x86.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #include <asm/mce.h>
  43. #define MAX_IO_MSRS 256
  44. #define CR0_RESERVED_BITS \
  45. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  46. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  47. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  48. #define CR4_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  50. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  51. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  52. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  53. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  54. #define KVM_MAX_MCE_BANKS 32
  55. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  56. /* EFER defaults:
  57. * - enable syscall per default because its emulated by KVM
  58. * - enable LME and LMA per default on 64 bit KVM
  59. */
  60. #ifdef CONFIG_X86_64
  61. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  62. #else
  63. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  64. #endif
  65. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  66. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  67. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  68. struct kvm_cpuid_entry2 __user *entries);
  69. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  70. u32 function, u32 index);
  71. struct kvm_x86_ops *kvm_x86_ops;
  72. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  73. struct kvm_stats_debugfs_item debugfs_entries[] = {
  74. { "pf_fixed", VCPU_STAT(pf_fixed) },
  75. { "pf_guest", VCPU_STAT(pf_guest) },
  76. { "tlb_flush", VCPU_STAT(tlb_flush) },
  77. { "invlpg", VCPU_STAT(invlpg) },
  78. { "exits", VCPU_STAT(exits) },
  79. { "io_exits", VCPU_STAT(io_exits) },
  80. { "mmio_exits", VCPU_STAT(mmio_exits) },
  81. { "signal_exits", VCPU_STAT(signal_exits) },
  82. { "irq_window", VCPU_STAT(irq_window_exits) },
  83. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  84. { "halt_exits", VCPU_STAT(halt_exits) },
  85. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  86. { "hypercalls", VCPU_STAT(hypercalls) },
  87. { "request_irq", VCPU_STAT(request_irq_exits) },
  88. { "irq_exits", VCPU_STAT(irq_exits) },
  89. { "host_state_reload", VCPU_STAT(host_state_reload) },
  90. { "efer_reload", VCPU_STAT(efer_reload) },
  91. { "fpu_reload", VCPU_STAT(fpu_reload) },
  92. { "insn_emulation", VCPU_STAT(insn_emulation) },
  93. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  94. { "irq_injections", VCPU_STAT(irq_injections) },
  95. { "nmi_injections", VCPU_STAT(nmi_injections) },
  96. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  97. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  98. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  99. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  100. { "mmu_flooded", VM_STAT(mmu_flooded) },
  101. { "mmu_recycled", VM_STAT(mmu_recycled) },
  102. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  103. { "mmu_unsync", VM_STAT(mmu_unsync) },
  104. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  105. { "largepages", VM_STAT(lpages) },
  106. { NULL }
  107. };
  108. unsigned long segment_base(u16 selector)
  109. {
  110. struct descriptor_table gdt;
  111. struct desc_struct *d;
  112. unsigned long table_base;
  113. unsigned long v;
  114. if (selector == 0)
  115. return 0;
  116. asm("sgdt %0" : "=m"(gdt));
  117. table_base = gdt.base;
  118. if (selector & 4) { /* from ldt */
  119. u16 ldt_selector;
  120. asm("sldt %0" : "=g"(ldt_selector));
  121. table_base = segment_base(ldt_selector);
  122. }
  123. d = (struct desc_struct *)(table_base + (selector & ~7));
  124. v = d->base0 | ((unsigned long)d->base1 << 16) |
  125. ((unsigned long)d->base2 << 24);
  126. #ifdef CONFIG_X86_64
  127. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  128. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  129. #endif
  130. return v;
  131. }
  132. EXPORT_SYMBOL_GPL(segment_base);
  133. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  134. {
  135. if (irqchip_in_kernel(vcpu->kvm))
  136. return vcpu->arch.apic_base;
  137. else
  138. return vcpu->arch.apic_base;
  139. }
  140. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  141. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  142. {
  143. /* TODO: reserve bits check */
  144. if (irqchip_in_kernel(vcpu->kvm))
  145. kvm_lapic_set_base(vcpu, data);
  146. else
  147. vcpu->arch.apic_base = data;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  150. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  151. {
  152. WARN_ON(vcpu->arch.exception.pending);
  153. vcpu->arch.exception.pending = true;
  154. vcpu->arch.exception.has_error_code = false;
  155. vcpu->arch.exception.nr = nr;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  158. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  159. u32 error_code)
  160. {
  161. ++vcpu->stat.pf_guest;
  162. if (vcpu->arch.exception.pending) {
  163. if (vcpu->arch.exception.nr == PF_VECTOR) {
  164. printk(KERN_DEBUG "kvm: inject_page_fault:"
  165. " double fault 0x%lx\n", addr);
  166. vcpu->arch.exception.nr = DF_VECTOR;
  167. vcpu->arch.exception.error_code = 0;
  168. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  169. /* triple fault -> shutdown */
  170. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  171. }
  172. return;
  173. }
  174. vcpu->arch.cr2 = addr;
  175. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  176. }
  177. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  178. {
  179. vcpu->arch.nmi_pending = 1;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  182. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  183. {
  184. WARN_ON(vcpu->arch.exception.pending);
  185. vcpu->arch.exception.pending = true;
  186. vcpu->arch.exception.has_error_code = true;
  187. vcpu->arch.exception.nr = nr;
  188. vcpu->arch.exception.error_code = error_code;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  191. static void __queue_exception(struct kvm_vcpu *vcpu)
  192. {
  193. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  194. vcpu->arch.exception.has_error_code,
  195. vcpu->arch.exception.error_code);
  196. }
  197. /*
  198. * Load the pae pdptrs. Return true is they are all valid.
  199. */
  200. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  201. {
  202. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  203. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  204. int i;
  205. int ret;
  206. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  207. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  208. offset * sizeof(u64), sizeof(pdpte));
  209. if (ret < 0) {
  210. ret = 0;
  211. goto out;
  212. }
  213. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  214. if (is_present_pte(pdpte[i]) &&
  215. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  216. ret = 0;
  217. goto out;
  218. }
  219. }
  220. ret = 1;
  221. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  222. out:
  223. return ret;
  224. }
  225. EXPORT_SYMBOL_GPL(load_pdptrs);
  226. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  227. {
  228. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  229. bool changed = true;
  230. int r;
  231. if (is_long_mode(vcpu) || !is_pae(vcpu))
  232. return false;
  233. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  234. if (r < 0)
  235. goto out;
  236. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  237. out:
  238. return changed;
  239. }
  240. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  241. {
  242. if (cr0 & CR0_RESERVED_BITS) {
  243. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  244. cr0, vcpu->arch.cr0);
  245. kvm_inject_gp(vcpu, 0);
  246. return;
  247. }
  248. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  249. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  250. kvm_inject_gp(vcpu, 0);
  251. return;
  252. }
  253. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  254. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  255. "and a clear PE flag\n");
  256. kvm_inject_gp(vcpu, 0);
  257. return;
  258. }
  259. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  260. #ifdef CONFIG_X86_64
  261. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  262. int cs_db, cs_l;
  263. if (!is_pae(vcpu)) {
  264. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  265. "in long mode while PAE is disabled\n");
  266. kvm_inject_gp(vcpu, 0);
  267. return;
  268. }
  269. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  270. if (cs_l) {
  271. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  272. "in long mode while CS.L == 1\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. } else
  277. #endif
  278. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  279. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  280. "reserved bits\n");
  281. kvm_inject_gp(vcpu, 0);
  282. return;
  283. }
  284. }
  285. kvm_x86_ops->set_cr0(vcpu, cr0);
  286. vcpu->arch.cr0 = cr0;
  287. kvm_mmu_reset_context(vcpu);
  288. return;
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  291. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  292. {
  293. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  294. KVMTRACE_1D(LMSW, vcpu,
  295. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  296. handler);
  297. }
  298. EXPORT_SYMBOL_GPL(kvm_lmsw);
  299. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  300. {
  301. unsigned long old_cr4 = vcpu->arch.cr4;
  302. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  303. if (cr4 & CR4_RESERVED_BITS) {
  304. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  305. kvm_inject_gp(vcpu, 0);
  306. return;
  307. }
  308. if (is_long_mode(vcpu)) {
  309. if (!(cr4 & X86_CR4_PAE)) {
  310. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  311. "in long mode\n");
  312. kvm_inject_gp(vcpu, 0);
  313. return;
  314. }
  315. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  316. && ((cr4 ^ old_cr4) & pdptr_bits)
  317. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  318. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. if (cr4 & X86_CR4_VMXE) {
  323. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  324. kvm_inject_gp(vcpu, 0);
  325. return;
  326. }
  327. kvm_x86_ops->set_cr4(vcpu, cr4);
  328. vcpu->arch.cr4 = cr4;
  329. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  330. kvm_mmu_reset_context(vcpu);
  331. }
  332. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  333. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  334. {
  335. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  336. kvm_mmu_sync_roots(vcpu);
  337. kvm_mmu_flush_tlb(vcpu);
  338. return;
  339. }
  340. if (is_long_mode(vcpu)) {
  341. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  342. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. } else {
  347. if (is_pae(vcpu)) {
  348. if (cr3 & CR3_PAE_RESERVED_BITS) {
  349. printk(KERN_DEBUG
  350. "set_cr3: #GP, reserved bits\n");
  351. kvm_inject_gp(vcpu, 0);
  352. return;
  353. }
  354. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  355. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  356. "reserved bits\n");
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. }
  361. /*
  362. * We don't check reserved bits in nonpae mode, because
  363. * this isn't enforced, and VMware depends on this.
  364. */
  365. }
  366. /*
  367. * Does the new cr3 value map to physical memory? (Note, we
  368. * catch an invalid cr3 even in real-mode, because it would
  369. * cause trouble later on when we turn on paging anyway.)
  370. *
  371. * A real CPU would silently accept an invalid cr3 and would
  372. * attempt to use it - with largely undefined (and often hard
  373. * to debug) behavior on the guest side.
  374. */
  375. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  376. kvm_inject_gp(vcpu, 0);
  377. else {
  378. vcpu->arch.cr3 = cr3;
  379. vcpu->arch.mmu.new_cr3(vcpu);
  380. }
  381. }
  382. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  383. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  384. {
  385. if (cr8 & CR8_RESERVED_BITS) {
  386. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  387. kvm_inject_gp(vcpu, 0);
  388. return;
  389. }
  390. if (irqchip_in_kernel(vcpu->kvm))
  391. kvm_lapic_set_tpr(vcpu, cr8);
  392. else
  393. vcpu->arch.cr8 = cr8;
  394. }
  395. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  396. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  397. {
  398. if (irqchip_in_kernel(vcpu->kvm))
  399. return kvm_lapic_get_cr8(vcpu);
  400. else
  401. return vcpu->arch.cr8;
  402. }
  403. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  404. static inline u32 bit(int bitno)
  405. {
  406. return 1 << (bitno & 31);
  407. }
  408. /*
  409. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  410. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  411. *
  412. * This list is modified at module load time to reflect the
  413. * capabilities of the host cpu.
  414. */
  415. static u32 msrs_to_save[] = {
  416. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  417. MSR_K6_STAR,
  418. #ifdef CONFIG_X86_64
  419. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  420. #endif
  421. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  422. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  423. };
  424. static unsigned num_msrs_to_save;
  425. static u32 emulated_msrs[] = {
  426. MSR_IA32_MISC_ENABLE,
  427. };
  428. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  429. {
  430. if (efer & efer_reserved_bits) {
  431. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  432. efer);
  433. kvm_inject_gp(vcpu, 0);
  434. return;
  435. }
  436. if (is_paging(vcpu)
  437. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  438. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  439. kvm_inject_gp(vcpu, 0);
  440. return;
  441. }
  442. if (efer & EFER_FFXSR) {
  443. struct kvm_cpuid_entry2 *feat;
  444. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  445. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  446. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  447. kvm_inject_gp(vcpu, 0);
  448. return;
  449. }
  450. }
  451. if (efer & EFER_SVME) {
  452. struct kvm_cpuid_entry2 *feat;
  453. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  454. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  455. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  456. kvm_inject_gp(vcpu, 0);
  457. return;
  458. }
  459. }
  460. kvm_x86_ops->set_efer(vcpu, efer);
  461. efer &= ~EFER_LMA;
  462. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  463. vcpu->arch.shadow_efer = efer;
  464. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  465. kvm_mmu_reset_context(vcpu);
  466. }
  467. void kvm_enable_efer_bits(u64 mask)
  468. {
  469. efer_reserved_bits &= ~mask;
  470. }
  471. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  472. /*
  473. * Writes msr value into into the appropriate "register".
  474. * Returns 0 on success, non-0 otherwise.
  475. * Assumes vcpu_load() was already called.
  476. */
  477. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  478. {
  479. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  480. }
  481. /*
  482. * Adapt set_msr() to msr_io()'s calling convention
  483. */
  484. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  485. {
  486. return kvm_set_msr(vcpu, index, *data);
  487. }
  488. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  489. {
  490. static int version;
  491. struct pvclock_wall_clock wc;
  492. struct timespec now, sys, boot;
  493. if (!wall_clock)
  494. return;
  495. version++;
  496. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  497. /*
  498. * The guest calculates current wall clock time by adding
  499. * system time (updated by kvm_write_guest_time below) to the
  500. * wall clock specified here. guest system time equals host
  501. * system time for us, thus we must fill in host boot time here.
  502. */
  503. now = current_kernel_time();
  504. ktime_get_ts(&sys);
  505. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  506. wc.sec = boot.tv_sec;
  507. wc.nsec = boot.tv_nsec;
  508. wc.version = version;
  509. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  510. version++;
  511. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  512. }
  513. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  514. {
  515. uint32_t quotient, remainder;
  516. /* Don't try to replace with do_div(), this one calculates
  517. * "(dividend << 32) / divisor" */
  518. __asm__ ( "divl %4"
  519. : "=a" (quotient), "=d" (remainder)
  520. : "0" (0), "1" (dividend), "r" (divisor) );
  521. return quotient;
  522. }
  523. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  524. {
  525. uint64_t nsecs = 1000000000LL;
  526. int32_t shift = 0;
  527. uint64_t tps64;
  528. uint32_t tps32;
  529. tps64 = tsc_khz * 1000LL;
  530. while (tps64 > nsecs*2) {
  531. tps64 >>= 1;
  532. shift--;
  533. }
  534. tps32 = (uint32_t)tps64;
  535. while (tps32 <= (uint32_t)nsecs) {
  536. tps32 <<= 1;
  537. shift++;
  538. }
  539. hv_clock->tsc_shift = shift;
  540. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  541. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  542. __func__, tsc_khz, hv_clock->tsc_shift,
  543. hv_clock->tsc_to_system_mul);
  544. }
  545. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  546. static void kvm_write_guest_time(struct kvm_vcpu *v)
  547. {
  548. struct timespec ts;
  549. unsigned long flags;
  550. struct kvm_vcpu_arch *vcpu = &v->arch;
  551. void *shared_kaddr;
  552. unsigned long this_tsc_khz;
  553. if ((!vcpu->time_page))
  554. return;
  555. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  556. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  557. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  558. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  559. }
  560. put_cpu_var(cpu_tsc_khz);
  561. /* Keep irq disabled to prevent changes to the clock */
  562. local_irq_save(flags);
  563. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  564. ktime_get_ts(&ts);
  565. local_irq_restore(flags);
  566. /* With all the info we got, fill in the values */
  567. vcpu->hv_clock.system_time = ts.tv_nsec +
  568. (NSEC_PER_SEC * (u64)ts.tv_sec);
  569. /*
  570. * The interface expects us to write an even number signaling that the
  571. * update is finished. Since the guest won't see the intermediate
  572. * state, we just increase by 2 at the end.
  573. */
  574. vcpu->hv_clock.version += 2;
  575. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  576. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  577. sizeof(vcpu->hv_clock));
  578. kunmap_atomic(shared_kaddr, KM_USER0);
  579. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  580. }
  581. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  582. {
  583. struct kvm_vcpu_arch *vcpu = &v->arch;
  584. if (!vcpu->time_page)
  585. return 0;
  586. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  587. return 1;
  588. }
  589. static bool msr_mtrr_valid(unsigned msr)
  590. {
  591. switch (msr) {
  592. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  593. case MSR_MTRRfix64K_00000:
  594. case MSR_MTRRfix16K_80000:
  595. case MSR_MTRRfix16K_A0000:
  596. case MSR_MTRRfix4K_C0000:
  597. case MSR_MTRRfix4K_C8000:
  598. case MSR_MTRRfix4K_D0000:
  599. case MSR_MTRRfix4K_D8000:
  600. case MSR_MTRRfix4K_E0000:
  601. case MSR_MTRRfix4K_E8000:
  602. case MSR_MTRRfix4K_F0000:
  603. case MSR_MTRRfix4K_F8000:
  604. case MSR_MTRRdefType:
  605. case MSR_IA32_CR_PAT:
  606. return true;
  607. case 0x2f8:
  608. return true;
  609. }
  610. return false;
  611. }
  612. static bool valid_pat_type(unsigned t)
  613. {
  614. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  615. }
  616. static bool valid_mtrr_type(unsigned t)
  617. {
  618. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  619. }
  620. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  621. {
  622. int i;
  623. if (!msr_mtrr_valid(msr))
  624. return false;
  625. if (msr == MSR_IA32_CR_PAT) {
  626. for (i = 0; i < 8; i++)
  627. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  628. return false;
  629. return true;
  630. } else if (msr == MSR_MTRRdefType) {
  631. if (data & ~0xcff)
  632. return false;
  633. return valid_mtrr_type(data & 0xff);
  634. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  635. for (i = 0; i < 8 ; i++)
  636. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  637. return false;
  638. return true;
  639. }
  640. /* variable MTRRs */
  641. return valid_mtrr_type(data & 0xff);
  642. }
  643. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  644. {
  645. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  646. if (!mtrr_valid(vcpu, msr, data))
  647. return 1;
  648. if (msr == MSR_MTRRdefType) {
  649. vcpu->arch.mtrr_state.def_type = data;
  650. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  651. } else if (msr == MSR_MTRRfix64K_00000)
  652. p[0] = data;
  653. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  654. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  655. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  656. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  657. else if (msr == MSR_IA32_CR_PAT)
  658. vcpu->arch.pat = data;
  659. else { /* Variable MTRRs */
  660. int idx, is_mtrr_mask;
  661. u64 *pt;
  662. idx = (msr - 0x200) / 2;
  663. is_mtrr_mask = msr - 0x200 - 2 * idx;
  664. if (!is_mtrr_mask)
  665. pt =
  666. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  667. else
  668. pt =
  669. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  670. *pt = data;
  671. }
  672. kvm_mmu_reset_context(vcpu);
  673. return 0;
  674. }
  675. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  676. {
  677. u64 mcg_cap = vcpu->arch.mcg_cap;
  678. unsigned bank_num = mcg_cap & 0xff;
  679. switch (msr) {
  680. case MSR_IA32_MCG_STATUS:
  681. vcpu->arch.mcg_status = data;
  682. break;
  683. case MSR_IA32_MCG_CTL:
  684. if (!(mcg_cap & MCG_CTL_P))
  685. return 1;
  686. if (data != 0 && data != ~(u64)0)
  687. return -1;
  688. vcpu->arch.mcg_ctl = data;
  689. break;
  690. default:
  691. if (msr >= MSR_IA32_MC0_CTL &&
  692. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  693. u32 offset = msr - MSR_IA32_MC0_CTL;
  694. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  695. if ((offset & 0x3) == 0 &&
  696. data != 0 && data != ~(u64)0)
  697. return -1;
  698. vcpu->arch.mce_banks[offset] = data;
  699. break;
  700. }
  701. return 1;
  702. }
  703. return 0;
  704. }
  705. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  706. {
  707. switch (msr) {
  708. case MSR_EFER:
  709. set_efer(vcpu, data);
  710. break;
  711. case MSR_IA32_DEBUGCTLMSR:
  712. if (!data) {
  713. /* We support the non-activated case already */
  714. break;
  715. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  716. /* Values other than LBR and BTF are vendor-specific,
  717. thus reserved and should throw a #GP */
  718. return 1;
  719. }
  720. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  721. __func__, data);
  722. break;
  723. case MSR_IA32_UCODE_REV:
  724. case MSR_IA32_UCODE_WRITE:
  725. case MSR_VM_HSAVE_PA:
  726. break;
  727. case 0x200 ... 0x2ff:
  728. return set_msr_mtrr(vcpu, msr, data);
  729. case MSR_IA32_APICBASE:
  730. kvm_set_apic_base(vcpu, data);
  731. break;
  732. case MSR_IA32_MISC_ENABLE:
  733. vcpu->arch.ia32_misc_enable_msr = data;
  734. break;
  735. case MSR_KVM_WALL_CLOCK:
  736. vcpu->kvm->arch.wall_clock = data;
  737. kvm_write_wall_clock(vcpu->kvm, data);
  738. break;
  739. case MSR_KVM_SYSTEM_TIME: {
  740. if (vcpu->arch.time_page) {
  741. kvm_release_page_dirty(vcpu->arch.time_page);
  742. vcpu->arch.time_page = NULL;
  743. }
  744. vcpu->arch.time = data;
  745. /* we verify if the enable bit is set... */
  746. if (!(data & 1))
  747. break;
  748. /* ...but clean it before doing the actual write */
  749. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  750. vcpu->arch.time_page =
  751. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  752. if (is_error_page(vcpu->arch.time_page)) {
  753. kvm_release_page_clean(vcpu->arch.time_page);
  754. vcpu->arch.time_page = NULL;
  755. }
  756. kvm_request_guest_time_update(vcpu);
  757. break;
  758. }
  759. case MSR_IA32_MCG_CTL:
  760. case MSR_IA32_MCG_STATUS:
  761. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  762. return set_msr_mce(vcpu, msr, data);
  763. default:
  764. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  765. return 1;
  766. }
  767. return 0;
  768. }
  769. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  770. /*
  771. * Reads an msr value (of 'msr_index') into 'pdata'.
  772. * Returns 0 on success, non-0 otherwise.
  773. * Assumes vcpu_load() was already called.
  774. */
  775. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  776. {
  777. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  778. }
  779. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  780. {
  781. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  782. if (!msr_mtrr_valid(msr))
  783. return 1;
  784. if (msr == MSR_MTRRdefType)
  785. *pdata = vcpu->arch.mtrr_state.def_type +
  786. (vcpu->arch.mtrr_state.enabled << 10);
  787. else if (msr == MSR_MTRRfix64K_00000)
  788. *pdata = p[0];
  789. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  790. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  791. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  792. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  793. else if (msr == MSR_IA32_CR_PAT)
  794. *pdata = vcpu->arch.pat;
  795. else { /* Variable MTRRs */
  796. int idx, is_mtrr_mask;
  797. u64 *pt;
  798. idx = (msr - 0x200) / 2;
  799. is_mtrr_mask = msr - 0x200 - 2 * idx;
  800. if (!is_mtrr_mask)
  801. pt =
  802. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  803. else
  804. pt =
  805. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  806. *pdata = *pt;
  807. }
  808. return 0;
  809. }
  810. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  811. {
  812. u64 data;
  813. u64 mcg_cap = vcpu->arch.mcg_cap;
  814. unsigned bank_num = mcg_cap & 0xff;
  815. switch (msr) {
  816. case MSR_IA32_P5_MC_ADDR:
  817. case MSR_IA32_P5_MC_TYPE:
  818. data = 0;
  819. break;
  820. case MSR_IA32_MCG_CAP:
  821. data = vcpu->arch.mcg_cap;
  822. break;
  823. case MSR_IA32_MCG_CTL:
  824. if (!(mcg_cap & MCG_CTL_P))
  825. return 1;
  826. data = vcpu->arch.mcg_ctl;
  827. break;
  828. case MSR_IA32_MCG_STATUS:
  829. data = vcpu->arch.mcg_status;
  830. break;
  831. default:
  832. if (msr >= MSR_IA32_MC0_CTL &&
  833. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  834. u32 offset = msr - MSR_IA32_MC0_CTL;
  835. data = vcpu->arch.mce_banks[offset];
  836. break;
  837. }
  838. return 1;
  839. }
  840. *pdata = data;
  841. return 0;
  842. }
  843. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  844. {
  845. u64 data;
  846. switch (msr) {
  847. case MSR_IA32_PLATFORM_ID:
  848. case MSR_IA32_UCODE_REV:
  849. case MSR_IA32_EBL_CR_POWERON:
  850. case MSR_IA32_DEBUGCTLMSR:
  851. case MSR_IA32_LASTBRANCHFROMIP:
  852. case MSR_IA32_LASTBRANCHTOIP:
  853. case MSR_IA32_LASTINTFROMIP:
  854. case MSR_IA32_LASTINTTOIP:
  855. case MSR_K8_SYSCFG:
  856. case MSR_K7_HWCR:
  857. case MSR_VM_HSAVE_PA:
  858. case MSR_P6_EVNTSEL0:
  859. case MSR_P6_EVNTSEL1:
  860. case MSR_K7_EVNTSEL0:
  861. data = 0;
  862. break;
  863. case MSR_MTRRcap:
  864. data = 0x500 | KVM_NR_VAR_MTRR;
  865. break;
  866. case 0x200 ... 0x2ff:
  867. return get_msr_mtrr(vcpu, msr, pdata);
  868. case 0xcd: /* fsb frequency */
  869. data = 3;
  870. break;
  871. case MSR_IA32_APICBASE:
  872. data = kvm_get_apic_base(vcpu);
  873. break;
  874. case MSR_IA32_MISC_ENABLE:
  875. data = vcpu->arch.ia32_misc_enable_msr;
  876. break;
  877. case MSR_IA32_PERF_STATUS:
  878. /* TSC increment by tick */
  879. data = 1000ULL;
  880. /* CPU multiplier */
  881. data |= (((uint64_t)4ULL) << 40);
  882. break;
  883. case MSR_EFER:
  884. data = vcpu->arch.shadow_efer;
  885. break;
  886. case MSR_KVM_WALL_CLOCK:
  887. data = vcpu->kvm->arch.wall_clock;
  888. break;
  889. case MSR_KVM_SYSTEM_TIME:
  890. data = vcpu->arch.time;
  891. break;
  892. case MSR_IA32_P5_MC_ADDR:
  893. case MSR_IA32_P5_MC_TYPE:
  894. case MSR_IA32_MCG_CAP:
  895. case MSR_IA32_MCG_CTL:
  896. case MSR_IA32_MCG_STATUS:
  897. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  898. return get_msr_mce(vcpu, msr, pdata);
  899. default:
  900. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  901. return 1;
  902. }
  903. *pdata = data;
  904. return 0;
  905. }
  906. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  907. /*
  908. * Read or write a bunch of msrs. All parameters are kernel addresses.
  909. *
  910. * @return number of msrs set successfully.
  911. */
  912. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  913. struct kvm_msr_entry *entries,
  914. int (*do_msr)(struct kvm_vcpu *vcpu,
  915. unsigned index, u64 *data))
  916. {
  917. int i;
  918. vcpu_load(vcpu);
  919. down_read(&vcpu->kvm->slots_lock);
  920. for (i = 0; i < msrs->nmsrs; ++i)
  921. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  922. break;
  923. up_read(&vcpu->kvm->slots_lock);
  924. vcpu_put(vcpu);
  925. return i;
  926. }
  927. /*
  928. * Read or write a bunch of msrs. Parameters are user addresses.
  929. *
  930. * @return number of msrs set successfully.
  931. */
  932. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  933. int (*do_msr)(struct kvm_vcpu *vcpu,
  934. unsigned index, u64 *data),
  935. int writeback)
  936. {
  937. struct kvm_msrs msrs;
  938. struct kvm_msr_entry *entries;
  939. int r, n;
  940. unsigned size;
  941. r = -EFAULT;
  942. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  943. goto out;
  944. r = -E2BIG;
  945. if (msrs.nmsrs >= MAX_IO_MSRS)
  946. goto out;
  947. r = -ENOMEM;
  948. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  949. entries = vmalloc(size);
  950. if (!entries)
  951. goto out;
  952. r = -EFAULT;
  953. if (copy_from_user(entries, user_msrs->entries, size))
  954. goto out_free;
  955. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  956. if (r < 0)
  957. goto out_free;
  958. r = -EFAULT;
  959. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  960. goto out_free;
  961. r = n;
  962. out_free:
  963. vfree(entries);
  964. out:
  965. return r;
  966. }
  967. int kvm_dev_ioctl_check_extension(long ext)
  968. {
  969. int r;
  970. switch (ext) {
  971. case KVM_CAP_IRQCHIP:
  972. case KVM_CAP_HLT:
  973. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  974. case KVM_CAP_SET_TSS_ADDR:
  975. case KVM_CAP_EXT_CPUID:
  976. case KVM_CAP_CLOCKSOURCE:
  977. case KVM_CAP_PIT:
  978. case KVM_CAP_NOP_IO_DELAY:
  979. case KVM_CAP_MP_STATE:
  980. case KVM_CAP_SYNC_MMU:
  981. case KVM_CAP_REINJECT_CONTROL:
  982. case KVM_CAP_IRQ_INJECT_STATUS:
  983. case KVM_CAP_ASSIGN_DEV_IRQ:
  984. r = 1;
  985. break;
  986. case KVM_CAP_COALESCED_MMIO:
  987. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  988. break;
  989. case KVM_CAP_VAPIC:
  990. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  991. break;
  992. case KVM_CAP_NR_VCPUS:
  993. r = KVM_MAX_VCPUS;
  994. break;
  995. case KVM_CAP_NR_MEMSLOTS:
  996. r = KVM_MEMORY_SLOTS;
  997. break;
  998. case KVM_CAP_PV_MMU:
  999. r = !tdp_enabled;
  1000. break;
  1001. case KVM_CAP_IOMMU:
  1002. r = iommu_found();
  1003. break;
  1004. case KVM_CAP_MCE:
  1005. r = KVM_MAX_MCE_BANKS;
  1006. break;
  1007. default:
  1008. r = 0;
  1009. break;
  1010. }
  1011. return r;
  1012. }
  1013. long kvm_arch_dev_ioctl(struct file *filp,
  1014. unsigned int ioctl, unsigned long arg)
  1015. {
  1016. void __user *argp = (void __user *)arg;
  1017. long r;
  1018. switch (ioctl) {
  1019. case KVM_GET_MSR_INDEX_LIST: {
  1020. struct kvm_msr_list __user *user_msr_list = argp;
  1021. struct kvm_msr_list msr_list;
  1022. unsigned n;
  1023. r = -EFAULT;
  1024. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1025. goto out;
  1026. n = msr_list.nmsrs;
  1027. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1028. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1029. goto out;
  1030. r = -E2BIG;
  1031. if (n < msr_list.nmsrs)
  1032. goto out;
  1033. r = -EFAULT;
  1034. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1035. num_msrs_to_save * sizeof(u32)))
  1036. goto out;
  1037. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1038. &emulated_msrs,
  1039. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1040. goto out;
  1041. r = 0;
  1042. break;
  1043. }
  1044. case KVM_GET_SUPPORTED_CPUID: {
  1045. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1046. struct kvm_cpuid2 cpuid;
  1047. r = -EFAULT;
  1048. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1049. goto out;
  1050. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1051. cpuid_arg->entries);
  1052. if (r)
  1053. goto out;
  1054. r = -EFAULT;
  1055. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1056. goto out;
  1057. r = 0;
  1058. break;
  1059. }
  1060. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1061. u64 mce_cap;
  1062. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1063. r = -EFAULT;
  1064. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1065. goto out;
  1066. r = 0;
  1067. break;
  1068. }
  1069. default:
  1070. r = -EINVAL;
  1071. }
  1072. out:
  1073. return r;
  1074. }
  1075. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1076. {
  1077. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1078. kvm_request_guest_time_update(vcpu);
  1079. }
  1080. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1081. {
  1082. kvm_x86_ops->vcpu_put(vcpu);
  1083. kvm_put_guest_fpu(vcpu);
  1084. }
  1085. static int is_efer_nx(void)
  1086. {
  1087. unsigned long long efer = 0;
  1088. rdmsrl_safe(MSR_EFER, &efer);
  1089. return efer & EFER_NX;
  1090. }
  1091. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1092. {
  1093. int i;
  1094. struct kvm_cpuid_entry2 *e, *entry;
  1095. entry = NULL;
  1096. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1097. e = &vcpu->arch.cpuid_entries[i];
  1098. if (e->function == 0x80000001) {
  1099. entry = e;
  1100. break;
  1101. }
  1102. }
  1103. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1104. entry->edx &= ~(1 << 20);
  1105. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1106. }
  1107. }
  1108. /* when an old userspace process fills a new kernel module */
  1109. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1110. struct kvm_cpuid *cpuid,
  1111. struct kvm_cpuid_entry __user *entries)
  1112. {
  1113. int r, i;
  1114. struct kvm_cpuid_entry *cpuid_entries;
  1115. r = -E2BIG;
  1116. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1117. goto out;
  1118. r = -ENOMEM;
  1119. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1120. if (!cpuid_entries)
  1121. goto out;
  1122. r = -EFAULT;
  1123. if (copy_from_user(cpuid_entries, entries,
  1124. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1125. goto out_free;
  1126. for (i = 0; i < cpuid->nent; i++) {
  1127. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1128. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1129. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1130. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1131. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1132. vcpu->arch.cpuid_entries[i].index = 0;
  1133. vcpu->arch.cpuid_entries[i].flags = 0;
  1134. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1135. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1136. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1137. }
  1138. vcpu->arch.cpuid_nent = cpuid->nent;
  1139. cpuid_fix_nx_cap(vcpu);
  1140. r = 0;
  1141. out_free:
  1142. vfree(cpuid_entries);
  1143. out:
  1144. return r;
  1145. }
  1146. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1147. struct kvm_cpuid2 *cpuid,
  1148. struct kvm_cpuid_entry2 __user *entries)
  1149. {
  1150. int r;
  1151. r = -E2BIG;
  1152. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1153. goto out;
  1154. r = -EFAULT;
  1155. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1156. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1157. goto out;
  1158. vcpu->arch.cpuid_nent = cpuid->nent;
  1159. return 0;
  1160. out:
  1161. return r;
  1162. }
  1163. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1164. struct kvm_cpuid2 *cpuid,
  1165. struct kvm_cpuid_entry2 __user *entries)
  1166. {
  1167. int r;
  1168. r = -E2BIG;
  1169. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1170. goto out;
  1171. r = -EFAULT;
  1172. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1173. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1174. goto out;
  1175. return 0;
  1176. out:
  1177. cpuid->nent = vcpu->arch.cpuid_nent;
  1178. return r;
  1179. }
  1180. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1181. u32 index)
  1182. {
  1183. entry->function = function;
  1184. entry->index = index;
  1185. cpuid_count(entry->function, entry->index,
  1186. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1187. entry->flags = 0;
  1188. }
  1189. #define F(x) bit(X86_FEATURE_##x)
  1190. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1191. u32 index, int *nent, int maxnent)
  1192. {
  1193. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1194. #ifdef CONFIG_X86_64
  1195. unsigned f_lm = F(LM);
  1196. #else
  1197. unsigned f_lm = 0;
  1198. #endif
  1199. /* cpuid 1.edx */
  1200. const u32 kvm_supported_word0_x86_features =
  1201. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1202. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1203. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1204. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1205. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1206. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1207. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1208. 0 /* HTT, TM, Reserved, PBE */;
  1209. /* cpuid 0x80000001.edx */
  1210. const u32 kvm_supported_word1_x86_features =
  1211. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1212. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1213. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1214. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1215. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1216. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1217. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1218. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1219. /* cpuid 1.ecx */
  1220. const u32 kvm_supported_word4_x86_features =
  1221. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1222. 0 /* DS-CPL, VMX, SMX, EST */ |
  1223. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1224. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1225. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1226. F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
  1227. 0 /* Reserved, XSAVE, OSXSAVE */;
  1228. /* cpuid 0x80000001.ecx */
  1229. const u32 kvm_supported_word6_x86_features =
  1230. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1231. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1232. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1233. 0 /* SKINIT */ | 0 /* WDT */;
  1234. /* all calls to cpuid_count() should be made on the same cpu */
  1235. get_cpu();
  1236. do_cpuid_1_ent(entry, function, index);
  1237. ++*nent;
  1238. switch (function) {
  1239. case 0:
  1240. entry->eax = min(entry->eax, (u32)0xb);
  1241. break;
  1242. case 1:
  1243. entry->edx &= kvm_supported_word0_x86_features;
  1244. entry->ecx &= kvm_supported_word4_x86_features;
  1245. break;
  1246. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1247. * may return different values. This forces us to get_cpu() before
  1248. * issuing the first command, and also to emulate this annoying behavior
  1249. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1250. case 2: {
  1251. int t, times = entry->eax & 0xff;
  1252. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1253. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1254. for (t = 1; t < times && *nent < maxnent; ++t) {
  1255. do_cpuid_1_ent(&entry[t], function, 0);
  1256. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1257. ++*nent;
  1258. }
  1259. break;
  1260. }
  1261. /* function 4 and 0xb have additional index. */
  1262. case 4: {
  1263. int i, cache_type;
  1264. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1265. /* read more entries until cache_type is zero */
  1266. for (i = 1; *nent < maxnent; ++i) {
  1267. cache_type = entry[i - 1].eax & 0x1f;
  1268. if (!cache_type)
  1269. break;
  1270. do_cpuid_1_ent(&entry[i], function, i);
  1271. entry[i].flags |=
  1272. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1273. ++*nent;
  1274. }
  1275. break;
  1276. }
  1277. case 0xb: {
  1278. int i, level_type;
  1279. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1280. /* read more entries until level_type is zero */
  1281. for (i = 1; *nent < maxnent; ++i) {
  1282. level_type = entry[i - 1].ecx & 0xff00;
  1283. if (!level_type)
  1284. break;
  1285. do_cpuid_1_ent(&entry[i], function, i);
  1286. entry[i].flags |=
  1287. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1288. ++*nent;
  1289. }
  1290. break;
  1291. }
  1292. case 0x80000000:
  1293. entry->eax = min(entry->eax, 0x8000001a);
  1294. break;
  1295. case 0x80000001:
  1296. entry->edx &= kvm_supported_word1_x86_features;
  1297. entry->ecx &= kvm_supported_word6_x86_features;
  1298. break;
  1299. }
  1300. put_cpu();
  1301. }
  1302. #undef F
  1303. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1304. struct kvm_cpuid_entry2 __user *entries)
  1305. {
  1306. struct kvm_cpuid_entry2 *cpuid_entries;
  1307. int limit, nent = 0, r = -E2BIG;
  1308. u32 func;
  1309. if (cpuid->nent < 1)
  1310. goto out;
  1311. r = -ENOMEM;
  1312. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1313. if (!cpuid_entries)
  1314. goto out;
  1315. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1316. limit = cpuid_entries[0].eax;
  1317. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1318. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1319. &nent, cpuid->nent);
  1320. r = -E2BIG;
  1321. if (nent >= cpuid->nent)
  1322. goto out_free;
  1323. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1324. limit = cpuid_entries[nent - 1].eax;
  1325. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1326. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1327. &nent, cpuid->nent);
  1328. r = -E2BIG;
  1329. if (nent >= cpuid->nent)
  1330. goto out_free;
  1331. r = -EFAULT;
  1332. if (copy_to_user(entries, cpuid_entries,
  1333. nent * sizeof(struct kvm_cpuid_entry2)))
  1334. goto out_free;
  1335. cpuid->nent = nent;
  1336. r = 0;
  1337. out_free:
  1338. vfree(cpuid_entries);
  1339. out:
  1340. return r;
  1341. }
  1342. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1343. struct kvm_lapic_state *s)
  1344. {
  1345. vcpu_load(vcpu);
  1346. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1347. vcpu_put(vcpu);
  1348. return 0;
  1349. }
  1350. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1351. struct kvm_lapic_state *s)
  1352. {
  1353. vcpu_load(vcpu);
  1354. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1355. kvm_apic_post_state_restore(vcpu);
  1356. vcpu_put(vcpu);
  1357. return 0;
  1358. }
  1359. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1360. struct kvm_interrupt *irq)
  1361. {
  1362. if (irq->irq < 0 || irq->irq >= 256)
  1363. return -EINVAL;
  1364. if (irqchip_in_kernel(vcpu->kvm))
  1365. return -ENXIO;
  1366. vcpu_load(vcpu);
  1367. kvm_queue_interrupt(vcpu, irq->irq, false);
  1368. vcpu_put(vcpu);
  1369. return 0;
  1370. }
  1371. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1372. {
  1373. vcpu_load(vcpu);
  1374. kvm_inject_nmi(vcpu);
  1375. vcpu_put(vcpu);
  1376. return 0;
  1377. }
  1378. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1379. struct kvm_tpr_access_ctl *tac)
  1380. {
  1381. if (tac->flags)
  1382. return -EINVAL;
  1383. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1384. return 0;
  1385. }
  1386. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1387. u64 mcg_cap)
  1388. {
  1389. int r;
  1390. unsigned bank_num = mcg_cap & 0xff, bank;
  1391. r = -EINVAL;
  1392. if (!bank_num)
  1393. goto out;
  1394. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1395. goto out;
  1396. r = 0;
  1397. vcpu->arch.mcg_cap = mcg_cap;
  1398. /* Init IA32_MCG_CTL to all 1s */
  1399. if (mcg_cap & MCG_CTL_P)
  1400. vcpu->arch.mcg_ctl = ~(u64)0;
  1401. /* Init IA32_MCi_CTL to all 1s */
  1402. for (bank = 0; bank < bank_num; bank++)
  1403. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1404. out:
  1405. return r;
  1406. }
  1407. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1408. struct kvm_x86_mce *mce)
  1409. {
  1410. u64 mcg_cap = vcpu->arch.mcg_cap;
  1411. unsigned bank_num = mcg_cap & 0xff;
  1412. u64 *banks = vcpu->arch.mce_banks;
  1413. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1414. return -EINVAL;
  1415. /*
  1416. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1417. * reporting is disabled
  1418. */
  1419. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1420. vcpu->arch.mcg_ctl != ~(u64)0)
  1421. return 0;
  1422. banks += 4 * mce->bank;
  1423. /*
  1424. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1425. * reporting is disabled for the bank
  1426. */
  1427. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1428. return 0;
  1429. if (mce->status & MCI_STATUS_UC) {
  1430. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1431. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1432. printk(KERN_DEBUG "kvm: set_mce: "
  1433. "injects mce exception while "
  1434. "previous one is in progress!\n");
  1435. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1436. return 0;
  1437. }
  1438. if (banks[1] & MCI_STATUS_VAL)
  1439. mce->status |= MCI_STATUS_OVER;
  1440. banks[2] = mce->addr;
  1441. banks[3] = mce->misc;
  1442. vcpu->arch.mcg_status = mce->mcg_status;
  1443. banks[1] = mce->status;
  1444. kvm_queue_exception(vcpu, MC_VECTOR);
  1445. } else if (!(banks[1] & MCI_STATUS_VAL)
  1446. || !(banks[1] & MCI_STATUS_UC)) {
  1447. if (banks[1] & MCI_STATUS_VAL)
  1448. mce->status |= MCI_STATUS_OVER;
  1449. banks[2] = mce->addr;
  1450. banks[3] = mce->misc;
  1451. banks[1] = mce->status;
  1452. } else
  1453. banks[1] |= MCI_STATUS_OVER;
  1454. return 0;
  1455. }
  1456. long kvm_arch_vcpu_ioctl(struct file *filp,
  1457. unsigned int ioctl, unsigned long arg)
  1458. {
  1459. struct kvm_vcpu *vcpu = filp->private_data;
  1460. void __user *argp = (void __user *)arg;
  1461. int r;
  1462. struct kvm_lapic_state *lapic = NULL;
  1463. switch (ioctl) {
  1464. case KVM_GET_LAPIC: {
  1465. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1466. r = -ENOMEM;
  1467. if (!lapic)
  1468. goto out;
  1469. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1470. if (r)
  1471. goto out;
  1472. r = -EFAULT;
  1473. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1474. goto out;
  1475. r = 0;
  1476. break;
  1477. }
  1478. case KVM_SET_LAPIC: {
  1479. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1480. r = -ENOMEM;
  1481. if (!lapic)
  1482. goto out;
  1483. r = -EFAULT;
  1484. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1485. goto out;
  1486. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1487. if (r)
  1488. goto out;
  1489. r = 0;
  1490. break;
  1491. }
  1492. case KVM_INTERRUPT: {
  1493. struct kvm_interrupt irq;
  1494. r = -EFAULT;
  1495. if (copy_from_user(&irq, argp, sizeof irq))
  1496. goto out;
  1497. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1498. if (r)
  1499. goto out;
  1500. r = 0;
  1501. break;
  1502. }
  1503. case KVM_NMI: {
  1504. r = kvm_vcpu_ioctl_nmi(vcpu);
  1505. if (r)
  1506. goto out;
  1507. r = 0;
  1508. break;
  1509. }
  1510. case KVM_SET_CPUID: {
  1511. struct kvm_cpuid __user *cpuid_arg = argp;
  1512. struct kvm_cpuid cpuid;
  1513. r = -EFAULT;
  1514. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1515. goto out;
  1516. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1517. if (r)
  1518. goto out;
  1519. break;
  1520. }
  1521. case KVM_SET_CPUID2: {
  1522. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1523. struct kvm_cpuid2 cpuid;
  1524. r = -EFAULT;
  1525. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1526. goto out;
  1527. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1528. cpuid_arg->entries);
  1529. if (r)
  1530. goto out;
  1531. break;
  1532. }
  1533. case KVM_GET_CPUID2: {
  1534. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1535. struct kvm_cpuid2 cpuid;
  1536. r = -EFAULT;
  1537. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1538. goto out;
  1539. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1540. cpuid_arg->entries);
  1541. if (r)
  1542. goto out;
  1543. r = -EFAULT;
  1544. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1545. goto out;
  1546. r = 0;
  1547. break;
  1548. }
  1549. case KVM_GET_MSRS:
  1550. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1551. break;
  1552. case KVM_SET_MSRS:
  1553. r = msr_io(vcpu, argp, do_set_msr, 0);
  1554. break;
  1555. case KVM_TPR_ACCESS_REPORTING: {
  1556. struct kvm_tpr_access_ctl tac;
  1557. r = -EFAULT;
  1558. if (copy_from_user(&tac, argp, sizeof tac))
  1559. goto out;
  1560. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1561. if (r)
  1562. goto out;
  1563. r = -EFAULT;
  1564. if (copy_to_user(argp, &tac, sizeof tac))
  1565. goto out;
  1566. r = 0;
  1567. break;
  1568. };
  1569. case KVM_SET_VAPIC_ADDR: {
  1570. struct kvm_vapic_addr va;
  1571. r = -EINVAL;
  1572. if (!irqchip_in_kernel(vcpu->kvm))
  1573. goto out;
  1574. r = -EFAULT;
  1575. if (copy_from_user(&va, argp, sizeof va))
  1576. goto out;
  1577. r = 0;
  1578. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1579. break;
  1580. }
  1581. case KVM_X86_SETUP_MCE: {
  1582. u64 mcg_cap;
  1583. r = -EFAULT;
  1584. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1585. goto out;
  1586. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1587. break;
  1588. }
  1589. case KVM_X86_SET_MCE: {
  1590. struct kvm_x86_mce mce;
  1591. r = -EFAULT;
  1592. if (copy_from_user(&mce, argp, sizeof mce))
  1593. goto out;
  1594. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1595. break;
  1596. }
  1597. default:
  1598. r = -EINVAL;
  1599. }
  1600. out:
  1601. kfree(lapic);
  1602. return r;
  1603. }
  1604. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1605. {
  1606. int ret;
  1607. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1608. return -1;
  1609. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1610. return ret;
  1611. }
  1612. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1613. u32 kvm_nr_mmu_pages)
  1614. {
  1615. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1616. return -EINVAL;
  1617. down_write(&kvm->slots_lock);
  1618. spin_lock(&kvm->mmu_lock);
  1619. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1620. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1621. spin_unlock(&kvm->mmu_lock);
  1622. up_write(&kvm->slots_lock);
  1623. return 0;
  1624. }
  1625. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1626. {
  1627. return kvm->arch.n_alloc_mmu_pages;
  1628. }
  1629. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1630. {
  1631. int i;
  1632. struct kvm_mem_alias *alias;
  1633. for (i = 0; i < kvm->arch.naliases; ++i) {
  1634. alias = &kvm->arch.aliases[i];
  1635. if (gfn >= alias->base_gfn
  1636. && gfn < alias->base_gfn + alias->npages)
  1637. return alias->target_gfn + gfn - alias->base_gfn;
  1638. }
  1639. return gfn;
  1640. }
  1641. /*
  1642. * Set a new alias region. Aliases map a portion of physical memory into
  1643. * another portion. This is useful for memory windows, for example the PC
  1644. * VGA region.
  1645. */
  1646. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1647. struct kvm_memory_alias *alias)
  1648. {
  1649. int r, n;
  1650. struct kvm_mem_alias *p;
  1651. r = -EINVAL;
  1652. /* General sanity checks */
  1653. if (alias->memory_size & (PAGE_SIZE - 1))
  1654. goto out;
  1655. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1656. goto out;
  1657. if (alias->slot >= KVM_ALIAS_SLOTS)
  1658. goto out;
  1659. if (alias->guest_phys_addr + alias->memory_size
  1660. < alias->guest_phys_addr)
  1661. goto out;
  1662. if (alias->target_phys_addr + alias->memory_size
  1663. < alias->target_phys_addr)
  1664. goto out;
  1665. down_write(&kvm->slots_lock);
  1666. spin_lock(&kvm->mmu_lock);
  1667. p = &kvm->arch.aliases[alias->slot];
  1668. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1669. p->npages = alias->memory_size >> PAGE_SHIFT;
  1670. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1671. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1672. if (kvm->arch.aliases[n - 1].npages)
  1673. break;
  1674. kvm->arch.naliases = n;
  1675. spin_unlock(&kvm->mmu_lock);
  1676. kvm_mmu_zap_all(kvm);
  1677. up_write(&kvm->slots_lock);
  1678. return 0;
  1679. out:
  1680. return r;
  1681. }
  1682. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1683. {
  1684. int r;
  1685. r = 0;
  1686. switch (chip->chip_id) {
  1687. case KVM_IRQCHIP_PIC_MASTER:
  1688. memcpy(&chip->chip.pic,
  1689. &pic_irqchip(kvm)->pics[0],
  1690. sizeof(struct kvm_pic_state));
  1691. break;
  1692. case KVM_IRQCHIP_PIC_SLAVE:
  1693. memcpy(&chip->chip.pic,
  1694. &pic_irqchip(kvm)->pics[1],
  1695. sizeof(struct kvm_pic_state));
  1696. break;
  1697. case KVM_IRQCHIP_IOAPIC:
  1698. memcpy(&chip->chip.ioapic,
  1699. ioapic_irqchip(kvm),
  1700. sizeof(struct kvm_ioapic_state));
  1701. break;
  1702. default:
  1703. r = -EINVAL;
  1704. break;
  1705. }
  1706. return r;
  1707. }
  1708. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1709. {
  1710. int r;
  1711. r = 0;
  1712. switch (chip->chip_id) {
  1713. case KVM_IRQCHIP_PIC_MASTER:
  1714. memcpy(&pic_irqchip(kvm)->pics[0],
  1715. &chip->chip.pic,
  1716. sizeof(struct kvm_pic_state));
  1717. break;
  1718. case KVM_IRQCHIP_PIC_SLAVE:
  1719. memcpy(&pic_irqchip(kvm)->pics[1],
  1720. &chip->chip.pic,
  1721. sizeof(struct kvm_pic_state));
  1722. break;
  1723. case KVM_IRQCHIP_IOAPIC:
  1724. memcpy(ioapic_irqchip(kvm),
  1725. &chip->chip.ioapic,
  1726. sizeof(struct kvm_ioapic_state));
  1727. break;
  1728. default:
  1729. r = -EINVAL;
  1730. break;
  1731. }
  1732. kvm_pic_update_irq(pic_irqchip(kvm));
  1733. return r;
  1734. }
  1735. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1736. {
  1737. int r = 0;
  1738. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1739. return r;
  1740. }
  1741. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1742. {
  1743. int r = 0;
  1744. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1745. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1746. return r;
  1747. }
  1748. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1749. struct kvm_reinject_control *control)
  1750. {
  1751. if (!kvm->arch.vpit)
  1752. return -ENXIO;
  1753. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1754. return 0;
  1755. }
  1756. /*
  1757. * Get (and clear) the dirty memory log for a memory slot.
  1758. */
  1759. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1760. struct kvm_dirty_log *log)
  1761. {
  1762. int r;
  1763. int n;
  1764. struct kvm_memory_slot *memslot;
  1765. int is_dirty = 0;
  1766. down_write(&kvm->slots_lock);
  1767. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1768. if (r)
  1769. goto out;
  1770. /* If nothing is dirty, don't bother messing with page tables. */
  1771. if (is_dirty) {
  1772. spin_lock(&kvm->mmu_lock);
  1773. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1774. spin_unlock(&kvm->mmu_lock);
  1775. kvm_flush_remote_tlbs(kvm);
  1776. memslot = &kvm->memslots[log->slot];
  1777. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1778. memset(memslot->dirty_bitmap, 0, n);
  1779. }
  1780. r = 0;
  1781. out:
  1782. up_write(&kvm->slots_lock);
  1783. return r;
  1784. }
  1785. long kvm_arch_vm_ioctl(struct file *filp,
  1786. unsigned int ioctl, unsigned long arg)
  1787. {
  1788. struct kvm *kvm = filp->private_data;
  1789. void __user *argp = (void __user *)arg;
  1790. int r = -EINVAL;
  1791. /*
  1792. * This union makes it completely explicit to gcc-3.x
  1793. * that these two variables' stack usage should be
  1794. * combined, not added together.
  1795. */
  1796. union {
  1797. struct kvm_pit_state ps;
  1798. struct kvm_memory_alias alias;
  1799. } u;
  1800. switch (ioctl) {
  1801. case KVM_SET_TSS_ADDR:
  1802. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1803. if (r < 0)
  1804. goto out;
  1805. break;
  1806. case KVM_SET_MEMORY_REGION: {
  1807. struct kvm_memory_region kvm_mem;
  1808. struct kvm_userspace_memory_region kvm_userspace_mem;
  1809. r = -EFAULT;
  1810. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1811. goto out;
  1812. kvm_userspace_mem.slot = kvm_mem.slot;
  1813. kvm_userspace_mem.flags = kvm_mem.flags;
  1814. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1815. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1816. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1817. if (r)
  1818. goto out;
  1819. break;
  1820. }
  1821. case KVM_SET_NR_MMU_PAGES:
  1822. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1823. if (r)
  1824. goto out;
  1825. break;
  1826. case KVM_GET_NR_MMU_PAGES:
  1827. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1828. break;
  1829. case KVM_SET_MEMORY_ALIAS:
  1830. r = -EFAULT;
  1831. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1832. goto out;
  1833. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1834. if (r)
  1835. goto out;
  1836. break;
  1837. case KVM_CREATE_IRQCHIP:
  1838. r = -ENOMEM;
  1839. kvm->arch.vpic = kvm_create_pic(kvm);
  1840. if (kvm->arch.vpic) {
  1841. r = kvm_ioapic_init(kvm);
  1842. if (r) {
  1843. kfree(kvm->arch.vpic);
  1844. kvm->arch.vpic = NULL;
  1845. goto out;
  1846. }
  1847. } else
  1848. goto out;
  1849. r = kvm_setup_default_irq_routing(kvm);
  1850. if (r) {
  1851. kfree(kvm->arch.vpic);
  1852. kfree(kvm->arch.vioapic);
  1853. goto out;
  1854. }
  1855. break;
  1856. case KVM_CREATE_PIT:
  1857. mutex_lock(&kvm->lock);
  1858. r = -EEXIST;
  1859. if (kvm->arch.vpit)
  1860. goto create_pit_unlock;
  1861. r = -ENOMEM;
  1862. kvm->arch.vpit = kvm_create_pit(kvm);
  1863. if (kvm->arch.vpit)
  1864. r = 0;
  1865. create_pit_unlock:
  1866. mutex_unlock(&kvm->lock);
  1867. break;
  1868. case KVM_IRQ_LINE_STATUS:
  1869. case KVM_IRQ_LINE: {
  1870. struct kvm_irq_level irq_event;
  1871. r = -EFAULT;
  1872. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1873. goto out;
  1874. if (irqchip_in_kernel(kvm)) {
  1875. __s32 status;
  1876. mutex_lock(&kvm->lock);
  1877. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1878. irq_event.irq, irq_event.level);
  1879. mutex_unlock(&kvm->lock);
  1880. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1881. irq_event.status = status;
  1882. if (copy_to_user(argp, &irq_event,
  1883. sizeof irq_event))
  1884. goto out;
  1885. }
  1886. r = 0;
  1887. }
  1888. break;
  1889. }
  1890. case KVM_GET_IRQCHIP: {
  1891. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1892. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1893. r = -ENOMEM;
  1894. if (!chip)
  1895. goto out;
  1896. r = -EFAULT;
  1897. if (copy_from_user(chip, argp, sizeof *chip))
  1898. goto get_irqchip_out;
  1899. r = -ENXIO;
  1900. if (!irqchip_in_kernel(kvm))
  1901. goto get_irqchip_out;
  1902. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1903. if (r)
  1904. goto get_irqchip_out;
  1905. r = -EFAULT;
  1906. if (copy_to_user(argp, chip, sizeof *chip))
  1907. goto get_irqchip_out;
  1908. r = 0;
  1909. get_irqchip_out:
  1910. kfree(chip);
  1911. if (r)
  1912. goto out;
  1913. break;
  1914. }
  1915. case KVM_SET_IRQCHIP: {
  1916. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1917. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1918. r = -ENOMEM;
  1919. if (!chip)
  1920. goto out;
  1921. r = -EFAULT;
  1922. if (copy_from_user(chip, argp, sizeof *chip))
  1923. goto set_irqchip_out;
  1924. r = -ENXIO;
  1925. if (!irqchip_in_kernel(kvm))
  1926. goto set_irqchip_out;
  1927. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1928. if (r)
  1929. goto set_irqchip_out;
  1930. r = 0;
  1931. set_irqchip_out:
  1932. kfree(chip);
  1933. if (r)
  1934. goto out;
  1935. break;
  1936. }
  1937. case KVM_GET_PIT: {
  1938. r = -EFAULT;
  1939. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1940. goto out;
  1941. r = -ENXIO;
  1942. if (!kvm->arch.vpit)
  1943. goto out;
  1944. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1945. if (r)
  1946. goto out;
  1947. r = -EFAULT;
  1948. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1949. goto out;
  1950. r = 0;
  1951. break;
  1952. }
  1953. case KVM_SET_PIT: {
  1954. r = -EFAULT;
  1955. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1956. goto out;
  1957. r = -ENXIO;
  1958. if (!kvm->arch.vpit)
  1959. goto out;
  1960. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1961. if (r)
  1962. goto out;
  1963. r = 0;
  1964. break;
  1965. }
  1966. case KVM_REINJECT_CONTROL: {
  1967. struct kvm_reinject_control control;
  1968. r = -EFAULT;
  1969. if (copy_from_user(&control, argp, sizeof(control)))
  1970. goto out;
  1971. r = kvm_vm_ioctl_reinject(kvm, &control);
  1972. if (r)
  1973. goto out;
  1974. r = 0;
  1975. break;
  1976. }
  1977. default:
  1978. ;
  1979. }
  1980. out:
  1981. return r;
  1982. }
  1983. static void kvm_init_msr_list(void)
  1984. {
  1985. u32 dummy[2];
  1986. unsigned i, j;
  1987. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1988. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1989. continue;
  1990. if (j < i)
  1991. msrs_to_save[j] = msrs_to_save[i];
  1992. j++;
  1993. }
  1994. num_msrs_to_save = j;
  1995. }
  1996. /*
  1997. * Only apic need an MMIO device hook, so shortcut now..
  1998. */
  1999. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  2000. gpa_t addr, int len,
  2001. int is_write)
  2002. {
  2003. struct kvm_io_device *dev;
  2004. if (vcpu->arch.apic) {
  2005. dev = &vcpu->arch.apic->dev;
  2006. if (dev->in_range(dev, addr, len, is_write))
  2007. return dev;
  2008. }
  2009. return NULL;
  2010. }
  2011. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  2012. gpa_t addr, int len,
  2013. int is_write)
  2014. {
  2015. struct kvm_io_device *dev;
  2016. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  2017. if (dev == NULL)
  2018. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  2019. is_write);
  2020. return dev;
  2021. }
  2022. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2023. struct kvm_vcpu *vcpu)
  2024. {
  2025. void *data = val;
  2026. int r = X86EMUL_CONTINUE;
  2027. while (bytes) {
  2028. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2029. unsigned offset = addr & (PAGE_SIZE-1);
  2030. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2031. int ret;
  2032. if (gpa == UNMAPPED_GVA) {
  2033. r = X86EMUL_PROPAGATE_FAULT;
  2034. goto out;
  2035. }
  2036. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2037. if (ret < 0) {
  2038. r = X86EMUL_UNHANDLEABLE;
  2039. goto out;
  2040. }
  2041. bytes -= toread;
  2042. data += toread;
  2043. addr += toread;
  2044. }
  2045. out:
  2046. return r;
  2047. }
  2048. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2049. struct kvm_vcpu *vcpu)
  2050. {
  2051. void *data = val;
  2052. int r = X86EMUL_CONTINUE;
  2053. while (bytes) {
  2054. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2055. unsigned offset = addr & (PAGE_SIZE-1);
  2056. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2057. int ret;
  2058. if (gpa == UNMAPPED_GVA) {
  2059. r = X86EMUL_PROPAGATE_FAULT;
  2060. goto out;
  2061. }
  2062. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2063. if (ret < 0) {
  2064. r = X86EMUL_UNHANDLEABLE;
  2065. goto out;
  2066. }
  2067. bytes -= towrite;
  2068. data += towrite;
  2069. addr += towrite;
  2070. }
  2071. out:
  2072. return r;
  2073. }
  2074. static int emulator_read_emulated(unsigned long addr,
  2075. void *val,
  2076. unsigned int bytes,
  2077. struct kvm_vcpu *vcpu)
  2078. {
  2079. struct kvm_io_device *mmio_dev;
  2080. gpa_t gpa;
  2081. if (vcpu->mmio_read_completed) {
  2082. memcpy(val, vcpu->mmio_data, bytes);
  2083. vcpu->mmio_read_completed = 0;
  2084. return X86EMUL_CONTINUE;
  2085. }
  2086. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2087. /* For APIC access vmexit */
  2088. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2089. goto mmio;
  2090. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2091. == X86EMUL_CONTINUE)
  2092. return X86EMUL_CONTINUE;
  2093. if (gpa == UNMAPPED_GVA)
  2094. return X86EMUL_PROPAGATE_FAULT;
  2095. mmio:
  2096. /*
  2097. * Is this MMIO handled locally?
  2098. */
  2099. mutex_lock(&vcpu->kvm->lock);
  2100. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  2101. if (mmio_dev) {
  2102. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  2103. mutex_unlock(&vcpu->kvm->lock);
  2104. return X86EMUL_CONTINUE;
  2105. }
  2106. mutex_unlock(&vcpu->kvm->lock);
  2107. vcpu->mmio_needed = 1;
  2108. vcpu->mmio_phys_addr = gpa;
  2109. vcpu->mmio_size = bytes;
  2110. vcpu->mmio_is_write = 0;
  2111. return X86EMUL_UNHANDLEABLE;
  2112. }
  2113. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2114. const void *val, int bytes)
  2115. {
  2116. int ret;
  2117. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2118. if (ret < 0)
  2119. return 0;
  2120. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2121. return 1;
  2122. }
  2123. static int emulator_write_emulated_onepage(unsigned long addr,
  2124. const void *val,
  2125. unsigned int bytes,
  2126. struct kvm_vcpu *vcpu)
  2127. {
  2128. struct kvm_io_device *mmio_dev;
  2129. gpa_t gpa;
  2130. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2131. if (gpa == UNMAPPED_GVA) {
  2132. kvm_inject_page_fault(vcpu, addr, 2);
  2133. return X86EMUL_PROPAGATE_FAULT;
  2134. }
  2135. /* For APIC access vmexit */
  2136. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2137. goto mmio;
  2138. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2139. return X86EMUL_CONTINUE;
  2140. mmio:
  2141. /*
  2142. * Is this MMIO handled locally?
  2143. */
  2144. mutex_lock(&vcpu->kvm->lock);
  2145. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  2146. if (mmio_dev) {
  2147. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  2148. mutex_unlock(&vcpu->kvm->lock);
  2149. return X86EMUL_CONTINUE;
  2150. }
  2151. mutex_unlock(&vcpu->kvm->lock);
  2152. vcpu->mmio_needed = 1;
  2153. vcpu->mmio_phys_addr = gpa;
  2154. vcpu->mmio_size = bytes;
  2155. vcpu->mmio_is_write = 1;
  2156. memcpy(vcpu->mmio_data, val, bytes);
  2157. return X86EMUL_CONTINUE;
  2158. }
  2159. int emulator_write_emulated(unsigned long addr,
  2160. const void *val,
  2161. unsigned int bytes,
  2162. struct kvm_vcpu *vcpu)
  2163. {
  2164. /* Crossing a page boundary? */
  2165. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2166. int rc, now;
  2167. now = -addr & ~PAGE_MASK;
  2168. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2169. if (rc != X86EMUL_CONTINUE)
  2170. return rc;
  2171. addr += now;
  2172. val += now;
  2173. bytes -= now;
  2174. }
  2175. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2176. }
  2177. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2178. static int emulator_cmpxchg_emulated(unsigned long addr,
  2179. const void *old,
  2180. const void *new,
  2181. unsigned int bytes,
  2182. struct kvm_vcpu *vcpu)
  2183. {
  2184. static int reported;
  2185. if (!reported) {
  2186. reported = 1;
  2187. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2188. }
  2189. #ifndef CONFIG_X86_64
  2190. /* guests cmpxchg8b have to be emulated atomically */
  2191. if (bytes == 8) {
  2192. gpa_t gpa;
  2193. struct page *page;
  2194. char *kaddr;
  2195. u64 val;
  2196. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2197. if (gpa == UNMAPPED_GVA ||
  2198. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2199. goto emul_write;
  2200. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2201. goto emul_write;
  2202. val = *(u64 *)new;
  2203. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2204. kaddr = kmap_atomic(page, KM_USER0);
  2205. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2206. kunmap_atomic(kaddr, KM_USER0);
  2207. kvm_release_page_dirty(page);
  2208. }
  2209. emul_write:
  2210. #endif
  2211. return emulator_write_emulated(addr, new, bytes, vcpu);
  2212. }
  2213. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2214. {
  2215. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2216. }
  2217. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2218. {
  2219. kvm_mmu_invlpg(vcpu, address);
  2220. return X86EMUL_CONTINUE;
  2221. }
  2222. int emulate_clts(struct kvm_vcpu *vcpu)
  2223. {
  2224. KVMTRACE_0D(CLTS, vcpu, handler);
  2225. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2226. return X86EMUL_CONTINUE;
  2227. }
  2228. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2229. {
  2230. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2231. switch (dr) {
  2232. case 0 ... 3:
  2233. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2234. return X86EMUL_CONTINUE;
  2235. default:
  2236. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2237. return X86EMUL_UNHANDLEABLE;
  2238. }
  2239. }
  2240. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2241. {
  2242. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2243. int exception;
  2244. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2245. if (exception) {
  2246. /* FIXME: better handling */
  2247. return X86EMUL_UNHANDLEABLE;
  2248. }
  2249. return X86EMUL_CONTINUE;
  2250. }
  2251. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2252. {
  2253. u8 opcodes[4];
  2254. unsigned long rip = kvm_rip_read(vcpu);
  2255. unsigned long rip_linear;
  2256. if (!printk_ratelimit())
  2257. return;
  2258. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2259. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2260. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2261. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2262. }
  2263. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2264. static struct x86_emulate_ops emulate_ops = {
  2265. .read_std = kvm_read_guest_virt,
  2266. .read_emulated = emulator_read_emulated,
  2267. .write_emulated = emulator_write_emulated,
  2268. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2269. };
  2270. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2271. {
  2272. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2273. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2274. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2275. vcpu->arch.regs_dirty = ~0;
  2276. }
  2277. int emulate_instruction(struct kvm_vcpu *vcpu,
  2278. struct kvm_run *run,
  2279. unsigned long cr2,
  2280. u16 error_code,
  2281. int emulation_type)
  2282. {
  2283. int r, shadow_mask;
  2284. struct decode_cache *c;
  2285. kvm_clear_exception_queue(vcpu);
  2286. vcpu->arch.mmio_fault_cr2 = cr2;
  2287. /*
  2288. * TODO: fix x86_emulate.c to use guest_read/write_register
  2289. * instead of direct ->regs accesses, can save hundred cycles
  2290. * on Intel for instructions that don't read/change RSP, for
  2291. * for example.
  2292. */
  2293. cache_all_regs(vcpu);
  2294. vcpu->mmio_is_write = 0;
  2295. vcpu->arch.pio.string = 0;
  2296. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2297. int cs_db, cs_l;
  2298. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2299. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2300. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2301. vcpu->arch.emulate_ctxt.mode =
  2302. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2303. ? X86EMUL_MODE_REAL : cs_l
  2304. ? X86EMUL_MODE_PROT64 : cs_db
  2305. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2306. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2307. /* Reject the instructions other than VMCALL/VMMCALL when
  2308. * try to emulate invalid opcode */
  2309. c = &vcpu->arch.emulate_ctxt.decode;
  2310. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2311. (!(c->twobyte && c->b == 0x01 &&
  2312. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2313. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2314. return EMULATE_FAIL;
  2315. ++vcpu->stat.insn_emulation;
  2316. if (r) {
  2317. ++vcpu->stat.insn_emulation_fail;
  2318. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2319. return EMULATE_DONE;
  2320. return EMULATE_FAIL;
  2321. }
  2322. }
  2323. if (emulation_type & EMULTYPE_SKIP) {
  2324. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2325. return EMULATE_DONE;
  2326. }
  2327. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2328. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2329. if (r == 0)
  2330. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2331. if (vcpu->arch.pio.string)
  2332. return EMULATE_DO_MMIO;
  2333. if ((r || vcpu->mmio_is_write) && run) {
  2334. run->exit_reason = KVM_EXIT_MMIO;
  2335. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2336. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2337. run->mmio.len = vcpu->mmio_size;
  2338. run->mmio.is_write = vcpu->mmio_is_write;
  2339. }
  2340. if (r) {
  2341. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2342. return EMULATE_DONE;
  2343. if (!vcpu->mmio_needed) {
  2344. kvm_report_emulation_failure(vcpu, "mmio");
  2345. return EMULATE_FAIL;
  2346. }
  2347. return EMULATE_DO_MMIO;
  2348. }
  2349. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2350. if (vcpu->mmio_is_write) {
  2351. vcpu->mmio_needed = 0;
  2352. return EMULATE_DO_MMIO;
  2353. }
  2354. return EMULATE_DONE;
  2355. }
  2356. EXPORT_SYMBOL_GPL(emulate_instruction);
  2357. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2358. {
  2359. void *p = vcpu->arch.pio_data;
  2360. gva_t q = vcpu->arch.pio.guest_gva;
  2361. unsigned bytes;
  2362. int ret;
  2363. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2364. if (vcpu->arch.pio.in)
  2365. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2366. else
  2367. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2368. return ret;
  2369. }
  2370. int complete_pio(struct kvm_vcpu *vcpu)
  2371. {
  2372. struct kvm_pio_request *io = &vcpu->arch.pio;
  2373. long delta;
  2374. int r;
  2375. unsigned long val;
  2376. if (!io->string) {
  2377. if (io->in) {
  2378. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2379. memcpy(&val, vcpu->arch.pio_data, io->size);
  2380. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2381. }
  2382. } else {
  2383. if (io->in) {
  2384. r = pio_copy_data(vcpu);
  2385. if (r)
  2386. return r;
  2387. }
  2388. delta = 1;
  2389. if (io->rep) {
  2390. delta *= io->cur_count;
  2391. /*
  2392. * The size of the register should really depend on
  2393. * current address size.
  2394. */
  2395. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2396. val -= delta;
  2397. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2398. }
  2399. if (io->down)
  2400. delta = -delta;
  2401. delta *= io->size;
  2402. if (io->in) {
  2403. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2404. val += delta;
  2405. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2406. } else {
  2407. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2408. val += delta;
  2409. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2410. }
  2411. }
  2412. io->count -= io->cur_count;
  2413. io->cur_count = 0;
  2414. return 0;
  2415. }
  2416. static void kernel_pio(struct kvm_io_device *pio_dev,
  2417. struct kvm_vcpu *vcpu,
  2418. void *pd)
  2419. {
  2420. /* TODO: String I/O for in kernel device */
  2421. mutex_lock(&vcpu->kvm->lock);
  2422. if (vcpu->arch.pio.in)
  2423. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2424. vcpu->arch.pio.size,
  2425. pd);
  2426. else
  2427. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2428. vcpu->arch.pio.size,
  2429. pd);
  2430. mutex_unlock(&vcpu->kvm->lock);
  2431. }
  2432. static void pio_string_write(struct kvm_io_device *pio_dev,
  2433. struct kvm_vcpu *vcpu)
  2434. {
  2435. struct kvm_pio_request *io = &vcpu->arch.pio;
  2436. void *pd = vcpu->arch.pio_data;
  2437. int i;
  2438. mutex_lock(&vcpu->kvm->lock);
  2439. for (i = 0; i < io->cur_count; i++) {
  2440. kvm_iodevice_write(pio_dev, io->port,
  2441. io->size,
  2442. pd);
  2443. pd += io->size;
  2444. }
  2445. mutex_unlock(&vcpu->kvm->lock);
  2446. }
  2447. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2448. gpa_t addr, int len,
  2449. int is_write)
  2450. {
  2451. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2452. }
  2453. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2454. int size, unsigned port)
  2455. {
  2456. struct kvm_io_device *pio_dev;
  2457. unsigned long val;
  2458. vcpu->run->exit_reason = KVM_EXIT_IO;
  2459. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2460. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2461. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2462. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2463. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2464. vcpu->arch.pio.in = in;
  2465. vcpu->arch.pio.string = 0;
  2466. vcpu->arch.pio.down = 0;
  2467. vcpu->arch.pio.rep = 0;
  2468. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2469. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2470. handler);
  2471. else
  2472. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2473. handler);
  2474. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2475. memcpy(vcpu->arch.pio_data, &val, 4);
  2476. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2477. if (pio_dev) {
  2478. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2479. complete_pio(vcpu);
  2480. return 1;
  2481. }
  2482. return 0;
  2483. }
  2484. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2485. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2486. int size, unsigned long count, int down,
  2487. gva_t address, int rep, unsigned port)
  2488. {
  2489. unsigned now, in_page;
  2490. int ret = 0;
  2491. struct kvm_io_device *pio_dev;
  2492. vcpu->run->exit_reason = KVM_EXIT_IO;
  2493. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2494. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2495. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2496. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2497. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2498. vcpu->arch.pio.in = in;
  2499. vcpu->arch.pio.string = 1;
  2500. vcpu->arch.pio.down = down;
  2501. vcpu->arch.pio.rep = rep;
  2502. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2503. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2504. handler);
  2505. else
  2506. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2507. handler);
  2508. if (!count) {
  2509. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2510. return 1;
  2511. }
  2512. if (!down)
  2513. in_page = PAGE_SIZE - offset_in_page(address);
  2514. else
  2515. in_page = offset_in_page(address) + size;
  2516. now = min(count, (unsigned long)in_page / size);
  2517. if (!now)
  2518. now = 1;
  2519. if (down) {
  2520. /*
  2521. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2522. */
  2523. pr_unimpl(vcpu, "guest string pio down\n");
  2524. kvm_inject_gp(vcpu, 0);
  2525. return 1;
  2526. }
  2527. vcpu->run->io.count = now;
  2528. vcpu->arch.pio.cur_count = now;
  2529. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2530. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2531. vcpu->arch.pio.guest_gva = address;
  2532. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2533. vcpu->arch.pio.cur_count,
  2534. !vcpu->arch.pio.in);
  2535. if (!vcpu->arch.pio.in) {
  2536. /* string PIO write */
  2537. ret = pio_copy_data(vcpu);
  2538. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2539. kvm_inject_gp(vcpu, 0);
  2540. return 1;
  2541. }
  2542. if (ret == 0 && pio_dev) {
  2543. pio_string_write(pio_dev, vcpu);
  2544. complete_pio(vcpu);
  2545. if (vcpu->arch.pio.count == 0)
  2546. ret = 1;
  2547. }
  2548. } else if (pio_dev)
  2549. pr_unimpl(vcpu, "no string pio read support yet, "
  2550. "port %x size %d count %ld\n",
  2551. port, size, count);
  2552. return ret;
  2553. }
  2554. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2555. static void bounce_off(void *info)
  2556. {
  2557. /* nothing */
  2558. }
  2559. static unsigned int ref_freq;
  2560. static unsigned long tsc_khz_ref;
  2561. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2562. void *data)
  2563. {
  2564. struct cpufreq_freqs *freq = data;
  2565. struct kvm *kvm;
  2566. struct kvm_vcpu *vcpu;
  2567. int i, send_ipi = 0;
  2568. if (!ref_freq)
  2569. ref_freq = freq->old;
  2570. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2571. return 0;
  2572. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2573. return 0;
  2574. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2575. spin_lock(&kvm_lock);
  2576. list_for_each_entry(kvm, &vm_list, vm_list) {
  2577. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2578. vcpu = kvm->vcpus[i];
  2579. if (!vcpu)
  2580. continue;
  2581. if (vcpu->cpu != freq->cpu)
  2582. continue;
  2583. if (!kvm_request_guest_time_update(vcpu))
  2584. continue;
  2585. if (vcpu->cpu != smp_processor_id())
  2586. send_ipi++;
  2587. }
  2588. }
  2589. spin_unlock(&kvm_lock);
  2590. if (freq->old < freq->new && send_ipi) {
  2591. /*
  2592. * We upscale the frequency. Must make the guest
  2593. * doesn't see old kvmclock values while running with
  2594. * the new frequency, otherwise we risk the guest sees
  2595. * time go backwards.
  2596. *
  2597. * In case we update the frequency for another cpu
  2598. * (which might be in guest context) send an interrupt
  2599. * to kick the cpu out of guest context. Next time
  2600. * guest context is entered kvmclock will be updated,
  2601. * so the guest will not see stale values.
  2602. */
  2603. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2604. }
  2605. return 0;
  2606. }
  2607. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2608. .notifier_call = kvmclock_cpufreq_notifier
  2609. };
  2610. int kvm_arch_init(void *opaque)
  2611. {
  2612. int r, cpu;
  2613. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2614. if (kvm_x86_ops) {
  2615. printk(KERN_ERR "kvm: already loaded the other module\n");
  2616. r = -EEXIST;
  2617. goto out;
  2618. }
  2619. if (!ops->cpu_has_kvm_support()) {
  2620. printk(KERN_ERR "kvm: no hardware support\n");
  2621. r = -EOPNOTSUPP;
  2622. goto out;
  2623. }
  2624. if (ops->disabled_by_bios()) {
  2625. printk(KERN_ERR "kvm: disabled by bios\n");
  2626. r = -EOPNOTSUPP;
  2627. goto out;
  2628. }
  2629. r = kvm_mmu_module_init();
  2630. if (r)
  2631. goto out;
  2632. kvm_init_msr_list();
  2633. kvm_x86_ops = ops;
  2634. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2635. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2636. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2637. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2638. for_each_possible_cpu(cpu)
  2639. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2640. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2641. tsc_khz_ref = tsc_khz;
  2642. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2643. CPUFREQ_TRANSITION_NOTIFIER);
  2644. }
  2645. return 0;
  2646. out:
  2647. return r;
  2648. }
  2649. void kvm_arch_exit(void)
  2650. {
  2651. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2652. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2653. CPUFREQ_TRANSITION_NOTIFIER);
  2654. kvm_x86_ops = NULL;
  2655. kvm_mmu_module_exit();
  2656. }
  2657. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2658. {
  2659. ++vcpu->stat.halt_exits;
  2660. KVMTRACE_0D(HLT, vcpu, handler);
  2661. if (irqchip_in_kernel(vcpu->kvm)) {
  2662. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2663. return 1;
  2664. } else {
  2665. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2666. return 0;
  2667. }
  2668. }
  2669. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2670. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2671. unsigned long a1)
  2672. {
  2673. if (is_long_mode(vcpu))
  2674. return a0;
  2675. else
  2676. return a0 | ((gpa_t)a1 << 32);
  2677. }
  2678. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2679. {
  2680. unsigned long nr, a0, a1, a2, a3, ret;
  2681. int r = 1;
  2682. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2683. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2684. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2685. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2686. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2687. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2688. if (!is_long_mode(vcpu)) {
  2689. nr &= 0xFFFFFFFF;
  2690. a0 &= 0xFFFFFFFF;
  2691. a1 &= 0xFFFFFFFF;
  2692. a2 &= 0xFFFFFFFF;
  2693. a3 &= 0xFFFFFFFF;
  2694. }
  2695. switch (nr) {
  2696. case KVM_HC_VAPIC_POLL_IRQ:
  2697. ret = 0;
  2698. break;
  2699. case KVM_HC_MMU_OP:
  2700. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2701. break;
  2702. default:
  2703. ret = -KVM_ENOSYS;
  2704. break;
  2705. }
  2706. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2707. ++vcpu->stat.hypercalls;
  2708. return r;
  2709. }
  2710. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2711. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2712. {
  2713. char instruction[3];
  2714. int ret = 0;
  2715. unsigned long rip = kvm_rip_read(vcpu);
  2716. /*
  2717. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2718. * to ensure that the updated hypercall appears atomically across all
  2719. * VCPUs.
  2720. */
  2721. kvm_mmu_zap_all(vcpu->kvm);
  2722. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2723. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2724. != X86EMUL_CONTINUE)
  2725. ret = -EFAULT;
  2726. return ret;
  2727. }
  2728. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2729. {
  2730. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2731. }
  2732. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2733. {
  2734. struct descriptor_table dt = { limit, base };
  2735. kvm_x86_ops->set_gdt(vcpu, &dt);
  2736. }
  2737. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2738. {
  2739. struct descriptor_table dt = { limit, base };
  2740. kvm_x86_ops->set_idt(vcpu, &dt);
  2741. }
  2742. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2743. unsigned long *rflags)
  2744. {
  2745. kvm_lmsw(vcpu, msw);
  2746. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2747. }
  2748. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2749. {
  2750. unsigned long value;
  2751. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2752. switch (cr) {
  2753. case 0:
  2754. value = vcpu->arch.cr0;
  2755. break;
  2756. case 2:
  2757. value = vcpu->arch.cr2;
  2758. break;
  2759. case 3:
  2760. value = vcpu->arch.cr3;
  2761. break;
  2762. case 4:
  2763. value = vcpu->arch.cr4;
  2764. break;
  2765. case 8:
  2766. value = kvm_get_cr8(vcpu);
  2767. break;
  2768. default:
  2769. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2770. return 0;
  2771. }
  2772. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2773. (u32)((u64)value >> 32), handler);
  2774. return value;
  2775. }
  2776. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2777. unsigned long *rflags)
  2778. {
  2779. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2780. (u32)((u64)val >> 32), handler);
  2781. switch (cr) {
  2782. case 0:
  2783. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2784. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2785. break;
  2786. case 2:
  2787. vcpu->arch.cr2 = val;
  2788. break;
  2789. case 3:
  2790. kvm_set_cr3(vcpu, val);
  2791. break;
  2792. case 4:
  2793. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2794. break;
  2795. case 8:
  2796. kvm_set_cr8(vcpu, val & 0xfUL);
  2797. break;
  2798. default:
  2799. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2800. }
  2801. }
  2802. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2803. {
  2804. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2805. int j, nent = vcpu->arch.cpuid_nent;
  2806. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2807. /* when no next entry is found, the current entry[i] is reselected */
  2808. for (j = i + 1; ; j = (j + 1) % nent) {
  2809. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2810. if (ej->function == e->function) {
  2811. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2812. return j;
  2813. }
  2814. }
  2815. return 0; /* silence gcc, even though control never reaches here */
  2816. }
  2817. /* find an entry with matching function, matching index (if needed), and that
  2818. * should be read next (if it's stateful) */
  2819. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2820. u32 function, u32 index)
  2821. {
  2822. if (e->function != function)
  2823. return 0;
  2824. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2825. return 0;
  2826. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2827. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2828. return 0;
  2829. return 1;
  2830. }
  2831. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2832. u32 function, u32 index)
  2833. {
  2834. int i;
  2835. struct kvm_cpuid_entry2 *best = NULL;
  2836. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2837. struct kvm_cpuid_entry2 *e;
  2838. e = &vcpu->arch.cpuid_entries[i];
  2839. if (is_matching_cpuid_entry(e, function, index)) {
  2840. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2841. move_to_next_stateful_cpuid_entry(vcpu, i);
  2842. best = e;
  2843. break;
  2844. }
  2845. /*
  2846. * Both basic or both extended?
  2847. */
  2848. if (((e->function ^ function) & 0x80000000) == 0)
  2849. if (!best || e->function > best->function)
  2850. best = e;
  2851. }
  2852. return best;
  2853. }
  2854. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2855. {
  2856. struct kvm_cpuid_entry2 *best;
  2857. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2858. if (best)
  2859. return best->eax & 0xff;
  2860. return 36;
  2861. }
  2862. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2863. {
  2864. u32 function, index;
  2865. struct kvm_cpuid_entry2 *best;
  2866. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2867. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2868. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2869. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2870. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2871. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2872. best = kvm_find_cpuid_entry(vcpu, function, index);
  2873. if (best) {
  2874. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2875. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2876. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2877. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2878. }
  2879. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2880. KVMTRACE_5D(CPUID, vcpu, function,
  2881. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2882. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2883. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2884. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2885. }
  2886. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2887. /*
  2888. * Check if userspace requested an interrupt window, and that the
  2889. * interrupt window is open.
  2890. *
  2891. * No need to exit to userspace if we already have an interrupt queued.
  2892. */
  2893. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2894. struct kvm_run *kvm_run)
  2895. {
  2896. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2897. kvm_run->request_interrupt_window &&
  2898. kvm_arch_interrupt_allowed(vcpu));
  2899. }
  2900. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2901. struct kvm_run *kvm_run)
  2902. {
  2903. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2904. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2905. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2906. if (irqchip_in_kernel(vcpu->kvm))
  2907. kvm_run->ready_for_interrupt_injection = 1;
  2908. else
  2909. kvm_run->ready_for_interrupt_injection =
  2910. kvm_arch_interrupt_allowed(vcpu) &&
  2911. !kvm_cpu_has_interrupt(vcpu) &&
  2912. !kvm_event_needs_reinjection(vcpu);
  2913. }
  2914. static void vapic_enter(struct kvm_vcpu *vcpu)
  2915. {
  2916. struct kvm_lapic *apic = vcpu->arch.apic;
  2917. struct page *page;
  2918. if (!apic || !apic->vapic_addr)
  2919. return;
  2920. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2921. vcpu->arch.apic->vapic_page = page;
  2922. }
  2923. static void vapic_exit(struct kvm_vcpu *vcpu)
  2924. {
  2925. struct kvm_lapic *apic = vcpu->arch.apic;
  2926. if (!apic || !apic->vapic_addr)
  2927. return;
  2928. down_read(&vcpu->kvm->slots_lock);
  2929. kvm_release_page_dirty(apic->vapic_page);
  2930. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2931. up_read(&vcpu->kvm->slots_lock);
  2932. }
  2933. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2934. {
  2935. int max_irr, tpr;
  2936. if (!kvm_x86_ops->update_cr8_intercept)
  2937. return;
  2938. if (!vcpu->arch.apic->vapic_addr)
  2939. max_irr = kvm_lapic_find_highest_irr(vcpu);
  2940. else
  2941. max_irr = -1;
  2942. if (max_irr != -1)
  2943. max_irr >>= 4;
  2944. tpr = kvm_lapic_get_cr8(vcpu);
  2945. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  2946. }
  2947. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2948. {
  2949. /* try to reinject previous events if any */
  2950. if (vcpu->arch.nmi_injected) {
  2951. kvm_x86_ops->set_nmi(vcpu);
  2952. return;
  2953. }
  2954. if (vcpu->arch.interrupt.pending) {
  2955. kvm_x86_ops->set_irq(vcpu);
  2956. return;
  2957. }
  2958. /* try to inject new event if pending */
  2959. if (vcpu->arch.nmi_pending) {
  2960. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  2961. vcpu->arch.nmi_pending = false;
  2962. vcpu->arch.nmi_injected = true;
  2963. kvm_x86_ops->set_nmi(vcpu);
  2964. }
  2965. } else if (kvm_cpu_has_interrupt(vcpu)) {
  2966. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  2967. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  2968. false);
  2969. kvm_x86_ops->set_irq(vcpu);
  2970. }
  2971. }
  2972. }
  2973. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2974. {
  2975. int r;
  2976. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  2977. kvm_run->request_interrupt_window;
  2978. if (vcpu->requests)
  2979. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2980. kvm_mmu_unload(vcpu);
  2981. r = kvm_mmu_reload(vcpu);
  2982. if (unlikely(r))
  2983. goto out;
  2984. if (vcpu->requests) {
  2985. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2986. __kvm_migrate_timers(vcpu);
  2987. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  2988. kvm_write_guest_time(vcpu);
  2989. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2990. kvm_mmu_sync_roots(vcpu);
  2991. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2992. kvm_x86_ops->tlb_flush(vcpu);
  2993. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2994. &vcpu->requests)) {
  2995. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2996. r = 0;
  2997. goto out;
  2998. }
  2999. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3000. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3001. r = 0;
  3002. goto out;
  3003. }
  3004. }
  3005. preempt_disable();
  3006. kvm_x86_ops->prepare_guest_switch(vcpu);
  3007. kvm_load_guest_fpu(vcpu);
  3008. local_irq_disable();
  3009. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3010. smp_mb__after_clear_bit();
  3011. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3012. local_irq_enable();
  3013. preempt_enable();
  3014. r = 1;
  3015. goto out;
  3016. }
  3017. if (vcpu->arch.exception.pending)
  3018. __queue_exception(vcpu);
  3019. else
  3020. inject_pending_irq(vcpu, kvm_run);
  3021. /* enable NMI/IRQ window open exits if needed */
  3022. if (vcpu->arch.nmi_pending)
  3023. kvm_x86_ops->enable_nmi_window(vcpu);
  3024. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3025. kvm_x86_ops->enable_irq_window(vcpu);
  3026. if (kvm_lapic_enabled(vcpu)) {
  3027. update_cr8_intercept(vcpu);
  3028. kvm_lapic_sync_to_vapic(vcpu);
  3029. }
  3030. up_read(&vcpu->kvm->slots_lock);
  3031. kvm_guest_enter();
  3032. get_debugreg(vcpu->arch.host_dr6, 6);
  3033. get_debugreg(vcpu->arch.host_dr7, 7);
  3034. if (unlikely(vcpu->arch.switch_db_regs)) {
  3035. get_debugreg(vcpu->arch.host_db[0], 0);
  3036. get_debugreg(vcpu->arch.host_db[1], 1);
  3037. get_debugreg(vcpu->arch.host_db[2], 2);
  3038. get_debugreg(vcpu->arch.host_db[3], 3);
  3039. set_debugreg(0, 7);
  3040. set_debugreg(vcpu->arch.eff_db[0], 0);
  3041. set_debugreg(vcpu->arch.eff_db[1], 1);
  3042. set_debugreg(vcpu->arch.eff_db[2], 2);
  3043. set_debugreg(vcpu->arch.eff_db[3], 3);
  3044. }
  3045. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  3046. kvm_x86_ops->run(vcpu, kvm_run);
  3047. if (unlikely(vcpu->arch.switch_db_regs)) {
  3048. set_debugreg(0, 7);
  3049. set_debugreg(vcpu->arch.host_db[0], 0);
  3050. set_debugreg(vcpu->arch.host_db[1], 1);
  3051. set_debugreg(vcpu->arch.host_db[2], 2);
  3052. set_debugreg(vcpu->arch.host_db[3], 3);
  3053. }
  3054. set_debugreg(vcpu->arch.host_dr6, 6);
  3055. set_debugreg(vcpu->arch.host_dr7, 7);
  3056. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3057. local_irq_enable();
  3058. ++vcpu->stat.exits;
  3059. /*
  3060. * We must have an instruction between local_irq_enable() and
  3061. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3062. * the interrupt shadow. The stat.exits increment will do nicely.
  3063. * But we need to prevent reordering, hence this barrier():
  3064. */
  3065. barrier();
  3066. kvm_guest_exit();
  3067. preempt_enable();
  3068. down_read(&vcpu->kvm->slots_lock);
  3069. /*
  3070. * Profile KVM exit RIPs:
  3071. */
  3072. if (unlikely(prof_on == KVM_PROFILING)) {
  3073. unsigned long rip = kvm_rip_read(vcpu);
  3074. profile_hit(KVM_PROFILING, (void *)rip);
  3075. }
  3076. kvm_lapic_sync_from_vapic(vcpu);
  3077. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3078. out:
  3079. return r;
  3080. }
  3081. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3082. {
  3083. int r;
  3084. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3085. pr_debug("vcpu %d received sipi with vector # %x\n",
  3086. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3087. kvm_lapic_reset(vcpu);
  3088. r = kvm_arch_vcpu_reset(vcpu);
  3089. if (r)
  3090. return r;
  3091. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3092. }
  3093. down_read(&vcpu->kvm->slots_lock);
  3094. vapic_enter(vcpu);
  3095. r = 1;
  3096. while (r > 0) {
  3097. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3098. r = vcpu_enter_guest(vcpu, kvm_run);
  3099. else {
  3100. up_read(&vcpu->kvm->slots_lock);
  3101. kvm_vcpu_block(vcpu);
  3102. down_read(&vcpu->kvm->slots_lock);
  3103. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3104. {
  3105. switch(vcpu->arch.mp_state) {
  3106. case KVM_MP_STATE_HALTED:
  3107. vcpu->arch.mp_state =
  3108. KVM_MP_STATE_RUNNABLE;
  3109. case KVM_MP_STATE_RUNNABLE:
  3110. break;
  3111. case KVM_MP_STATE_SIPI_RECEIVED:
  3112. default:
  3113. r = -EINTR;
  3114. break;
  3115. }
  3116. }
  3117. }
  3118. if (r <= 0)
  3119. break;
  3120. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3121. if (kvm_cpu_has_pending_timer(vcpu))
  3122. kvm_inject_pending_timer_irqs(vcpu);
  3123. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3124. r = -EINTR;
  3125. kvm_run->exit_reason = KVM_EXIT_INTR;
  3126. ++vcpu->stat.request_irq_exits;
  3127. }
  3128. if (signal_pending(current)) {
  3129. r = -EINTR;
  3130. kvm_run->exit_reason = KVM_EXIT_INTR;
  3131. ++vcpu->stat.signal_exits;
  3132. }
  3133. if (need_resched()) {
  3134. up_read(&vcpu->kvm->slots_lock);
  3135. kvm_resched(vcpu);
  3136. down_read(&vcpu->kvm->slots_lock);
  3137. }
  3138. }
  3139. up_read(&vcpu->kvm->slots_lock);
  3140. post_kvm_run_save(vcpu, kvm_run);
  3141. vapic_exit(vcpu);
  3142. return r;
  3143. }
  3144. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3145. {
  3146. int r;
  3147. sigset_t sigsaved;
  3148. vcpu_load(vcpu);
  3149. if (vcpu->sigset_active)
  3150. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3151. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3152. kvm_vcpu_block(vcpu);
  3153. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3154. r = -EAGAIN;
  3155. goto out;
  3156. }
  3157. /* re-sync apic's tpr */
  3158. if (!irqchip_in_kernel(vcpu->kvm))
  3159. kvm_set_cr8(vcpu, kvm_run->cr8);
  3160. if (vcpu->arch.pio.cur_count) {
  3161. r = complete_pio(vcpu);
  3162. if (r)
  3163. goto out;
  3164. }
  3165. #if CONFIG_HAS_IOMEM
  3166. if (vcpu->mmio_needed) {
  3167. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3168. vcpu->mmio_read_completed = 1;
  3169. vcpu->mmio_needed = 0;
  3170. down_read(&vcpu->kvm->slots_lock);
  3171. r = emulate_instruction(vcpu, kvm_run,
  3172. vcpu->arch.mmio_fault_cr2, 0,
  3173. EMULTYPE_NO_DECODE);
  3174. up_read(&vcpu->kvm->slots_lock);
  3175. if (r == EMULATE_DO_MMIO) {
  3176. /*
  3177. * Read-modify-write. Back to userspace.
  3178. */
  3179. r = 0;
  3180. goto out;
  3181. }
  3182. }
  3183. #endif
  3184. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3185. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3186. kvm_run->hypercall.ret);
  3187. r = __vcpu_run(vcpu, kvm_run);
  3188. out:
  3189. if (vcpu->sigset_active)
  3190. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3191. vcpu_put(vcpu);
  3192. return r;
  3193. }
  3194. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3195. {
  3196. vcpu_load(vcpu);
  3197. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3198. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3199. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3200. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3201. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3202. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3203. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3204. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3205. #ifdef CONFIG_X86_64
  3206. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3207. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3208. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3209. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3210. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3211. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3212. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3213. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3214. #endif
  3215. regs->rip = kvm_rip_read(vcpu);
  3216. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3217. /*
  3218. * Don't leak debug flags in case they were set for guest debugging
  3219. */
  3220. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3221. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3222. vcpu_put(vcpu);
  3223. return 0;
  3224. }
  3225. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3226. {
  3227. vcpu_load(vcpu);
  3228. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3229. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3230. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3231. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3232. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3233. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3234. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3235. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3236. #ifdef CONFIG_X86_64
  3237. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3238. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3239. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3240. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3241. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3242. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3243. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3244. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3245. #endif
  3246. kvm_rip_write(vcpu, regs->rip);
  3247. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3248. vcpu->arch.exception.pending = false;
  3249. vcpu_put(vcpu);
  3250. return 0;
  3251. }
  3252. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3253. struct kvm_segment *var, int seg)
  3254. {
  3255. kvm_x86_ops->get_segment(vcpu, var, seg);
  3256. }
  3257. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3258. {
  3259. struct kvm_segment cs;
  3260. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3261. *db = cs.db;
  3262. *l = cs.l;
  3263. }
  3264. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3265. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3266. struct kvm_sregs *sregs)
  3267. {
  3268. struct descriptor_table dt;
  3269. vcpu_load(vcpu);
  3270. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3271. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3272. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3273. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3274. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3275. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3276. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3277. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3278. kvm_x86_ops->get_idt(vcpu, &dt);
  3279. sregs->idt.limit = dt.limit;
  3280. sregs->idt.base = dt.base;
  3281. kvm_x86_ops->get_gdt(vcpu, &dt);
  3282. sregs->gdt.limit = dt.limit;
  3283. sregs->gdt.base = dt.base;
  3284. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3285. sregs->cr0 = vcpu->arch.cr0;
  3286. sregs->cr2 = vcpu->arch.cr2;
  3287. sregs->cr3 = vcpu->arch.cr3;
  3288. sregs->cr4 = vcpu->arch.cr4;
  3289. sregs->cr8 = kvm_get_cr8(vcpu);
  3290. sregs->efer = vcpu->arch.shadow_efer;
  3291. sregs->apic_base = kvm_get_apic_base(vcpu);
  3292. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3293. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3294. set_bit(vcpu->arch.interrupt.nr,
  3295. (unsigned long *)sregs->interrupt_bitmap);
  3296. vcpu_put(vcpu);
  3297. return 0;
  3298. }
  3299. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3300. struct kvm_mp_state *mp_state)
  3301. {
  3302. vcpu_load(vcpu);
  3303. mp_state->mp_state = vcpu->arch.mp_state;
  3304. vcpu_put(vcpu);
  3305. return 0;
  3306. }
  3307. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3308. struct kvm_mp_state *mp_state)
  3309. {
  3310. vcpu_load(vcpu);
  3311. vcpu->arch.mp_state = mp_state->mp_state;
  3312. vcpu_put(vcpu);
  3313. return 0;
  3314. }
  3315. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3316. struct kvm_segment *var, int seg)
  3317. {
  3318. kvm_x86_ops->set_segment(vcpu, var, seg);
  3319. }
  3320. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3321. struct kvm_segment *kvm_desct)
  3322. {
  3323. kvm_desct->base = seg_desc->base0;
  3324. kvm_desct->base |= seg_desc->base1 << 16;
  3325. kvm_desct->base |= seg_desc->base2 << 24;
  3326. kvm_desct->limit = seg_desc->limit0;
  3327. kvm_desct->limit |= seg_desc->limit << 16;
  3328. if (seg_desc->g) {
  3329. kvm_desct->limit <<= 12;
  3330. kvm_desct->limit |= 0xfff;
  3331. }
  3332. kvm_desct->selector = selector;
  3333. kvm_desct->type = seg_desc->type;
  3334. kvm_desct->present = seg_desc->p;
  3335. kvm_desct->dpl = seg_desc->dpl;
  3336. kvm_desct->db = seg_desc->d;
  3337. kvm_desct->s = seg_desc->s;
  3338. kvm_desct->l = seg_desc->l;
  3339. kvm_desct->g = seg_desc->g;
  3340. kvm_desct->avl = seg_desc->avl;
  3341. if (!selector)
  3342. kvm_desct->unusable = 1;
  3343. else
  3344. kvm_desct->unusable = 0;
  3345. kvm_desct->padding = 0;
  3346. }
  3347. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3348. u16 selector,
  3349. struct descriptor_table *dtable)
  3350. {
  3351. if (selector & 1 << 2) {
  3352. struct kvm_segment kvm_seg;
  3353. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3354. if (kvm_seg.unusable)
  3355. dtable->limit = 0;
  3356. else
  3357. dtable->limit = kvm_seg.limit;
  3358. dtable->base = kvm_seg.base;
  3359. }
  3360. else
  3361. kvm_x86_ops->get_gdt(vcpu, dtable);
  3362. }
  3363. /* allowed just for 8 bytes segments */
  3364. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3365. struct desc_struct *seg_desc)
  3366. {
  3367. gpa_t gpa;
  3368. struct descriptor_table dtable;
  3369. u16 index = selector >> 3;
  3370. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3371. if (dtable.limit < index * 8 + 7) {
  3372. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3373. return 1;
  3374. }
  3375. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3376. gpa += index * 8;
  3377. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3378. }
  3379. /* allowed just for 8 bytes segments */
  3380. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3381. struct desc_struct *seg_desc)
  3382. {
  3383. gpa_t gpa;
  3384. struct descriptor_table dtable;
  3385. u16 index = selector >> 3;
  3386. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3387. if (dtable.limit < index * 8 + 7)
  3388. return 1;
  3389. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3390. gpa += index * 8;
  3391. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3392. }
  3393. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3394. struct desc_struct *seg_desc)
  3395. {
  3396. u32 base_addr;
  3397. base_addr = seg_desc->base0;
  3398. base_addr |= (seg_desc->base1 << 16);
  3399. base_addr |= (seg_desc->base2 << 24);
  3400. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3401. }
  3402. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3403. {
  3404. struct kvm_segment kvm_seg;
  3405. kvm_get_segment(vcpu, &kvm_seg, seg);
  3406. return kvm_seg.selector;
  3407. }
  3408. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3409. u16 selector,
  3410. struct kvm_segment *kvm_seg)
  3411. {
  3412. struct desc_struct seg_desc;
  3413. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3414. return 1;
  3415. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3416. return 0;
  3417. }
  3418. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3419. {
  3420. struct kvm_segment segvar = {
  3421. .base = selector << 4,
  3422. .limit = 0xffff,
  3423. .selector = selector,
  3424. .type = 3,
  3425. .present = 1,
  3426. .dpl = 3,
  3427. .db = 0,
  3428. .s = 1,
  3429. .l = 0,
  3430. .g = 0,
  3431. .avl = 0,
  3432. .unusable = 0,
  3433. };
  3434. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3435. return 0;
  3436. }
  3437. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3438. int type_bits, int seg)
  3439. {
  3440. struct kvm_segment kvm_seg;
  3441. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3442. return kvm_load_realmode_segment(vcpu, selector, seg);
  3443. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3444. return 1;
  3445. kvm_seg.type |= type_bits;
  3446. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3447. seg != VCPU_SREG_LDTR)
  3448. if (!kvm_seg.s)
  3449. kvm_seg.unusable = 1;
  3450. kvm_set_segment(vcpu, &kvm_seg, seg);
  3451. return 0;
  3452. }
  3453. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3454. struct tss_segment_32 *tss)
  3455. {
  3456. tss->cr3 = vcpu->arch.cr3;
  3457. tss->eip = kvm_rip_read(vcpu);
  3458. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3459. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3460. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3461. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3462. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3463. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3464. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3465. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3466. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3467. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3468. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3469. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3470. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3471. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3472. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3473. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3474. }
  3475. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3476. struct tss_segment_32 *tss)
  3477. {
  3478. kvm_set_cr3(vcpu, tss->cr3);
  3479. kvm_rip_write(vcpu, tss->eip);
  3480. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3481. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3482. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3483. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3484. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3485. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3486. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3487. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3488. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3489. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3490. return 1;
  3491. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3492. return 1;
  3493. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3494. return 1;
  3495. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3496. return 1;
  3497. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3498. return 1;
  3499. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3500. return 1;
  3501. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3502. return 1;
  3503. return 0;
  3504. }
  3505. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3506. struct tss_segment_16 *tss)
  3507. {
  3508. tss->ip = kvm_rip_read(vcpu);
  3509. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3510. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3511. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3512. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3513. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3514. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3515. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3516. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3517. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3518. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3519. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3520. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3521. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3522. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3523. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3524. }
  3525. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3526. struct tss_segment_16 *tss)
  3527. {
  3528. kvm_rip_write(vcpu, tss->ip);
  3529. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3530. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3531. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3532. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3533. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3534. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3535. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3536. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3537. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3538. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3539. return 1;
  3540. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3541. return 1;
  3542. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3543. return 1;
  3544. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3545. return 1;
  3546. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3547. return 1;
  3548. return 0;
  3549. }
  3550. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3551. u16 old_tss_sel, u32 old_tss_base,
  3552. struct desc_struct *nseg_desc)
  3553. {
  3554. struct tss_segment_16 tss_segment_16;
  3555. int ret = 0;
  3556. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3557. sizeof tss_segment_16))
  3558. goto out;
  3559. save_state_to_tss16(vcpu, &tss_segment_16);
  3560. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3561. sizeof tss_segment_16))
  3562. goto out;
  3563. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3564. &tss_segment_16, sizeof tss_segment_16))
  3565. goto out;
  3566. if (old_tss_sel != 0xffff) {
  3567. tss_segment_16.prev_task_link = old_tss_sel;
  3568. if (kvm_write_guest(vcpu->kvm,
  3569. get_tss_base_addr(vcpu, nseg_desc),
  3570. &tss_segment_16.prev_task_link,
  3571. sizeof tss_segment_16.prev_task_link))
  3572. goto out;
  3573. }
  3574. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3575. goto out;
  3576. ret = 1;
  3577. out:
  3578. return ret;
  3579. }
  3580. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3581. u16 old_tss_sel, u32 old_tss_base,
  3582. struct desc_struct *nseg_desc)
  3583. {
  3584. struct tss_segment_32 tss_segment_32;
  3585. int ret = 0;
  3586. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3587. sizeof tss_segment_32))
  3588. goto out;
  3589. save_state_to_tss32(vcpu, &tss_segment_32);
  3590. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3591. sizeof tss_segment_32))
  3592. goto out;
  3593. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3594. &tss_segment_32, sizeof tss_segment_32))
  3595. goto out;
  3596. if (old_tss_sel != 0xffff) {
  3597. tss_segment_32.prev_task_link = old_tss_sel;
  3598. if (kvm_write_guest(vcpu->kvm,
  3599. get_tss_base_addr(vcpu, nseg_desc),
  3600. &tss_segment_32.prev_task_link,
  3601. sizeof tss_segment_32.prev_task_link))
  3602. goto out;
  3603. }
  3604. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3605. goto out;
  3606. ret = 1;
  3607. out:
  3608. return ret;
  3609. }
  3610. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3611. {
  3612. struct kvm_segment tr_seg;
  3613. struct desc_struct cseg_desc;
  3614. struct desc_struct nseg_desc;
  3615. int ret = 0;
  3616. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3617. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3618. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3619. /* FIXME: Handle errors. Failure to read either TSS or their
  3620. * descriptors should generate a pagefault.
  3621. */
  3622. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3623. goto out;
  3624. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3625. goto out;
  3626. if (reason != TASK_SWITCH_IRET) {
  3627. int cpl;
  3628. cpl = kvm_x86_ops->get_cpl(vcpu);
  3629. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3630. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3631. return 1;
  3632. }
  3633. }
  3634. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3635. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3636. return 1;
  3637. }
  3638. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3639. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3640. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3641. }
  3642. if (reason == TASK_SWITCH_IRET) {
  3643. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3644. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3645. }
  3646. /* set back link to prev task only if NT bit is set in eflags
  3647. note that old_tss_sel is not used afetr this point */
  3648. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3649. old_tss_sel = 0xffff;
  3650. /* set back link to prev task only if NT bit is set in eflags
  3651. note that old_tss_sel is not used afetr this point */
  3652. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3653. old_tss_sel = 0xffff;
  3654. if (nseg_desc.type & 8)
  3655. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3656. old_tss_base, &nseg_desc);
  3657. else
  3658. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3659. old_tss_base, &nseg_desc);
  3660. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3661. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3662. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3663. }
  3664. if (reason != TASK_SWITCH_IRET) {
  3665. nseg_desc.type |= (1 << 1);
  3666. save_guest_segment_descriptor(vcpu, tss_selector,
  3667. &nseg_desc);
  3668. }
  3669. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3670. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3671. tr_seg.type = 11;
  3672. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3673. out:
  3674. return ret;
  3675. }
  3676. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3677. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3678. struct kvm_sregs *sregs)
  3679. {
  3680. int mmu_reset_needed = 0;
  3681. int pending_vec, max_bits;
  3682. struct descriptor_table dt;
  3683. vcpu_load(vcpu);
  3684. dt.limit = sregs->idt.limit;
  3685. dt.base = sregs->idt.base;
  3686. kvm_x86_ops->set_idt(vcpu, &dt);
  3687. dt.limit = sregs->gdt.limit;
  3688. dt.base = sregs->gdt.base;
  3689. kvm_x86_ops->set_gdt(vcpu, &dt);
  3690. vcpu->arch.cr2 = sregs->cr2;
  3691. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3692. down_read(&vcpu->kvm->slots_lock);
  3693. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3694. vcpu->arch.cr3 = sregs->cr3;
  3695. else
  3696. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3697. up_read(&vcpu->kvm->slots_lock);
  3698. kvm_set_cr8(vcpu, sregs->cr8);
  3699. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3700. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3701. kvm_set_apic_base(vcpu, sregs->apic_base);
  3702. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3703. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3704. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3705. vcpu->arch.cr0 = sregs->cr0;
  3706. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3707. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3708. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3709. load_pdptrs(vcpu, vcpu->arch.cr3);
  3710. if (mmu_reset_needed)
  3711. kvm_mmu_reset_context(vcpu);
  3712. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3713. pending_vec = find_first_bit(
  3714. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3715. if (pending_vec < max_bits) {
  3716. kvm_queue_interrupt(vcpu, pending_vec, false);
  3717. pr_debug("Set back pending irq %d\n", pending_vec);
  3718. if (irqchip_in_kernel(vcpu->kvm))
  3719. kvm_pic_clear_isr_ack(vcpu->kvm);
  3720. }
  3721. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3722. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3723. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3724. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3725. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3726. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3727. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3728. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3729. /* Older userspace won't unhalt the vcpu on reset. */
  3730. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3731. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3732. !(vcpu->arch.cr0 & X86_CR0_PE))
  3733. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3734. vcpu_put(vcpu);
  3735. return 0;
  3736. }
  3737. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3738. struct kvm_guest_debug *dbg)
  3739. {
  3740. int i, r;
  3741. vcpu_load(vcpu);
  3742. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3743. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3744. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3745. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3746. vcpu->arch.switch_db_regs =
  3747. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3748. } else {
  3749. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3750. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3751. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3752. }
  3753. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3754. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3755. kvm_queue_exception(vcpu, DB_VECTOR);
  3756. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3757. kvm_queue_exception(vcpu, BP_VECTOR);
  3758. vcpu_put(vcpu);
  3759. return r;
  3760. }
  3761. /*
  3762. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3763. * we have asm/x86/processor.h
  3764. */
  3765. struct fxsave {
  3766. u16 cwd;
  3767. u16 swd;
  3768. u16 twd;
  3769. u16 fop;
  3770. u64 rip;
  3771. u64 rdp;
  3772. u32 mxcsr;
  3773. u32 mxcsr_mask;
  3774. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3775. #ifdef CONFIG_X86_64
  3776. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3777. #else
  3778. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3779. #endif
  3780. };
  3781. /*
  3782. * Translate a guest virtual address to a guest physical address.
  3783. */
  3784. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3785. struct kvm_translation *tr)
  3786. {
  3787. unsigned long vaddr = tr->linear_address;
  3788. gpa_t gpa;
  3789. vcpu_load(vcpu);
  3790. down_read(&vcpu->kvm->slots_lock);
  3791. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3792. up_read(&vcpu->kvm->slots_lock);
  3793. tr->physical_address = gpa;
  3794. tr->valid = gpa != UNMAPPED_GVA;
  3795. tr->writeable = 1;
  3796. tr->usermode = 0;
  3797. vcpu_put(vcpu);
  3798. return 0;
  3799. }
  3800. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3801. {
  3802. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3803. vcpu_load(vcpu);
  3804. memcpy(fpu->fpr, fxsave->st_space, 128);
  3805. fpu->fcw = fxsave->cwd;
  3806. fpu->fsw = fxsave->swd;
  3807. fpu->ftwx = fxsave->twd;
  3808. fpu->last_opcode = fxsave->fop;
  3809. fpu->last_ip = fxsave->rip;
  3810. fpu->last_dp = fxsave->rdp;
  3811. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3812. vcpu_put(vcpu);
  3813. return 0;
  3814. }
  3815. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3816. {
  3817. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3818. vcpu_load(vcpu);
  3819. memcpy(fxsave->st_space, fpu->fpr, 128);
  3820. fxsave->cwd = fpu->fcw;
  3821. fxsave->swd = fpu->fsw;
  3822. fxsave->twd = fpu->ftwx;
  3823. fxsave->fop = fpu->last_opcode;
  3824. fxsave->rip = fpu->last_ip;
  3825. fxsave->rdp = fpu->last_dp;
  3826. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3827. vcpu_put(vcpu);
  3828. return 0;
  3829. }
  3830. void fx_init(struct kvm_vcpu *vcpu)
  3831. {
  3832. unsigned after_mxcsr_mask;
  3833. /*
  3834. * Touch the fpu the first time in non atomic context as if
  3835. * this is the first fpu instruction the exception handler
  3836. * will fire before the instruction returns and it'll have to
  3837. * allocate ram with GFP_KERNEL.
  3838. */
  3839. if (!used_math())
  3840. kvm_fx_save(&vcpu->arch.host_fx_image);
  3841. /* Initialize guest FPU by resetting ours and saving into guest's */
  3842. preempt_disable();
  3843. kvm_fx_save(&vcpu->arch.host_fx_image);
  3844. kvm_fx_finit();
  3845. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3846. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3847. preempt_enable();
  3848. vcpu->arch.cr0 |= X86_CR0_ET;
  3849. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3850. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3851. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3852. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3853. }
  3854. EXPORT_SYMBOL_GPL(fx_init);
  3855. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3856. {
  3857. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3858. return;
  3859. vcpu->guest_fpu_loaded = 1;
  3860. kvm_fx_save(&vcpu->arch.host_fx_image);
  3861. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3862. }
  3863. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3864. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3865. {
  3866. if (!vcpu->guest_fpu_loaded)
  3867. return;
  3868. vcpu->guest_fpu_loaded = 0;
  3869. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3870. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3871. ++vcpu->stat.fpu_reload;
  3872. }
  3873. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3874. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3875. {
  3876. if (vcpu->arch.time_page) {
  3877. kvm_release_page_dirty(vcpu->arch.time_page);
  3878. vcpu->arch.time_page = NULL;
  3879. }
  3880. kvm_x86_ops->vcpu_free(vcpu);
  3881. }
  3882. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3883. unsigned int id)
  3884. {
  3885. return kvm_x86_ops->vcpu_create(kvm, id);
  3886. }
  3887. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3888. {
  3889. int r;
  3890. /* We do fxsave: this must be aligned. */
  3891. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3892. vcpu->arch.mtrr_state.have_fixed = 1;
  3893. vcpu_load(vcpu);
  3894. r = kvm_arch_vcpu_reset(vcpu);
  3895. if (r == 0)
  3896. r = kvm_mmu_setup(vcpu);
  3897. vcpu_put(vcpu);
  3898. if (r < 0)
  3899. goto free_vcpu;
  3900. return 0;
  3901. free_vcpu:
  3902. kvm_x86_ops->vcpu_free(vcpu);
  3903. return r;
  3904. }
  3905. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3906. {
  3907. vcpu_load(vcpu);
  3908. kvm_mmu_unload(vcpu);
  3909. vcpu_put(vcpu);
  3910. kvm_x86_ops->vcpu_free(vcpu);
  3911. }
  3912. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3913. {
  3914. vcpu->arch.nmi_pending = false;
  3915. vcpu->arch.nmi_injected = false;
  3916. vcpu->arch.switch_db_regs = 0;
  3917. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3918. vcpu->arch.dr6 = DR6_FIXED_1;
  3919. vcpu->arch.dr7 = DR7_FIXED_1;
  3920. return kvm_x86_ops->vcpu_reset(vcpu);
  3921. }
  3922. void kvm_arch_hardware_enable(void *garbage)
  3923. {
  3924. kvm_x86_ops->hardware_enable(garbage);
  3925. }
  3926. void kvm_arch_hardware_disable(void *garbage)
  3927. {
  3928. kvm_x86_ops->hardware_disable(garbage);
  3929. }
  3930. int kvm_arch_hardware_setup(void)
  3931. {
  3932. return kvm_x86_ops->hardware_setup();
  3933. }
  3934. void kvm_arch_hardware_unsetup(void)
  3935. {
  3936. kvm_x86_ops->hardware_unsetup();
  3937. }
  3938. void kvm_arch_check_processor_compat(void *rtn)
  3939. {
  3940. kvm_x86_ops->check_processor_compatibility(rtn);
  3941. }
  3942. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3943. {
  3944. struct page *page;
  3945. struct kvm *kvm;
  3946. int r;
  3947. BUG_ON(vcpu->kvm == NULL);
  3948. kvm = vcpu->kvm;
  3949. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3950. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3951. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3952. else
  3953. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3954. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3955. if (!page) {
  3956. r = -ENOMEM;
  3957. goto fail;
  3958. }
  3959. vcpu->arch.pio_data = page_address(page);
  3960. r = kvm_mmu_create(vcpu);
  3961. if (r < 0)
  3962. goto fail_free_pio_data;
  3963. if (irqchip_in_kernel(kvm)) {
  3964. r = kvm_create_lapic(vcpu);
  3965. if (r < 0)
  3966. goto fail_mmu_destroy;
  3967. }
  3968. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  3969. GFP_KERNEL);
  3970. if (!vcpu->arch.mce_banks) {
  3971. r = -ENOMEM;
  3972. goto fail_mmu_destroy;
  3973. }
  3974. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  3975. return 0;
  3976. fail_mmu_destroy:
  3977. kvm_mmu_destroy(vcpu);
  3978. fail_free_pio_data:
  3979. free_page((unsigned long)vcpu->arch.pio_data);
  3980. fail:
  3981. return r;
  3982. }
  3983. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3984. {
  3985. kvm_free_lapic(vcpu);
  3986. down_read(&vcpu->kvm->slots_lock);
  3987. kvm_mmu_destroy(vcpu);
  3988. up_read(&vcpu->kvm->slots_lock);
  3989. free_page((unsigned long)vcpu->arch.pio_data);
  3990. }
  3991. struct kvm *kvm_arch_create_vm(void)
  3992. {
  3993. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3994. if (!kvm)
  3995. return ERR_PTR(-ENOMEM);
  3996. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3997. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3998. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3999. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4000. rdtscll(kvm->arch.vm_init_tsc);
  4001. return kvm;
  4002. }
  4003. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4004. {
  4005. vcpu_load(vcpu);
  4006. kvm_mmu_unload(vcpu);
  4007. vcpu_put(vcpu);
  4008. }
  4009. static void kvm_free_vcpus(struct kvm *kvm)
  4010. {
  4011. unsigned int i;
  4012. /*
  4013. * Unpin any mmu pages first.
  4014. */
  4015. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  4016. if (kvm->vcpus[i])
  4017. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  4018. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  4019. if (kvm->vcpus[i]) {
  4020. kvm_arch_vcpu_free(kvm->vcpus[i]);
  4021. kvm->vcpus[i] = NULL;
  4022. }
  4023. }
  4024. }
  4025. void kvm_arch_sync_events(struct kvm *kvm)
  4026. {
  4027. kvm_free_all_assigned_devices(kvm);
  4028. }
  4029. void kvm_arch_destroy_vm(struct kvm *kvm)
  4030. {
  4031. kvm_iommu_unmap_guest(kvm);
  4032. kvm_free_pit(kvm);
  4033. kfree(kvm->arch.vpic);
  4034. kfree(kvm->arch.vioapic);
  4035. kvm_free_vcpus(kvm);
  4036. kvm_free_physmem(kvm);
  4037. if (kvm->arch.apic_access_page)
  4038. put_page(kvm->arch.apic_access_page);
  4039. if (kvm->arch.ept_identity_pagetable)
  4040. put_page(kvm->arch.ept_identity_pagetable);
  4041. kfree(kvm);
  4042. }
  4043. int kvm_arch_set_memory_region(struct kvm *kvm,
  4044. struct kvm_userspace_memory_region *mem,
  4045. struct kvm_memory_slot old,
  4046. int user_alloc)
  4047. {
  4048. int npages = mem->memory_size >> PAGE_SHIFT;
  4049. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4050. /*To keep backward compatibility with older userspace,
  4051. *x86 needs to hanlde !user_alloc case.
  4052. */
  4053. if (!user_alloc) {
  4054. if (npages && !old.rmap) {
  4055. unsigned long userspace_addr;
  4056. down_write(&current->mm->mmap_sem);
  4057. userspace_addr = do_mmap(NULL, 0,
  4058. npages * PAGE_SIZE,
  4059. PROT_READ | PROT_WRITE,
  4060. MAP_PRIVATE | MAP_ANONYMOUS,
  4061. 0);
  4062. up_write(&current->mm->mmap_sem);
  4063. if (IS_ERR((void *)userspace_addr))
  4064. return PTR_ERR((void *)userspace_addr);
  4065. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4066. spin_lock(&kvm->mmu_lock);
  4067. memslot->userspace_addr = userspace_addr;
  4068. spin_unlock(&kvm->mmu_lock);
  4069. } else {
  4070. if (!old.user_alloc && old.rmap) {
  4071. int ret;
  4072. down_write(&current->mm->mmap_sem);
  4073. ret = do_munmap(current->mm, old.userspace_addr,
  4074. old.npages * PAGE_SIZE);
  4075. up_write(&current->mm->mmap_sem);
  4076. if (ret < 0)
  4077. printk(KERN_WARNING
  4078. "kvm_vm_ioctl_set_memory_region: "
  4079. "failed to munmap memory\n");
  4080. }
  4081. }
  4082. }
  4083. spin_lock(&kvm->mmu_lock);
  4084. if (!kvm->arch.n_requested_mmu_pages) {
  4085. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4086. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4087. }
  4088. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4089. spin_unlock(&kvm->mmu_lock);
  4090. kvm_flush_remote_tlbs(kvm);
  4091. return 0;
  4092. }
  4093. void kvm_arch_flush_shadow(struct kvm *kvm)
  4094. {
  4095. kvm_mmu_zap_all(kvm);
  4096. kvm_reload_remote_mmus(kvm);
  4097. }
  4098. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4099. {
  4100. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4101. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4102. || vcpu->arch.nmi_pending;
  4103. }
  4104. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4105. {
  4106. int me;
  4107. int cpu = vcpu->cpu;
  4108. if (waitqueue_active(&vcpu->wq)) {
  4109. wake_up_interruptible(&vcpu->wq);
  4110. ++vcpu->stat.halt_wakeup;
  4111. }
  4112. me = get_cpu();
  4113. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4114. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4115. smp_send_reschedule(cpu);
  4116. put_cpu();
  4117. }
  4118. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4119. {
  4120. return kvm_x86_ops->interrupt_allowed(vcpu);
  4121. }