md.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kthread.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/buffer_head.h> /* for invalidate_bdev */
  33. #include <linux/suspend.h>
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/init.h>
  38. #include <linux/file.h>
  39. #ifdef CONFIG_KMOD
  40. #include <linux/kmod.h>
  41. #endif
  42. #include <asm/unaligned.h>
  43. #define MAJOR_NR MD_MAJOR
  44. #define MD_DRIVER
  45. /* 63 partitions with the alternate major number (mdp) */
  46. #define MdpMinorShift 6
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays (int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. static void md_print_devices(void);
  55. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  56. /*
  57. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  58. * is 1000 KB/sec, so the extra system load does not show up that much.
  59. * Increase it if you want to have more _guaranteed_ speed. Note that
  60. * the RAID driver will use the maximum available bandwidth if the IO
  61. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  62. * speed limit - in case reconstruction slows down your system despite
  63. * idle IO detection.
  64. *
  65. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  66. * or /sys/block/mdX/md/sync_speed_{min,max}
  67. */
  68. static int sysctl_speed_limit_min = 1000;
  69. static int sysctl_speed_limit_max = 200000;
  70. static inline int speed_min(mddev_t *mddev)
  71. {
  72. return mddev->sync_speed_min ?
  73. mddev->sync_speed_min : sysctl_speed_limit_min;
  74. }
  75. static inline int speed_max(mddev_t *mddev)
  76. {
  77. return mddev->sync_speed_max ?
  78. mddev->sync_speed_max : sysctl_speed_limit_max;
  79. }
  80. static struct ctl_table_header *raid_table_header;
  81. static ctl_table raid_table[] = {
  82. {
  83. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  84. .procname = "speed_limit_min",
  85. .data = &sysctl_speed_limit_min,
  86. .maxlen = sizeof(int),
  87. .mode = S_IRUGO|S_IWUSR,
  88. .proc_handler = &proc_dointvec,
  89. },
  90. {
  91. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  92. .procname = "speed_limit_max",
  93. .data = &sysctl_speed_limit_max,
  94. .maxlen = sizeof(int),
  95. .mode = S_IRUGO|S_IWUSR,
  96. .proc_handler = &proc_dointvec,
  97. },
  98. { .ctl_name = 0 }
  99. };
  100. static ctl_table raid_dir_table[] = {
  101. {
  102. .ctl_name = DEV_RAID,
  103. .procname = "raid",
  104. .maxlen = 0,
  105. .mode = S_IRUGO|S_IXUGO,
  106. .child = raid_table,
  107. },
  108. { .ctl_name = 0 }
  109. };
  110. static ctl_table raid_root_table[] = {
  111. {
  112. .ctl_name = CTL_DEV,
  113. .procname = "dev",
  114. .maxlen = 0,
  115. .mode = 0555,
  116. .child = raid_dir_table,
  117. },
  118. { .ctl_name = 0 }
  119. };
  120. static struct block_device_operations md_fops;
  121. static int start_readonly;
  122. /*
  123. * We have a system wide 'event count' that is incremented
  124. * on any 'interesting' event, and readers of /proc/mdstat
  125. * can use 'poll' or 'select' to find out when the event
  126. * count increases.
  127. *
  128. * Events are:
  129. * start array, stop array, error, add device, remove device,
  130. * start build, activate spare
  131. */
  132. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  133. static atomic_t md_event_count;
  134. void md_new_event(mddev_t *mddev)
  135. {
  136. atomic_inc(&md_event_count);
  137. wake_up(&md_event_waiters);
  138. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  139. }
  140. EXPORT_SYMBOL_GPL(md_new_event);
  141. /* Alternate version that can be called from interrupts
  142. * when calling sysfs_notify isn't needed.
  143. */
  144. static void md_new_event_inintr(mddev_t *mddev)
  145. {
  146. atomic_inc(&md_event_count);
  147. wake_up(&md_event_waiters);
  148. }
  149. /*
  150. * Enables to iterate over all existing md arrays
  151. * all_mddevs_lock protects this list.
  152. */
  153. static LIST_HEAD(all_mddevs);
  154. static DEFINE_SPINLOCK(all_mddevs_lock);
  155. /*
  156. * iterates through all used mddevs in the system.
  157. * We take care to grab the all_mddevs_lock whenever navigating
  158. * the list, and to always hold a refcount when unlocked.
  159. * Any code which breaks out of this loop while own
  160. * a reference to the current mddev and must mddev_put it.
  161. */
  162. #define ITERATE_MDDEV(mddev,tmp) \
  163. \
  164. for (({ spin_lock(&all_mddevs_lock); \
  165. tmp = all_mddevs.next; \
  166. mddev = NULL;}); \
  167. ({ if (tmp != &all_mddevs) \
  168. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  169. spin_unlock(&all_mddevs_lock); \
  170. if (mddev) mddev_put(mddev); \
  171. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  172. tmp != &all_mddevs;}); \
  173. ({ spin_lock(&all_mddevs_lock); \
  174. tmp = tmp->next;}) \
  175. )
  176. static int md_fail_request (request_queue_t *q, struct bio *bio)
  177. {
  178. bio_io_error(bio, bio->bi_size);
  179. return 0;
  180. }
  181. static inline mddev_t *mddev_get(mddev_t *mddev)
  182. {
  183. atomic_inc(&mddev->active);
  184. return mddev;
  185. }
  186. static void mddev_put(mddev_t *mddev)
  187. {
  188. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  189. return;
  190. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  191. list_del(&mddev->all_mddevs);
  192. spin_unlock(&all_mddevs_lock);
  193. blk_cleanup_queue(mddev->queue);
  194. kobject_unregister(&mddev->kobj);
  195. } else
  196. spin_unlock(&all_mddevs_lock);
  197. }
  198. static mddev_t * mddev_find(dev_t unit)
  199. {
  200. mddev_t *mddev, *new = NULL;
  201. retry:
  202. spin_lock(&all_mddevs_lock);
  203. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  204. if (mddev->unit == unit) {
  205. mddev_get(mddev);
  206. spin_unlock(&all_mddevs_lock);
  207. kfree(new);
  208. return mddev;
  209. }
  210. if (new) {
  211. list_add(&new->all_mddevs, &all_mddevs);
  212. spin_unlock(&all_mddevs_lock);
  213. return new;
  214. }
  215. spin_unlock(&all_mddevs_lock);
  216. new = kzalloc(sizeof(*new), GFP_KERNEL);
  217. if (!new)
  218. return NULL;
  219. new->unit = unit;
  220. if (MAJOR(unit) == MD_MAJOR)
  221. new->md_minor = MINOR(unit);
  222. else
  223. new->md_minor = MINOR(unit) >> MdpMinorShift;
  224. mutex_init(&new->reconfig_mutex);
  225. INIT_LIST_HEAD(&new->disks);
  226. INIT_LIST_HEAD(&new->all_mddevs);
  227. init_timer(&new->safemode_timer);
  228. atomic_set(&new->active, 1);
  229. spin_lock_init(&new->write_lock);
  230. init_waitqueue_head(&new->sb_wait);
  231. new->queue = blk_alloc_queue(GFP_KERNEL);
  232. if (!new->queue) {
  233. kfree(new);
  234. return NULL;
  235. }
  236. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  237. blk_queue_make_request(new->queue, md_fail_request);
  238. goto retry;
  239. }
  240. static inline int mddev_lock(mddev_t * mddev)
  241. {
  242. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  243. }
  244. static inline int mddev_trylock(mddev_t * mddev)
  245. {
  246. return mutex_trylock(&mddev->reconfig_mutex);
  247. }
  248. static inline void mddev_unlock(mddev_t * mddev)
  249. {
  250. mutex_unlock(&mddev->reconfig_mutex);
  251. md_wakeup_thread(mddev->thread);
  252. }
  253. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  254. {
  255. mdk_rdev_t * rdev;
  256. struct list_head *tmp;
  257. ITERATE_RDEV(mddev,rdev,tmp) {
  258. if (rdev->desc_nr == nr)
  259. return rdev;
  260. }
  261. return NULL;
  262. }
  263. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  264. {
  265. struct list_head *tmp;
  266. mdk_rdev_t *rdev;
  267. ITERATE_RDEV(mddev,rdev,tmp) {
  268. if (rdev->bdev->bd_dev == dev)
  269. return rdev;
  270. }
  271. return NULL;
  272. }
  273. static struct mdk_personality *find_pers(int level, char *clevel)
  274. {
  275. struct mdk_personality *pers;
  276. list_for_each_entry(pers, &pers_list, list) {
  277. if (level != LEVEL_NONE && pers->level == level)
  278. return pers;
  279. if (strcmp(pers->name, clevel)==0)
  280. return pers;
  281. }
  282. return NULL;
  283. }
  284. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  285. {
  286. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  287. return MD_NEW_SIZE_BLOCKS(size);
  288. }
  289. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  290. {
  291. sector_t size;
  292. size = rdev->sb_offset;
  293. if (chunk_size)
  294. size &= ~((sector_t)chunk_size/1024 - 1);
  295. return size;
  296. }
  297. static int alloc_disk_sb(mdk_rdev_t * rdev)
  298. {
  299. if (rdev->sb_page)
  300. MD_BUG();
  301. rdev->sb_page = alloc_page(GFP_KERNEL);
  302. if (!rdev->sb_page) {
  303. printk(KERN_ALERT "md: out of memory.\n");
  304. return -EINVAL;
  305. }
  306. return 0;
  307. }
  308. static void free_disk_sb(mdk_rdev_t * rdev)
  309. {
  310. if (rdev->sb_page) {
  311. put_page(rdev->sb_page);
  312. rdev->sb_loaded = 0;
  313. rdev->sb_page = NULL;
  314. rdev->sb_offset = 0;
  315. rdev->size = 0;
  316. }
  317. }
  318. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  319. {
  320. mdk_rdev_t *rdev = bio->bi_private;
  321. mddev_t *mddev = rdev->mddev;
  322. if (bio->bi_size)
  323. return 1;
  324. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  325. printk("md: super_written gets error=%d, uptodate=%d\n",
  326. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  327. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. md_error(mddev, rdev);
  329. }
  330. if (atomic_dec_and_test(&mddev->pending_writes))
  331. wake_up(&mddev->sb_wait);
  332. bio_put(bio);
  333. return 0;
  334. }
  335. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  336. {
  337. struct bio *bio2 = bio->bi_private;
  338. mdk_rdev_t *rdev = bio2->bi_private;
  339. mddev_t *mddev = rdev->mddev;
  340. if (bio->bi_size)
  341. return 1;
  342. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  343. error == -EOPNOTSUPP) {
  344. unsigned long flags;
  345. /* barriers don't appear to be supported :-( */
  346. set_bit(BarriersNotsupp, &rdev->flags);
  347. mddev->barriers_work = 0;
  348. spin_lock_irqsave(&mddev->write_lock, flags);
  349. bio2->bi_next = mddev->biolist;
  350. mddev->biolist = bio2;
  351. spin_unlock_irqrestore(&mddev->write_lock, flags);
  352. wake_up(&mddev->sb_wait);
  353. bio_put(bio);
  354. return 0;
  355. }
  356. bio_put(bio2);
  357. bio->bi_private = rdev;
  358. return super_written(bio, bytes_done, error);
  359. }
  360. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  361. sector_t sector, int size, struct page *page)
  362. {
  363. /* write first size bytes of page to sector of rdev
  364. * Increment mddev->pending_writes before returning
  365. * and decrement it on completion, waking up sb_wait
  366. * if zero is reached.
  367. * If an error occurred, call md_error
  368. *
  369. * As we might need to resubmit the request if BIO_RW_BARRIER
  370. * causes ENOTSUPP, we allocate a spare bio...
  371. */
  372. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  373. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  374. bio->bi_bdev = rdev->bdev;
  375. bio->bi_sector = sector;
  376. bio_add_page(bio, page, size, 0);
  377. bio->bi_private = rdev;
  378. bio->bi_end_io = super_written;
  379. bio->bi_rw = rw;
  380. atomic_inc(&mddev->pending_writes);
  381. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  382. struct bio *rbio;
  383. rw |= (1<<BIO_RW_BARRIER);
  384. rbio = bio_clone(bio, GFP_NOIO);
  385. rbio->bi_private = bio;
  386. rbio->bi_end_io = super_written_barrier;
  387. submit_bio(rw, rbio);
  388. } else
  389. submit_bio(rw, bio);
  390. }
  391. void md_super_wait(mddev_t *mddev)
  392. {
  393. /* wait for all superblock writes that were scheduled to complete.
  394. * if any had to be retried (due to BARRIER problems), retry them
  395. */
  396. DEFINE_WAIT(wq);
  397. for(;;) {
  398. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  399. if (atomic_read(&mddev->pending_writes)==0)
  400. break;
  401. while (mddev->biolist) {
  402. struct bio *bio;
  403. spin_lock_irq(&mddev->write_lock);
  404. bio = mddev->biolist;
  405. mddev->biolist = bio->bi_next ;
  406. bio->bi_next = NULL;
  407. spin_unlock_irq(&mddev->write_lock);
  408. submit_bio(bio->bi_rw, bio);
  409. }
  410. schedule();
  411. }
  412. finish_wait(&mddev->sb_wait, &wq);
  413. }
  414. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  415. {
  416. if (bio->bi_size)
  417. return 1;
  418. complete((struct completion*)bio->bi_private);
  419. return 0;
  420. }
  421. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  422. struct page *page, int rw)
  423. {
  424. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  425. struct completion event;
  426. int ret;
  427. rw |= (1 << BIO_RW_SYNC);
  428. bio->bi_bdev = bdev;
  429. bio->bi_sector = sector;
  430. bio_add_page(bio, page, size, 0);
  431. init_completion(&event);
  432. bio->bi_private = &event;
  433. bio->bi_end_io = bi_complete;
  434. submit_bio(rw, bio);
  435. wait_for_completion(&event);
  436. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  437. bio_put(bio);
  438. return ret;
  439. }
  440. EXPORT_SYMBOL_GPL(sync_page_io);
  441. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  442. {
  443. char b[BDEVNAME_SIZE];
  444. if (!rdev->sb_page) {
  445. MD_BUG();
  446. return -EINVAL;
  447. }
  448. if (rdev->sb_loaded)
  449. return 0;
  450. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  451. goto fail;
  452. rdev->sb_loaded = 1;
  453. return 0;
  454. fail:
  455. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  456. bdevname(rdev->bdev,b));
  457. return -EINVAL;
  458. }
  459. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  460. {
  461. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  462. (sb1->set_uuid1 == sb2->set_uuid1) &&
  463. (sb1->set_uuid2 == sb2->set_uuid2) &&
  464. (sb1->set_uuid3 == sb2->set_uuid3))
  465. return 1;
  466. return 0;
  467. }
  468. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  469. {
  470. int ret;
  471. mdp_super_t *tmp1, *tmp2;
  472. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  473. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  474. if (!tmp1 || !tmp2) {
  475. ret = 0;
  476. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  477. goto abort;
  478. }
  479. *tmp1 = *sb1;
  480. *tmp2 = *sb2;
  481. /*
  482. * nr_disks is not constant
  483. */
  484. tmp1->nr_disks = 0;
  485. tmp2->nr_disks = 0;
  486. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  487. ret = 0;
  488. else
  489. ret = 1;
  490. abort:
  491. kfree(tmp1);
  492. kfree(tmp2);
  493. return ret;
  494. }
  495. static unsigned int calc_sb_csum(mdp_super_t * sb)
  496. {
  497. unsigned int disk_csum, csum;
  498. disk_csum = sb->sb_csum;
  499. sb->sb_csum = 0;
  500. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  501. sb->sb_csum = disk_csum;
  502. return csum;
  503. }
  504. /*
  505. * Handle superblock details.
  506. * We want to be able to handle multiple superblock formats
  507. * so we have a common interface to them all, and an array of
  508. * different handlers.
  509. * We rely on user-space to write the initial superblock, and support
  510. * reading and updating of superblocks.
  511. * Interface methods are:
  512. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  513. * loads and validates a superblock on dev.
  514. * if refdev != NULL, compare superblocks on both devices
  515. * Return:
  516. * 0 - dev has a superblock that is compatible with refdev
  517. * 1 - dev has a superblock that is compatible and newer than refdev
  518. * so dev should be used as the refdev in future
  519. * -EINVAL superblock incompatible or invalid
  520. * -othererror e.g. -EIO
  521. *
  522. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  523. * Verify that dev is acceptable into mddev.
  524. * The first time, mddev->raid_disks will be 0, and data from
  525. * dev should be merged in. Subsequent calls check that dev
  526. * is new enough. Return 0 or -EINVAL
  527. *
  528. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  529. * Update the superblock for rdev with data in mddev
  530. * This does not write to disc.
  531. *
  532. */
  533. struct super_type {
  534. char *name;
  535. struct module *owner;
  536. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  537. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  538. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  539. };
  540. /*
  541. * load_super for 0.90.0
  542. */
  543. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  544. {
  545. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  546. mdp_super_t *sb;
  547. int ret;
  548. sector_t sb_offset;
  549. /*
  550. * Calculate the position of the superblock,
  551. * it's at the end of the disk.
  552. *
  553. * It also happens to be a multiple of 4Kb.
  554. */
  555. sb_offset = calc_dev_sboffset(rdev->bdev);
  556. rdev->sb_offset = sb_offset;
  557. ret = read_disk_sb(rdev, MD_SB_BYTES);
  558. if (ret) return ret;
  559. ret = -EINVAL;
  560. bdevname(rdev->bdev, b);
  561. sb = (mdp_super_t*)page_address(rdev->sb_page);
  562. if (sb->md_magic != MD_SB_MAGIC) {
  563. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  564. b);
  565. goto abort;
  566. }
  567. if (sb->major_version != 0 ||
  568. sb->minor_version < 90 ||
  569. sb->minor_version > 91) {
  570. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  571. sb->major_version, sb->minor_version,
  572. b);
  573. goto abort;
  574. }
  575. if (sb->raid_disks <= 0)
  576. goto abort;
  577. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  578. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  579. b);
  580. goto abort;
  581. }
  582. rdev->preferred_minor = sb->md_minor;
  583. rdev->data_offset = 0;
  584. rdev->sb_size = MD_SB_BYTES;
  585. if (sb->level == LEVEL_MULTIPATH)
  586. rdev->desc_nr = -1;
  587. else
  588. rdev->desc_nr = sb->this_disk.number;
  589. if (refdev == 0)
  590. ret = 1;
  591. else {
  592. __u64 ev1, ev2;
  593. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  594. if (!uuid_equal(refsb, sb)) {
  595. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  596. b, bdevname(refdev->bdev,b2));
  597. goto abort;
  598. }
  599. if (!sb_equal(refsb, sb)) {
  600. printk(KERN_WARNING "md: %s has same UUID"
  601. " but different superblock to %s\n",
  602. b, bdevname(refdev->bdev, b2));
  603. goto abort;
  604. }
  605. ev1 = md_event(sb);
  606. ev2 = md_event(refsb);
  607. if (ev1 > ev2)
  608. ret = 1;
  609. else
  610. ret = 0;
  611. }
  612. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  613. if (rdev->size < sb->size && sb->level > 1)
  614. /* "this cannot possibly happen" ... */
  615. ret = -EINVAL;
  616. abort:
  617. return ret;
  618. }
  619. /*
  620. * validate_super for 0.90.0
  621. */
  622. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  623. {
  624. mdp_disk_t *desc;
  625. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  626. __u64 ev1 = md_event(sb);
  627. rdev->raid_disk = -1;
  628. rdev->flags = 0;
  629. if (mddev->raid_disks == 0) {
  630. mddev->major_version = 0;
  631. mddev->minor_version = sb->minor_version;
  632. mddev->patch_version = sb->patch_version;
  633. mddev->persistent = ! sb->not_persistent;
  634. mddev->chunk_size = sb->chunk_size;
  635. mddev->ctime = sb->ctime;
  636. mddev->utime = sb->utime;
  637. mddev->level = sb->level;
  638. mddev->clevel[0] = 0;
  639. mddev->layout = sb->layout;
  640. mddev->raid_disks = sb->raid_disks;
  641. mddev->size = sb->size;
  642. mddev->events = ev1;
  643. mddev->bitmap_offset = 0;
  644. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  645. if (mddev->minor_version >= 91) {
  646. mddev->reshape_position = sb->reshape_position;
  647. mddev->delta_disks = sb->delta_disks;
  648. mddev->new_level = sb->new_level;
  649. mddev->new_layout = sb->new_layout;
  650. mddev->new_chunk = sb->new_chunk;
  651. } else {
  652. mddev->reshape_position = MaxSector;
  653. mddev->delta_disks = 0;
  654. mddev->new_level = mddev->level;
  655. mddev->new_layout = mddev->layout;
  656. mddev->new_chunk = mddev->chunk_size;
  657. }
  658. if (sb->state & (1<<MD_SB_CLEAN))
  659. mddev->recovery_cp = MaxSector;
  660. else {
  661. if (sb->events_hi == sb->cp_events_hi &&
  662. sb->events_lo == sb->cp_events_lo) {
  663. mddev->recovery_cp = sb->recovery_cp;
  664. } else
  665. mddev->recovery_cp = 0;
  666. }
  667. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  668. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  669. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  670. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  671. mddev->max_disks = MD_SB_DISKS;
  672. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  673. mddev->bitmap_file == NULL) {
  674. if (mddev->level != 1 && mddev->level != 4
  675. && mddev->level != 5 && mddev->level != 6
  676. && mddev->level != 10) {
  677. /* FIXME use a better test */
  678. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  679. return -EINVAL;
  680. }
  681. mddev->bitmap_offset = mddev->default_bitmap_offset;
  682. }
  683. } else if (mddev->pers == NULL) {
  684. /* Insist on good event counter while assembling */
  685. ++ev1;
  686. if (ev1 < mddev->events)
  687. return -EINVAL;
  688. } else if (mddev->bitmap) {
  689. /* if adding to array with a bitmap, then we can accept an
  690. * older device ... but not too old.
  691. */
  692. if (ev1 < mddev->bitmap->events_cleared)
  693. return 0;
  694. } else {
  695. if (ev1 < mddev->events)
  696. /* just a hot-add of a new device, leave raid_disk at -1 */
  697. return 0;
  698. }
  699. if (mddev->level != LEVEL_MULTIPATH) {
  700. desc = sb->disks + rdev->desc_nr;
  701. if (desc->state & (1<<MD_DISK_FAULTY))
  702. set_bit(Faulty, &rdev->flags);
  703. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  704. desc->raid_disk < mddev->raid_disks */) {
  705. set_bit(In_sync, &rdev->flags);
  706. rdev->raid_disk = desc->raid_disk;
  707. }
  708. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  709. set_bit(WriteMostly, &rdev->flags);
  710. } else /* MULTIPATH are always insync */
  711. set_bit(In_sync, &rdev->flags);
  712. return 0;
  713. }
  714. /*
  715. * sync_super for 0.90.0
  716. */
  717. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  718. {
  719. mdp_super_t *sb;
  720. struct list_head *tmp;
  721. mdk_rdev_t *rdev2;
  722. int next_spare = mddev->raid_disks;
  723. /* make rdev->sb match mddev data..
  724. *
  725. * 1/ zero out disks
  726. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  727. * 3/ any empty disks < next_spare become removed
  728. *
  729. * disks[0] gets initialised to REMOVED because
  730. * we cannot be sure from other fields if it has
  731. * been initialised or not.
  732. */
  733. int i;
  734. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  735. rdev->sb_size = MD_SB_BYTES;
  736. sb = (mdp_super_t*)page_address(rdev->sb_page);
  737. memset(sb, 0, sizeof(*sb));
  738. sb->md_magic = MD_SB_MAGIC;
  739. sb->major_version = mddev->major_version;
  740. sb->patch_version = mddev->patch_version;
  741. sb->gvalid_words = 0; /* ignored */
  742. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  743. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  744. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  745. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  746. sb->ctime = mddev->ctime;
  747. sb->level = mddev->level;
  748. sb->size = mddev->size;
  749. sb->raid_disks = mddev->raid_disks;
  750. sb->md_minor = mddev->md_minor;
  751. sb->not_persistent = !mddev->persistent;
  752. sb->utime = mddev->utime;
  753. sb->state = 0;
  754. sb->events_hi = (mddev->events>>32);
  755. sb->events_lo = (u32)mddev->events;
  756. if (mddev->reshape_position == MaxSector)
  757. sb->minor_version = 90;
  758. else {
  759. sb->minor_version = 91;
  760. sb->reshape_position = mddev->reshape_position;
  761. sb->new_level = mddev->new_level;
  762. sb->delta_disks = mddev->delta_disks;
  763. sb->new_layout = mddev->new_layout;
  764. sb->new_chunk = mddev->new_chunk;
  765. }
  766. mddev->minor_version = sb->minor_version;
  767. if (mddev->in_sync)
  768. {
  769. sb->recovery_cp = mddev->recovery_cp;
  770. sb->cp_events_hi = (mddev->events>>32);
  771. sb->cp_events_lo = (u32)mddev->events;
  772. if (mddev->recovery_cp == MaxSector)
  773. sb->state = (1<< MD_SB_CLEAN);
  774. } else
  775. sb->recovery_cp = 0;
  776. sb->layout = mddev->layout;
  777. sb->chunk_size = mddev->chunk_size;
  778. if (mddev->bitmap && mddev->bitmap_file == NULL)
  779. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  780. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  781. ITERATE_RDEV(mddev,rdev2,tmp) {
  782. mdp_disk_t *d;
  783. int desc_nr;
  784. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  785. && !test_bit(Faulty, &rdev2->flags))
  786. desc_nr = rdev2->raid_disk;
  787. else
  788. desc_nr = next_spare++;
  789. rdev2->desc_nr = desc_nr;
  790. d = &sb->disks[rdev2->desc_nr];
  791. nr_disks++;
  792. d->number = rdev2->desc_nr;
  793. d->major = MAJOR(rdev2->bdev->bd_dev);
  794. d->minor = MINOR(rdev2->bdev->bd_dev);
  795. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  796. && !test_bit(Faulty, &rdev2->flags))
  797. d->raid_disk = rdev2->raid_disk;
  798. else
  799. d->raid_disk = rdev2->desc_nr; /* compatibility */
  800. if (test_bit(Faulty, &rdev2->flags))
  801. d->state = (1<<MD_DISK_FAULTY);
  802. else if (test_bit(In_sync, &rdev2->flags)) {
  803. d->state = (1<<MD_DISK_ACTIVE);
  804. d->state |= (1<<MD_DISK_SYNC);
  805. active++;
  806. working++;
  807. } else {
  808. d->state = 0;
  809. spare++;
  810. working++;
  811. }
  812. if (test_bit(WriteMostly, &rdev2->flags))
  813. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  814. }
  815. /* now set the "removed" and "faulty" bits on any missing devices */
  816. for (i=0 ; i < mddev->raid_disks ; i++) {
  817. mdp_disk_t *d = &sb->disks[i];
  818. if (d->state == 0 && d->number == 0) {
  819. d->number = i;
  820. d->raid_disk = i;
  821. d->state = (1<<MD_DISK_REMOVED);
  822. d->state |= (1<<MD_DISK_FAULTY);
  823. failed++;
  824. }
  825. }
  826. sb->nr_disks = nr_disks;
  827. sb->active_disks = active;
  828. sb->working_disks = working;
  829. sb->failed_disks = failed;
  830. sb->spare_disks = spare;
  831. sb->this_disk = sb->disks[rdev->desc_nr];
  832. sb->sb_csum = calc_sb_csum(sb);
  833. }
  834. /*
  835. * version 1 superblock
  836. */
  837. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  838. {
  839. __le32 disk_csum;
  840. u32 csum;
  841. unsigned long long newcsum;
  842. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  843. __le32 *isuper = (__le32*)sb;
  844. int i;
  845. disk_csum = sb->sb_csum;
  846. sb->sb_csum = 0;
  847. newcsum = 0;
  848. for (i=0; size>=4; size -= 4 )
  849. newcsum += le32_to_cpu(*isuper++);
  850. if (size == 2)
  851. newcsum += le16_to_cpu(*(__le16*) isuper);
  852. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  853. sb->sb_csum = disk_csum;
  854. return cpu_to_le32(csum);
  855. }
  856. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  857. {
  858. struct mdp_superblock_1 *sb;
  859. int ret;
  860. sector_t sb_offset;
  861. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  862. int bmask;
  863. /*
  864. * Calculate the position of the superblock.
  865. * It is always aligned to a 4K boundary and
  866. * depeding on minor_version, it can be:
  867. * 0: At least 8K, but less than 12K, from end of device
  868. * 1: At start of device
  869. * 2: 4K from start of device.
  870. */
  871. switch(minor_version) {
  872. case 0:
  873. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  874. sb_offset -= 8*2;
  875. sb_offset &= ~(sector_t)(4*2-1);
  876. /* convert from sectors to K */
  877. sb_offset /= 2;
  878. break;
  879. case 1:
  880. sb_offset = 0;
  881. break;
  882. case 2:
  883. sb_offset = 4;
  884. break;
  885. default:
  886. return -EINVAL;
  887. }
  888. rdev->sb_offset = sb_offset;
  889. /* superblock is rarely larger than 1K, but it can be larger,
  890. * and it is safe to read 4k, so we do that
  891. */
  892. ret = read_disk_sb(rdev, 4096);
  893. if (ret) return ret;
  894. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  895. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  896. sb->major_version != cpu_to_le32(1) ||
  897. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  898. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  899. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  900. return -EINVAL;
  901. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  902. printk("md: invalid superblock checksum on %s\n",
  903. bdevname(rdev->bdev,b));
  904. return -EINVAL;
  905. }
  906. if (le64_to_cpu(sb->data_size) < 10) {
  907. printk("md: data_size too small on %s\n",
  908. bdevname(rdev->bdev,b));
  909. return -EINVAL;
  910. }
  911. rdev->preferred_minor = 0xffff;
  912. rdev->data_offset = le64_to_cpu(sb->data_offset);
  913. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  914. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  915. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  916. if (rdev->sb_size & bmask)
  917. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  918. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  919. rdev->desc_nr = -1;
  920. else
  921. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  922. if (refdev == 0)
  923. ret = 1;
  924. else {
  925. __u64 ev1, ev2;
  926. struct mdp_superblock_1 *refsb =
  927. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  928. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  929. sb->level != refsb->level ||
  930. sb->layout != refsb->layout ||
  931. sb->chunksize != refsb->chunksize) {
  932. printk(KERN_WARNING "md: %s has strangely different"
  933. " superblock to %s\n",
  934. bdevname(rdev->bdev,b),
  935. bdevname(refdev->bdev,b2));
  936. return -EINVAL;
  937. }
  938. ev1 = le64_to_cpu(sb->events);
  939. ev2 = le64_to_cpu(refsb->events);
  940. if (ev1 > ev2)
  941. ret = 1;
  942. else
  943. ret = 0;
  944. }
  945. if (minor_version)
  946. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  947. else
  948. rdev->size = rdev->sb_offset;
  949. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  950. return -EINVAL;
  951. rdev->size = le64_to_cpu(sb->data_size)/2;
  952. if (le32_to_cpu(sb->chunksize))
  953. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  954. if (le64_to_cpu(sb->size) > rdev->size*2)
  955. return -EINVAL;
  956. return ret;
  957. }
  958. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  959. {
  960. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  961. __u64 ev1 = le64_to_cpu(sb->events);
  962. rdev->raid_disk = -1;
  963. rdev->flags = 0;
  964. if (mddev->raid_disks == 0) {
  965. mddev->major_version = 1;
  966. mddev->patch_version = 0;
  967. mddev->persistent = 1;
  968. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  969. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  970. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  971. mddev->level = le32_to_cpu(sb->level);
  972. mddev->clevel[0] = 0;
  973. mddev->layout = le32_to_cpu(sb->layout);
  974. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  975. mddev->size = le64_to_cpu(sb->size)/2;
  976. mddev->events = ev1;
  977. mddev->bitmap_offset = 0;
  978. mddev->default_bitmap_offset = 1024 >> 9;
  979. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  980. memcpy(mddev->uuid, sb->set_uuid, 16);
  981. mddev->max_disks = (4096-256)/2;
  982. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  983. mddev->bitmap_file == NULL ) {
  984. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  985. && mddev->level != 10) {
  986. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  987. return -EINVAL;
  988. }
  989. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  990. }
  991. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  992. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  993. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  994. mddev->new_level = le32_to_cpu(sb->new_level);
  995. mddev->new_layout = le32_to_cpu(sb->new_layout);
  996. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  997. } else {
  998. mddev->reshape_position = MaxSector;
  999. mddev->delta_disks = 0;
  1000. mddev->new_level = mddev->level;
  1001. mddev->new_layout = mddev->layout;
  1002. mddev->new_chunk = mddev->chunk_size;
  1003. }
  1004. } else if (mddev->pers == NULL) {
  1005. /* Insist of good event counter while assembling */
  1006. ++ev1;
  1007. if (ev1 < mddev->events)
  1008. return -EINVAL;
  1009. } else if (mddev->bitmap) {
  1010. /* If adding to array with a bitmap, then we can accept an
  1011. * older device, but not too old.
  1012. */
  1013. if (ev1 < mddev->bitmap->events_cleared)
  1014. return 0;
  1015. } else {
  1016. if (ev1 < mddev->events)
  1017. /* just a hot-add of a new device, leave raid_disk at -1 */
  1018. return 0;
  1019. }
  1020. if (mddev->level != LEVEL_MULTIPATH) {
  1021. int role;
  1022. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1023. switch(role) {
  1024. case 0xffff: /* spare */
  1025. break;
  1026. case 0xfffe: /* faulty */
  1027. set_bit(Faulty, &rdev->flags);
  1028. break;
  1029. default:
  1030. if ((le32_to_cpu(sb->feature_map) &
  1031. MD_FEATURE_RECOVERY_OFFSET))
  1032. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1033. else
  1034. set_bit(In_sync, &rdev->flags);
  1035. rdev->raid_disk = role;
  1036. break;
  1037. }
  1038. if (sb->devflags & WriteMostly1)
  1039. set_bit(WriteMostly, &rdev->flags);
  1040. } else /* MULTIPATH are always insync */
  1041. set_bit(In_sync, &rdev->flags);
  1042. return 0;
  1043. }
  1044. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1045. {
  1046. struct mdp_superblock_1 *sb;
  1047. struct list_head *tmp;
  1048. mdk_rdev_t *rdev2;
  1049. int max_dev, i;
  1050. /* make rdev->sb match mddev and rdev data. */
  1051. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1052. sb->feature_map = 0;
  1053. sb->pad0 = 0;
  1054. sb->recovery_offset = cpu_to_le64(0);
  1055. memset(sb->pad1, 0, sizeof(sb->pad1));
  1056. memset(sb->pad2, 0, sizeof(sb->pad2));
  1057. memset(sb->pad3, 0, sizeof(sb->pad3));
  1058. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1059. sb->events = cpu_to_le64(mddev->events);
  1060. if (mddev->in_sync)
  1061. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1062. else
  1063. sb->resync_offset = cpu_to_le64(0);
  1064. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1065. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1066. sb->size = cpu_to_le64(mddev->size<<1);
  1067. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1068. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1069. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1070. }
  1071. if (rdev->raid_disk >= 0 &&
  1072. !test_bit(In_sync, &rdev->flags) &&
  1073. rdev->recovery_offset > 0) {
  1074. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1075. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1076. }
  1077. if (mddev->reshape_position != MaxSector) {
  1078. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1079. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1080. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1081. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1082. sb->new_level = cpu_to_le32(mddev->new_level);
  1083. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1084. }
  1085. max_dev = 0;
  1086. ITERATE_RDEV(mddev,rdev2,tmp)
  1087. if (rdev2->desc_nr+1 > max_dev)
  1088. max_dev = rdev2->desc_nr+1;
  1089. sb->max_dev = cpu_to_le32(max_dev);
  1090. for (i=0; i<max_dev;i++)
  1091. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1092. ITERATE_RDEV(mddev,rdev2,tmp) {
  1093. i = rdev2->desc_nr;
  1094. if (test_bit(Faulty, &rdev2->flags))
  1095. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1096. else if (test_bit(In_sync, &rdev2->flags))
  1097. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1098. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1099. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1100. else
  1101. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1102. }
  1103. sb->sb_csum = calc_sb_1_csum(sb);
  1104. }
  1105. static struct super_type super_types[] = {
  1106. [0] = {
  1107. .name = "0.90.0",
  1108. .owner = THIS_MODULE,
  1109. .load_super = super_90_load,
  1110. .validate_super = super_90_validate,
  1111. .sync_super = super_90_sync,
  1112. },
  1113. [1] = {
  1114. .name = "md-1",
  1115. .owner = THIS_MODULE,
  1116. .load_super = super_1_load,
  1117. .validate_super = super_1_validate,
  1118. .sync_super = super_1_sync,
  1119. },
  1120. };
  1121. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  1122. {
  1123. struct list_head *tmp;
  1124. mdk_rdev_t *rdev;
  1125. ITERATE_RDEV(mddev,rdev,tmp)
  1126. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  1127. return rdev;
  1128. return NULL;
  1129. }
  1130. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1131. {
  1132. struct list_head *tmp;
  1133. mdk_rdev_t *rdev;
  1134. ITERATE_RDEV(mddev1,rdev,tmp)
  1135. if (match_dev_unit(mddev2, rdev))
  1136. return 1;
  1137. return 0;
  1138. }
  1139. static LIST_HEAD(pending_raid_disks);
  1140. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1141. {
  1142. mdk_rdev_t *same_pdev;
  1143. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1144. struct kobject *ko;
  1145. char *s;
  1146. if (rdev->mddev) {
  1147. MD_BUG();
  1148. return -EINVAL;
  1149. }
  1150. /* make sure rdev->size exceeds mddev->size */
  1151. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1152. if (mddev->pers)
  1153. /* Cannot change size, so fail */
  1154. return -ENOSPC;
  1155. else
  1156. mddev->size = rdev->size;
  1157. }
  1158. same_pdev = match_dev_unit(mddev, rdev);
  1159. if (same_pdev)
  1160. printk(KERN_WARNING
  1161. "%s: WARNING: %s appears to be on the same physical"
  1162. " disk as %s. True\n protection against single-disk"
  1163. " failure might be compromised.\n",
  1164. mdname(mddev), bdevname(rdev->bdev,b),
  1165. bdevname(same_pdev->bdev,b2));
  1166. /* Verify rdev->desc_nr is unique.
  1167. * If it is -1, assign a free number, else
  1168. * check number is not in use
  1169. */
  1170. if (rdev->desc_nr < 0) {
  1171. int choice = 0;
  1172. if (mddev->pers) choice = mddev->raid_disks;
  1173. while (find_rdev_nr(mddev, choice))
  1174. choice++;
  1175. rdev->desc_nr = choice;
  1176. } else {
  1177. if (find_rdev_nr(mddev, rdev->desc_nr))
  1178. return -EBUSY;
  1179. }
  1180. bdevname(rdev->bdev,b);
  1181. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1182. return -ENOMEM;
  1183. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1184. *s = '!';
  1185. list_add(&rdev->same_set, &mddev->disks);
  1186. rdev->mddev = mddev;
  1187. printk(KERN_INFO "md: bind<%s>\n", b);
  1188. rdev->kobj.parent = &mddev->kobj;
  1189. kobject_add(&rdev->kobj);
  1190. if (rdev->bdev->bd_part)
  1191. ko = &rdev->bdev->bd_part->kobj;
  1192. else
  1193. ko = &rdev->bdev->bd_disk->kobj;
  1194. sysfs_create_link(&rdev->kobj, ko, "block");
  1195. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1196. return 0;
  1197. }
  1198. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1199. {
  1200. char b[BDEVNAME_SIZE];
  1201. if (!rdev->mddev) {
  1202. MD_BUG();
  1203. return;
  1204. }
  1205. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1206. list_del_init(&rdev->same_set);
  1207. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1208. rdev->mddev = NULL;
  1209. sysfs_remove_link(&rdev->kobj, "block");
  1210. kobject_del(&rdev->kobj);
  1211. }
  1212. /*
  1213. * prevent the device from being mounted, repartitioned or
  1214. * otherwise reused by a RAID array (or any other kernel
  1215. * subsystem), by bd_claiming the device.
  1216. */
  1217. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1218. {
  1219. int err = 0;
  1220. struct block_device *bdev;
  1221. char b[BDEVNAME_SIZE];
  1222. bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1223. if (IS_ERR(bdev)) {
  1224. printk(KERN_ERR "md: could not open %s.\n",
  1225. __bdevname(dev, b));
  1226. return PTR_ERR(bdev);
  1227. }
  1228. err = bd_claim(bdev, rdev);
  1229. if (err) {
  1230. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1231. bdevname(bdev, b));
  1232. blkdev_put_partition(bdev);
  1233. return err;
  1234. }
  1235. rdev->bdev = bdev;
  1236. return err;
  1237. }
  1238. static void unlock_rdev(mdk_rdev_t *rdev)
  1239. {
  1240. struct block_device *bdev = rdev->bdev;
  1241. rdev->bdev = NULL;
  1242. if (!bdev)
  1243. MD_BUG();
  1244. bd_release(bdev);
  1245. blkdev_put_partition(bdev);
  1246. }
  1247. void md_autodetect_dev(dev_t dev);
  1248. static void export_rdev(mdk_rdev_t * rdev)
  1249. {
  1250. char b[BDEVNAME_SIZE];
  1251. printk(KERN_INFO "md: export_rdev(%s)\n",
  1252. bdevname(rdev->bdev,b));
  1253. if (rdev->mddev)
  1254. MD_BUG();
  1255. free_disk_sb(rdev);
  1256. list_del_init(&rdev->same_set);
  1257. #ifndef MODULE
  1258. md_autodetect_dev(rdev->bdev->bd_dev);
  1259. #endif
  1260. unlock_rdev(rdev);
  1261. kobject_put(&rdev->kobj);
  1262. }
  1263. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1264. {
  1265. unbind_rdev_from_array(rdev);
  1266. export_rdev(rdev);
  1267. }
  1268. static void export_array(mddev_t *mddev)
  1269. {
  1270. struct list_head *tmp;
  1271. mdk_rdev_t *rdev;
  1272. ITERATE_RDEV(mddev,rdev,tmp) {
  1273. if (!rdev->mddev) {
  1274. MD_BUG();
  1275. continue;
  1276. }
  1277. kick_rdev_from_array(rdev);
  1278. }
  1279. if (!list_empty(&mddev->disks))
  1280. MD_BUG();
  1281. mddev->raid_disks = 0;
  1282. mddev->major_version = 0;
  1283. }
  1284. static void print_desc(mdp_disk_t *desc)
  1285. {
  1286. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1287. desc->major,desc->minor,desc->raid_disk,desc->state);
  1288. }
  1289. static void print_sb(mdp_super_t *sb)
  1290. {
  1291. int i;
  1292. printk(KERN_INFO
  1293. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1294. sb->major_version, sb->minor_version, sb->patch_version,
  1295. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1296. sb->ctime);
  1297. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1298. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1299. sb->md_minor, sb->layout, sb->chunk_size);
  1300. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1301. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1302. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1303. sb->failed_disks, sb->spare_disks,
  1304. sb->sb_csum, (unsigned long)sb->events_lo);
  1305. printk(KERN_INFO);
  1306. for (i = 0; i < MD_SB_DISKS; i++) {
  1307. mdp_disk_t *desc;
  1308. desc = sb->disks + i;
  1309. if (desc->number || desc->major || desc->minor ||
  1310. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1311. printk(" D %2d: ", i);
  1312. print_desc(desc);
  1313. }
  1314. }
  1315. printk(KERN_INFO "md: THIS: ");
  1316. print_desc(&sb->this_disk);
  1317. }
  1318. static void print_rdev(mdk_rdev_t *rdev)
  1319. {
  1320. char b[BDEVNAME_SIZE];
  1321. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1322. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1323. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1324. rdev->desc_nr);
  1325. if (rdev->sb_loaded) {
  1326. printk(KERN_INFO "md: rdev superblock:\n");
  1327. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1328. } else
  1329. printk(KERN_INFO "md: no rdev superblock!\n");
  1330. }
  1331. static void md_print_devices(void)
  1332. {
  1333. struct list_head *tmp, *tmp2;
  1334. mdk_rdev_t *rdev;
  1335. mddev_t *mddev;
  1336. char b[BDEVNAME_SIZE];
  1337. printk("\n");
  1338. printk("md: **********************************\n");
  1339. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1340. printk("md: **********************************\n");
  1341. ITERATE_MDDEV(mddev,tmp) {
  1342. if (mddev->bitmap)
  1343. bitmap_print_sb(mddev->bitmap);
  1344. else
  1345. printk("%s: ", mdname(mddev));
  1346. ITERATE_RDEV(mddev,rdev,tmp2)
  1347. printk("<%s>", bdevname(rdev->bdev,b));
  1348. printk("\n");
  1349. ITERATE_RDEV(mddev,rdev,tmp2)
  1350. print_rdev(rdev);
  1351. }
  1352. printk("md: **********************************\n");
  1353. printk("\n");
  1354. }
  1355. static void sync_sbs(mddev_t * mddev, int nospares)
  1356. {
  1357. /* Update each superblock (in-memory image), but
  1358. * if we are allowed to, skip spares which already
  1359. * have the right event counter, or have one earlier
  1360. * (which would mean they aren't being marked as dirty
  1361. * with the rest of the array)
  1362. */
  1363. mdk_rdev_t *rdev;
  1364. struct list_head *tmp;
  1365. ITERATE_RDEV(mddev,rdev,tmp) {
  1366. if (rdev->sb_events == mddev->events ||
  1367. (nospares &&
  1368. rdev->raid_disk < 0 &&
  1369. (rdev->sb_events&1)==0 &&
  1370. rdev->sb_events+1 == mddev->events)) {
  1371. /* Don't update this superblock */
  1372. rdev->sb_loaded = 2;
  1373. } else {
  1374. super_types[mddev->major_version].
  1375. sync_super(mddev, rdev);
  1376. rdev->sb_loaded = 1;
  1377. }
  1378. }
  1379. }
  1380. static void md_update_sb(mddev_t * mddev, int force_change)
  1381. {
  1382. int err;
  1383. struct list_head *tmp;
  1384. mdk_rdev_t *rdev;
  1385. int sync_req;
  1386. int nospares = 0;
  1387. repeat:
  1388. spin_lock_irq(&mddev->write_lock);
  1389. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1390. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1391. force_change = 1;
  1392. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1393. /* just a clean<-> dirty transition, possibly leave spares alone,
  1394. * though if events isn't the right even/odd, we will have to do
  1395. * spares after all
  1396. */
  1397. nospares = 1;
  1398. if (force_change)
  1399. nospares = 0;
  1400. if (mddev->degraded)
  1401. /* If the array is degraded, then skipping spares is both
  1402. * dangerous and fairly pointless.
  1403. * Dangerous because a device that was removed from the array
  1404. * might have a event_count that still looks up-to-date,
  1405. * so it can be re-added without a resync.
  1406. * Pointless because if there are any spares to skip,
  1407. * then a recovery will happen and soon that array won't
  1408. * be degraded any more and the spare can go back to sleep then.
  1409. */
  1410. nospares = 0;
  1411. sync_req = mddev->in_sync;
  1412. mddev->utime = get_seconds();
  1413. /* If this is just a dirty<->clean transition, and the array is clean
  1414. * and 'events' is odd, we can roll back to the previous clean state */
  1415. if (nospares
  1416. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1417. && (mddev->events & 1))
  1418. mddev->events--;
  1419. else {
  1420. /* otherwise we have to go forward and ... */
  1421. mddev->events ++;
  1422. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1423. /* .. if the array isn't clean, insist on an odd 'events' */
  1424. if ((mddev->events&1)==0) {
  1425. mddev->events++;
  1426. nospares = 0;
  1427. }
  1428. } else {
  1429. /* otherwise insist on an even 'events' (for clean states) */
  1430. if ((mddev->events&1)) {
  1431. mddev->events++;
  1432. nospares = 0;
  1433. }
  1434. }
  1435. }
  1436. if (!mddev->events) {
  1437. /*
  1438. * oops, this 64-bit counter should never wrap.
  1439. * Either we are in around ~1 trillion A.C., assuming
  1440. * 1 reboot per second, or we have a bug:
  1441. */
  1442. MD_BUG();
  1443. mddev->events --;
  1444. }
  1445. sync_sbs(mddev, nospares);
  1446. /*
  1447. * do not write anything to disk if using
  1448. * nonpersistent superblocks
  1449. */
  1450. if (!mddev->persistent) {
  1451. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1452. spin_unlock_irq(&mddev->write_lock);
  1453. wake_up(&mddev->sb_wait);
  1454. return;
  1455. }
  1456. spin_unlock_irq(&mddev->write_lock);
  1457. dprintk(KERN_INFO
  1458. "md: updating %s RAID superblock on device (in sync %d)\n",
  1459. mdname(mddev),mddev->in_sync);
  1460. err = bitmap_update_sb(mddev->bitmap);
  1461. ITERATE_RDEV(mddev,rdev,tmp) {
  1462. char b[BDEVNAME_SIZE];
  1463. dprintk(KERN_INFO "md: ");
  1464. if (rdev->sb_loaded != 1)
  1465. continue; /* no noise on spare devices */
  1466. if (test_bit(Faulty, &rdev->flags))
  1467. dprintk("(skipping faulty ");
  1468. dprintk("%s ", bdevname(rdev->bdev,b));
  1469. if (!test_bit(Faulty, &rdev->flags)) {
  1470. md_super_write(mddev,rdev,
  1471. rdev->sb_offset<<1, rdev->sb_size,
  1472. rdev->sb_page);
  1473. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1474. bdevname(rdev->bdev,b),
  1475. (unsigned long long)rdev->sb_offset);
  1476. rdev->sb_events = mddev->events;
  1477. } else
  1478. dprintk(")\n");
  1479. if (mddev->level == LEVEL_MULTIPATH)
  1480. /* only need to write one superblock... */
  1481. break;
  1482. }
  1483. md_super_wait(mddev);
  1484. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1485. spin_lock_irq(&mddev->write_lock);
  1486. if (mddev->in_sync != sync_req ||
  1487. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1488. /* have to write it out again */
  1489. spin_unlock_irq(&mddev->write_lock);
  1490. goto repeat;
  1491. }
  1492. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1493. spin_unlock_irq(&mddev->write_lock);
  1494. wake_up(&mddev->sb_wait);
  1495. }
  1496. /* words written to sysfs files may, or my not, be \n terminated.
  1497. * We want to accept with case. For this we use cmd_match.
  1498. */
  1499. static int cmd_match(const char *cmd, const char *str)
  1500. {
  1501. /* See if cmd, written into a sysfs file, matches
  1502. * str. They must either be the same, or cmd can
  1503. * have a trailing newline
  1504. */
  1505. while (*cmd && *str && *cmd == *str) {
  1506. cmd++;
  1507. str++;
  1508. }
  1509. if (*cmd == '\n')
  1510. cmd++;
  1511. if (*str || *cmd)
  1512. return 0;
  1513. return 1;
  1514. }
  1515. struct rdev_sysfs_entry {
  1516. struct attribute attr;
  1517. ssize_t (*show)(mdk_rdev_t *, char *);
  1518. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1519. };
  1520. static ssize_t
  1521. state_show(mdk_rdev_t *rdev, char *page)
  1522. {
  1523. char *sep = "";
  1524. int len=0;
  1525. if (test_bit(Faulty, &rdev->flags)) {
  1526. len+= sprintf(page+len, "%sfaulty",sep);
  1527. sep = ",";
  1528. }
  1529. if (test_bit(In_sync, &rdev->flags)) {
  1530. len += sprintf(page+len, "%sin_sync",sep);
  1531. sep = ",";
  1532. }
  1533. if (test_bit(WriteMostly, &rdev->flags)) {
  1534. len += sprintf(page+len, "%swrite_mostly",sep);
  1535. sep = ",";
  1536. }
  1537. if (!test_bit(Faulty, &rdev->flags) &&
  1538. !test_bit(In_sync, &rdev->flags)) {
  1539. len += sprintf(page+len, "%sspare", sep);
  1540. sep = ",";
  1541. }
  1542. return len+sprintf(page+len, "\n");
  1543. }
  1544. static ssize_t
  1545. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1546. {
  1547. /* can write
  1548. * faulty - simulates and error
  1549. * remove - disconnects the device
  1550. * writemostly - sets write_mostly
  1551. * -writemostly - clears write_mostly
  1552. */
  1553. int err = -EINVAL;
  1554. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1555. md_error(rdev->mddev, rdev);
  1556. err = 0;
  1557. } else if (cmd_match(buf, "remove")) {
  1558. if (rdev->raid_disk >= 0)
  1559. err = -EBUSY;
  1560. else {
  1561. mddev_t *mddev = rdev->mddev;
  1562. kick_rdev_from_array(rdev);
  1563. md_update_sb(mddev, 1);
  1564. md_new_event(mddev);
  1565. err = 0;
  1566. }
  1567. } else if (cmd_match(buf, "writemostly")) {
  1568. set_bit(WriteMostly, &rdev->flags);
  1569. err = 0;
  1570. } else if (cmd_match(buf, "-writemostly")) {
  1571. clear_bit(WriteMostly, &rdev->flags);
  1572. err = 0;
  1573. }
  1574. return err ? err : len;
  1575. }
  1576. static struct rdev_sysfs_entry rdev_state =
  1577. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1578. static ssize_t
  1579. super_show(mdk_rdev_t *rdev, char *page)
  1580. {
  1581. if (rdev->sb_loaded && rdev->sb_size) {
  1582. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1583. return rdev->sb_size;
  1584. } else
  1585. return 0;
  1586. }
  1587. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1588. static ssize_t
  1589. errors_show(mdk_rdev_t *rdev, char *page)
  1590. {
  1591. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1592. }
  1593. static ssize_t
  1594. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1595. {
  1596. char *e;
  1597. unsigned long n = simple_strtoul(buf, &e, 10);
  1598. if (*buf && (*e == 0 || *e == '\n')) {
  1599. atomic_set(&rdev->corrected_errors, n);
  1600. return len;
  1601. }
  1602. return -EINVAL;
  1603. }
  1604. static struct rdev_sysfs_entry rdev_errors =
  1605. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1606. static ssize_t
  1607. slot_show(mdk_rdev_t *rdev, char *page)
  1608. {
  1609. if (rdev->raid_disk < 0)
  1610. return sprintf(page, "none\n");
  1611. else
  1612. return sprintf(page, "%d\n", rdev->raid_disk);
  1613. }
  1614. static ssize_t
  1615. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1616. {
  1617. char *e;
  1618. int slot = simple_strtoul(buf, &e, 10);
  1619. if (strncmp(buf, "none", 4)==0)
  1620. slot = -1;
  1621. else if (e==buf || (*e && *e!= '\n'))
  1622. return -EINVAL;
  1623. if (rdev->mddev->pers)
  1624. /* Cannot set slot in active array (yet) */
  1625. return -EBUSY;
  1626. if (slot >= rdev->mddev->raid_disks)
  1627. return -ENOSPC;
  1628. rdev->raid_disk = slot;
  1629. /* assume it is working */
  1630. rdev->flags = 0;
  1631. set_bit(In_sync, &rdev->flags);
  1632. return len;
  1633. }
  1634. static struct rdev_sysfs_entry rdev_slot =
  1635. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1636. static ssize_t
  1637. offset_show(mdk_rdev_t *rdev, char *page)
  1638. {
  1639. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1640. }
  1641. static ssize_t
  1642. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1643. {
  1644. char *e;
  1645. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1646. if (e==buf || (*e && *e != '\n'))
  1647. return -EINVAL;
  1648. if (rdev->mddev->pers)
  1649. return -EBUSY;
  1650. rdev->data_offset = offset;
  1651. return len;
  1652. }
  1653. static struct rdev_sysfs_entry rdev_offset =
  1654. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1655. static ssize_t
  1656. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1657. {
  1658. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1659. }
  1660. static ssize_t
  1661. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1662. {
  1663. char *e;
  1664. unsigned long long size = simple_strtoull(buf, &e, 10);
  1665. if (e==buf || (*e && *e != '\n'))
  1666. return -EINVAL;
  1667. if (rdev->mddev->pers)
  1668. return -EBUSY;
  1669. rdev->size = size;
  1670. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1671. rdev->mddev->size = size;
  1672. return len;
  1673. }
  1674. static struct rdev_sysfs_entry rdev_size =
  1675. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1676. static struct attribute *rdev_default_attrs[] = {
  1677. &rdev_state.attr,
  1678. &rdev_super.attr,
  1679. &rdev_errors.attr,
  1680. &rdev_slot.attr,
  1681. &rdev_offset.attr,
  1682. &rdev_size.attr,
  1683. NULL,
  1684. };
  1685. static ssize_t
  1686. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1687. {
  1688. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1689. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1690. if (!entry->show)
  1691. return -EIO;
  1692. return entry->show(rdev, page);
  1693. }
  1694. static ssize_t
  1695. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1696. const char *page, size_t length)
  1697. {
  1698. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1699. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1700. if (!entry->store)
  1701. return -EIO;
  1702. if (!capable(CAP_SYS_ADMIN))
  1703. return -EACCES;
  1704. return entry->store(rdev, page, length);
  1705. }
  1706. static void rdev_free(struct kobject *ko)
  1707. {
  1708. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1709. kfree(rdev);
  1710. }
  1711. static struct sysfs_ops rdev_sysfs_ops = {
  1712. .show = rdev_attr_show,
  1713. .store = rdev_attr_store,
  1714. };
  1715. static struct kobj_type rdev_ktype = {
  1716. .release = rdev_free,
  1717. .sysfs_ops = &rdev_sysfs_ops,
  1718. .default_attrs = rdev_default_attrs,
  1719. };
  1720. /*
  1721. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1722. *
  1723. * mark the device faulty if:
  1724. *
  1725. * - the device is nonexistent (zero size)
  1726. * - the device has no valid superblock
  1727. *
  1728. * a faulty rdev _never_ has rdev->sb set.
  1729. */
  1730. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1731. {
  1732. char b[BDEVNAME_SIZE];
  1733. int err;
  1734. mdk_rdev_t *rdev;
  1735. sector_t size;
  1736. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1737. if (!rdev) {
  1738. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1739. return ERR_PTR(-ENOMEM);
  1740. }
  1741. if ((err = alloc_disk_sb(rdev)))
  1742. goto abort_free;
  1743. err = lock_rdev(rdev, newdev);
  1744. if (err)
  1745. goto abort_free;
  1746. rdev->kobj.parent = NULL;
  1747. rdev->kobj.ktype = &rdev_ktype;
  1748. kobject_init(&rdev->kobj);
  1749. rdev->desc_nr = -1;
  1750. rdev->saved_raid_disk = -1;
  1751. rdev->flags = 0;
  1752. rdev->data_offset = 0;
  1753. rdev->sb_events = 0;
  1754. atomic_set(&rdev->nr_pending, 0);
  1755. atomic_set(&rdev->read_errors, 0);
  1756. atomic_set(&rdev->corrected_errors, 0);
  1757. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1758. if (!size) {
  1759. printk(KERN_WARNING
  1760. "md: %s has zero or unknown size, marking faulty!\n",
  1761. bdevname(rdev->bdev,b));
  1762. err = -EINVAL;
  1763. goto abort_free;
  1764. }
  1765. if (super_format >= 0) {
  1766. err = super_types[super_format].
  1767. load_super(rdev, NULL, super_minor);
  1768. if (err == -EINVAL) {
  1769. printk(KERN_WARNING
  1770. "md: %s has invalid sb, not importing!\n",
  1771. bdevname(rdev->bdev,b));
  1772. goto abort_free;
  1773. }
  1774. if (err < 0) {
  1775. printk(KERN_WARNING
  1776. "md: could not read %s's sb, not importing!\n",
  1777. bdevname(rdev->bdev,b));
  1778. goto abort_free;
  1779. }
  1780. }
  1781. INIT_LIST_HEAD(&rdev->same_set);
  1782. return rdev;
  1783. abort_free:
  1784. if (rdev->sb_page) {
  1785. if (rdev->bdev)
  1786. unlock_rdev(rdev);
  1787. free_disk_sb(rdev);
  1788. }
  1789. kfree(rdev);
  1790. return ERR_PTR(err);
  1791. }
  1792. /*
  1793. * Check a full RAID array for plausibility
  1794. */
  1795. static void analyze_sbs(mddev_t * mddev)
  1796. {
  1797. int i;
  1798. struct list_head *tmp;
  1799. mdk_rdev_t *rdev, *freshest;
  1800. char b[BDEVNAME_SIZE];
  1801. freshest = NULL;
  1802. ITERATE_RDEV(mddev,rdev,tmp)
  1803. switch (super_types[mddev->major_version].
  1804. load_super(rdev, freshest, mddev->minor_version)) {
  1805. case 1:
  1806. freshest = rdev;
  1807. break;
  1808. case 0:
  1809. break;
  1810. default:
  1811. printk( KERN_ERR \
  1812. "md: fatal superblock inconsistency in %s"
  1813. " -- removing from array\n",
  1814. bdevname(rdev->bdev,b));
  1815. kick_rdev_from_array(rdev);
  1816. }
  1817. super_types[mddev->major_version].
  1818. validate_super(mddev, freshest);
  1819. i = 0;
  1820. ITERATE_RDEV(mddev,rdev,tmp) {
  1821. if (rdev != freshest)
  1822. if (super_types[mddev->major_version].
  1823. validate_super(mddev, rdev)) {
  1824. printk(KERN_WARNING "md: kicking non-fresh %s"
  1825. " from array!\n",
  1826. bdevname(rdev->bdev,b));
  1827. kick_rdev_from_array(rdev);
  1828. continue;
  1829. }
  1830. if (mddev->level == LEVEL_MULTIPATH) {
  1831. rdev->desc_nr = i++;
  1832. rdev->raid_disk = rdev->desc_nr;
  1833. set_bit(In_sync, &rdev->flags);
  1834. }
  1835. }
  1836. if (mddev->recovery_cp != MaxSector &&
  1837. mddev->level >= 1)
  1838. printk(KERN_ERR "md: %s: raid array is not clean"
  1839. " -- starting background reconstruction\n",
  1840. mdname(mddev));
  1841. }
  1842. static ssize_t
  1843. safe_delay_show(mddev_t *mddev, char *page)
  1844. {
  1845. int msec = (mddev->safemode_delay*1000)/HZ;
  1846. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1847. }
  1848. static ssize_t
  1849. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1850. {
  1851. int scale=1;
  1852. int dot=0;
  1853. int i;
  1854. unsigned long msec;
  1855. char buf[30];
  1856. char *e;
  1857. /* remove a period, and count digits after it */
  1858. if (len >= sizeof(buf))
  1859. return -EINVAL;
  1860. strlcpy(buf, cbuf, len);
  1861. buf[len] = 0;
  1862. for (i=0; i<len; i++) {
  1863. if (dot) {
  1864. if (isdigit(buf[i])) {
  1865. buf[i-1] = buf[i];
  1866. scale *= 10;
  1867. }
  1868. buf[i] = 0;
  1869. } else if (buf[i] == '.') {
  1870. dot=1;
  1871. buf[i] = 0;
  1872. }
  1873. }
  1874. msec = simple_strtoul(buf, &e, 10);
  1875. if (e == buf || (*e && *e != '\n'))
  1876. return -EINVAL;
  1877. msec = (msec * 1000) / scale;
  1878. if (msec == 0)
  1879. mddev->safemode_delay = 0;
  1880. else {
  1881. mddev->safemode_delay = (msec*HZ)/1000;
  1882. if (mddev->safemode_delay == 0)
  1883. mddev->safemode_delay = 1;
  1884. }
  1885. return len;
  1886. }
  1887. static struct md_sysfs_entry md_safe_delay =
  1888. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1889. static ssize_t
  1890. level_show(mddev_t *mddev, char *page)
  1891. {
  1892. struct mdk_personality *p = mddev->pers;
  1893. if (p)
  1894. return sprintf(page, "%s\n", p->name);
  1895. else if (mddev->clevel[0])
  1896. return sprintf(page, "%s\n", mddev->clevel);
  1897. else if (mddev->level != LEVEL_NONE)
  1898. return sprintf(page, "%d\n", mddev->level);
  1899. else
  1900. return 0;
  1901. }
  1902. static ssize_t
  1903. level_store(mddev_t *mddev, const char *buf, size_t len)
  1904. {
  1905. int rv = len;
  1906. if (mddev->pers)
  1907. return -EBUSY;
  1908. if (len == 0)
  1909. return 0;
  1910. if (len >= sizeof(mddev->clevel))
  1911. return -ENOSPC;
  1912. strncpy(mddev->clevel, buf, len);
  1913. if (mddev->clevel[len-1] == '\n')
  1914. len--;
  1915. mddev->clevel[len] = 0;
  1916. mddev->level = LEVEL_NONE;
  1917. return rv;
  1918. }
  1919. static struct md_sysfs_entry md_level =
  1920. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1921. static ssize_t
  1922. layout_show(mddev_t *mddev, char *page)
  1923. {
  1924. /* just a number, not meaningful for all levels */
  1925. return sprintf(page, "%d\n", mddev->layout);
  1926. }
  1927. static ssize_t
  1928. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1929. {
  1930. char *e;
  1931. unsigned long n = simple_strtoul(buf, &e, 10);
  1932. if (mddev->pers)
  1933. return -EBUSY;
  1934. if (!*buf || (*e && *e != '\n'))
  1935. return -EINVAL;
  1936. mddev->layout = n;
  1937. return len;
  1938. }
  1939. static struct md_sysfs_entry md_layout =
  1940. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1941. static ssize_t
  1942. raid_disks_show(mddev_t *mddev, char *page)
  1943. {
  1944. if (mddev->raid_disks == 0)
  1945. return 0;
  1946. return sprintf(page, "%d\n", mddev->raid_disks);
  1947. }
  1948. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1949. static ssize_t
  1950. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1951. {
  1952. /* can only set raid_disks if array is not yet active */
  1953. char *e;
  1954. int rv = 0;
  1955. unsigned long n = simple_strtoul(buf, &e, 10);
  1956. if (!*buf || (*e && *e != '\n'))
  1957. return -EINVAL;
  1958. if (mddev->pers)
  1959. rv = update_raid_disks(mddev, n);
  1960. else
  1961. mddev->raid_disks = n;
  1962. return rv ? rv : len;
  1963. }
  1964. static struct md_sysfs_entry md_raid_disks =
  1965. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  1966. static ssize_t
  1967. chunk_size_show(mddev_t *mddev, char *page)
  1968. {
  1969. return sprintf(page, "%d\n", mddev->chunk_size);
  1970. }
  1971. static ssize_t
  1972. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  1973. {
  1974. /* can only set chunk_size if array is not yet active */
  1975. char *e;
  1976. unsigned long n = simple_strtoul(buf, &e, 10);
  1977. if (mddev->pers)
  1978. return -EBUSY;
  1979. if (!*buf || (*e && *e != '\n'))
  1980. return -EINVAL;
  1981. mddev->chunk_size = n;
  1982. return len;
  1983. }
  1984. static struct md_sysfs_entry md_chunk_size =
  1985. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  1986. static ssize_t
  1987. resync_start_show(mddev_t *mddev, char *page)
  1988. {
  1989. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  1990. }
  1991. static ssize_t
  1992. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  1993. {
  1994. /* can only set chunk_size if array is not yet active */
  1995. char *e;
  1996. unsigned long long n = simple_strtoull(buf, &e, 10);
  1997. if (mddev->pers)
  1998. return -EBUSY;
  1999. if (!*buf || (*e && *e != '\n'))
  2000. return -EINVAL;
  2001. mddev->recovery_cp = n;
  2002. return len;
  2003. }
  2004. static struct md_sysfs_entry md_resync_start =
  2005. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2006. /*
  2007. * The array state can be:
  2008. *
  2009. * clear
  2010. * No devices, no size, no level
  2011. * Equivalent to STOP_ARRAY ioctl
  2012. * inactive
  2013. * May have some settings, but array is not active
  2014. * all IO results in error
  2015. * When written, doesn't tear down array, but just stops it
  2016. * suspended (not supported yet)
  2017. * All IO requests will block. The array can be reconfigured.
  2018. * Writing this, if accepted, will block until array is quiessent
  2019. * readonly
  2020. * no resync can happen. no superblocks get written.
  2021. * write requests fail
  2022. * read-auto
  2023. * like readonly, but behaves like 'clean' on a write request.
  2024. *
  2025. * clean - no pending writes, but otherwise active.
  2026. * When written to inactive array, starts without resync
  2027. * If a write request arrives then
  2028. * if metadata is known, mark 'dirty' and switch to 'active'.
  2029. * if not known, block and switch to write-pending
  2030. * If written to an active array that has pending writes, then fails.
  2031. * active
  2032. * fully active: IO and resync can be happening.
  2033. * When written to inactive array, starts with resync
  2034. *
  2035. * write-pending
  2036. * clean, but writes are blocked waiting for 'active' to be written.
  2037. *
  2038. * active-idle
  2039. * like active, but no writes have been seen for a while (100msec).
  2040. *
  2041. */
  2042. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2043. write_pending, active_idle, bad_word};
  2044. static char *array_states[] = {
  2045. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2046. "write-pending", "active-idle", NULL };
  2047. static int match_word(const char *word, char **list)
  2048. {
  2049. int n;
  2050. for (n=0; list[n]; n++)
  2051. if (cmd_match(word, list[n]))
  2052. break;
  2053. return n;
  2054. }
  2055. static ssize_t
  2056. array_state_show(mddev_t *mddev, char *page)
  2057. {
  2058. enum array_state st = inactive;
  2059. if (mddev->pers)
  2060. switch(mddev->ro) {
  2061. case 1:
  2062. st = readonly;
  2063. break;
  2064. case 2:
  2065. st = read_auto;
  2066. break;
  2067. case 0:
  2068. if (mddev->in_sync)
  2069. st = clean;
  2070. else if (mddev->safemode)
  2071. st = active_idle;
  2072. else
  2073. st = active;
  2074. }
  2075. else {
  2076. if (list_empty(&mddev->disks) &&
  2077. mddev->raid_disks == 0 &&
  2078. mddev->size == 0)
  2079. st = clear;
  2080. else
  2081. st = inactive;
  2082. }
  2083. return sprintf(page, "%s\n", array_states[st]);
  2084. }
  2085. static int do_md_stop(mddev_t * mddev, int ro);
  2086. static int do_md_run(mddev_t * mddev);
  2087. static int restart_array(mddev_t *mddev);
  2088. static ssize_t
  2089. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2090. {
  2091. int err = -EINVAL;
  2092. enum array_state st = match_word(buf, array_states);
  2093. switch(st) {
  2094. case bad_word:
  2095. break;
  2096. case clear:
  2097. /* stopping an active array */
  2098. if (mddev->pers) {
  2099. if (atomic_read(&mddev->active) > 1)
  2100. return -EBUSY;
  2101. err = do_md_stop(mddev, 0);
  2102. }
  2103. break;
  2104. case inactive:
  2105. /* stopping an active array */
  2106. if (mddev->pers) {
  2107. if (atomic_read(&mddev->active) > 1)
  2108. return -EBUSY;
  2109. err = do_md_stop(mddev, 2);
  2110. }
  2111. break;
  2112. case suspended:
  2113. break; /* not supported yet */
  2114. case readonly:
  2115. if (mddev->pers)
  2116. err = do_md_stop(mddev, 1);
  2117. else {
  2118. mddev->ro = 1;
  2119. err = do_md_run(mddev);
  2120. }
  2121. break;
  2122. case read_auto:
  2123. /* stopping an active array */
  2124. if (mddev->pers) {
  2125. err = do_md_stop(mddev, 1);
  2126. if (err == 0)
  2127. mddev->ro = 2; /* FIXME mark devices writable */
  2128. } else {
  2129. mddev->ro = 2;
  2130. err = do_md_run(mddev);
  2131. }
  2132. break;
  2133. case clean:
  2134. if (mddev->pers) {
  2135. restart_array(mddev);
  2136. spin_lock_irq(&mddev->write_lock);
  2137. if (atomic_read(&mddev->writes_pending) == 0) {
  2138. mddev->in_sync = 1;
  2139. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2140. }
  2141. spin_unlock_irq(&mddev->write_lock);
  2142. } else {
  2143. mddev->ro = 0;
  2144. mddev->recovery_cp = MaxSector;
  2145. err = do_md_run(mddev);
  2146. }
  2147. break;
  2148. case active:
  2149. if (mddev->pers) {
  2150. restart_array(mddev);
  2151. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2152. wake_up(&mddev->sb_wait);
  2153. err = 0;
  2154. } else {
  2155. mddev->ro = 0;
  2156. err = do_md_run(mddev);
  2157. }
  2158. break;
  2159. case write_pending:
  2160. case active_idle:
  2161. /* these cannot be set */
  2162. break;
  2163. }
  2164. if (err)
  2165. return err;
  2166. else
  2167. return len;
  2168. }
  2169. static struct md_sysfs_entry md_array_state =
  2170. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2171. static ssize_t
  2172. null_show(mddev_t *mddev, char *page)
  2173. {
  2174. return -EINVAL;
  2175. }
  2176. static ssize_t
  2177. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2178. {
  2179. /* buf must be %d:%d\n? giving major and minor numbers */
  2180. /* The new device is added to the array.
  2181. * If the array has a persistent superblock, we read the
  2182. * superblock to initialise info and check validity.
  2183. * Otherwise, only checking done is that in bind_rdev_to_array,
  2184. * which mainly checks size.
  2185. */
  2186. char *e;
  2187. int major = simple_strtoul(buf, &e, 10);
  2188. int minor;
  2189. dev_t dev;
  2190. mdk_rdev_t *rdev;
  2191. int err;
  2192. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2193. return -EINVAL;
  2194. minor = simple_strtoul(e+1, &e, 10);
  2195. if (*e && *e != '\n')
  2196. return -EINVAL;
  2197. dev = MKDEV(major, minor);
  2198. if (major != MAJOR(dev) ||
  2199. minor != MINOR(dev))
  2200. return -EOVERFLOW;
  2201. if (mddev->persistent) {
  2202. rdev = md_import_device(dev, mddev->major_version,
  2203. mddev->minor_version);
  2204. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2205. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2206. mdk_rdev_t, same_set);
  2207. err = super_types[mddev->major_version]
  2208. .load_super(rdev, rdev0, mddev->minor_version);
  2209. if (err < 0)
  2210. goto out;
  2211. }
  2212. } else
  2213. rdev = md_import_device(dev, -1, -1);
  2214. if (IS_ERR(rdev))
  2215. return PTR_ERR(rdev);
  2216. err = bind_rdev_to_array(rdev, mddev);
  2217. out:
  2218. if (err)
  2219. export_rdev(rdev);
  2220. return err ? err : len;
  2221. }
  2222. static struct md_sysfs_entry md_new_device =
  2223. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2224. static ssize_t
  2225. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2226. {
  2227. char *end;
  2228. unsigned long chunk, end_chunk;
  2229. if (!mddev->bitmap)
  2230. goto out;
  2231. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2232. while (*buf) {
  2233. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2234. if (buf == end) break;
  2235. if (*end == '-') { /* range */
  2236. buf = end + 1;
  2237. end_chunk = simple_strtoul(buf, &end, 0);
  2238. if (buf == end) break;
  2239. }
  2240. if (*end && !isspace(*end)) break;
  2241. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2242. buf = end;
  2243. while (isspace(*buf)) buf++;
  2244. }
  2245. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2246. out:
  2247. return len;
  2248. }
  2249. static struct md_sysfs_entry md_bitmap =
  2250. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2251. static ssize_t
  2252. size_show(mddev_t *mddev, char *page)
  2253. {
  2254. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2255. }
  2256. static int update_size(mddev_t *mddev, unsigned long size);
  2257. static ssize_t
  2258. size_store(mddev_t *mddev, const char *buf, size_t len)
  2259. {
  2260. /* If array is inactive, we can reduce the component size, but
  2261. * not increase it (except from 0).
  2262. * If array is active, we can try an on-line resize
  2263. */
  2264. char *e;
  2265. int err = 0;
  2266. unsigned long long size = simple_strtoull(buf, &e, 10);
  2267. if (!*buf || *buf == '\n' ||
  2268. (*e && *e != '\n'))
  2269. return -EINVAL;
  2270. if (mddev->pers) {
  2271. err = update_size(mddev, size);
  2272. md_update_sb(mddev, 1);
  2273. } else {
  2274. if (mddev->size == 0 ||
  2275. mddev->size > size)
  2276. mddev->size = size;
  2277. else
  2278. err = -ENOSPC;
  2279. }
  2280. return err ? err : len;
  2281. }
  2282. static struct md_sysfs_entry md_size =
  2283. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2284. /* Metdata version.
  2285. * This is either 'none' for arrays with externally managed metadata,
  2286. * or N.M for internally known formats
  2287. */
  2288. static ssize_t
  2289. metadata_show(mddev_t *mddev, char *page)
  2290. {
  2291. if (mddev->persistent)
  2292. return sprintf(page, "%d.%d\n",
  2293. mddev->major_version, mddev->minor_version);
  2294. else
  2295. return sprintf(page, "none\n");
  2296. }
  2297. static ssize_t
  2298. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2299. {
  2300. int major, minor;
  2301. char *e;
  2302. if (!list_empty(&mddev->disks))
  2303. return -EBUSY;
  2304. if (cmd_match(buf, "none")) {
  2305. mddev->persistent = 0;
  2306. mddev->major_version = 0;
  2307. mddev->minor_version = 90;
  2308. return len;
  2309. }
  2310. major = simple_strtoul(buf, &e, 10);
  2311. if (e==buf || *e != '.')
  2312. return -EINVAL;
  2313. buf = e+1;
  2314. minor = simple_strtoul(buf, &e, 10);
  2315. if (e==buf || *e != '\n')
  2316. return -EINVAL;
  2317. if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
  2318. super_types[major].name == NULL)
  2319. return -ENOENT;
  2320. mddev->major_version = major;
  2321. mddev->minor_version = minor;
  2322. mddev->persistent = 1;
  2323. return len;
  2324. }
  2325. static struct md_sysfs_entry md_metadata =
  2326. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2327. static ssize_t
  2328. action_show(mddev_t *mddev, char *page)
  2329. {
  2330. char *type = "idle";
  2331. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2332. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2333. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2334. type = "reshape";
  2335. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2336. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2337. type = "resync";
  2338. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2339. type = "check";
  2340. else
  2341. type = "repair";
  2342. } else
  2343. type = "recover";
  2344. }
  2345. return sprintf(page, "%s\n", type);
  2346. }
  2347. static ssize_t
  2348. action_store(mddev_t *mddev, const char *page, size_t len)
  2349. {
  2350. if (!mddev->pers || !mddev->pers->sync_request)
  2351. return -EINVAL;
  2352. if (cmd_match(page, "idle")) {
  2353. if (mddev->sync_thread) {
  2354. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2355. md_unregister_thread(mddev->sync_thread);
  2356. mddev->sync_thread = NULL;
  2357. mddev->recovery = 0;
  2358. }
  2359. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2360. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2361. return -EBUSY;
  2362. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2363. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2364. else if (cmd_match(page, "reshape")) {
  2365. int err;
  2366. if (mddev->pers->start_reshape == NULL)
  2367. return -EINVAL;
  2368. err = mddev->pers->start_reshape(mddev);
  2369. if (err)
  2370. return err;
  2371. } else {
  2372. if (cmd_match(page, "check"))
  2373. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2374. else if (!cmd_match(page, "repair"))
  2375. return -EINVAL;
  2376. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2377. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2378. }
  2379. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2380. md_wakeup_thread(mddev->thread);
  2381. return len;
  2382. }
  2383. static ssize_t
  2384. mismatch_cnt_show(mddev_t *mddev, char *page)
  2385. {
  2386. return sprintf(page, "%llu\n",
  2387. (unsigned long long) mddev->resync_mismatches);
  2388. }
  2389. static struct md_sysfs_entry md_scan_mode =
  2390. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2391. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2392. static ssize_t
  2393. sync_min_show(mddev_t *mddev, char *page)
  2394. {
  2395. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2396. mddev->sync_speed_min ? "local": "system");
  2397. }
  2398. static ssize_t
  2399. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2400. {
  2401. int min;
  2402. char *e;
  2403. if (strncmp(buf, "system", 6)==0) {
  2404. mddev->sync_speed_min = 0;
  2405. return len;
  2406. }
  2407. min = simple_strtoul(buf, &e, 10);
  2408. if (buf == e || (*e && *e != '\n') || min <= 0)
  2409. return -EINVAL;
  2410. mddev->sync_speed_min = min;
  2411. return len;
  2412. }
  2413. static struct md_sysfs_entry md_sync_min =
  2414. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2415. static ssize_t
  2416. sync_max_show(mddev_t *mddev, char *page)
  2417. {
  2418. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2419. mddev->sync_speed_max ? "local": "system");
  2420. }
  2421. static ssize_t
  2422. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2423. {
  2424. int max;
  2425. char *e;
  2426. if (strncmp(buf, "system", 6)==0) {
  2427. mddev->sync_speed_max = 0;
  2428. return len;
  2429. }
  2430. max = simple_strtoul(buf, &e, 10);
  2431. if (buf == e || (*e && *e != '\n') || max <= 0)
  2432. return -EINVAL;
  2433. mddev->sync_speed_max = max;
  2434. return len;
  2435. }
  2436. static struct md_sysfs_entry md_sync_max =
  2437. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2438. static ssize_t
  2439. sync_speed_show(mddev_t *mddev, char *page)
  2440. {
  2441. unsigned long resync, dt, db;
  2442. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2443. dt = ((jiffies - mddev->resync_mark) / HZ);
  2444. if (!dt) dt++;
  2445. db = resync - (mddev->resync_mark_cnt);
  2446. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2447. }
  2448. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2449. static ssize_t
  2450. sync_completed_show(mddev_t *mddev, char *page)
  2451. {
  2452. unsigned long max_blocks, resync;
  2453. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2454. max_blocks = mddev->resync_max_sectors;
  2455. else
  2456. max_blocks = mddev->size << 1;
  2457. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2458. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2459. }
  2460. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2461. static ssize_t
  2462. suspend_lo_show(mddev_t *mddev, char *page)
  2463. {
  2464. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2465. }
  2466. static ssize_t
  2467. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2468. {
  2469. char *e;
  2470. unsigned long long new = simple_strtoull(buf, &e, 10);
  2471. if (mddev->pers->quiesce == NULL)
  2472. return -EINVAL;
  2473. if (buf == e || (*e && *e != '\n'))
  2474. return -EINVAL;
  2475. if (new >= mddev->suspend_hi ||
  2476. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2477. mddev->suspend_lo = new;
  2478. mddev->pers->quiesce(mddev, 2);
  2479. return len;
  2480. } else
  2481. return -EINVAL;
  2482. }
  2483. static struct md_sysfs_entry md_suspend_lo =
  2484. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2485. static ssize_t
  2486. suspend_hi_show(mddev_t *mddev, char *page)
  2487. {
  2488. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2489. }
  2490. static ssize_t
  2491. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2492. {
  2493. char *e;
  2494. unsigned long long new = simple_strtoull(buf, &e, 10);
  2495. if (mddev->pers->quiesce == NULL)
  2496. return -EINVAL;
  2497. if (buf == e || (*e && *e != '\n'))
  2498. return -EINVAL;
  2499. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2500. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2501. mddev->suspend_hi = new;
  2502. mddev->pers->quiesce(mddev, 1);
  2503. mddev->pers->quiesce(mddev, 0);
  2504. return len;
  2505. } else
  2506. return -EINVAL;
  2507. }
  2508. static struct md_sysfs_entry md_suspend_hi =
  2509. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2510. static struct attribute *md_default_attrs[] = {
  2511. &md_level.attr,
  2512. &md_layout.attr,
  2513. &md_raid_disks.attr,
  2514. &md_chunk_size.attr,
  2515. &md_size.attr,
  2516. &md_resync_start.attr,
  2517. &md_metadata.attr,
  2518. &md_new_device.attr,
  2519. &md_safe_delay.attr,
  2520. &md_array_state.attr,
  2521. NULL,
  2522. };
  2523. static struct attribute *md_redundancy_attrs[] = {
  2524. &md_scan_mode.attr,
  2525. &md_mismatches.attr,
  2526. &md_sync_min.attr,
  2527. &md_sync_max.attr,
  2528. &md_sync_speed.attr,
  2529. &md_sync_completed.attr,
  2530. &md_suspend_lo.attr,
  2531. &md_suspend_hi.attr,
  2532. &md_bitmap.attr,
  2533. NULL,
  2534. };
  2535. static struct attribute_group md_redundancy_group = {
  2536. .name = NULL,
  2537. .attrs = md_redundancy_attrs,
  2538. };
  2539. static ssize_t
  2540. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2541. {
  2542. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2543. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2544. ssize_t rv;
  2545. if (!entry->show)
  2546. return -EIO;
  2547. rv = mddev_lock(mddev);
  2548. if (!rv) {
  2549. rv = entry->show(mddev, page);
  2550. mddev_unlock(mddev);
  2551. }
  2552. return rv;
  2553. }
  2554. static ssize_t
  2555. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2556. const char *page, size_t length)
  2557. {
  2558. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2559. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2560. ssize_t rv;
  2561. if (!entry->store)
  2562. return -EIO;
  2563. if (!capable(CAP_SYS_ADMIN))
  2564. return -EACCES;
  2565. rv = mddev_lock(mddev);
  2566. if (!rv) {
  2567. rv = entry->store(mddev, page, length);
  2568. mddev_unlock(mddev);
  2569. }
  2570. return rv;
  2571. }
  2572. static void md_free(struct kobject *ko)
  2573. {
  2574. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2575. kfree(mddev);
  2576. }
  2577. static struct sysfs_ops md_sysfs_ops = {
  2578. .show = md_attr_show,
  2579. .store = md_attr_store,
  2580. };
  2581. static struct kobj_type md_ktype = {
  2582. .release = md_free,
  2583. .sysfs_ops = &md_sysfs_ops,
  2584. .default_attrs = md_default_attrs,
  2585. };
  2586. int mdp_major = 0;
  2587. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2588. {
  2589. static DEFINE_MUTEX(disks_mutex);
  2590. mddev_t *mddev = mddev_find(dev);
  2591. struct gendisk *disk;
  2592. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2593. int shift = partitioned ? MdpMinorShift : 0;
  2594. int unit = MINOR(dev) >> shift;
  2595. if (!mddev)
  2596. return NULL;
  2597. mutex_lock(&disks_mutex);
  2598. if (mddev->gendisk) {
  2599. mutex_unlock(&disks_mutex);
  2600. mddev_put(mddev);
  2601. return NULL;
  2602. }
  2603. disk = alloc_disk(1 << shift);
  2604. if (!disk) {
  2605. mutex_unlock(&disks_mutex);
  2606. mddev_put(mddev);
  2607. return NULL;
  2608. }
  2609. disk->major = MAJOR(dev);
  2610. disk->first_minor = unit << shift;
  2611. if (partitioned)
  2612. sprintf(disk->disk_name, "md_d%d", unit);
  2613. else
  2614. sprintf(disk->disk_name, "md%d", unit);
  2615. disk->fops = &md_fops;
  2616. disk->private_data = mddev;
  2617. disk->queue = mddev->queue;
  2618. add_disk(disk);
  2619. mddev->gendisk = disk;
  2620. mutex_unlock(&disks_mutex);
  2621. mddev->kobj.parent = &disk->kobj;
  2622. mddev->kobj.k_name = NULL;
  2623. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2624. mddev->kobj.ktype = &md_ktype;
  2625. kobject_register(&mddev->kobj);
  2626. return NULL;
  2627. }
  2628. static void md_safemode_timeout(unsigned long data)
  2629. {
  2630. mddev_t *mddev = (mddev_t *) data;
  2631. mddev->safemode = 1;
  2632. md_wakeup_thread(mddev->thread);
  2633. }
  2634. static int start_dirty_degraded;
  2635. static int do_md_run(mddev_t * mddev)
  2636. {
  2637. int err;
  2638. int chunk_size;
  2639. struct list_head *tmp;
  2640. mdk_rdev_t *rdev;
  2641. struct gendisk *disk;
  2642. struct mdk_personality *pers;
  2643. char b[BDEVNAME_SIZE];
  2644. if (list_empty(&mddev->disks))
  2645. /* cannot run an array with no devices.. */
  2646. return -EINVAL;
  2647. if (mddev->pers)
  2648. return -EBUSY;
  2649. /*
  2650. * Analyze all RAID superblock(s)
  2651. */
  2652. if (!mddev->raid_disks)
  2653. analyze_sbs(mddev);
  2654. chunk_size = mddev->chunk_size;
  2655. if (chunk_size) {
  2656. if (chunk_size > MAX_CHUNK_SIZE) {
  2657. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2658. chunk_size, MAX_CHUNK_SIZE);
  2659. return -EINVAL;
  2660. }
  2661. /*
  2662. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2663. */
  2664. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2665. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2666. return -EINVAL;
  2667. }
  2668. if (chunk_size < PAGE_SIZE) {
  2669. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2670. chunk_size, PAGE_SIZE);
  2671. return -EINVAL;
  2672. }
  2673. /* devices must have minimum size of one chunk */
  2674. ITERATE_RDEV(mddev,rdev,tmp) {
  2675. if (test_bit(Faulty, &rdev->flags))
  2676. continue;
  2677. if (rdev->size < chunk_size / 1024) {
  2678. printk(KERN_WARNING
  2679. "md: Dev %s smaller than chunk_size:"
  2680. " %lluk < %dk\n",
  2681. bdevname(rdev->bdev,b),
  2682. (unsigned long long)rdev->size,
  2683. chunk_size / 1024);
  2684. return -EINVAL;
  2685. }
  2686. }
  2687. }
  2688. #ifdef CONFIG_KMOD
  2689. if (mddev->level != LEVEL_NONE)
  2690. request_module("md-level-%d", mddev->level);
  2691. else if (mddev->clevel[0])
  2692. request_module("md-%s", mddev->clevel);
  2693. #endif
  2694. /*
  2695. * Drop all container device buffers, from now on
  2696. * the only valid external interface is through the md
  2697. * device.
  2698. * Also find largest hardsector size
  2699. */
  2700. ITERATE_RDEV(mddev,rdev,tmp) {
  2701. if (test_bit(Faulty, &rdev->flags))
  2702. continue;
  2703. sync_blockdev(rdev->bdev);
  2704. invalidate_bdev(rdev->bdev, 0);
  2705. }
  2706. md_probe(mddev->unit, NULL, NULL);
  2707. disk = mddev->gendisk;
  2708. if (!disk)
  2709. return -ENOMEM;
  2710. spin_lock(&pers_lock);
  2711. pers = find_pers(mddev->level, mddev->clevel);
  2712. if (!pers || !try_module_get(pers->owner)) {
  2713. spin_unlock(&pers_lock);
  2714. if (mddev->level != LEVEL_NONE)
  2715. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2716. mddev->level);
  2717. else
  2718. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2719. mddev->clevel);
  2720. return -EINVAL;
  2721. }
  2722. mddev->pers = pers;
  2723. spin_unlock(&pers_lock);
  2724. mddev->level = pers->level;
  2725. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2726. if (mddev->reshape_position != MaxSector &&
  2727. pers->start_reshape == NULL) {
  2728. /* This personality cannot handle reshaping... */
  2729. mddev->pers = NULL;
  2730. module_put(pers->owner);
  2731. return -EINVAL;
  2732. }
  2733. mddev->recovery = 0;
  2734. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2735. mddev->barriers_work = 1;
  2736. mddev->ok_start_degraded = start_dirty_degraded;
  2737. if (start_readonly)
  2738. mddev->ro = 2; /* read-only, but switch on first write */
  2739. err = mddev->pers->run(mddev);
  2740. if (!err && mddev->pers->sync_request) {
  2741. err = bitmap_create(mddev);
  2742. if (err) {
  2743. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2744. mdname(mddev), err);
  2745. mddev->pers->stop(mddev);
  2746. }
  2747. }
  2748. if (err) {
  2749. printk(KERN_ERR "md: pers->run() failed ...\n");
  2750. module_put(mddev->pers->owner);
  2751. mddev->pers = NULL;
  2752. bitmap_destroy(mddev);
  2753. return err;
  2754. }
  2755. if (mddev->pers->sync_request)
  2756. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  2757. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2758. mddev->ro = 0;
  2759. atomic_set(&mddev->writes_pending,0);
  2760. mddev->safemode = 0;
  2761. mddev->safemode_timer.function = md_safemode_timeout;
  2762. mddev->safemode_timer.data = (unsigned long) mddev;
  2763. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2764. mddev->in_sync = 1;
  2765. ITERATE_RDEV(mddev,rdev,tmp)
  2766. if (rdev->raid_disk >= 0) {
  2767. char nm[20];
  2768. sprintf(nm, "rd%d", rdev->raid_disk);
  2769. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  2770. }
  2771. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2772. if (mddev->flags)
  2773. md_update_sb(mddev, 0);
  2774. set_capacity(disk, mddev->array_size<<1);
  2775. /* If we call blk_queue_make_request here, it will
  2776. * re-initialise max_sectors etc which may have been
  2777. * refined inside -> run. So just set the bits we need to set.
  2778. * Most initialisation happended when we called
  2779. * blk_queue_make_request(..., md_fail_request)
  2780. * earlier.
  2781. */
  2782. mddev->queue->queuedata = mddev;
  2783. mddev->queue->make_request_fn = mddev->pers->make_request;
  2784. /* If there is a partially-recovered drive we need to
  2785. * start recovery here. If we leave it to md_check_recovery,
  2786. * it will remove the drives and not do the right thing
  2787. */
  2788. if (mddev->degraded && !mddev->sync_thread) {
  2789. struct list_head *rtmp;
  2790. int spares = 0;
  2791. ITERATE_RDEV(mddev,rdev,rtmp)
  2792. if (rdev->raid_disk >= 0 &&
  2793. !test_bit(In_sync, &rdev->flags) &&
  2794. !test_bit(Faulty, &rdev->flags))
  2795. /* complete an interrupted recovery */
  2796. spares++;
  2797. if (spares && mddev->pers->sync_request) {
  2798. mddev->recovery = 0;
  2799. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2800. mddev->sync_thread = md_register_thread(md_do_sync,
  2801. mddev,
  2802. "%s_resync");
  2803. if (!mddev->sync_thread) {
  2804. printk(KERN_ERR "%s: could not start resync"
  2805. " thread...\n",
  2806. mdname(mddev));
  2807. /* leave the spares where they are, it shouldn't hurt */
  2808. mddev->recovery = 0;
  2809. }
  2810. }
  2811. }
  2812. md_wakeup_thread(mddev->thread);
  2813. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2814. mddev->changed = 1;
  2815. md_new_event(mddev);
  2816. kobject_uevent(&mddev->gendisk->kobj, KOBJ_ONLINE);
  2817. return 0;
  2818. }
  2819. static int restart_array(mddev_t *mddev)
  2820. {
  2821. struct gendisk *disk = mddev->gendisk;
  2822. int err;
  2823. /*
  2824. * Complain if it has no devices
  2825. */
  2826. err = -ENXIO;
  2827. if (list_empty(&mddev->disks))
  2828. goto out;
  2829. if (mddev->pers) {
  2830. err = -EBUSY;
  2831. if (!mddev->ro)
  2832. goto out;
  2833. mddev->safemode = 0;
  2834. mddev->ro = 0;
  2835. set_disk_ro(disk, 0);
  2836. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2837. mdname(mddev));
  2838. /*
  2839. * Kick recovery or resync if necessary
  2840. */
  2841. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2842. md_wakeup_thread(mddev->thread);
  2843. md_wakeup_thread(mddev->sync_thread);
  2844. err = 0;
  2845. } else
  2846. err = -EINVAL;
  2847. out:
  2848. return err;
  2849. }
  2850. /* similar to deny_write_access, but accounts for our holding a reference
  2851. * to the file ourselves */
  2852. static int deny_bitmap_write_access(struct file * file)
  2853. {
  2854. struct inode *inode = file->f_mapping->host;
  2855. spin_lock(&inode->i_lock);
  2856. if (atomic_read(&inode->i_writecount) > 1) {
  2857. spin_unlock(&inode->i_lock);
  2858. return -ETXTBSY;
  2859. }
  2860. atomic_set(&inode->i_writecount, -1);
  2861. spin_unlock(&inode->i_lock);
  2862. return 0;
  2863. }
  2864. static void restore_bitmap_write_access(struct file *file)
  2865. {
  2866. struct inode *inode = file->f_mapping->host;
  2867. spin_lock(&inode->i_lock);
  2868. atomic_set(&inode->i_writecount, 1);
  2869. spin_unlock(&inode->i_lock);
  2870. }
  2871. /* mode:
  2872. * 0 - completely stop and dis-assemble array
  2873. * 1 - switch to readonly
  2874. * 2 - stop but do not disassemble array
  2875. */
  2876. static int do_md_stop(mddev_t * mddev, int mode)
  2877. {
  2878. int err = 0;
  2879. struct gendisk *disk = mddev->gendisk;
  2880. if (mddev->pers) {
  2881. if (atomic_read(&mddev->active)>2) {
  2882. printk("md: %s still in use.\n",mdname(mddev));
  2883. return -EBUSY;
  2884. }
  2885. if (mddev->sync_thread) {
  2886. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2887. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2888. md_unregister_thread(mddev->sync_thread);
  2889. mddev->sync_thread = NULL;
  2890. }
  2891. del_timer_sync(&mddev->safemode_timer);
  2892. invalidate_partition(disk, 0);
  2893. switch(mode) {
  2894. case 1: /* readonly */
  2895. err = -ENXIO;
  2896. if (mddev->ro==1)
  2897. goto out;
  2898. mddev->ro = 1;
  2899. break;
  2900. case 0: /* disassemble */
  2901. case 2: /* stop */
  2902. bitmap_flush(mddev);
  2903. md_super_wait(mddev);
  2904. if (mddev->ro)
  2905. set_disk_ro(disk, 0);
  2906. blk_queue_make_request(mddev->queue, md_fail_request);
  2907. mddev->pers->stop(mddev);
  2908. if (mddev->pers->sync_request)
  2909. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2910. module_put(mddev->pers->owner);
  2911. mddev->pers = NULL;
  2912. kobject_uevent(&mddev->gendisk->kobj, KOBJ_OFFLINE);
  2913. if (mddev->ro)
  2914. mddev->ro = 0;
  2915. }
  2916. if (!mddev->in_sync || mddev->flags) {
  2917. /* mark array as shutdown cleanly */
  2918. mddev->in_sync = 1;
  2919. md_update_sb(mddev, 1);
  2920. }
  2921. if (mode == 1)
  2922. set_disk_ro(disk, 1);
  2923. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2924. }
  2925. /*
  2926. * Free resources if final stop
  2927. */
  2928. if (mode == 0) {
  2929. mdk_rdev_t *rdev;
  2930. struct list_head *tmp;
  2931. struct gendisk *disk;
  2932. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  2933. bitmap_destroy(mddev);
  2934. if (mddev->bitmap_file) {
  2935. restore_bitmap_write_access(mddev->bitmap_file);
  2936. fput(mddev->bitmap_file);
  2937. mddev->bitmap_file = NULL;
  2938. }
  2939. mddev->bitmap_offset = 0;
  2940. ITERATE_RDEV(mddev,rdev,tmp)
  2941. if (rdev->raid_disk >= 0) {
  2942. char nm[20];
  2943. sprintf(nm, "rd%d", rdev->raid_disk);
  2944. sysfs_remove_link(&mddev->kobj, nm);
  2945. }
  2946. export_array(mddev);
  2947. mddev->array_size = 0;
  2948. mddev->size = 0;
  2949. mddev->raid_disks = 0;
  2950. mddev->recovery_cp = 0;
  2951. disk = mddev->gendisk;
  2952. if (disk)
  2953. set_capacity(disk, 0);
  2954. mddev->changed = 1;
  2955. } else if (mddev->pers)
  2956. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  2957. mdname(mddev));
  2958. err = 0;
  2959. md_new_event(mddev);
  2960. out:
  2961. return err;
  2962. }
  2963. static void autorun_array(mddev_t *mddev)
  2964. {
  2965. mdk_rdev_t *rdev;
  2966. struct list_head *tmp;
  2967. int err;
  2968. if (list_empty(&mddev->disks))
  2969. return;
  2970. printk(KERN_INFO "md: running: ");
  2971. ITERATE_RDEV(mddev,rdev,tmp) {
  2972. char b[BDEVNAME_SIZE];
  2973. printk("<%s>", bdevname(rdev->bdev,b));
  2974. }
  2975. printk("\n");
  2976. err = do_md_run (mddev);
  2977. if (err) {
  2978. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  2979. do_md_stop (mddev, 0);
  2980. }
  2981. }
  2982. /*
  2983. * lets try to run arrays based on all disks that have arrived
  2984. * until now. (those are in pending_raid_disks)
  2985. *
  2986. * the method: pick the first pending disk, collect all disks with
  2987. * the same UUID, remove all from the pending list and put them into
  2988. * the 'same_array' list. Then order this list based on superblock
  2989. * update time (freshest comes first), kick out 'old' disks and
  2990. * compare superblocks. If everything's fine then run it.
  2991. *
  2992. * If "unit" is allocated, then bump its reference count
  2993. */
  2994. static void autorun_devices(int part)
  2995. {
  2996. struct list_head *tmp;
  2997. mdk_rdev_t *rdev0, *rdev;
  2998. mddev_t *mddev;
  2999. char b[BDEVNAME_SIZE];
  3000. printk(KERN_INFO "md: autorun ...\n");
  3001. while (!list_empty(&pending_raid_disks)) {
  3002. int unit;
  3003. dev_t dev;
  3004. LIST_HEAD(candidates);
  3005. rdev0 = list_entry(pending_raid_disks.next,
  3006. mdk_rdev_t, same_set);
  3007. printk(KERN_INFO "md: considering %s ...\n",
  3008. bdevname(rdev0->bdev,b));
  3009. INIT_LIST_HEAD(&candidates);
  3010. ITERATE_RDEV_PENDING(rdev,tmp)
  3011. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3012. printk(KERN_INFO "md: adding %s ...\n",
  3013. bdevname(rdev->bdev,b));
  3014. list_move(&rdev->same_set, &candidates);
  3015. }
  3016. /*
  3017. * now we have a set of devices, with all of them having
  3018. * mostly sane superblocks. It's time to allocate the
  3019. * mddev.
  3020. */
  3021. if (part) {
  3022. dev = MKDEV(mdp_major,
  3023. rdev0->preferred_minor << MdpMinorShift);
  3024. unit = MINOR(dev) >> MdpMinorShift;
  3025. } else {
  3026. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3027. unit = MINOR(dev);
  3028. }
  3029. if (rdev0->preferred_minor != unit) {
  3030. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3031. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3032. break;
  3033. }
  3034. md_probe(dev, NULL, NULL);
  3035. mddev = mddev_find(dev);
  3036. if (!mddev) {
  3037. printk(KERN_ERR
  3038. "md: cannot allocate memory for md drive.\n");
  3039. break;
  3040. }
  3041. if (mddev_lock(mddev))
  3042. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3043. mdname(mddev));
  3044. else if (mddev->raid_disks || mddev->major_version
  3045. || !list_empty(&mddev->disks)) {
  3046. printk(KERN_WARNING
  3047. "md: %s already running, cannot run %s\n",
  3048. mdname(mddev), bdevname(rdev0->bdev,b));
  3049. mddev_unlock(mddev);
  3050. } else {
  3051. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3052. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3053. list_del_init(&rdev->same_set);
  3054. if (bind_rdev_to_array(rdev, mddev))
  3055. export_rdev(rdev);
  3056. }
  3057. autorun_array(mddev);
  3058. mddev_unlock(mddev);
  3059. }
  3060. /* on success, candidates will be empty, on error
  3061. * it won't...
  3062. */
  3063. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3064. export_rdev(rdev);
  3065. mddev_put(mddev);
  3066. }
  3067. printk(KERN_INFO "md: ... autorun DONE.\n");
  3068. }
  3069. static int get_version(void __user * arg)
  3070. {
  3071. mdu_version_t ver;
  3072. ver.major = MD_MAJOR_VERSION;
  3073. ver.minor = MD_MINOR_VERSION;
  3074. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3075. if (copy_to_user(arg, &ver, sizeof(ver)))
  3076. return -EFAULT;
  3077. return 0;
  3078. }
  3079. static int get_array_info(mddev_t * mddev, void __user * arg)
  3080. {
  3081. mdu_array_info_t info;
  3082. int nr,working,active,failed,spare;
  3083. mdk_rdev_t *rdev;
  3084. struct list_head *tmp;
  3085. nr=working=active=failed=spare=0;
  3086. ITERATE_RDEV(mddev,rdev,tmp) {
  3087. nr++;
  3088. if (test_bit(Faulty, &rdev->flags))
  3089. failed++;
  3090. else {
  3091. working++;
  3092. if (test_bit(In_sync, &rdev->flags))
  3093. active++;
  3094. else
  3095. spare++;
  3096. }
  3097. }
  3098. info.major_version = mddev->major_version;
  3099. info.minor_version = mddev->minor_version;
  3100. info.patch_version = MD_PATCHLEVEL_VERSION;
  3101. info.ctime = mddev->ctime;
  3102. info.level = mddev->level;
  3103. info.size = mddev->size;
  3104. if (info.size != mddev->size) /* overflow */
  3105. info.size = -1;
  3106. info.nr_disks = nr;
  3107. info.raid_disks = mddev->raid_disks;
  3108. info.md_minor = mddev->md_minor;
  3109. info.not_persistent= !mddev->persistent;
  3110. info.utime = mddev->utime;
  3111. info.state = 0;
  3112. if (mddev->in_sync)
  3113. info.state = (1<<MD_SB_CLEAN);
  3114. if (mddev->bitmap && mddev->bitmap_offset)
  3115. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3116. info.active_disks = active;
  3117. info.working_disks = working;
  3118. info.failed_disks = failed;
  3119. info.spare_disks = spare;
  3120. info.layout = mddev->layout;
  3121. info.chunk_size = mddev->chunk_size;
  3122. if (copy_to_user(arg, &info, sizeof(info)))
  3123. return -EFAULT;
  3124. return 0;
  3125. }
  3126. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3127. {
  3128. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3129. char *ptr, *buf = NULL;
  3130. int err = -ENOMEM;
  3131. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3132. if (!file)
  3133. goto out;
  3134. /* bitmap disabled, zero the first byte and copy out */
  3135. if (!mddev->bitmap || !mddev->bitmap->file) {
  3136. file->pathname[0] = '\0';
  3137. goto copy_out;
  3138. }
  3139. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3140. if (!buf)
  3141. goto out;
  3142. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3143. if (!ptr)
  3144. goto out;
  3145. strcpy(file->pathname, ptr);
  3146. copy_out:
  3147. err = 0;
  3148. if (copy_to_user(arg, file, sizeof(*file)))
  3149. err = -EFAULT;
  3150. out:
  3151. kfree(buf);
  3152. kfree(file);
  3153. return err;
  3154. }
  3155. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3156. {
  3157. mdu_disk_info_t info;
  3158. unsigned int nr;
  3159. mdk_rdev_t *rdev;
  3160. if (copy_from_user(&info, arg, sizeof(info)))
  3161. return -EFAULT;
  3162. nr = info.number;
  3163. rdev = find_rdev_nr(mddev, nr);
  3164. if (rdev) {
  3165. info.major = MAJOR(rdev->bdev->bd_dev);
  3166. info.minor = MINOR(rdev->bdev->bd_dev);
  3167. info.raid_disk = rdev->raid_disk;
  3168. info.state = 0;
  3169. if (test_bit(Faulty, &rdev->flags))
  3170. info.state |= (1<<MD_DISK_FAULTY);
  3171. else if (test_bit(In_sync, &rdev->flags)) {
  3172. info.state |= (1<<MD_DISK_ACTIVE);
  3173. info.state |= (1<<MD_DISK_SYNC);
  3174. }
  3175. if (test_bit(WriteMostly, &rdev->flags))
  3176. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3177. } else {
  3178. info.major = info.minor = 0;
  3179. info.raid_disk = -1;
  3180. info.state = (1<<MD_DISK_REMOVED);
  3181. }
  3182. if (copy_to_user(arg, &info, sizeof(info)))
  3183. return -EFAULT;
  3184. return 0;
  3185. }
  3186. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3187. {
  3188. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3189. mdk_rdev_t *rdev;
  3190. dev_t dev = MKDEV(info->major,info->minor);
  3191. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3192. return -EOVERFLOW;
  3193. if (!mddev->raid_disks) {
  3194. int err;
  3195. /* expecting a device which has a superblock */
  3196. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3197. if (IS_ERR(rdev)) {
  3198. printk(KERN_WARNING
  3199. "md: md_import_device returned %ld\n",
  3200. PTR_ERR(rdev));
  3201. return PTR_ERR(rdev);
  3202. }
  3203. if (!list_empty(&mddev->disks)) {
  3204. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3205. mdk_rdev_t, same_set);
  3206. int err = super_types[mddev->major_version]
  3207. .load_super(rdev, rdev0, mddev->minor_version);
  3208. if (err < 0) {
  3209. printk(KERN_WARNING
  3210. "md: %s has different UUID to %s\n",
  3211. bdevname(rdev->bdev,b),
  3212. bdevname(rdev0->bdev,b2));
  3213. export_rdev(rdev);
  3214. return -EINVAL;
  3215. }
  3216. }
  3217. err = bind_rdev_to_array(rdev, mddev);
  3218. if (err)
  3219. export_rdev(rdev);
  3220. return err;
  3221. }
  3222. /*
  3223. * add_new_disk can be used once the array is assembled
  3224. * to add "hot spares". They must already have a superblock
  3225. * written
  3226. */
  3227. if (mddev->pers) {
  3228. int err;
  3229. if (!mddev->pers->hot_add_disk) {
  3230. printk(KERN_WARNING
  3231. "%s: personality does not support diskops!\n",
  3232. mdname(mddev));
  3233. return -EINVAL;
  3234. }
  3235. if (mddev->persistent)
  3236. rdev = md_import_device(dev, mddev->major_version,
  3237. mddev->minor_version);
  3238. else
  3239. rdev = md_import_device(dev, -1, -1);
  3240. if (IS_ERR(rdev)) {
  3241. printk(KERN_WARNING
  3242. "md: md_import_device returned %ld\n",
  3243. PTR_ERR(rdev));
  3244. return PTR_ERR(rdev);
  3245. }
  3246. /* set save_raid_disk if appropriate */
  3247. if (!mddev->persistent) {
  3248. if (info->state & (1<<MD_DISK_SYNC) &&
  3249. info->raid_disk < mddev->raid_disks)
  3250. rdev->raid_disk = info->raid_disk;
  3251. else
  3252. rdev->raid_disk = -1;
  3253. } else
  3254. super_types[mddev->major_version].
  3255. validate_super(mddev, rdev);
  3256. rdev->saved_raid_disk = rdev->raid_disk;
  3257. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3258. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3259. set_bit(WriteMostly, &rdev->flags);
  3260. rdev->raid_disk = -1;
  3261. err = bind_rdev_to_array(rdev, mddev);
  3262. if (!err && !mddev->pers->hot_remove_disk) {
  3263. /* If there is hot_add_disk but no hot_remove_disk
  3264. * then added disks for geometry changes,
  3265. * and should be added immediately.
  3266. */
  3267. super_types[mddev->major_version].
  3268. validate_super(mddev, rdev);
  3269. err = mddev->pers->hot_add_disk(mddev, rdev);
  3270. if (err)
  3271. unbind_rdev_from_array(rdev);
  3272. }
  3273. if (err)
  3274. export_rdev(rdev);
  3275. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3276. md_wakeup_thread(mddev->thread);
  3277. return err;
  3278. }
  3279. /* otherwise, add_new_disk is only allowed
  3280. * for major_version==0 superblocks
  3281. */
  3282. if (mddev->major_version != 0) {
  3283. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3284. mdname(mddev));
  3285. return -EINVAL;
  3286. }
  3287. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3288. int err;
  3289. rdev = md_import_device (dev, -1, 0);
  3290. if (IS_ERR(rdev)) {
  3291. printk(KERN_WARNING
  3292. "md: error, md_import_device() returned %ld\n",
  3293. PTR_ERR(rdev));
  3294. return PTR_ERR(rdev);
  3295. }
  3296. rdev->desc_nr = info->number;
  3297. if (info->raid_disk < mddev->raid_disks)
  3298. rdev->raid_disk = info->raid_disk;
  3299. else
  3300. rdev->raid_disk = -1;
  3301. rdev->flags = 0;
  3302. if (rdev->raid_disk < mddev->raid_disks)
  3303. if (info->state & (1<<MD_DISK_SYNC))
  3304. set_bit(In_sync, &rdev->flags);
  3305. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3306. set_bit(WriteMostly, &rdev->flags);
  3307. if (!mddev->persistent) {
  3308. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3309. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3310. } else
  3311. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3312. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3313. err = bind_rdev_to_array(rdev, mddev);
  3314. if (err) {
  3315. export_rdev(rdev);
  3316. return err;
  3317. }
  3318. }
  3319. return 0;
  3320. }
  3321. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3322. {
  3323. char b[BDEVNAME_SIZE];
  3324. mdk_rdev_t *rdev;
  3325. if (!mddev->pers)
  3326. return -ENODEV;
  3327. rdev = find_rdev(mddev, dev);
  3328. if (!rdev)
  3329. return -ENXIO;
  3330. if (rdev->raid_disk >= 0)
  3331. goto busy;
  3332. kick_rdev_from_array(rdev);
  3333. md_update_sb(mddev, 1);
  3334. md_new_event(mddev);
  3335. return 0;
  3336. busy:
  3337. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3338. bdevname(rdev->bdev,b), mdname(mddev));
  3339. return -EBUSY;
  3340. }
  3341. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3342. {
  3343. char b[BDEVNAME_SIZE];
  3344. int err;
  3345. unsigned int size;
  3346. mdk_rdev_t *rdev;
  3347. if (!mddev->pers)
  3348. return -ENODEV;
  3349. if (mddev->major_version != 0) {
  3350. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3351. " version-0 superblocks.\n",
  3352. mdname(mddev));
  3353. return -EINVAL;
  3354. }
  3355. if (!mddev->pers->hot_add_disk) {
  3356. printk(KERN_WARNING
  3357. "%s: personality does not support diskops!\n",
  3358. mdname(mddev));
  3359. return -EINVAL;
  3360. }
  3361. rdev = md_import_device (dev, -1, 0);
  3362. if (IS_ERR(rdev)) {
  3363. printk(KERN_WARNING
  3364. "md: error, md_import_device() returned %ld\n",
  3365. PTR_ERR(rdev));
  3366. return -EINVAL;
  3367. }
  3368. if (mddev->persistent)
  3369. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3370. else
  3371. rdev->sb_offset =
  3372. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3373. size = calc_dev_size(rdev, mddev->chunk_size);
  3374. rdev->size = size;
  3375. if (test_bit(Faulty, &rdev->flags)) {
  3376. printk(KERN_WARNING
  3377. "md: can not hot-add faulty %s disk to %s!\n",
  3378. bdevname(rdev->bdev,b), mdname(mddev));
  3379. err = -EINVAL;
  3380. goto abort_export;
  3381. }
  3382. clear_bit(In_sync, &rdev->flags);
  3383. rdev->desc_nr = -1;
  3384. rdev->saved_raid_disk = -1;
  3385. err = bind_rdev_to_array(rdev, mddev);
  3386. if (err)
  3387. goto abort_export;
  3388. /*
  3389. * The rest should better be atomic, we can have disk failures
  3390. * noticed in interrupt contexts ...
  3391. */
  3392. if (rdev->desc_nr == mddev->max_disks) {
  3393. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3394. mdname(mddev));
  3395. err = -EBUSY;
  3396. goto abort_unbind_export;
  3397. }
  3398. rdev->raid_disk = -1;
  3399. md_update_sb(mddev, 1);
  3400. /*
  3401. * Kick recovery, maybe this spare has to be added to the
  3402. * array immediately.
  3403. */
  3404. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3405. md_wakeup_thread(mddev->thread);
  3406. md_new_event(mddev);
  3407. return 0;
  3408. abort_unbind_export:
  3409. unbind_rdev_from_array(rdev);
  3410. abort_export:
  3411. export_rdev(rdev);
  3412. return err;
  3413. }
  3414. static int set_bitmap_file(mddev_t *mddev, int fd)
  3415. {
  3416. int err;
  3417. if (mddev->pers) {
  3418. if (!mddev->pers->quiesce)
  3419. return -EBUSY;
  3420. if (mddev->recovery || mddev->sync_thread)
  3421. return -EBUSY;
  3422. /* we should be able to change the bitmap.. */
  3423. }
  3424. if (fd >= 0) {
  3425. if (mddev->bitmap)
  3426. return -EEXIST; /* cannot add when bitmap is present */
  3427. mddev->bitmap_file = fget(fd);
  3428. if (mddev->bitmap_file == NULL) {
  3429. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3430. mdname(mddev));
  3431. return -EBADF;
  3432. }
  3433. err = deny_bitmap_write_access(mddev->bitmap_file);
  3434. if (err) {
  3435. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3436. mdname(mddev));
  3437. fput(mddev->bitmap_file);
  3438. mddev->bitmap_file = NULL;
  3439. return err;
  3440. }
  3441. mddev->bitmap_offset = 0; /* file overrides offset */
  3442. } else if (mddev->bitmap == NULL)
  3443. return -ENOENT; /* cannot remove what isn't there */
  3444. err = 0;
  3445. if (mddev->pers) {
  3446. mddev->pers->quiesce(mddev, 1);
  3447. if (fd >= 0)
  3448. err = bitmap_create(mddev);
  3449. if (fd < 0 || err) {
  3450. bitmap_destroy(mddev);
  3451. fd = -1; /* make sure to put the file */
  3452. }
  3453. mddev->pers->quiesce(mddev, 0);
  3454. }
  3455. if (fd < 0) {
  3456. if (mddev->bitmap_file) {
  3457. restore_bitmap_write_access(mddev->bitmap_file);
  3458. fput(mddev->bitmap_file);
  3459. }
  3460. mddev->bitmap_file = NULL;
  3461. }
  3462. return err;
  3463. }
  3464. /*
  3465. * set_array_info is used two different ways
  3466. * The original usage is when creating a new array.
  3467. * In this usage, raid_disks is > 0 and it together with
  3468. * level, size, not_persistent,layout,chunksize determine the
  3469. * shape of the array.
  3470. * This will always create an array with a type-0.90.0 superblock.
  3471. * The newer usage is when assembling an array.
  3472. * In this case raid_disks will be 0, and the major_version field is
  3473. * use to determine which style super-blocks are to be found on the devices.
  3474. * The minor and patch _version numbers are also kept incase the
  3475. * super_block handler wishes to interpret them.
  3476. */
  3477. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3478. {
  3479. if (info->raid_disks == 0) {
  3480. /* just setting version number for superblock loading */
  3481. if (info->major_version < 0 ||
  3482. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  3483. super_types[info->major_version].name == NULL) {
  3484. /* maybe try to auto-load a module? */
  3485. printk(KERN_INFO
  3486. "md: superblock version %d not known\n",
  3487. info->major_version);
  3488. return -EINVAL;
  3489. }
  3490. mddev->major_version = info->major_version;
  3491. mddev->minor_version = info->minor_version;
  3492. mddev->patch_version = info->patch_version;
  3493. return 0;
  3494. }
  3495. mddev->major_version = MD_MAJOR_VERSION;
  3496. mddev->minor_version = MD_MINOR_VERSION;
  3497. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3498. mddev->ctime = get_seconds();
  3499. mddev->level = info->level;
  3500. mddev->clevel[0] = 0;
  3501. mddev->size = info->size;
  3502. mddev->raid_disks = info->raid_disks;
  3503. /* don't set md_minor, it is determined by which /dev/md* was
  3504. * openned
  3505. */
  3506. if (info->state & (1<<MD_SB_CLEAN))
  3507. mddev->recovery_cp = MaxSector;
  3508. else
  3509. mddev->recovery_cp = 0;
  3510. mddev->persistent = ! info->not_persistent;
  3511. mddev->layout = info->layout;
  3512. mddev->chunk_size = info->chunk_size;
  3513. mddev->max_disks = MD_SB_DISKS;
  3514. mddev->flags = 0;
  3515. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3516. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3517. mddev->bitmap_offset = 0;
  3518. mddev->reshape_position = MaxSector;
  3519. /*
  3520. * Generate a 128 bit UUID
  3521. */
  3522. get_random_bytes(mddev->uuid, 16);
  3523. mddev->new_level = mddev->level;
  3524. mddev->new_chunk = mddev->chunk_size;
  3525. mddev->new_layout = mddev->layout;
  3526. mddev->delta_disks = 0;
  3527. return 0;
  3528. }
  3529. static int update_size(mddev_t *mddev, unsigned long size)
  3530. {
  3531. mdk_rdev_t * rdev;
  3532. int rv;
  3533. struct list_head *tmp;
  3534. int fit = (size == 0);
  3535. if (mddev->pers->resize == NULL)
  3536. return -EINVAL;
  3537. /* The "size" is the amount of each device that is used.
  3538. * This can only make sense for arrays with redundancy.
  3539. * linear and raid0 always use whatever space is available
  3540. * We can only consider changing the size if no resync
  3541. * or reconstruction is happening, and if the new size
  3542. * is acceptable. It must fit before the sb_offset or,
  3543. * if that is <data_offset, it must fit before the
  3544. * size of each device.
  3545. * If size is zero, we find the largest size that fits.
  3546. */
  3547. if (mddev->sync_thread)
  3548. return -EBUSY;
  3549. ITERATE_RDEV(mddev,rdev,tmp) {
  3550. sector_t avail;
  3551. avail = rdev->size * 2;
  3552. if (fit && (size == 0 || size > avail/2))
  3553. size = avail/2;
  3554. if (avail < ((sector_t)size << 1))
  3555. return -ENOSPC;
  3556. }
  3557. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3558. if (!rv) {
  3559. struct block_device *bdev;
  3560. bdev = bdget_disk(mddev->gendisk, 0);
  3561. if (bdev) {
  3562. mutex_lock(&bdev->bd_inode->i_mutex);
  3563. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3564. mutex_unlock(&bdev->bd_inode->i_mutex);
  3565. bdput(bdev);
  3566. }
  3567. }
  3568. return rv;
  3569. }
  3570. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3571. {
  3572. int rv;
  3573. /* change the number of raid disks */
  3574. if (mddev->pers->check_reshape == NULL)
  3575. return -EINVAL;
  3576. if (raid_disks <= 0 ||
  3577. raid_disks >= mddev->max_disks)
  3578. return -EINVAL;
  3579. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3580. return -EBUSY;
  3581. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3582. rv = mddev->pers->check_reshape(mddev);
  3583. return rv;
  3584. }
  3585. /*
  3586. * update_array_info is used to change the configuration of an
  3587. * on-line array.
  3588. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3589. * fields in the info are checked against the array.
  3590. * Any differences that cannot be handled will cause an error.
  3591. * Normally, only one change can be managed at a time.
  3592. */
  3593. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3594. {
  3595. int rv = 0;
  3596. int cnt = 0;
  3597. int state = 0;
  3598. /* calculate expected state,ignoring low bits */
  3599. if (mddev->bitmap && mddev->bitmap_offset)
  3600. state |= (1 << MD_SB_BITMAP_PRESENT);
  3601. if (mddev->major_version != info->major_version ||
  3602. mddev->minor_version != info->minor_version ||
  3603. /* mddev->patch_version != info->patch_version || */
  3604. mddev->ctime != info->ctime ||
  3605. mddev->level != info->level ||
  3606. /* mddev->layout != info->layout || */
  3607. !mddev->persistent != info->not_persistent||
  3608. mddev->chunk_size != info->chunk_size ||
  3609. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3610. ((state^info->state) & 0xfffffe00)
  3611. )
  3612. return -EINVAL;
  3613. /* Check there is only one change */
  3614. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3615. if (mddev->raid_disks != info->raid_disks) cnt++;
  3616. if (mddev->layout != info->layout) cnt++;
  3617. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3618. if (cnt == 0) return 0;
  3619. if (cnt > 1) return -EINVAL;
  3620. if (mddev->layout != info->layout) {
  3621. /* Change layout
  3622. * we don't need to do anything at the md level, the
  3623. * personality will take care of it all.
  3624. */
  3625. if (mddev->pers->reconfig == NULL)
  3626. return -EINVAL;
  3627. else
  3628. return mddev->pers->reconfig(mddev, info->layout, -1);
  3629. }
  3630. if (info->size >= 0 && mddev->size != info->size)
  3631. rv = update_size(mddev, info->size);
  3632. if (mddev->raid_disks != info->raid_disks)
  3633. rv = update_raid_disks(mddev, info->raid_disks);
  3634. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3635. if (mddev->pers->quiesce == NULL)
  3636. return -EINVAL;
  3637. if (mddev->recovery || mddev->sync_thread)
  3638. return -EBUSY;
  3639. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3640. /* add the bitmap */
  3641. if (mddev->bitmap)
  3642. return -EEXIST;
  3643. if (mddev->default_bitmap_offset == 0)
  3644. return -EINVAL;
  3645. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3646. mddev->pers->quiesce(mddev, 1);
  3647. rv = bitmap_create(mddev);
  3648. if (rv)
  3649. bitmap_destroy(mddev);
  3650. mddev->pers->quiesce(mddev, 0);
  3651. } else {
  3652. /* remove the bitmap */
  3653. if (!mddev->bitmap)
  3654. return -ENOENT;
  3655. if (mddev->bitmap->file)
  3656. return -EINVAL;
  3657. mddev->pers->quiesce(mddev, 1);
  3658. bitmap_destroy(mddev);
  3659. mddev->pers->quiesce(mddev, 0);
  3660. mddev->bitmap_offset = 0;
  3661. }
  3662. }
  3663. md_update_sb(mddev, 1);
  3664. return rv;
  3665. }
  3666. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3667. {
  3668. mdk_rdev_t *rdev;
  3669. if (mddev->pers == NULL)
  3670. return -ENODEV;
  3671. rdev = find_rdev(mddev, dev);
  3672. if (!rdev)
  3673. return -ENODEV;
  3674. md_error(mddev, rdev);
  3675. return 0;
  3676. }
  3677. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3678. {
  3679. mddev_t *mddev = bdev->bd_disk->private_data;
  3680. geo->heads = 2;
  3681. geo->sectors = 4;
  3682. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3683. return 0;
  3684. }
  3685. static int md_ioctl(struct inode *inode, struct file *file,
  3686. unsigned int cmd, unsigned long arg)
  3687. {
  3688. int err = 0;
  3689. void __user *argp = (void __user *)arg;
  3690. mddev_t *mddev = NULL;
  3691. if (!capable(CAP_SYS_ADMIN))
  3692. return -EACCES;
  3693. /*
  3694. * Commands dealing with the RAID driver but not any
  3695. * particular array:
  3696. */
  3697. switch (cmd)
  3698. {
  3699. case RAID_VERSION:
  3700. err = get_version(argp);
  3701. goto done;
  3702. case PRINT_RAID_DEBUG:
  3703. err = 0;
  3704. md_print_devices();
  3705. goto done;
  3706. #ifndef MODULE
  3707. case RAID_AUTORUN:
  3708. err = 0;
  3709. autostart_arrays(arg);
  3710. goto done;
  3711. #endif
  3712. default:;
  3713. }
  3714. /*
  3715. * Commands creating/starting a new array:
  3716. */
  3717. mddev = inode->i_bdev->bd_disk->private_data;
  3718. if (!mddev) {
  3719. BUG();
  3720. goto abort;
  3721. }
  3722. err = mddev_lock(mddev);
  3723. if (err) {
  3724. printk(KERN_INFO
  3725. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3726. err, cmd);
  3727. goto abort;
  3728. }
  3729. switch (cmd)
  3730. {
  3731. case SET_ARRAY_INFO:
  3732. {
  3733. mdu_array_info_t info;
  3734. if (!arg)
  3735. memset(&info, 0, sizeof(info));
  3736. else if (copy_from_user(&info, argp, sizeof(info))) {
  3737. err = -EFAULT;
  3738. goto abort_unlock;
  3739. }
  3740. if (mddev->pers) {
  3741. err = update_array_info(mddev, &info);
  3742. if (err) {
  3743. printk(KERN_WARNING "md: couldn't update"
  3744. " array info. %d\n", err);
  3745. goto abort_unlock;
  3746. }
  3747. goto done_unlock;
  3748. }
  3749. if (!list_empty(&mddev->disks)) {
  3750. printk(KERN_WARNING
  3751. "md: array %s already has disks!\n",
  3752. mdname(mddev));
  3753. err = -EBUSY;
  3754. goto abort_unlock;
  3755. }
  3756. if (mddev->raid_disks) {
  3757. printk(KERN_WARNING
  3758. "md: array %s already initialised!\n",
  3759. mdname(mddev));
  3760. err = -EBUSY;
  3761. goto abort_unlock;
  3762. }
  3763. err = set_array_info(mddev, &info);
  3764. if (err) {
  3765. printk(KERN_WARNING "md: couldn't set"
  3766. " array info. %d\n", err);
  3767. goto abort_unlock;
  3768. }
  3769. }
  3770. goto done_unlock;
  3771. default:;
  3772. }
  3773. /*
  3774. * Commands querying/configuring an existing array:
  3775. */
  3776. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3777. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  3778. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3779. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  3780. err = -ENODEV;
  3781. goto abort_unlock;
  3782. }
  3783. /*
  3784. * Commands even a read-only array can execute:
  3785. */
  3786. switch (cmd)
  3787. {
  3788. case GET_ARRAY_INFO:
  3789. err = get_array_info(mddev, argp);
  3790. goto done_unlock;
  3791. case GET_BITMAP_FILE:
  3792. err = get_bitmap_file(mddev, argp);
  3793. goto done_unlock;
  3794. case GET_DISK_INFO:
  3795. err = get_disk_info(mddev, argp);
  3796. goto done_unlock;
  3797. case RESTART_ARRAY_RW:
  3798. err = restart_array(mddev);
  3799. goto done_unlock;
  3800. case STOP_ARRAY:
  3801. err = do_md_stop (mddev, 0);
  3802. goto done_unlock;
  3803. case STOP_ARRAY_RO:
  3804. err = do_md_stop (mddev, 1);
  3805. goto done_unlock;
  3806. /*
  3807. * We have a problem here : there is no easy way to give a CHS
  3808. * virtual geometry. We currently pretend that we have a 2 heads
  3809. * 4 sectors (with a BIG number of cylinders...). This drives
  3810. * dosfs just mad... ;-)
  3811. */
  3812. }
  3813. /*
  3814. * The remaining ioctls are changing the state of the
  3815. * superblock, so we do not allow them on read-only arrays.
  3816. * However non-MD ioctls (e.g. get-size) will still come through
  3817. * here and hit the 'default' below, so only disallow
  3818. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3819. */
  3820. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3821. mddev->ro && mddev->pers) {
  3822. if (mddev->ro == 2) {
  3823. mddev->ro = 0;
  3824. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3825. md_wakeup_thread(mddev->thread);
  3826. } else {
  3827. err = -EROFS;
  3828. goto abort_unlock;
  3829. }
  3830. }
  3831. switch (cmd)
  3832. {
  3833. case ADD_NEW_DISK:
  3834. {
  3835. mdu_disk_info_t info;
  3836. if (copy_from_user(&info, argp, sizeof(info)))
  3837. err = -EFAULT;
  3838. else
  3839. err = add_new_disk(mddev, &info);
  3840. goto done_unlock;
  3841. }
  3842. case HOT_REMOVE_DISK:
  3843. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3844. goto done_unlock;
  3845. case HOT_ADD_DISK:
  3846. err = hot_add_disk(mddev, new_decode_dev(arg));
  3847. goto done_unlock;
  3848. case SET_DISK_FAULTY:
  3849. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3850. goto done_unlock;
  3851. case RUN_ARRAY:
  3852. err = do_md_run (mddev);
  3853. goto done_unlock;
  3854. case SET_BITMAP_FILE:
  3855. err = set_bitmap_file(mddev, (int)arg);
  3856. goto done_unlock;
  3857. default:
  3858. err = -EINVAL;
  3859. goto abort_unlock;
  3860. }
  3861. done_unlock:
  3862. abort_unlock:
  3863. mddev_unlock(mddev);
  3864. return err;
  3865. done:
  3866. if (err)
  3867. MD_BUG();
  3868. abort:
  3869. return err;
  3870. }
  3871. static int md_open(struct inode *inode, struct file *file)
  3872. {
  3873. /*
  3874. * Succeed if we can lock the mddev, which confirms that
  3875. * it isn't being stopped right now.
  3876. */
  3877. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3878. int err;
  3879. if ((err = mddev_lock(mddev)))
  3880. goto out;
  3881. err = 0;
  3882. mddev_get(mddev);
  3883. mddev_unlock(mddev);
  3884. check_disk_change(inode->i_bdev);
  3885. out:
  3886. return err;
  3887. }
  3888. static int md_release(struct inode *inode, struct file * file)
  3889. {
  3890. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3891. BUG_ON(!mddev);
  3892. mddev_put(mddev);
  3893. return 0;
  3894. }
  3895. static int md_media_changed(struct gendisk *disk)
  3896. {
  3897. mddev_t *mddev = disk->private_data;
  3898. return mddev->changed;
  3899. }
  3900. static int md_revalidate(struct gendisk *disk)
  3901. {
  3902. mddev_t *mddev = disk->private_data;
  3903. mddev->changed = 0;
  3904. return 0;
  3905. }
  3906. static struct block_device_operations md_fops =
  3907. {
  3908. .owner = THIS_MODULE,
  3909. .open = md_open,
  3910. .release = md_release,
  3911. .ioctl = md_ioctl,
  3912. .getgeo = md_getgeo,
  3913. .media_changed = md_media_changed,
  3914. .revalidate_disk= md_revalidate,
  3915. };
  3916. static int md_thread(void * arg)
  3917. {
  3918. mdk_thread_t *thread = arg;
  3919. /*
  3920. * md_thread is a 'system-thread', it's priority should be very
  3921. * high. We avoid resource deadlocks individually in each
  3922. * raid personality. (RAID5 does preallocation) We also use RR and
  3923. * the very same RT priority as kswapd, thus we will never get
  3924. * into a priority inversion deadlock.
  3925. *
  3926. * we definitely have to have equal or higher priority than
  3927. * bdflush, otherwise bdflush will deadlock if there are too
  3928. * many dirty RAID5 blocks.
  3929. */
  3930. allow_signal(SIGKILL);
  3931. while (!kthread_should_stop()) {
  3932. /* We need to wait INTERRUPTIBLE so that
  3933. * we don't add to the load-average.
  3934. * That means we need to be sure no signals are
  3935. * pending
  3936. */
  3937. if (signal_pending(current))
  3938. flush_signals(current);
  3939. wait_event_interruptible_timeout
  3940. (thread->wqueue,
  3941. test_bit(THREAD_WAKEUP, &thread->flags)
  3942. || kthread_should_stop(),
  3943. thread->timeout);
  3944. try_to_freeze();
  3945. clear_bit(THREAD_WAKEUP, &thread->flags);
  3946. thread->run(thread->mddev);
  3947. }
  3948. return 0;
  3949. }
  3950. void md_wakeup_thread(mdk_thread_t *thread)
  3951. {
  3952. if (thread) {
  3953. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  3954. set_bit(THREAD_WAKEUP, &thread->flags);
  3955. wake_up(&thread->wqueue);
  3956. }
  3957. }
  3958. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  3959. const char *name)
  3960. {
  3961. mdk_thread_t *thread;
  3962. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3963. if (!thread)
  3964. return NULL;
  3965. init_waitqueue_head(&thread->wqueue);
  3966. thread->run = run;
  3967. thread->mddev = mddev;
  3968. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3969. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3970. if (IS_ERR(thread->tsk)) {
  3971. kfree(thread);
  3972. return NULL;
  3973. }
  3974. return thread;
  3975. }
  3976. void md_unregister_thread(mdk_thread_t *thread)
  3977. {
  3978. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3979. kthread_stop(thread->tsk);
  3980. kfree(thread);
  3981. }
  3982. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3983. {
  3984. if (!mddev) {
  3985. MD_BUG();
  3986. return;
  3987. }
  3988. if (!rdev || test_bit(Faulty, &rdev->flags))
  3989. return;
  3990. /*
  3991. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3992. mdname(mddev),
  3993. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3994. __builtin_return_address(0),__builtin_return_address(1),
  3995. __builtin_return_address(2),__builtin_return_address(3));
  3996. */
  3997. if (!mddev->pers)
  3998. return;
  3999. if (!mddev->pers->error_handler)
  4000. return;
  4001. mddev->pers->error_handler(mddev,rdev);
  4002. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4003. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4004. md_wakeup_thread(mddev->thread);
  4005. md_new_event_inintr(mddev);
  4006. }
  4007. /* seq_file implementation /proc/mdstat */
  4008. static void status_unused(struct seq_file *seq)
  4009. {
  4010. int i = 0;
  4011. mdk_rdev_t *rdev;
  4012. struct list_head *tmp;
  4013. seq_printf(seq, "unused devices: ");
  4014. ITERATE_RDEV_PENDING(rdev,tmp) {
  4015. char b[BDEVNAME_SIZE];
  4016. i++;
  4017. seq_printf(seq, "%s ",
  4018. bdevname(rdev->bdev,b));
  4019. }
  4020. if (!i)
  4021. seq_printf(seq, "<none>");
  4022. seq_printf(seq, "\n");
  4023. }
  4024. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4025. {
  4026. sector_t max_blocks, resync, res;
  4027. unsigned long dt, db, rt;
  4028. int scale;
  4029. unsigned int per_milli;
  4030. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4031. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4032. max_blocks = mddev->resync_max_sectors >> 1;
  4033. else
  4034. max_blocks = mddev->size;
  4035. /*
  4036. * Should not happen.
  4037. */
  4038. if (!max_blocks) {
  4039. MD_BUG();
  4040. return;
  4041. }
  4042. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4043. * in a sector_t, and (max_blocks>>scale) will fit in a
  4044. * u32, as those are the requirements for sector_div.
  4045. * Thus 'scale' must be at least 10
  4046. */
  4047. scale = 10;
  4048. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4049. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4050. scale++;
  4051. }
  4052. res = (resync>>scale)*1000;
  4053. sector_div(res, (u32)((max_blocks>>scale)+1));
  4054. per_milli = res;
  4055. {
  4056. int i, x = per_milli/50, y = 20-x;
  4057. seq_printf(seq, "[");
  4058. for (i = 0; i < x; i++)
  4059. seq_printf(seq, "=");
  4060. seq_printf(seq, ">");
  4061. for (i = 0; i < y; i++)
  4062. seq_printf(seq, ".");
  4063. seq_printf(seq, "] ");
  4064. }
  4065. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4066. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4067. "reshape" :
  4068. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4069. "check" :
  4070. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4071. "resync" : "recovery"))),
  4072. per_milli/10, per_milli % 10,
  4073. (unsigned long long) resync,
  4074. (unsigned long long) max_blocks);
  4075. /*
  4076. * We do not want to overflow, so the order of operands and
  4077. * the * 100 / 100 trick are important. We do a +1 to be
  4078. * safe against division by zero. We only estimate anyway.
  4079. *
  4080. * dt: time from mark until now
  4081. * db: blocks written from mark until now
  4082. * rt: remaining time
  4083. */
  4084. dt = ((jiffies - mddev->resync_mark) / HZ);
  4085. if (!dt) dt++;
  4086. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4087. - mddev->resync_mark_cnt;
  4088. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4089. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4090. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4091. }
  4092. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4093. {
  4094. struct list_head *tmp;
  4095. loff_t l = *pos;
  4096. mddev_t *mddev;
  4097. if (l >= 0x10000)
  4098. return NULL;
  4099. if (!l--)
  4100. /* header */
  4101. return (void*)1;
  4102. spin_lock(&all_mddevs_lock);
  4103. list_for_each(tmp,&all_mddevs)
  4104. if (!l--) {
  4105. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4106. mddev_get(mddev);
  4107. spin_unlock(&all_mddevs_lock);
  4108. return mddev;
  4109. }
  4110. spin_unlock(&all_mddevs_lock);
  4111. if (!l--)
  4112. return (void*)2;/* tail */
  4113. return NULL;
  4114. }
  4115. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4116. {
  4117. struct list_head *tmp;
  4118. mddev_t *next_mddev, *mddev = v;
  4119. ++*pos;
  4120. if (v == (void*)2)
  4121. return NULL;
  4122. spin_lock(&all_mddevs_lock);
  4123. if (v == (void*)1)
  4124. tmp = all_mddevs.next;
  4125. else
  4126. tmp = mddev->all_mddevs.next;
  4127. if (tmp != &all_mddevs)
  4128. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4129. else {
  4130. next_mddev = (void*)2;
  4131. *pos = 0x10000;
  4132. }
  4133. spin_unlock(&all_mddevs_lock);
  4134. if (v != (void*)1)
  4135. mddev_put(mddev);
  4136. return next_mddev;
  4137. }
  4138. static void md_seq_stop(struct seq_file *seq, void *v)
  4139. {
  4140. mddev_t *mddev = v;
  4141. if (mddev && v != (void*)1 && v != (void*)2)
  4142. mddev_put(mddev);
  4143. }
  4144. struct mdstat_info {
  4145. int event;
  4146. };
  4147. static int md_seq_show(struct seq_file *seq, void *v)
  4148. {
  4149. mddev_t *mddev = v;
  4150. sector_t size;
  4151. struct list_head *tmp2;
  4152. mdk_rdev_t *rdev;
  4153. struct mdstat_info *mi = seq->private;
  4154. struct bitmap *bitmap;
  4155. if (v == (void*)1) {
  4156. struct mdk_personality *pers;
  4157. seq_printf(seq, "Personalities : ");
  4158. spin_lock(&pers_lock);
  4159. list_for_each_entry(pers, &pers_list, list)
  4160. seq_printf(seq, "[%s] ", pers->name);
  4161. spin_unlock(&pers_lock);
  4162. seq_printf(seq, "\n");
  4163. mi->event = atomic_read(&md_event_count);
  4164. return 0;
  4165. }
  4166. if (v == (void*)2) {
  4167. status_unused(seq);
  4168. return 0;
  4169. }
  4170. if (mddev_lock(mddev) < 0)
  4171. return -EINTR;
  4172. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4173. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4174. mddev->pers ? "" : "in");
  4175. if (mddev->pers) {
  4176. if (mddev->ro==1)
  4177. seq_printf(seq, " (read-only)");
  4178. if (mddev->ro==2)
  4179. seq_printf(seq, "(auto-read-only)");
  4180. seq_printf(seq, " %s", mddev->pers->name);
  4181. }
  4182. size = 0;
  4183. ITERATE_RDEV(mddev,rdev,tmp2) {
  4184. char b[BDEVNAME_SIZE];
  4185. seq_printf(seq, " %s[%d]",
  4186. bdevname(rdev->bdev,b), rdev->desc_nr);
  4187. if (test_bit(WriteMostly, &rdev->flags))
  4188. seq_printf(seq, "(W)");
  4189. if (test_bit(Faulty, &rdev->flags)) {
  4190. seq_printf(seq, "(F)");
  4191. continue;
  4192. } else if (rdev->raid_disk < 0)
  4193. seq_printf(seq, "(S)"); /* spare */
  4194. size += rdev->size;
  4195. }
  4196. if (!list_empty(&mddev->disks)) {
  4197. if (mddev->pers)
  4198. seq_printf(seq, "\n %llu blocks",
  4199. (unsigned long long)mddev->array_size);
  4200. else
  4201. seq_printf(seq, "\n %llu blocks",
  4202. (unsigned long long)size);
  4203. }
  4204. if (mddev->persistent) {
  4205. if (mddev->major_version != 0 ||
  4206. mddev->minor_version != 90) {
  4207. seq_printf(seq," super %d.%d",
  4208. mddev->major_version,
  4209. mddev->minor_version);
  4210. }
  4211. } else
  4212. seq_printf(seq, " super non-persistent");
  4213. if (mddev->pers) {
  4214. mddev->pers->status (seq, mddev);
  4215. seq_printf(seq, "\n ");
  4216. if (mddev->pers->sync_request) {
  4217. if (mddev->curr_resync > 2) {
  4218. status_resync (seq, mddev);
  4219. seq_printf(seq, "\n ");
  4220. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4221. seq_printf(seq, "\tresync=DELAYED\n ");
  4222. else if (mddev->recovery_cp < MaxSector)
  4223. seq_printf(seq, "\tresync=PENDING\n ");
  4224. }
  4225. } else
  4226. seq_printf(seq, "\n ");
  4227. if ((bitmap = mddev->bitmap)) {
  4228. unsigned long chunk_kb;
  4229. unsigned long flags;
  4230. spin_lock_irqsave(&bitmap->lock, flags);
  4231. chunk_kb = bitmap->chunksize >> 10;
  4232. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4233. "%lu%s chunk",
  4234. bitmap->pages - bitmap->missing_pages,
  4235. bitmap->pages,
  4236. (bitmap->pages - bitmap->missing_pages)
  4237. << (PAGE_SHIFT - 10),
  4238. chunk_kb ? chunk_kb : bitmap->chunksize,
  4239. chunk_kb ? "KB" : "B");
  4240. if (bitmap->file) {
  4241. seq_printf(seq, ", file: ");
  4242. seq_path(seq, bitmap->file->f_vfsmnt,
  4243. bitmap->file->f_dentry," \t\n");
  4244. }
  4245. seq_printf(seq, "\n");
  4246. spin_unlock_irqrestore(&bitmap->lock, flags);
  4247. }
  4248. seq_printf(seq, "\n");
  4249. }
  4250. mddev_unlock(mddev);
  4251. return 0;
  4252. }
  4253. static struct seq_operations md_seq_ops = {
  4254. .start = md_seq_start,
  4255. .next = md_seq_next,
  4256. .stop = md_seq_stop,
  4257. .show = md_seq_show,
  4258. };
  4259. static int md_seq_open(struct inode *inode, struct file *file)
  4260. {
  4261. int error;
  4262. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4263. if (mi == NULL)
  4264. return -ENOMEM;
  4265. error = seq_open(file, &md_seq_ops);
  4266. if (error)
  4267. kfree(mi);
  4268. else {
  4269. struct seq_file *p = file->private_data;
  4270. p->private = mi;
  4271. mi->event = atomic_read(&md_event_count);
  4272. }
  4273. return error;
  4274. }
  4275. static int md_seq_release(struct inode *inode, struct file *file)
  4276. {
  4277. struct seq_file *m = file->private_data;
  4278. struct mdstat_info *mi = m->private;
  4279. m->private = NULL;
  4280. kfree(mi);
  4281. return seq_release(inode, file);
  4282. }
  4283. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4284. {
  4285. struct seq_file *m = filp->private_data;
  4286. struct mdstat_info *mi = m->private;
  4287. int mask;
  4288. poll_wait(filp, &md_event_waiters, wait);
  4289. /* always allow read */
  4290. mask = POLLIN | POLLRDNORM;
  4291. if (mi->event != atomic_read(&md_event_count))
  4292. mask |= POLLERR | POLLPRI;
  4293. return mask;
  4294. }
  4295. static struct file_operations md_seq_fops = {
  4296. .owner = THIS_MODULE,
  4297. .open = md_seq_open,
  4298. .read = seq_read,
  4299. .llseek = seq_lseek,
  4300. .release = md_seq_release,
  4301. .poll = mdstat_poll,
  4302. };
  4303. int register_md_personality(struct mdk_personality *p)
  4304. {
  4305. spin_lock(&pers_lock);
  4306. list_add_tail(&p->list, &pers_list);
  4307. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4308. spin_unlock(&pers_lock);
  4309. return 0;
  4310. }
  4311. int unregister_md_personality(struct mdk_personality *p)
  4312. {
  4313. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4314. spin_lock(&pers_lock);
  4315. list_del_init(&p->list);
  4316. spin_unlock(&pers_lock);
  4317. return 0;
  4318. }
  4319. static int is_mddev_idle(mddev_t *mddev)
  4320. {
  4321. mdk_rdev_t * rdev;
  4322. struct list_head *tmp;
  4323. int idle;
  4324. unsigned long curr_events;
  4325. idle = 1;
  4326. ITERATE_RDEV(mddev,rdev,tmp) {
  4327. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4328. curr_events = disk_stat_read(disk, sectors[0]) +
  4329. disk_stat_read(disk, sectors[1]) -
  4330. atomic_read(&disk->sync_io);
  4331. /* The difference between curr_events and last_events
  4332. * will be affected by any new non-sync IO (making
  4333. * curr_events bigger) and any difference in the amount of
  4334. * in-flight syncio (making current_events bigger or smaller)
  4335. * The amount in-flight is currently limited to
  4336. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  4337. * which is at most 4096 sectors.
  4338. * These numbers are fairly fragile and should be made
  4339. * more robust, probably by enforcing the
  4340. * 'window size' that md_do_sync sort-of uses.
  4341. *
  4342. * Note: the following is an unsigned comparison.
  4343. */
  4344. if ((curr_events - rdev->last_events + 4096) > 8192) {
  4345. rdev->last_events = curr_events;
  4346. idle = 0;
  4347. }
  4348. }
  4349. return idle;
  4350. }
  4351. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4352. {
  4353. /* another "blocks" (512byte) blocks have been synced */
  4354. atomic_sub(blocks, &mddev->recovery_active);
  4355. wake_up(&mddev->recovery_wait);
  4356. if (!ok) {
  4357. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4358. md_wakeup_thread(mddev->thread);
  4359. // stop recovery, signal do_sync ....
  4360. }
  4361. }
  4362. /* md_write_start(mddev, bi)
  4363. * If we need to update some array metadata (e.g. 'active' flag
  4364. * in superblock) before writing, schedule a superblock update
  4365. * and wait for it to complete.
  4366. */
  4367. void md_write_start(mddev_t *mddev, struct bio *bi)
  4368. {
  4369. if (bio_data_dir(bi) != WRITE)
  4370. return;
  4371. BUG_ON(mddev->ro == 1);
  4372. if (mddev->ro == 2) {
  4373. /* need to switch to read/write */
  4374. mddev->ro = 0;
  4375. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4376. md_wakeup_thread(mddev->thread);
  4377. }
  4378. atomic_inc(&mddev->writes_pending);
  4379. if (mddev->in_sync) {
  4380. spin_lock_irq(&mddev->write_lock);
  4381. if (mddev->in_sync) {
  4382. mddev->in_sync = 0;
  4383. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4384. md_wakeup_thread(mddev->thread);
  4385. }
  4386. spin_unlock_irq(&mddev->write_lock);
  4387. }
  4388. wait_event(mddev->sb_wait, mddev->flags==0);
  4389. }
  4390. void md_write_end(mddev_t *mddev)
  4391. {
  4392. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4393. if (mddev->safemode == 2)
  4394. md_wakeup_thread(mddev->thread);
  4395. else if (mddev->safemode_delay)
  4396. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4397. }
  4398. }
  4399. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4400. #define SYNC_MARKS 10
  4401. #define SYNC_MARK_STEP (3*HZ)
  4402. void md_do_sync(mddev_t *mddev)
  4403. {
  4404. mddev_t *mddev2;
  4405. unsigned int currspeed = 0,
  4406. window;
  4407. sector_t max_sectors,j, io_sectors;
  4408. unsigned long mark[SYNC_MARKS];
  4409. sector_t mark_cnt[SYNC_MARKS];
  4410. int last_mark,m;
  4411. struct list_head *tmp;
  4412. sector_t last_check;
  4413. int skipped = 0;
  4414. struct list_head *rtmp;
  4415. mdk_rdev_t *rdev;
  4416. char *desc;
  4417. /* just incase thread restarts... */
  4418. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4419. return;
  4420. if (mddev->ro) /* never try to sync a read-only array */
  4421. return;
  4422. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4423. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4424. desc = "data-check";
  4425. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4426. desc = "requested-resync";
  4427. else
  4428. desc = "resync";
  4429. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4430. desc = "reshape";
  4431. else
  4432. desc = "recovery";
  4433. /* we overload curr_resync somewhat here.
  4434. * 0 == not engaged in resync at all
  4435. * 2 == checking that there is no conflict with another sync
  4436. * 1 == like 2, but have yielded to allow conflicting resync to
  4437. * commense
  4438. * other == active in resync - this many blocks
  4439. *
  4440. * Before starting a resync we must have set curr_resync to
  4441. * 2, and then checked that every "conflicting" array has curr_resync
  4442. * less than ours. When we find one that is the same or higher
  4443. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4444. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4445. * This will mean we have to start checking from the beginning again.
  4446. *
  4447. */
  4448. do {
  4449. mddev->curr_resync = 2;
  4450. try_again:
  4451. if (kthread_should_stop()) {
  4452. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4453. goto skip;
  4454. }
  4455. ITERATE_MDDEV(mddev2,tmp) {
  4456. if (mddev2 == mddev)
  4457. continue;
  4458. if (mddev2->curr_resync &&
  4459. match_mddev_units(mddev,mddev2)) {
  4460. DEFINE_WAIT(wq);
  4461. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4462. /* arbitrarily yield */
  4463. mddev->curr_resync = 1;
  4464. wake_up(&resync_wait);
  4465. }
  4466. if (mddev > mddev2 && mddev->curr_resync == 1)
  4467. /* no need to wait here, we can wait the next
  4468. * time 'round when curr_resync == 2
  4469. */
  4470. continue;
  4471. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4472. if (!kthread_should_stop() &&
  4473. mddev2->curr_resync >= mddev->curr_resync) {
  4474. printk(KERN_INFO "md: delaying %s of %s"
  4475. " until %s has finished (they"
  4476. " share one or more physical units)\n",
  4477. desc, mdname(mddev), mdname(mddev2));
  4478. mddev_put(mddev2);
  4479. schedule();
  4480. finish_wait(&resync_wait, &wq);
  4481. goto try_again;
  4482. }
  4483. finish_wait(&resync_wait, &wq);
  4484. }
  4485. }
  4486. } while (mddev->curr_resync < 2);
  4487. j = 0;
  4488. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4489. /* resync follows the size requested by the personality,
  4490. * which defaults to physical size, but can be virtual size
  4491. */
  4492. max_sectors = mddev->resync_max_sectors;
  4493. mddev->resync_mismatches = 0;
  4494. /* we don't use the checkpoint if there's a bitmap */
  4495. if (!mddev->bitmap &&
  4496. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4497. j = mddev->recovery_cp;
  4498. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4499. max_sectors = mddev->size << 1;
  4500. else {
  4501. /* recovery follows the physical size of devices */
  4502. max_sectors = mddev->size << 1;
  4503. j = MaxSector;
  4504. ITERATE_RDEV(mddev,rdev,rtmp)
  4505. if (rdev->raid_disk >= 0 &&
  4506. !test_bit(Faulty, &rdev->flags) &&
  4507. !test_bit(In_sync, &rdev->flags) &&
  4508. rdev->recovery_offset < j)
  4509. j = rdev->recovery_offset;
  4510. }
  4511. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4512. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4513. " %d KB/sec/disk.\n", speed_min(mddev));
  4514. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4515. "(but not more than %d KB/sec) for %s.\n",
  4516. speed_max(mddev), desc);
  4517. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4518. io_sectors = 0;
  4519. for (m = 0; m < SYNC_MARKS; m++) {
  4520. mark[m] = jiffies;
  4521. mark_cnt[m] = io_sectors;
  4522. }
  4523. last_mark = 0;
  4524. mddev->resync_mark = mark[last_mark];
  4525. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4526. /*
  4527. * Tune reconstruction:
  4528. */
  4529. window = 32*(PAGE_SIZE/512);
  4530. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4531. window/2,(unsigned long long) max_sectors/2);
  4532. atomic_set(&mddev->recovery_active, 0);
  4533. init_waitqueue_head(&mddev->recovery_wait);
  4534. last_check = 0;
  4535. if (j>2) {
  4536. printk(KERN_INFO
  4537. "md: resuming %s of %s from checkpoint.\n",
  4538. desc, mdname(mddev));
  4539. mddev->curr_resync = j;
  4540. }
  4541. while (j < max_sectors) {
  4542. sector_t sectors;
  4543. skipped = 0;
  4544. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4545. currspeed < speed_min(mddev));
  4546. if (sectors == 0) {
  4547. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4548. goto out;
  4549. }
  4550. if (!skipped) { /* actual IO requested */
  4551. io_sectors += sectors;
  4552. atomic_add(sectors, &mddev->recovery_active);
  4553. }
  4554. j += sectors;
  4555. if (j>1) mddev->curr_resync = j;
  4556. mddev->curr_mark_cnt = io_sectors;
  4557. if (last_check == 0)
  4558. /* this is the earliers that rebuilt will be
  4559. * visible in /proc/mdstat
  4560. */
  4561. md_new_event(mddev);
  4562. if (last_check + window > io_sectors || j == max_sectors)
  4563. continue;
  4564. last_check = io_sectors;
  4565. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4566. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4567. break;
  4568. repeat:
  4569. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4570. /* step marks */
  4571. int next = (last_mark+1) % SYNC_MARKS;
  4572. mddev->resync_mark = mark[next];
  4573. mddev->resync_mark_cnt = mark_cnt[next];
  4574. mark[next] = jiffies;
  4575. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4576. last_mark = next;
  4577. }
  4578. if (kthread_should_stop()) {
  4579. /*
  4580. * got a signal, exit.
  4581. */
  4582. printk(KERN_INFO
  4583. "md: md_do_sync() got signal ... exiting\n");
  4584. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4585. goto out;
  4586. }
  4587. /*
  4588. * this loop exits only if either when we are slower than
  4589. * the 'hard' speed limit, or the system was IO-idle for
  4590. * a jiffy.
  4591. * the system might be non-idle CPU-wise, but we only care
  4592. * about not overloading the IO subsystem. (things like an
  4593. * e2fsck being done on the RAID array should execute fast)
  4594. */
  4595. mddev->queue->unplug_fn(mddev->queue);
  4596. cond_resched();
  4597. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4598. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4599. if (currspeed > speed_min(mddev)) {
  4600. if ((currspeed > speed_max(mddev)) ||
  4601. !is_mddev_idle(mddev)) {
  4602. msleep(500);
  4603. goto repeat;
  4604. }
  4605. }
  4606. }
  4607. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4608. /*
  4609. * this also signals 'finished resyncing' to md_stop
  4610. */
  4611. out:
  4612. mddev->queue->unplug_fn(mddev->queue);
  4613. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4614. /* tell personality that we are finished */
  4615. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4616. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4617. test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  4618. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4619. mddev->curr_resync > 2) {
  4620. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4621. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4622. if (mddev->curr_resync >= mddev->recovery_cp) {
  4623. printk(KERN_INFO
  4624. "md: checkpointing %s of %s.\n",
  4625. desc, mdname(mddev));
  4626. mddev->recovery_cp = mddev->curr_resync;
  4627. }
  4628. } else
  4629. mddev->recovery_cp = MaxSector;
  4630. } else {
  4631. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4632. mddev->curr_resync = MaxSector;
  4633. ITERATE_RDEV(mddev,rdev,rtmp)
  4634. if (rdev->raid_disk >= 0 &&
  4635. !test_bit(Faulty, &rdev->flags) &&
  4636. !test_bit(In_sync, &rdev->flags) &&
  4637. rdev->recovery_offset < mddev->curr_resync)
  4638. rdev->recovery_offset = mddev->curr_resync;
  4639. }
  4640. }
  4641. skip:
  4642. mddev->curr_resync = 0;
  4643. wake_up(&resync_wait);
  4644. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4645. md_wakeup_thread(mddev->thread);
  4646. }
  4647. EXPORT_SYMBOL_GPL(md_do_sync);
  4648. /*
  4649. * This routine is regularly called by all per-raid-array threads to
  4650. * deal with generic issues like resync and super-block update.
  4651. * Raid personalities that don't have a thread (linear/raid0) do not
  4652. * need this as they never do any recovery or update the superblock.
  4653. *
  4654. * It does not do any resync itself, but rather "forks" off other threads
  4655. * to do that as needed.
  4656. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4657. * "->recovery" and create a thread at ->sync_thread.
  4658. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4659. * and wakeups up this thread which will reap the thread and finish up.
  4660. * This thread also removes any faulty devices (with nr_pending == 0).
  4661. *
  4662. * The overall approach is:
  4663. * 1/ if the superblock needs updating, update it.
  4664. * 2/ If a recovery thread is running, don't do anything else.
  4665. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4666. * 4/ If there are any faulty devices, remove them.
  4667. * 5/ If array is degraded, try to add spares devices
  4668. * 6/ If array has spares or is not in-sync, start a resync thread.
  4669. */
  4670. void md_check_recovery(mddev_t *mddev)
  4671. {
  4672. mdk_rdev_t *rdev;
  4673. struct list_head *rtmp;
  4674. if (mddev->bitmap)
  4675. bitmap_daemon_work(mddev->bitmap);
  4676. if (mddev->ro)
  4677. return;
  4678. if (signal_pending(current)) {
  4679. if (mddev->pers->sync_request) {
  4680. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4681. mdname(mddev));
  4682. mddev->safemode = 2;
  4683. }
  4684. flush_signals(current);
  4685. }
  4686. if ( ! (
  4687. mddev->flags ||
  4688. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4689. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4690. (mddev->safemode == 1) ||
  4691. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4692. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4693. ))
  4694. return;
  4695. if (mddev_trylock(mddev)) {
  4696. int spares =0;
  4697. spin_lock_irq(&mddev->write_lock);
  4698. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4699. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4700. mddev->in_sync = 1;
  4701. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4702. }
  4703. if (mddev->safemode == 1)
  4704. mddev->safemode = 0;
  4705. spin_unlock_irq(&mddev->write_lock);
  4706. if (mddev->flags)
  4707. md_update_sb(mddev, 0);
  4708. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4709. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4710. /* resync/recovery still happening */
  4711. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4712. goto unlock;
  4713. }
  4714. if (mddev->sync_thread) {
  4715. /* resync has finished, collect result */
  4716. md_unregister_thread(mddev->sync_thread);
  4717. mddev->sync_thread = NULL;
  4718. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4719. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4720. /* success...*/
  4721. /* activate any spares */
  4722. mddev->pers->spare_active(mddev);
  4723. }
  4724. md_update_sb(mddev, 1);
  4725. /* if array is no-longer degraded, then any saved_raid_disk
  4726. * information must be scrapped
  4727. */
  4728. if (!mddev->degraded)
  4729. ITERATE_RDEV(mddev,rdev,rtmp)
  4730. rdev->saved_raid_disk = -1;
  4731. mddev->recovery = 0;
  4732. /* flag recovery needed just to double check */
  4733. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4734. md_new_event(mddev);
  4735. goto unlock;
  4736. }
  4737. /* Clear some bits that don't mean anything, but
  4738. * might be left set
  4739. */
  4740. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4741. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4742. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4743. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4744. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4745. goto unlock;
  4746. /* no recovery is running.
  4747. * remove any failed drives, then
  4748. * add spares if possible.
  4749. * Spare are also removed and re-added, to allow
  4750. * the personality to fail the re-add.
  4751. */
  4752. ITERATE_RDEV(mddev,rdev,rtmp)
  4753. if (rdev->raid_disk >= 0 &&
  4754. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  4755. atomic_read(&rdev->nr_pending)==0) {
  4756. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  4757. char nm[20];
  4758. sprintf(nm,"rd%d", rdev->raid_disk);
  4759. sysfs_remove_link(&mddev->kobj, nm);
  4760. rdev->raid_disk = -1;
  4761. }
  4762. }
  4763. if (mddev->degraded) {
  4764. ITERATE_RDEV(mddev,rdev,rtmp)
  4765. if (rdev->raid_disk < 0
  4766. && !test_bit(Faulty, &rdev->flags)) {
  4767. rdev->recovery_offset = 0;
  4768. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4769. char nm[20];
  4770. sprintf(nm, "rd%d", rdev->raid_disk);
  4771. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  4772. spares++;
  4773. md_new_event(mddev);
  4774. } else
  4775. break;
  4776. }
  4777. }
  4778. if (spares) {
  4779. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4780. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4781. } else if (mddev->recovery_cp < MaxSector) {
  4782. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4783. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4784. /* nothing to be done ... */
  4785. goto unlock;
  4786. if (mddev->pers->sync_request) {
  4787. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4788. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4789. /* We are adding a device or devices to an array
  4790. * which has the bitmap stored on all devices.
  4791. * So make sure all bitmap pages get written
  4792. */
  4793. bitmap_write_all(mddev->bitmap);
  4794. }
  4795. mddev->sync_thread = md_register_thread(md_do_sync,
  4796. mddev,
  4797. "%s_resync");
  4798. if (!mddev->sync_thread) {
  4799. printk(KERN_ERR "%s: could not start resync"
  4800. " thread...\n",
  4801. mdname(mddev));
  4802. /* leave the spares where they are, it shouldn't hurt */
  4803. mddev->recovery = 0;
  4804. } else
  4805. md_wakeup_thread(mddev->sync_thread);
  4806. md_new_event(mddev);
  4807. }
  4808. unlock:
  4809. mddev_unlock(mddev);
  4810. }
  4811. }
  4812. static int md_notify_reboot(struct notifier_block *this,
  4813. unsigned long code, void *x)
  4814. {
  4815. struct list_head *tmp;
  4816. mddev_t *mddev;
  4817. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4818. printk(KERN_INFO "md: stopping all md devices.\n");
  4819. ITERATE_MDDEV(mddev,tmp)
  4820. if (mddev_trylock(mddev)) {
  4821. do_md_stop (mddev, 1);
  4822. mddev_unlock(mddev);
  4823. }
  4824. /*
  4825. * certain more exotic SCSI devices are known to be
  4826. * volatile wrt too early system reboots. While the
  4827. * right place to handle this issue is the given
  4828. * driver, we do want to have a safe RAID driver ...
  4829. */
  4830. mdelay(1000*1);
  4831. }
  4832. return NOTIFY_DONE;
  4833. }
  4834. static struct notifier_block md_notifier = {
  4835. .notifier_call = md_notify_reboot,
  4836. .next = NULL,
  4837. .priority = INT_MAX, /* before any real devices */
  4838. };
  4839. static void md_geninit(void)
  4840. {
  4841. struct proc_dir_entry *p;
  4842. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4843. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4844. if (p)
  4845. p->proc_fops = &md_seq_fops;
  4846. }
  4847. static int __init md_init(void)
  4848. {
  4849. if (register_blkdev(MAJOR_NR, "md"))
  4850. return -1;
  4851. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4852. unregister_blkdev(MAJOR_NR, "md");
  4853. return -1;
  4854. }
  4855. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  4856. md_probe, NULL, NULL);
  4857. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  4858. md_probe, NULL, NULL);
  4859. register_reboot_notifier(&md_notifier);
  4860. raid_table_header = register_sysctl_table(raid_root_table, 1);
  4861. md_geninit();
  4862. return (0);
  4863. }
  4864. #ifndef MODULE
  4865. /*
  4866. * Searches all registered partitions for autorun RAID arrays
  4867. * at boot time.
  4868. */
  4869. static dev_t detected_devices[128];
  4870. static int dev_cnt;
  4871. void md_autodetect_dev(dev_t dev)
  4872. {
  4873. if (dev_cnt >= 0 && dev_cnt < 127)
  4874. detected_devices[dev_cnt++] = dev;
  4875. }
  4876. static void autostart_arrays(int part)
  4877. {
  4878. mdk_rdev_t *rdev;
  4879. int i;
  4880. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4881. for (i = 0; i < dev_cnt; i++) {
  4882. dev_t dev = detected_devices[i];
  4883. rdev = md_import_device(dev,0, 0);
  4884. if (IS_ERR(rdev))
  4885. continue;
  4886. if (test_bit(Faulty, &rdev->flags)) {
  4887. MD_BUG();
  4888. continue;
  4889. }
  4890. list_add(&rdev->same_set, &pending_raid_disks);
  4891. }
  4892. dev_cnt = 0;
  4893. autorun_devices(part);
  4894. }
  4895. #endif
  4896. static __exit void md_exit(void)
  4897. {
  4898. mddev_t *mddev;
  4899. struct list_head *tmp;
  4900. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  4901. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  4902. unregister_blkdev(MAJOR_NR,"md");
  4903. unregister_blkdev(mdp_major, "mdp");
  4904. unregister_reboot_notifier(&md_notifier);
  4905. unregister_sysctl_table(raid_table_header);
  4906. remove_proc_entry("mdstat", NULL);
  4907. ITERATE_MDDEV(mddev,tmp) {
  4908. struct gendisk *disk = mddev->gendisk;
  4909. if (!disk)
  4910. continue;
  4911. export_array(mddev);
  4912. del_gendisk(disk);
  4913. put_disk(disk);
  4914. mddev->gendisk = NULL;
  4915. mddev_put(mddev);
  4916. }
  4917. }
  4918. module_init(md_init)
  4919. module_exit(md_exit)
  4920. static int get_ro(char *buffer, struct kernel_param *kp)
  4921. {
  4922. return sprintf(buffer, "%d", start_readonly);
  4923. }
  4924. static int set_ro(const char *val, struct kernel_param *kp)
  4925. {
  4926. char *e;
  4927. int num = simple_strtoul(val, &e, 10);
  4928. if (*val && (*e == '\0' || *e == '\n')) {
  4929. start_readonly = num;
  4930. return 0;
  4931. }
  4932. return -EINVAL;
  4933. }
  4934. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  4935. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  4936. EXPORT_SYMBOL(register_md_personality);
  4937. EXPORT_SYMBOL(unregister_md_personality);
  4938. EXPORT_SYMBOL(md_error);
  4939. EXPORT_SYMBOL(md_done_sync);
  4940. EXPORT_SYMBOL(md_write_start);
  4941. EXPORT_SYMBOL(md_write_end);
  4942. EXPORT_SYMBOL(md_register_thread);
  4943. EXPORT_SYMBOL(md_unregister_thread);
  4944. EXPORT_SYMBOL(md_wakeup_thread);
  4945. EXPORT_SYMBOL(md_check_recovery);
  4946. MODULE_LICENSE("GPL");
  4947. MODULE_ALIAS("md");
  4948. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);