. * 10GB 10 0.9GB
  3986. * 100GB 31 3GB
  3987. * 1TB 101 10GB
  3988. * 10TB 320 32GB
  3989. */
  3990. void calculate_zone_inactive_ratio(struct zone *zone)
  3991. {
  3992. unsigned int gb, ratio;
  3993. /* Zone size in gigabytes */
  3994. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3995. if (gb)
  3996. ratio = int_sqrt(10 * gb);
  3997. else
  3998. ratio = 1;
  3999. zone->inactive_ratio = ratio;
  4000. }
  4001. static void __init setup_per_zone_inactive_ratio(void)
  4002. {
  4003. struct zone *zone;
  4004. for_each_zone(zone)
  4005. calculate_zone_inactive_ratio(zone);
  4006. }
  4007. /*
  4008. * Initialise min_free_kbytes.
  4009. *
  4010. * For small machines we want it small (128k min). For large machines
  4011. * we want it large (64MB max). But it is not linear, because network
  4012. * bandwidth does not increase linearly with machine size. We use
  4013. *
  4014. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4015. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4016. *
  4017. * which yields
  4018. *
  4019. * 16MB: 512k
  4020. * 32MB: 724k
  4021. * 64MB: 1024k
  4022. * 128MB: 1448k
  4023. * 256MB: 2048k
  4024. * 512MB: 2896k
  4025. * 1024MB: 4096k
  4026. * 2048MB: 5792k
  4027. * 4096MB: 8192k
  4028. * 8192MB: 11584k
  4029. * 16384MB: 16384k
  4030. */
  4031. static int __init init_per_zone_wmark_min(void)
  4032. {
  4033. unsigned long lowmem_kbytes;
  4034. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4035. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4036. if (min_free_kbytes < 128)
  4037. min_free_kbytes = 128;
  4038. if (min_free_kbytes > 65536)
  4039. min_free_kbytes = 65536;
  4040. setup_per_zone_wmarks();
  4041. setup_per_zone_lowmem_reserve();
  4042. setup_per_zone_inactive_ratio();
  4043. return 0;
  4044. }
  4045. module_init(init_per_zone_wmark_min)
  4046. /*
  4047. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4048. * that we can call two helper functions whenever min_free_kbytes
  4049. * changes.
  4050. */
  4051. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4052. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4053. {
  4054. proc_dointvec(table, write, file, buffer, length, ppos);
  4055. if (write)
  4056. setup_per_zone_wmarks();
  4057. return 0;
  4058. }
  4059. #ifdef CONFIG_NUMA
  4060. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4061. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4062. {
  4063. struct zone *zone;
  4064. int rc;
  4065. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4066. if (rc)
  4067. return rc;
  4068. for_each_zone(zone)
  4069. zone->min_unmapped_pages = (zone->present_pages *
  4070. sysctl_min_unmapped_ratio) / 100;
  4071. return 0;
  4072. }
  4073. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4074. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4075. {
  4076. struct zone *zone;
  4077. int rc;
  4078. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4079. if (rc)
  4080. return rc;
  4081. for_each_zone(zone)
  4082. zone->min_slab_pages = (zone->present_pages *
  4083. sysctl_min_slab_ratio) / 100;
  4084. return 0;
  4085. }
  4086. #endif
  4087. /*
  4088. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4089. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4090. * whenever sysctl_lowmem_reserve_ratio changes.
  4091. *
  4092. * The reserve ratio obviously has absolutely no relation with the
  4093. * minimum watermarks. The lowmem reserve ratio can only make sense
  4094. * if in function of the boot time zone sizes.
  4095. */
  4096. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4097. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4098. {
  4099. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4100. setup_per_zone_lowmem_reserve();
  4101. return 0;
  4102. }
  4103. /*
  4104. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4105. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4106. * can have before it gets flushed back to buddy allocator.
  4107. */
  4108. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4109. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4110. {
  4111. struct zone *zone;
  4112. unsigned int cpu;
  4113. int ret;
  4114. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4115. if (!write || (ret == -EINVAL))
  4116. return ret;
  4117. for_each_populated_zone(zone) {
  4118. for_each_online_cpu(cpu) {
  4119. unsigned long high;
  4120. high = zone->present_pages / percpu_pagelist_fraction;
  4121. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  4122. }
  4123. }
  4124. return 0;
  4125. }
  4126. int hashdist = HASHDIST_DEFAULT;
  4127. #ifdef CONFIG_NUMA
  4128. static int __init set_hashdist(char *str)
  4129. {
  4130. if (!str)
  4131. return 0;
  4132. hashdist = simple_strtoul(str, &str, 0);
  4133. return 1;
  4134. }
  4135. __setup("hashdist=", set_hashdist);
  4136. #endif
  4137. /*
  4138. * allocate a large system hash table from bootmem
  4139. * - it is assumed that the hash table must contain an exact power-of-2
  4140. * quantity of entries
  4141. * - limit is the number of hash buckets, not the total allocation size
  4142. */
  4143. void *__init alloc_large_system_hash(const char *tablename,
  4144. unsigned long bucketsize,
  4145. unsigned long numentries,
  4146. int scale,
  4147. int flags,
  4148. unsigned int *_hash_shift,
  4149. unsigned int *_hash_mask,
  4150. unsigned long limit)
  4151. {
  4152. unsigned long long max = limit;
  4153. unsigned long log2qty, size;
  4154. void *table = NULL;
  4155. /* allow the kernel cmdline to have a say */
  4156. if (!numentries) {
  4157. /* round applicable memory size up to nearest megabyte */
  4158. numentries = nr_kernel_pages;
  4159. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4160. numentries >>= 20 - PAGE_SHIFT;
  4161. numentries <<= 20 - PAGE_SHIFT;
  4162. /* limit to 1 bucket per 2^scale bytes of low memory */
  4163. if (scale > PAGE_SHIFT)
  4164. numentries >>= (scale - PAGE_SHIFT);
  4165. else
  4166. numentries <<= (PAGE_SHIFT - scale);
  4167. /* Make sure we've got at least a 0-order allocation.. */
  4168. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4169. numentries = PAGE_SIZE / bucketsize;
  4170. }
  4171. numentries = roundup_pow_of_two(numentries);
  4172. /* limit allocation size to 1/16 total memory by default */
  4173. if (max == 0) {
  4174. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4175. do_div(max, bucketsize);
  4176. }
  4177. if (numentries > max)
  4178. numentries = max;
  4179. log2qty = ilog2(numentries);
  4180. do {
  4181. size = bucketsize << log2qty;
  4182. if (flags & HASH_EARLY)
  4183. table = alloc_bootmem_nopanic(size);
  4184. else if (hashdist)
  4185. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4186. else {
  4187. /*
  4188. * If bucketsize is not a power-of-two, we may free
  4189. * some pages at the end of hash table which
  4190. * alloc_pages_exact() automatically does
  4191. */
  4192. if (get_order(size) < MAX_ORDER) {
  4193. table = alloc_pages_exact(size, GFP_ATOMIC);
  4194. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4195. }
  4196. }
  4197. } while (!table && size > PAGE_SIZE && --log2qty);
  4198. if (!table)
  4199. panic("Failed to allocate %s hash table\n", tablename);
  4200. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4201. tablename,
  4202. (1U << log2qty),
  4203. ilog2(size) - PAGE_SHIFT,
  4204. size);
  4205. if (_hash_shift)
  4206. *_hash_shift = log2qty;
  4207. if (_hash_mask)
  4208. *_hash_mask = (1 << log2qty) - 1;
  4209. return table;
  4210. }
  4211. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4212. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4213. unsigned long pfn)
  4214. {
  4215. #ifdef CONFIG_SPARSEMEM
  4216. return __pfn_to_section(pfn)->pageblock_flags;
  4217. #else
  4218. return zone->pageblock_flags;
  4219. #endif /* CONFIG_SPARSEMEM */
  4220. }
  4221. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4222. {
  4223. #ifdef CONFIG_SPARSEMEM
  4224. pfn &= (PAGES_PER_SECTION-1);
  4225. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4226. #else
  4227. pfn = pfn - zone->zone_start_pfn;
  4228. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4229. #endif /* CONFIG_SPARSEMEM */
  4230. }
  4231. /**
  4232. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4233. * @page: The page within the block of interest
  4234. * @start_bitidx: The first bit of interest to retrieve
  4235. * @end_bitidx: The last bit of interest
  4236. * returns pageblock_bits flags
  4237. */
  4238. unsigned long get_pageblock_flags_group(struct page *page,
  4239. int start_bitidx, int end_bitidx)
  4240. {
  4241. struct zone *zone;
  4242. unsigned long *bitmap;
  4243. unsigned long pfn, bitidx;
  4244. unsigned long flags = 0;
  4245. unsigned long value = 1;
  4246. zone = page_zone(page);
  4247. pfn = page_to_pfn(page);
  4248. bitmap = get_pageblock_bitmap(zone, pfn);
  4249. bitidx = pfn_to_bitidx(zone, pfn);
  4250. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4251. if (test_bit(bitidx + start_bitidx, bitmap))
  4252. flags |= value;
  4253. return flags;
  4254. }
  4255. /**
  4256. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4257. * @page: The page within the block of interest
  4258. * @start_bitidx: The first bit of interest
  4259. * @end_bitidx: The last bit of interest
  4260. * @flags: The flags to set
  4261. */
  4262. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4263. int start_bitidx, int end_bitidx)
  4264. {
  4265. struct zone *zone;
  4266. unsigned long *bitmap;
  4267. unsigned long pfn, bitidx;
  4268. unsigned long value = 1;
  4269. zone = page_zone(page);
  4270. pfn = page_to_pfn(page);
  4271. bitmap = get_pageblock_bitmap(zone, pfn);
  4272. bitidx = pfn_to_bitidx(zone, pfn);
  4273. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4274. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4275. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4276. if (flags & value)
  4277. __set_bit(bitidx + start_bitidx, bitmap);
  4278. else
  4279. __clear_bit(bitidx + start_bitidx, bitmap);
  4280. }
  4281. /*
  4282. * This is designed as sub function...plz see page_isolation.c also.
  4283. * set/clear page block's type to be ISOLATE.
  4284. * page allocater never alloc memory from ISOLATE block.
  4285. */
  4286. int set_migratetype_isolate(struct page *page)
  4287. {
  4288. struct zone *zone;
  4289. unsigned long flags;
  4290. int ret = -EBUSY;
  4291. int zone_idx;
  4292. zone = page_zone(page);
  4293. zone_idx = zone_idx(zone);
  4294. spin_lock_irqsave(&zone->lock, flags);
  4295. /*
  4296. * In future, more migrate types will be able to be isolation target.
  4297. */
  4298. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
  4299. zone_idx != ZONE_MOVABLE)
  4300. goto out;
  4301. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4302. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4303. ret = 0;
  4304. out:
  4305. spin_unlock_irqrestore(&zone->lock, flags);
  4306. if (!ret)
  4307. drain_all_pages();
  4308. return ret;
  4309. }
  4310. void unset_migratetype_isolate(struct page *page)
  4311. {
  4312. struct zone *zone;
  4313. unsigned long flags;
  4314. zone = page_zone(page);
  4315. spin_lock_irqsave(&zone->lock, flags);
  4316. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4317. goto out;
  4318. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4319. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4320. out:
  4321. spin_unlock_irqrestore(&zone->lock, flags);
  4322. }
  4323. #ifdef CONFIG_MEMORY_HOTREMOVE
  4324. /*
  4325. * All pages in the range must be isolated before calling this.
  4326. */
  4327. void
  4328. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4329. {
  4330. struct page *page;
  4331. struct zone *zone;
  4332. int order, i;
  4333. unsigned long pfn;
  4334. unsigned long flags;
  4335. /* find the first valid pfn */
  4336. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4337. if (pfn_valid(pfn))
  4338. break;
  4339. if (pfn == end_pfn)
  4340. return;
  4341. zone = page_zone(pfn_to_page(pfn));
  4342. spin_lock_irqsave(&zone->lock, flags);
  4343. pfn = start_pfn;
  4344. while (pfn < end_pfn) {
  4345. if (!pfn_valid(pfn)) {
  4346. pfn++;
  4347. continue;
  4348. }
  4349. page = pfn_to_page(pfn);
  4350. BUG_ON(page_count(page));
  4351. BUG_ON(!PageBuddy(page));
  4352. order = page_order(page);
  4353. #ifdef CONFIG_DEBUG_VM
  4354. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4355. pfn, 1 << order, end_pfn);
  4356. #endif
  4357. list_del(&page->lru);
  4358. rmv_page_order(page);
  4359. zone->free_area[order].nr_free--;
  4360. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4361. - (1UL << order));
  4362. for (i = 0; i < (1 << order); i++)
  4363. SetPageReserved((page+i));
  4364. pfn += (1 << order);
  4365. }
  4366. spin_unlock_irqrestore(&zone->lock, flags);
  4367. }
  4368. #endif