mcdi.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2008-2011 Solarflare Communications Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License version 2 as published
  7. * by the Free Software Foundation, incorporated herein by reference.
  8. */
  9. #include <linux/delay.h>
  10. #include "net_driver.h"
  11. #include "nic.h"
  12. #include "io.h"
  13. #include "regs.h"
  14. #include "mcdi_pcol.h"
  15. #include "phy.h"
  16. /**************************************************************************
  17. *
  18. * Management-Controller-to-Driver Interface
  19. *
  20. **************************************************************************
  21. */
  22. #define MCDI_RPC_TIMEOUT 10 /*seconds */
  23. #define MCDI_PDU(efx) \
  24. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  25. #define MCDI_DOORBELL(efx) \
  26. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  27. #define MCDI_STATUS(efx) \
  28. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  29. /* A reboot/assertion causes the MCDI status word to be set after the
  30. * command word is set or a REBOOT event is sent. If we notice a reboot
  31. * via these mechanisms then wait 10ms for the status word to be set. */
  32. #define MCDI_STATUS_DELAY_US 100
  33. #define MCDI_STATUS_DELAY_COUNT 100
  34. #define MCDI_STATUS_SLEEP_MS \
  35. (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
  36. #define SEQ_MASK \
  37. EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
  38. static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
  39. {
  40. struct siena_nic_data *nic_data;
  41. EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
  42. nic_data = efx->nic_data;
  43. return &nic_data->mcdi;
  44. }
  45. void efx_mcdi_init(struct efx_nic *efx)
  46. {
  47. struct efx_mcdi_iface *mcdi;
  48. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  49. return;
  50. mcdi = efx_mcdi(efx);
  51. init_waitqueue_head(&mcdi->wq);
  52. spin_lock_init(&mcdi->iface_lock);
  53. atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
  54. mcdi->mode = MCDI_MODE_POLL;
  55. (void) efx_mcdi_poll_reboot(efx);
  56. }
  57. static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd,
  58. const u8 *inbuf, size_t inlen)
  59. {
  60. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  61. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  62. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  63. unsigned int i;
  64. efx_dword_t hdr;
  65. u32 xflags, seqno;
  66. BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
  67. BUG_ON(inlen & 3 || inlen >= MC_SMEM_PDU_LEN);
  68. seqno = mcdi->seqno & SEQ_MASK;
  69. xflags = 0;
  70. if (mcdi->mode == MCDI_MODE_EVENTS)
  71. xflags |= MCDI_HEADER_XFLAGS_EVREQ;
  72. EFX_POPULATE_DWORD_6(hdr,
  73. MCDI_HEADER_RESPONSE, 0,
  74. MCDI_HEADER_RESYNC, 1,
  75. MCDI_HEADER_CODE, cmd,
  76. MCDI_HEADER_DATALEN, inlen,
  77. MCDI_HEADER_SEQ, seqno,
  78. MCDI_HEADER_XFLAGS, xflags);
  79. efx_writed(efx, &hdr, pdu);
  80. for (i = 0; i < inlen; i += 4)
  81. _efx_writed(efx, *((__le32 *)(inbuf + i)), pdu + 4 + i);
  82. /* Ensure the payload is written out before the header */
  83. wmb();
  84. /* ring the doorbell with a distinctive value */
  85. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  86. }
  87. static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen)
  88. {
  89. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  90. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  91. int i;
  92. BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
  93. BUG_ON(outlen & 3 || outlen >= MC_SMEM_PDU_LEN);
  94. for (i = 0; i < outlen; i += 4)
  95. *((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i);
  96. }
  97. static int efx_mcdi_poll(struct efx_nic *efx)
  98. {
  99. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  100. unsigned int time, finish;
  101. unsigned int respseq, respcmd, error;
  102. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  103. unsigned int rc, spins;
  104. efx_dword_t reg;
  105. /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
  106. rc = -efx_mcdi_poll_reboot(efx);
  107. if (rc)
  108. goto out;
  109. /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
  110. * because generally mcdi responses are fast. After that, back off
  111. * and poll once a jiffy (approximately)
  112. */
  113. spins = TICK_USEC;
  114. finish = get_seconds() + MCDI_RPC_TIMEOUT;
  115. while (1) {
  116. if (spins != 0) {
  117. --spins;
  118. udelay(1);
  119. } else {
  120. schedule_timeout_uninterruptible(1);
  121. }
  122. time = get_seconds();
  123. rmb();
  124. efx_readd(efx, &reg, pdu);
  125. /* All 1's indicates that shared memory is in reset (and is
  126. * not a valid header). Wait for it to come out reset before
  127. * completing the command */
  128. if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) != 0xffffffff &&
  129. EFX_DWORD_FIELD(reg, MCDI_HEADER_RESPONSE))
  130. break;
  131. if (time >= finish)
  132. return -ETIMEDOUT;
  133. }
  134. mcdi->resplen = EFX_DWORD_FIELD(reg, MCDI_HEADER_DATALEN);
  135. respseq = EFX_DWORD_FIELD(reg, MCDI_HEADER_SEQ);
  136. respcmd = EFX_DWORD_FIELD(reg, MCDI_HEADER_CODE);
  137. error = EFX_DWORD_FIELD(reg, MCDI_HEADER_ERROR);
  138. if (error && mcdi->resplen == 0) {
  139. netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
  140. rc = EIO;
  141. } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
  142. netif_err(efx, hw, efx->net_dev,
  143. "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
  144. respseq, mcdi->seqno);
  145. rc = EIO;
  146. } else if (error) {
  147. efx_readd(efx, &reg, pdu + 4);
  148. switch (EFX_DWORD_FIELD(reg, EFX_DWORD_0)) {
  149. #define TRANSLATE_ERROR(name) \
  150. case MC_CMD_ERR_ ## name: \
  151. rc = name; \
  152. break
  153. TRANSLATE_ERROR(ENOENT);
  154. TRANSLATE_ERROR(EINTR);
  155. TRANSLATE_ERROR(EACCES);
  156. TRANSLATE_ERROR(EBUSY);
  157. TRANSLATE_ERROR(EINVAL);
  158. TRANSLATE_ERROR(EDEADLK);
  159. TRANSLATE_ERROR(ENOSYS);
  160. TRANSLATE_ERROR(ETIME);
  161. #undef TRANSLATE_ERROR
  162. default:
  163. rc = EIO;
  164. break;
  165. }
  166. } else
  167. rc = 0;
  168. out:
  169. mcdi->resprc = rc;
  170. if (rc)
  171. mcdi->resplen = 0;
  172. /* Return rc=0 like wait_event_timeout() */
  173. return 0;
  174. }
  175. /* Test and clear MC-rebooted flag for this port/function */
  176. int efx_mcdi_poll_reboot(struct efx_nic *efx)
  177. {
  178. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  179. efx_dword_t reg;
  180. uint32_t value;
  181. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  182. return false;
  183. efx_readd(efx, &reg, addr);
  184. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  185. if (value == 0)
  186. return 0;
  187. EFX_ZERO_DWORD(reg);
  188. efx_writed(efx, &reg, addr);
  189. if (value == MC_STATUS_DWORD_ASSERT)
  190. return -EINTR;
  191. else
  192. return -EIO;
  193. }
  194. static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi)
  195. {
  196. /* Wait until the interface becomes QUIESCENT and we win the race
  197. * to mark it RUNNING. */
  198. wait_event(mcdi->wq,
  199. atomic_cmpxchg(&mcdi->state,
  200. MCDI_STATE_QUIESCENT,
  201. MCDI_STATE_RUNNING)
  202. == MCDI_STATE_QUIESCENT);
  203. }
  204. static int efx_mcdi_await_completion(struct efx_nic *efx)
  205. {
  206. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  207. if (wait_event_timeout(
  208. mcdi->wq,
  209. atomic_read(&mcdi->state) == MCDI_STATE_COMPLETED,
  210. msecs_to_jiffies(MCDI_RPC_TIMEOUT * 1000)) == 0)
  211. return -ETIMEDOUT;
  212. /* Check if efx_mcdi_set_mode() switched us back to polled completions.
  213. * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
  214. * completed the request first, then we'll just end up completing the
  215. * request again, which is safe.
  216. *
  217. * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
  218. * wait_event_timeout() implicitly provides.
  219. */
  220. if (mcdi->mode == MCDI_MODE_POLL)
  221. return efx_mcdi_poll(efx);
  222. return 0;
  223. }
  224. static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi)
  225. {
  226. /* If the interface is RUNNING, then move to COMPLETED and wake any
  227. * waiters. If the interface isn't in RUNNING then we've received a
  228. * duplicate completion after we've already transitioned back to
  229. * QUIESCENT. [A subsequent invocation would increment seqno, so would
  230. * have failed the seqno check].
  231. */
  232. if (atomic_cmpxchg(&mcdi->state,
  233. MCDI_STATE_RUNNING,
  234. MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING) {
  235. wake_up(&mcdi->wq);
  236. return true;
  237. }
  238. return false;
  239. }
  240. static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
  241. {
  242. atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
  243. wake_up(&mcdi->wq);
  244. }
  245. static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
  246. unsigned int datalen, unsigned int errno)
  247. {
  248. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  249. bool wake = false;
  250. spin_lock(&mcdi->iface_lock);
  251. if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
  252. if (mcdi->credits)
  253. /* The request has been cancelled */
  254. --mcdi->credits;
  255. else
  256. netif_err(efx, hw, efx->net_dev,
  257. "MC response mismatch tx seq 0x%x rx "
  258. "seq 0x%x\n", seqno, mcdi->seqno);
  259. } else {
  260. mcdi->resprc = errno;
  261. mcdi->resplen = datalen;
  262. wake = true;
  263. }
  264. spin_unlock(&mcdi->iface_lock);
  265. if (wake)
  266. efx_mcdi_complete(mcdi);
  267. }
  268. /* Issue the given command by writing the data into the shared memory PDU,
  269. * ring the doorbell and wait for completion. Copyout the result. */
  270. int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
  271. const u8 *inbuf, size_t inlen, u8 *outbuf, size_t outlen,
  272. size_t *outlen_actual)
  273. {
  274. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  275. int rc;
  276. BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
  277. efx_mcdi_acquire(mcdi);
  278. /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
  279. spin_lock_bh(&mcdi->iface_lock);
  280. ++mcdi->seqno;
  281. spin_unlock_bh(&mcdi->iface_lock);
  282. efx_mcdi_copyin(efx, cmd, inbuf, inlen);
  283. if (mcdi->mode == MCDI_MODE_POLL)
  284. rc = efx_mcdi_poll(efx);
  285. else
  286. rc = efx_mcdi_await_completion(efx);
  287. if (rc != 0) {
  288. /* Close the race with efx_mcdi_ev_cpl() executing just too late
  289. * and completing a request we've just cancelled, by ensuring
  290. * that the seqno check therein fails.
  291. */
  292. spin_lock_bh(&mcdi->iface_lock);
  293. ++mcdi->seqno;
  294. ++mcdi->credits;
  295. spin_unlock_bh(&mcdi->iface_lock);
  296. netif_err(efx, hw, efx->net_dev,
  297. "MC command 0x%x inlen %d mode %d timed out\n",
  298. cmd, (int)inlen, mcdi->mode);
  299. } else {
  300. size_t resplen;
  301. /* At the very least we need a memory barrier here to ensure
  302. * we pick up changes from efx_mcdi_ev_cpl(). Protect against
  303. * a spurious efx_mcdi_ev_cpl() running concurrently by
  304. * acquiring the iface_lock. */
  305. spin_lock_bh(&mcdi->iface_lock);
  306. rc = -mcdi->resprc;
  307. resplen = mcdi->resplen;
  308. spin_unlock_bh(&mcdi->iface_lock);
  309. if (rc == 0) {
  310. efx_mcdi_copyout(efx, outbuf,
  311. min(outlen, mcdi->resplen + 3) & ~0x3);
  312. if (outlen_actual != NULL)
  313. *outlen_actual = resplen;
  314. } else if (cmd == MC_CMD_REBOOT && rc == -EIO)
  315. ; /* Don't reset if MC_CMD_REBOOT returns EIO */
  316. else if (rc == -EIO || rc == -EINTR) {
  317. netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
  318. -rc);
  319. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  320. } else
  321. netif_dbg(efx, hw, efx->net_dev,
  322. "MC command 0x%x inlen %d failed rc=%d\n",
  323. cmd, (int)inlen, -rc);
  324. if (rc == -EIO || rc == -EINTR) {
  325. msleep(MCDI_STATUS_SLEEP_MS);
  326. efx_mcdi_poll_reboot(efx);
  327. }
  328. }
  329. efx_mcdi_release(mcdi);
  330. return rc;
  331. }
  332. void efx_mcdi_mode_poll(struct efx_nic *efx)
  333. {
  334. struct efx_mcdi_iface *mcdi;
  335. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  336. return;
  337. mcdi = efx_mcdi(efx);
  338. if (mcdi->mode == MCDI_MODE_POLL)
  339. return;
  340. /* We can switch from event completion to polled completion, because
  341. * mcdi requests are always completed in shared memory. We do this by
  342. * switching the mode to POLL'd then completing the request.
  343. * efx_mcdi_await_completion() will then call efx_mcdi_poll().
  344. *
  345. * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
  346. * which efx_mcdi_complete() provides for us.
  347. */
  348. mcdi->mode = MCDI_MODE_POLL;
  349. efx_mcdi_complete(mcdi);
  350. }
  351. void efx_mcdi_mode_event(struct efx_nic *efx)
  352. {
  353. struct efx_mcdi_iface *mcdi;
  354. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  355. return;
  356. mcdi = efx_mcdi(efx);
  357. if (mcdi->mode == MCDI_MODE_EVENTS)
  358. return;
  359. /* We can't switch from polled to event completion in the middle of a
  360. * request, because the completion method is specified in the request.
  361. * So acquire the interface to serialise the requestors. We don't need
  362. * to acquire the iface_lock to change the mode here, but we do need a
  363. * write memory barrier ensure that efx_mcdi_rpc() sees it, which
  364. * efx_mcdi_acquire() provides.
  365. */
  366. efx_mcdi_acquire(mcdi);
  367. mcdi->mode = MCDI_MODE_EVENTS;
  368. efx_mcdi_release(mcdi);
  369. }
  370. static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
  371. {
  372. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  373. /* If there is an outstanding MCDI request, it has been terminated
  374. * either by a BADASSERT or REBOOT event. If the mcdi interface is
  375. * in polled mode, then do nothing because the MC reboot handler will
  376. * set the header correctly. However, if the mcdi interface is waiting
  377. * for a CMDDONE event it won't receive it [and since all MCDI events
  378. * are sent to the same queue, we can't be racing with
  379. * efx_mcdi_ev_cpl()]
  380. *
  381. * There's a race here with efx_mcdi_rpc(), because we might receive
  382. * a REBOOT event *before* the request has been copied out. In polled
  383. * mode (during startup) this is irrelevant, because efx_mcdi_complete()
  384. * is ignored. In event mode, this condition is just an edge-case of
  385. * receiving a REBOOT event after posting the MCDI request. Did the mc
  386. * reboot before or after the copyout? The best we can do always is
  387. * just return failure.
  388. */
  389. spin_lock(&mcdi->iface_lock);
  390. if (efx_mcdi_complete(mcdi)) {
  391. if (mcdi->mode == MCDI_MODE_EVENTS) {
  392. mcdi->resprc = rc;
  393. mcdi->resplen = 0;
  394. ++mcdi->credits;
  395. }
  396. } else {
  397. int count;
  398. /* Nobody was waiting for an MCDI request, so trigger a reset */
  399. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  400. /* Consume the status word since efx_mcdi_rpc_finish() won't */
  401. for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
  402. if (efx_mcdi_poll_reboot(efx))
  403. break;
  404. udelay(MCDI_STATUS_DELAY_US);
  405. }
  406. }
  407. spin_unlock(&mcdi->iface_lock);
  408. }
  409. static unsigned int efx_mcdi_event_link_speed[] = {
  410. [MCDI_EVENT_LINKCHANGE_SPEED_100M] = 100,
  411. [MCDI_EVENT_LINKCHANGE_SPEED_1G] = 1000,
  412. [MCDI_EVENT_LINKCHANGE_SPEED_10G] = 10000,
  413. };
  414. static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev)
  415. {
  416. u32 flags, fcntl, speed, lpa;
  417. speed = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_SPEED);
  418. EFX_BUG_ON_PARANOID(speed >= ARRAY_SIZE(efx_mcdi_event_link_speed));
  419. speed = efx_mcdi_event_link_speed[speed];
  420. flags = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LINK_FLAGS);
  421. fcntl = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_FCNTL);
  422. lpa = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LP_CAP);
  423. /* efx->link_state is only modified by efx_mcdi_phy_get_link(),
  424. * which is only run after flushing the event queues. Therefore, it
  425. * is safe to modify the link state outside of the mac_lock here.
  426. */
  427. efx_mcdi_phy_decode_link(efx, &efx->link_state, speed, flags, fcntl);
  428. efx_mcdi_phy_check_fcntl(efx, lpa);
  429. efx_link_status_changed(efx);
  430. }
  431. static const char *const sensor_names[] = {
  432. [MC_CMD_SENSOR_CONTROLLER_TEMP] = "Controller temp. sensor",
  433. [MC_CMD_SENSOR_PHY_COMMON_TEMP] = "PHY shared temp. sensor",
  434. [MC_CMD_SENSOR_CONTROLLER_COOLING] = "Controller cooling",
  435. [MC_CMD_SENSOR_PHY0_TEMP] = "PHY 0 temp. sensor",
  436. [MC_CMD_SENSOR_PHY0_COOLING] = "PHY 0 cooling",
  437. [MC_CMD_SENSOR_PHY1_TEMP] = "PHY 1 temp. sensor",
  438. [MC_CMD_SENSOR_PHY1_COOLING] = "PHY 1 cooling",
  439. [MC_CMD_SENSOR_IN_1V0] = "1.0V supply sensor",
  440. [MC_CMD_SENSOR_IN_1V2] = "1.2V supply sensor",
  441. [MC_CMD_SENSOR_IN_1V8] = "1.8V supply sensor",
  442. [MC_CMD_SENSOR_IN_2V5] = "2.5V supply sensor",
  443. [MC_CMD_SENSOR_IN_3V3] = "3.3V supply sensor",
  444. [MC_CMD_SENSOR_IN_12V0] = "12V supply sensor"
  445. };
  446. static const char *const sensor_status_names[] = {
  447. [MC_CMD_SENSOR_STATE_OK] = "OK",
  448. [MC_CMD_SENSOR_STATE_WARNING] = "Warning",
  449. [MC_CMD_SENSOR_STATE_FATAL] = "Fatal",
  450. [MC_CMD_SENSOR_STATE_BROKEN] = "Device failure",
  451. };
  452. static void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
  453. {
  454. unsigned int monitor, state, value;
  455. const char *name, *state_txt;
  456. monitor = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR);
  457. state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE);
  458. value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE);
  459. /* Deal gracefully with the board having more drivers than we
  460. * know about, but do not expect new sensor states. */
  461. name = (monitor >= ARRAY_SIZE(sensor_names))
  462. ? "No sensor name available" :
  463. sensor_names[monitor];
  464. EFX_BUG_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names));
  465. state_txt = sensor_status_names[state];
  466. netif_err(efx, hw, efx->net_dev,
  467. "Sensor %d (%s) reports condition '%s' for raw value %d\n",
  468. monitor, name, state_txt, value);
  469. }
  470. /* Called from falcon_process_eventq for MCDI events */
  471. void efx_mcdi_process_event(struct efx_channel *channel,
  472. efx_qword_t *event)
  473. {
  474. struct efx_nic *efx = channel->efx;
  475. int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
  476. u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
  477. switch (code) {
  478. case MCDI_EVENT_CODE_BADSSERT:
  479. netif_err(efx, hw, efx->net_dev,
  480. "MC watchdog or assertion failure at 0x%x\n", data);
  481. efx_mcdi_ev_death(efx, EINTR);
  482. break;
  483. case MCDI_EVENT_CODE_PMNOTICE:
  484. netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
  485. break;
  486. case MCDI_EVENT_CODE_CMDDONE:
  487. efx_mcdi_ev_cpl(efx,
  488. MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
  489. MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
  490. MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
  491. break;
  492. case MCDI_EVENT_CODE_LINKCHANGE:
  493. efx_mcdi_process_link_change(efx, event);
  494. break;
  495. case MCDI_EVENT_CODE_SENSOREVT:
  496. efx_mcdi_sensor_event(efx, event);
  497. break;
  498. case MCDI_EVENT_CODE_SCHEDERR:
  499. netif_info(efx, hw, efx->net_dev,
  500. "MC Scheduler error address=0x%x\n", data);
  501. break;
  502. case MCDI_EVENT_CODE_REBOOT:
  503. netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
  504. efx_mcdi_ev_death(efx, EIO);
  505. break;
  506. case MCDI_EVENT_CODE_MAC_STATS_DMA:
  507. /* MAC stats are gather lazily. We can ignore this. */
  508. break;
  509. default:
  510. netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
  511. code);
  512. }
  513. }
  514. /**************************************************************************
  515. *
  516. * Specific request functions
  517. *
  518. **************************************************************************
  519. */
  520. void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  521. {
  522. u8 outbuf[ALIGN(MC_CMD_GET_VERSION_OUT_LEN, 4)];
  523. size_t outlength;
  524. const __le16 *ver_words;
  525. int rc;
  526. BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
  527. rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
  528. outbuf, sizeof(outbuf), &outlength);
  529. if (rc)
  530. goto fail;
  531. if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
  532. rc = -EIO;
  533. goto fail;
  534. }
  535. ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
  536. snprintf(buf, len, "%u.%u.%u.%u",
  537. le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
  538. le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
  539. return;
  540. fail:
  541. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  542. buf[0] = 0;
  543. }
  544. int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
  545. bool *was_attached)
  546. {
  547. u8 inbuf[MC_CMD_DRV_ATTACH_IN_LEN];
  548. u8 outbuf[MC_CMD_DRV_ATTACH_OUT_LEN];
  549. size_t outlen;
  550. int rc;
  551. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
  552. driver_operating ? 1 : 0);
  553. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
  554. rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
  555. outbuf, sizeof(outbuf), &outlen);
  556. if (rc)
  557. goto fail;
  558. if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
  559. rc = -EIO;
  560. goto fail;
  561. }
  562. if (was_attached != NULL)
  563. *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
  564. return 0;
  565. fail:
  566. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  567. return rc;
  568. }
  569. int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
  570. u16 *fw_subtype_list)
  571. {
  572. uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LENMIN];
  573. size_t outlen;
  574. int port_num = efx_port_num(efx);
  575. int offset;
  576. int rc;
  577. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
  578. rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
  579. outbuf, sizeof(outbuf), &outlen);
  580. if (rc)
  581. goto fail;
  582. if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
  583. rc = -EIO;
  584. goto fail;
  585. }
  586. offset = (port_num)
  587. ? MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
  588. : MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST;
  589. if (mac_address)
  590. memcpy(mac_address, outbuf + offset, ETH_ALEN);
  591. if (fw_subtype_list)
  592. memcpy(fw_subtype_list,
  593. outbuf + MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST,
  594. MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MINNUM *
  595. sizeof(fw_subtype_list[0]));
  596. return 0;
  597. fail:
  598. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
  599. __func__, rc, (int)outlen);
  600. return rc;
  601. }
  602. int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
  603. {
  604. u8 inbuf[MC_CMD_LOG_CTRL_IN_LEN];
  605. u32 dest = 0;
  606. int rc;
  607. if (uart)
  608. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
  609. if (evq)
  610. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
  611. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
  612. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
  613. BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
  614. rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
  615. NULL, 0, NULL);
  616. if (rc)
  617. goto fail;
  618. return 0;
  619. fail:
  620. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  621. return rc;
  622. }
  623. int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
  624. {
  625. u8 outbuf[MC_CMD_NVRAM_TYPES_OUT_LEN];
  626. size_t outlen;
  627. int rc;
  628. BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
  629. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
  630. outbuf, sizeof(outbuf), &outlen);
  631. if (rc)
  632. goto fail;
  633. if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
  634. rc = -EIO;
  635. goto fail;
  636. }
  637. *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
  638. return 0;
  639. fail:
  640. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  641. __func__, rc);
  642. return rc;
  643. }
  644. int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
  645. size_t *size_out, size_t *erase_size_out,
  646. bool *protected_out)
  647. {
  648. u8 inbuf[MC_CMD_NVRAM_INFO_IN_LEN];
  649. u8 outbuf[MC_CMD_NVRAM_INFO_OUT_LEN];
  650. size_t outlen;
  651. int rc;
  652. MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
  653. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
  654. outbuf, sizeof(outbuf), &outlen);
  655. if (rc)
  656. goto fail;
  657. if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
  658. rc = -EIO;
  659. goto fail;
  660. }
  661. *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
  662. *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
  663. *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
  664. (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
  665. return 0;
  666. fail:
  667. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  668. return rc;
  669. }
  670. int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
  671. {
  672. u8 inbuf[MC_CMD_NVRAM_UPDATE_START_IN_LEN];
  673. int rc;
  674. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
  675. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
  676. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
  677. NULL, 0, NULL);
  678. if (rc)
  679. goto fail;
  680. return 0;
  681. fail:
  682. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  683. return rc;
  684. }
  685. int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
  686. loff_t offset, u8 *buffer, size_t length)
  687. {
  688. u8 inbuf[MC_CMD_NVRAM_READ_IN_LEN];
  689. u8 outbuf[MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)];
  690. size_t outlen;
  691. int rc;
  692. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
  693. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
  694. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
  695. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
  696. outbuf, sizeof(outbuf), &outlen);
  697. if (rc)
  698. goto fail;
  699. memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
  700. return 0;
  701. fail:
  702. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  703. return rc;
  704. }
  705. int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
  706. loff_t offset, const u8 *buffer, size_t length)
  707. {
  708. u8 inbuf[MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)];
  709. int rc;
  710. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
  711. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
  712. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
  713. memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
  714. BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
  715. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
  716. ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
  717. NULL, 0, NULL);
  718. if (rc)
  719. goto fail;
  720. return 0;
  721. fail:
  722. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  723. return rc;
  724. }
  725. int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
  726. loff_t offset, size_t length)
  727. {
  728. u8 inbuf[MC_CMD_NVRAM_ERASE_IN_LEN];
  729. int rc;
  730. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
  731. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
  732. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
  733. BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
  734. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
  735. NULL, 0, NULL);
  736. if (rc)
  737. goto fail;
  738. return 0;
  739. fail:
  740. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  741. return rc;
  742. }
  743. int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
  744. {
  745. u8 inbuf[MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN];
  746. int rc;
  747. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
  748. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
  749. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
  750. NULL, 0, NULL);
  751. if (rc)
  752. goto fail;
  753. return 0;
  754. fail:
  755. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  756. return rc;
  757. }
  758. static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
  759. {
  760. u8 inbuf[MC_CMD_NVRAM_TEST_IN_LEN];
  761. u8 outbuf[MC_CMD_NVRAM_TEST_OUT_LEN];
  762. int rc;
  763. MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
  764. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
  765. outbuf, sizeof(outbuf), NULL);
  766. if (rc)
  767. return rc;
  768. switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
  769. case MC_CMD_NVRAM_TEST_PASS:
  770. case MC_CMD_NVRAM_TEST_NOTSUPP:
  771. return 0;
  772. default:
  773. return -EIO;
  774. }
  775. }
  776. int efx_mcdi_nvram_test_all(struct efx_nic *efx)
  777. {
  778. u32 nvram_types;
  779. unsigned int type;
  780. int rc;
  781. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  782. if (rc)
  783. goto fail1;
  784. type = 0;
  785. while (nvram_types != 0) {
  786. if (nvram_types & 1) {
  787. rc = efx_mcdi_nvram_test(efx, type);
  788. if (rc)
  789. goto fail2;
  790. }
  791. type++;
  792. nvram_types >>= 1;
  793. }
  794. return 0;
  795. fail2:
  796. netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
  797. __func__, type);
  798. fail1:
  799. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  800. return rc;
  801. }
  802. static int efx_mcdi_read_assertion(struct efx_nic *efx)
  803. {
  804. u8 inbuf[MC_CMD_GET_ASSERTS_IN_LEN];
  805. u8 outbuf[MC_CMD_GET_ASSERTS_OUT_LEN];
  806. unsigned int flags, index, ofst;
  807. const char *reason;
  808. size_t outlen;
  809. int retry;
  810. int rc;
  811. /* Attempt to read any stored assertion state before we reboot
  812. * the mcfw out of the assertion handler. Retry twice, once
  813. * because a boot-time assertion might cause this command to fail
  814. * with EINTR. And once again because GET_ASSERTS can race with
  815. * MC_CMD_REBOOT running on the other port. */
  816. retry = 2;
  817. do {
  818. MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
  819. rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS,
  820. inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
  821. outbuf, sizeof(outbuf), &outlen);
  822. } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
  823. if (rc)
  824. return rc;
  825. if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
  826. return -EIO;
  827. /* Print out any recorded assertion state */
  828. flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
  829. if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
  830. return 0;
  831. reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
  832. ? "system-level assertion"
  833. : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
  834. ? "thread-level assertion"
  835. : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
  836. ? "watchdog reset"
  837. : "unknown assertion";
  838. netif_err(efx, hw, efx->net_dev,
  839. "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
  840. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
  841. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
  842. /* Print out the registers */
  843. ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
  844. for (index = 1; index < 32; index++) {
  845. netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", index,
  846. MCDI_DWORD2(outbuf, ofst));
  847. ofst += sizeof(efx_dword_t);
  848. }
  849. return 0;
  850. }
  851. static void efx_mcdi_exit_assertion(struct efx_nic *efx)
  852. {
  853. u8 inbuf[MC_CMD_REBOOT_IN_LEN];
  854. /* Atomically reboot the mcfw out of the assertion handler */
  855. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  856. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
  857. MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
  858. efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
  859. NULL, 0, NULL);
  860. }
  861. int efx_mcdi_handle_assertion(struct efx_nic *efx)
  862. {
  863. int rc;
  864. rc = efx_mcdi_read_assertion(efx);
  865. if (rc)
  866. return rc;
  867. efx_mcdi_exit_assertion(efx);
  868. return 0;
  869. }
  870. void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
  871. {
  872. u8 inbuf[MC_CMD_SET_ID_LED_IN_LEN];
  873. int rc;
  874. BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
  875. BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
  876. BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
  877. BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
  878. MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
  879. rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
  880. NULL, 0, NULL);
  881. if (rc)
  882. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  883. __func__, rc);
  884. }
  885. int efx_mcdi_reset_port(struct efx_nic *efx)
  886. {
  887. int rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, NULL, 0, NULL, 0, NULL);
  888. if (rc)
  889. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  890. __func__, rc);
  891. return rc;
  892. }
  893. int efx_mcdi_reset_mc(struct efx_nic *efx)
  894. {
  895. u8 inbuf[MC_CMD_REBOOT_IN_LEN];
  896. int rc;
  897. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  898. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
  899. rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
  900. NULL, 0, NULL);
  901. /* White is black, and up is down */
  902. if (rc == -EIO)
  903. return 0;
  904. if (rc == 0)
  905. rc = -EIO;
  906. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  907. return rc;
  908. }
  909. static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
  910. const u8 *mac, int *id_out)
  911. {
  912. u8 inbuf[MC_CMD_WOL_FILTER_SET_IN_LEN];
  913. u8 outbuf[MC_CMD_WOL_FILTER_SET_OUT_LEN];
  914. size_t outlen;
  915. int rc;
  916. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
  917. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
  918. MC_CMD_FILTER_MODE_SIMPLE);
  919. memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
  920. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
  921. outbuf, sizeof(outbuf), &outlen);
  922. if (rc)
  923. goto fail;
  924. if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
  925. rc = -EIO;
  926. goto fail;
  927. }
  928. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
  929. return 0;
  930. fail:
  931. *id_out = -1;
  932. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  933. return rc;
  934. }
  935. int
  936. efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
  937. {
  938. return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
  939. }
  940. int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
  941. {
  942. u8 outbuf[MC_CMD_WOL_FILTER_GET_OUT_LEN];
  943. size_t outlen;
  944. int rc;
  945. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
  946. outbuf, sizeof(outbuf), &outlen);
  947. if (rc)
  948. goto fail;
  949. if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
  950. rc = -EIO;
  951. goto fail;
  952. }
  953. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
  954. return 0;
  955. fail:
  956. *id_out = -1;
  957. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  958. return rc;
  959. }
  960. int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
  961. {
  962. u8 inbuf[MC_CMD_WOL_FILTER_REMOVE_IN_LEN];
  963. int rc;
  964. MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
  965. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
  966. NULL, 0, NULL);
  967. if (rc)
  968. goto fail;
  969. return 0;
  970. fail:
  971. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  972. return rc;
  973. }
  974. int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
  975. {
  976. int rc;
  977. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
  978. if (rc)
  979. goto fail;
  980. return 0;
  981. fail:
  982. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  983. return rc;
  984. }