irq.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * Copyright 2001, 2007-2008 MontaVista Software Inc.
  3. * Author: MontaVista Software, Inc. <source@mvista.com>
  4. *
  5. * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org)
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or (at your
  10. * option) any later version.
  11. *
  12. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  13. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  14. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  15. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  16. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  17. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  18. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  19. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  20. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  21. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  22. *
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, write to the Free Software Foundation, Inc.,
  25. * 675 Mass Ave, Cambridge, MA 02139, USA.
  26. */
  27. #include <linux/bitops.h>
  28. #include <linux/init.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/irq.h>
  31. #include <asm/irq_cpu.h>
  32. #include <asm/mipsregs.h>
  33. #include <asm/mach-au1x00/au1000.h>
  34. #ifdef CONFIG_MIPS_PB1000
  35. #include <asm/mach-pb1x00/pb1000.h>
  36. #endif
  37. static DEFINE_SPINLOCK(irq_lock);
  38. static int au1x_ic_settype(unsigned int irq, unsigned int flow_type);
  39. /* per-processor fixed function irqs */
  40. struct au1xxx_irqmap au1xxx_ic0_map[] __initdata = {
  41. #if defined(CONFIG_SOC_AU1000)
  42. { AU1000_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  43. { AU1000_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  44. { AU1000_UART2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  45. { AU1000_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  46. { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  47. { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  48. { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
  49. { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
  50. { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
  51. { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
  52. { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
  53. { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
  54. { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
  55. { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
  56. { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  57. { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  58. { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  59. { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  60. { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  61. { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  62. { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  63. { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  64. { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  65. { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  66. { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  67. { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  68. { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  69. { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  70. { AU1000_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  71. { AU1000_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  72. { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
  73. #elif defined(CONFIG_SOC_AU1500)
  74. { AU1500_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  75. { AU1000_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
  76. { AU1000_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
  77. { AU1500_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  78. { AU1000_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
  79. { AU1000_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
  80. { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
  81. { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
  82. { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
  83. { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
  84. { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
  85. { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
  86. { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
  87. { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
  88. { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  89. { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  90. { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  91. { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  92. { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  93. { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  94. { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  95. { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  96. { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  97. { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  98. { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  99. { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  100. { AU1500_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  101. { AU1500_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  102. { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
  103. #elif defined(CONFIG_SOC_AU1100)
  104. { AU1100_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  105. { AU1100_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  106. { AU1100_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  107. { AU1100_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  108. { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  109. { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  110. { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
  111. { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
  112. { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
  113. { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
  114. { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
  115. { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
  116. { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
  117. { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
  118. { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  119. { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  120. { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  121. { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  122. { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  123. { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  124. { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  125. { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  126. { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  127. { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  128. { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  129. { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  130. { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  131. { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  132. { AU1100_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  133. { AU1100_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  134. { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
  135. #elif defined(CONFIG_SOC_AU1550)
  136. { AU1550_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  137. { AU1550_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
  138. { AU1550_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
  139. { AU1550_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  140. { AU1550_CRYPTO_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  141. { AU1550_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
  142. { AU1550_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
  143. { AU1550_PCI_RST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  144. { AU1550_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  145. { AU1550_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  146. { AU1550_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  147. { AU1550_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  148. { AU1550_PSC2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  149. { AU1550_PSC3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  150. { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  151. { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  152. { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  153. { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  154. { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  155. { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  156. { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  157. { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  158. { AU1550_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
  159. { AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  160. { AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  161. { AU1550_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  162. { AU1550_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  163. { AU1550_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  164. #elif defined(CONFIG_SOC_AU1200)
  165. { AU1200_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  166. { AU1200_SWT_INT, IRQ_TYPE_EDGE_RISING, 0 },
  167. { AU1200_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  168. { AU1200_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  169. { AU1200_MAE_BE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  170. { AU1200_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  171. { AU1200_MAE_FE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  172. { AU1200_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  173. { AU1200_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  174. { AU1200_AES_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  175. { AU1200_CAMERA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  176. { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  177. { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  178. { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  179. { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  180. { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  181. { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  182. { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  183. { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  184. { AU1200_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
  185. { AU1200_USB_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  186. { AU1200_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  187. { AU1200_MAE_BOTH_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  188. #else
  189. #error "Error: Unknown Alchemy SOC"
  190. #endif
  191. };
  192. #ifdef CONFIG_PM
  193. /*
  194. * Save/restore the interrupt controller state.
  195. * Called from the save/restore core registers as part of the
  196. * au_sleep function in power.c.....maybe I should just pm_register()
  197. * them instead?
  198. */
  199. static unsigned int sleep_intctl_config0[2];
  200. static unsigned int sleep_intctl_config1[2];
  201. static unsigned int sleep_intctl_config2[2];
  202. static unsigned int sleep_intctl_src[2];
  203. static unsigned int sleep_intctl_assign[2];
  204. static unsigned int sleep_intctl_wake[2];
  205. static unsigned int sleep_intctl_mask[2];
  206. void save_au1xxx_intctl(void)
  207. {
  208. sleep_intctl_config0[0] = au_readl(IC0_CFG0RD);
  209. sleep_intctl_config1[0] = au_readl(IC0_CFG1RD);
  210. sleep_intctl_config2[0] = au_readl(IC0_CFG2RD);
  211. sleep_intctl_src[0] = au_readl(IC0_SRCRD);
  212. sleep_intctl_assign[0] = au_readl(IC0_ASSIGNRD);
  213. sleep_intctl_wake[0] = au_readl(IC0_WAKERD);
  214. sleep_intctl_mask[0] = au_readl(IC0_MASKRD);
  215. sleep_intctl_config0[1] = au_readl(IC1_CFG0RD);
  216. sleep_intctl_config1[1] = au_readl(IC1_CFG1RD);
  217. sleep_intctl_config2[1] = au_readl(IC1_CFG2RD);
  218. sleep_intctl_src[1] = au_readl(IC1_SRCRD);
  219. sleep_intctl_assign[1] = au_readl(IC1_ASSIGNRD);
  220. sleep_intctl_wake[1] = au_readl(IC1_WAKERD);
  221. sleep_intctl_mask[1] = au_readl(IC1_MASKRD);
  222. }
  223. /*
  224. * For most restore operations, we clear the entire register and
  225. * then set the bits we found during the save.
  226. */
  227. void restore_au1xxx_intctl(void)
  228. {
  229. au_writel(0xffffffff, IC0_MASKCLR); au_sync();
  230. au_writel(0xffffffff, IC0_CFG0CLR); au_sync();
  231. au_writel(sleep_intctl_config0[0], IC0_CFG0SET); au_sync();
  232. au_writel(0xffffffff, IC0_CFG1CLR); au_sync();
  233. au_writel(sleep_intctl_config1[0], IC0_CFG1SET); au_sync();
  234. au_writel(0xffffffff, IC0_CFG2CLR); au_sync();
  235. au_writel(sleep_intctl_config2[0], IC0_CFG2SET); au_sync();
  236. au_writel(0xffffffff, IC0_SRCCLR); au_sync();
  237. au_writel(sleep_intctl_src[0], IC0_SRCSET); au_sync();
  238. au_writel(0xffffffff, IC0_ASSIGNCLR); au_sync();
  239. au_writel(sleep_intctl_assign[0], IC0_ASSIGNSET); au_sync();
  240. au_writel(0xffffffff, IC0_WAKECLR); au_sync();
  241. au_writel(sleep_intctl_wake[0], IC0_WAKESET); au_sync();
  242. au_writel(0xffffffff, IC0_RISINGCLR); au_sync();
  243. au_writel(0xffffffff, IC0_FALLINGCLR); au_sync();
  244. au_writel(0x00000000, IC0_TESTBIT); au_sync();
  245. au_writel(0xffffffff, IC1_MASKCLR); au_sync();
  246. au_writel(0xffffffff, IC1_CFG0CLR); au_sync();
  247. au_writel(sleep_intctl_config0[1], IC1_CFG0SET); au_sync();
  248. au_writel(0xffffffff, IC1_CFG1CLR); au_sync();
  249. au_writel(sleep_intctl_config1[1], IC1_CFG1SET); au_sync();
  250. au_writel(0xffffffff, IC1_CFG2CLR); au_sync();
  251. au_writel(sleep_intctl_config2[1], IC1_CFG2SET); au_sync();
  252. au_writel(0xffffffff, IC1_SRCCLR); au_sync();
  253. au_writel(sleep_intctl_src[1], IC1_SRCSET); au_sync();
  254. au_writel(0xffffffff, IC1_ASSIGNCLR); au_sync();
  255. au_writel(sleep_intctl_assign[1], IC1_ASSIGNSET); au_sync();
  256. au_writel(0xffffffff, IC1_WAKECLR); au_sync();
  257. au_writel(sleep_intctl_wake[1], IC1_WAKESET); au_sync();
  258. au_writel(0xffffffff, IC1_RISINGCLR); au_sync();
  259. au_writel(0xffffffff, IC1_FALLINGCLR); au_sync();
  260. au_writel(0x00000000, IC1_TESTBIT); au_sync();
  261. au_writel(sleep_intctl_mask[1], IC1_MASKSET); au_sync();
  262. au_writel(sleep_intctl_mask[0], IC0_MASKSET); au_sync();
  263. }
  264. #endif /* CONFIG_PM */
  265. static void au1x_ic0_unmask(unsigned int irq_nr)
  266. {
  267. unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
  268. au_writel(1 << bit, IC0_MASKSET);
  269. au_writel(1 << bit, IC0_WAKESET);
  270. au_sync();
  271. }
  272. static void au1x_ic1_unmask(unsigned int irq_nr)
  273. {
  274. unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE;
  275. au_writel(1 << bit, IC1_MASKSET);
  276. au_writel(1 << bit, IC1_WAKESET);
  277. /* very hacky. does the pb1000 cpld auto-disable this int?
  278. * nowhere in the current kernel sources is it disabled. --mlau
  279. */
  280. #if defined(CONFIG_MIPS_PB1000)
  281. if (irq_nr == AU1000_GPIO_15)
  282. au_writel(0x4000, PB1000_MDR); /* enable int */
  283. #endif
  284. au_sync();
  285. }
  286. static void au1x_ic0_mask(unsigned int irq_nr)
  287. {
  288. unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
  289. au_writel(1 << bit, IC0_MASKCLR);
  290. au_writel(1 << bit, IC0_WAKECLR);
  291. au_sync();
  292. }
  293. static void au1x_ic1_mask(unsigned int irq_nr)
  294. {
  295. unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE;
  296. au_writel(1 << bit, IC1_MASKCLR);
  297. au_writel(1 << bit, IC1_WAKECLR);
  298. au_sync();
  299. }
  300. static void au1x_ic0_ack(unsigned int irq_nr)
  301. {
  302. unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
  303. /*
  304. * This may assume that we don't get interrupts from
  305. * both edges at once, or if we do, that we don't care.
  306. */
  307. au_writel(1 << bit, IC0_FALLINGCLR);
  308. au_writel(1 << bit, IC0_RISINGCLR);
  309. au_sync();
  310. }
  311. static void au1x_ic1_ack(unsigned int irq_nr)
  312. {
  313. unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE;
  314. /*
  315. * This may assume that we don't get interrupts from
  316. * both edges at once, or if we do, that we don't care.
  317. */
  318. au_writel(1 << bit, IC1_FALLINGCLR);
  319. au_writel(1 << bit, IC1_RISINGCLR);
  320. au_sync();
  321. }
  322. static int au1x_ic1_setwake(unsigned int irq, unsigned int on)
  323. {
  324. unsigned int bit = irq - AU1000_INTC1_INT_BASE;
  325. unsigned long wakemsk, flags;
  326. /* only GPIO 0-7 can act as wakeup source: */
  327. if ((irq < AU1000_GPIO_0) || (irq > AU1000_GPIO_7))
  328. return -EINVAL;
  329. local_irq_save(flags);
  330. wakemsk = au_readl(SYS_WAKEMSK);
  331. if (on)
  332. wakemsk |= 1 << bit;
  333. else
  334. wakemsk &= ~(1 << bit);
  335. au_writel(wakemsk, SYS_WAKEMSK);
  336. au_sync();
  337. local_irq_restore(flags);
  338. return 0;
  339. }
  340. /*
  341. * irq_chips for both ICs; this way the mask handlers can be
  342. * as short as possible.
  343. *
  344. * NOTE: the ->ack() callback is used by the handle_edge_irq
  345. * flowhandler only, the ->mask_ack() one by handle_level_irq,
  346. * so no need for an irq_chip for each type of irq (level/edge).
  347. */
  348. static struct irq_chip au1x_ic0_chip = {
  349. .name = "Alchemy-IC0",
  350. .ack = au1x_ic0_ack, /* edge */
  351. .mask = au1x_ic0_mask,
  352. .mask_ack = au1x_ic0_mask, /* level */
  353. .unmask = au1x_ic0_unmask,
  354. .set_type = au1x_ic_settype,
  355. };
  356. static struct irq_chip au1x_ic1_chip = {
  357. .name = "Alchemy-IC1",
  358. .ack = au1x_ic1_ack, /* edge */
  359. .mask = au1x_ic1_mask,
  360. .mask_ack = au1x_ic1_mask, /* level */
  361. .unmask = au1x_ic1_unmask,
  362. .set_type = au1x_ic_settype,
  363. .set_wake = au1x_ic1_setwake,
  364. };
  365. static int au1x_ic_settype(unsigned int irq, unsigned int flow_type)
  366. {
  367. struct irq_chip *chip;
  368. unsigned long icr[6];
  369. unsigned int bit, ic;
  370. int ret;
  371. if (irq >= AU1000_INTC1_INT_BASE) {
  372. bit = irq - AU1000_INTC1_INT_BASE;
  373. chip = &au1x_ic1_chip;
  374. ic = 1;
  375. } else {
  376. bit = irq - AU1000_INTC0_INT_BASE;
  377. chip = &au1x_ic0_chip;
  378. ic = 0;
  379. }
  380. if (bit > 31)
  381. return -EINVAL;
  382. icr[0] = ic ? IC1_CFG0SET : IC0_CFG0SET;
  383. icr[1] = ic ? IC1_CFG1SET : IC0_CFG1SET;
  384. icr[2] = ic ? IC1_CFG2SET : IC0_CFG2SET;
  385. icr[3] = ic ? IC1_CFG0CLR : IC0_CFG0CLR;
  386. icr[4] = ic ? IC1_CFG1CLR : IC0_CFG1CLR;
  387. icr[5] = ic ? IC1_CFG2CLR : IC0_CFG2CLR;
  388. ret = 0;
  389. switch (flow_type) { /* cfgregs 2:1:0 */
  390. case IRQ_TYPE_EDGE_RISING: /* 0:0:1 */
  391. au_writel(1 << bit, icr[5]);
  392. au_writel(1 << bit, icr[4]);
  393. au_writel(1 << bit, icr[0]);
  394. set_irq_chip_and_handler_name(irq, chip,
  395. handle_edge_irq, "riseedge");
  396. break;
  397. case IRQ_TYPE_EDGE_FALLING: /* 0:1:0 */
  398. au_writel(1 << bit, icr[5]);
  399. au_writel(1 << bit, icr[1]);
  400. au_writel(1 << bit, icr[3]);
  401. set_irq_chip_and_handler_name(irq, chip,
  402. handle_edge_irq, "falledge");
  403. break;
  404. case IRQ_TYPE_EDGE_BOTH: /* 0:1:1 */
  405. au_writel(1 << bit, icr[5]);
  406. au_writel(1 << bit, icr[1]);
  407. au_writel(1 << bit, icr[0]);
  408. set_irq_chip_and_handler_name(irq, chip,
  409. handle_edge_irq, "bothedge");
  410. break;
  411. case IRQ_TYPE_LEVEL_HIGH: /* 1:0:1 */
  412. au_writel(1 << bit, icr[2]);
  413. au_writel(1 << bit, icr[4]);
  414. au_writel(1 << bit, icr[0]);
  415. set_irq_chip_and_handler_name(irq, chip,
  416. handle_level_irq, "hilevel");
  417. break;
  418. case IRQ_TYPE_LEVEL_LOW: /* 1:1:0 */
  419. au_writel(1 << bit, icr[2]);
  420. au_writel(1 << bit, icr[1]);
  421. au_writel(1 << bit, icr[3]);
  422. set_irq_chip_and_handler_name(irq, chip,
  423. handle_level_irq, "lowlevel");
  424. break;
  425. case IRQ_TYPE_NONE: /* 0:0:0 */
  426. au_writel(1 << bit, icr[5]);
  427. au_writel(1 << bit, icr[4]);
  428. au_writel(1 << bit, icr[3]);
  429. /* set at least chip so we can call set_irq_type() on it */
  430. set_irq_chip(irq, chip);
  431. break;
  432. default:
  433. ret = -EINVAL;
  434. }
  435. au_sync();
  436. return ret;
  437. }
  438. asmlinkage void plat_irq_dispatch(void)
  439. {
  440. unsigned int pending = read_c0_status() & read_c0_cause();
  441. unsigned long s, off, bit;
  442. if (pending & CAUSEF_IP7) {
  443. do_IRQ(MIPS_CPU_IRQ_BASE + 7);
  444. return;
  445. } else if (pending & CAUSEF_IP2) {
  446. s = IC0_REQ0INT;
  447. off = AU1000_INTC0_INT_BASE;
  448. } else if (pending & CAUSEF_IP3) {
  449. s = IC0_REQ1INT;
  450. off = AU1000_INTC0_INT_BASE;
  451. } else if (pending & CAUSEF_IP4) {
  452. s = IC1_REQ0INT;
  453. off = AU1000_INTC1_INT_BASE;
  454. } else if (pending & CAUSEF_IP5) {
  455. s = IC1_REQ1INT;
  456. off = AU1000_INTC1_INT_BASE;
  457. } else
  458. goto spurious;
  459. bit = 0;
  460. s = au_readl(s);
  461. if (unlikely(!s)) {
  462. spurious:
  463. spurious_interrupt();
  464. return;
  465. }
  466. #ifdef AU1000_USB_DEV_REQ_INT
  467. /*
  468. * Because of the tight timing of SETUP token to reply
  469. * transactions, the USB devices-side packet complete
  470. * interrupt needs the highest priority.
  471. */
  472. bit = 1 << (AU1000_USB_DEV_REQ_INT - AU1000_INTC0_INT_BASE);
  473. if ((pending & CAUSEF_IP2) && (s & bit)) {
  474. do_IRQ(AU1000_USB_DEV_REQ_INT);
  475. return;
  476. }
  477. #endif
  478. do_IRQ(__ffs(s) + off);
  479. }
  480. /* setup edge/level and assign request 0/1 */
  481. void __init au1xxx_setup_irqmap(struct au1xxx_irqmap *map, int count)
  482. {
  483. unsigned int bit, irq_nr;
  484. while (count--) {
  485. irq_nr = map[count].im_irq;
  486. if (((irq_nr < AU1000_INTC0_INT_BASE) ||
  487. (irq_nr >= AU1000_INTC0_INT_BASE + 32)) &&
  488. ((irq_nr < AU1000_INTC1_INT_BASE) ||
  489. (irq_nr >= AU1000_INTC1_INT_BASE + 32)))
  490. continue;
  491. if (irq_nr >= AU1000_INTC1_INT_BASE) {
  492. bit = irq_nr - AU1000_INTC1_INT_BASE;
  493. if (map[count].im_request)
  494. au_writel(1 << bit, IC1_ASSIGNCLR);
  495. } else {
  496. bit = irq_nr - AU1000_INTC0_INT_BASE;
  497. if (map[count].im_request)
  498. au_writel(1 << bit, IC0_ASSIGNCLR);
  499. }
  500. au1x_ic_settype(irq_nr, map[count].im_type);
  501. }
  502. }
  503. void __init arch_init_irq(void)
  504. {
  505. int i;
  506. /*
  507. * Initialize interrupt controllers to a safe state.
  508. */
  509. au_writel(0xffffffff, IC0_CFG0CLR);
  510. au_writel(0xffffffff, IC0_CFG1CLR);
  511. au_writel(0xffffffff, IC0_CFG2CLR);
  512. au_writel(0xffffffff, IC0_MASKCLR);
  513. au_writel(0xffffffff, IC0_ASSIGNSET);
  514. au_writel(0xffffffff, IC0_WAKECLR);
  515. au_writel(0xffffffff, IC0_SRCSET);
  516. au_writel(0xffffffff, IC0_FALLINGCLR);
  517. au_writel(0xffffffff, IC0_RISINGCLR);
  518. au_writel(0x00000000, IC0_TESTBIT);
  519. au_writel(0xffffffff, IC1_CFG0CLR);
  520. au_writel(0xffffffff, IC1_CFG1CLR);
  521. au_writel(0xffffffff, IC1_CFG2CLR);
  522. au_writel(0xffffffff, IC1_MASKCLR);
  523. au_writel(0xffffffff, IC1_ASSIGNSET);
  524. au_writel(0xffffffff, IC1_WAKECLR);
  525. au_writel(0xffffffff, IC1_SRCSET);
  526. au_writel(0xffffffff, IC1_FALLINGCLR);
  527. au_writel(0xffffffff, IC1_RISINGCLR);
  528. au_writel(0x00000000, IC1_TESTBIT);
  529. mips_cpu_irq_init();
  530. /* register all 64 possible IC0+IC1 irq sources as type "none".
  531. * Use set_irq_type() to set edge/level behaviour at runtime.
  532. */
  533. for (i = AU1000_INTC0_INT_BASE;
  534. (i < AU1000_INTC0_INT_BASE + 32); i++)
  535. au1x_ic_settype(i, IRQ_TYPE_NONE);
  536. for (i = AU1000_INTC1_INT_BASE;
  537. (i < AU1000_INTC1_INT_BASE + 32); i++)
  538. au1x_ic_settype(i, IRQ_TYPE_NONE);
  539. /*
  540. * Initialize IC0, which is fixed per processor.
  541. */
  542. au1xxx_setup_irqmap(au1xxx_ic0_map, ARRAY_SIZE(au1xxx_ic0_map));
  543. /* Boards can register additional (GPIO-based) IRQs.
  544. */
  545. board_init_irq();
  546. set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3);
  547. }
  548. unsigned long save_local_and_disable(int controller)
  549. {
  550. int i;
  551. unsigned long flags, mask;
  552. spin_lock_irqsave(&irq_lock, flags);
  553. if (controller) {
  554. mask = au_readl(IC1_MASKSET);
  555. for (i = 0; i < 32; i++)
  556. au1x_ic1_mask(i + AU1000_INTC1_INT_BASE);
  557. } else {
  558. mask = au_readl(IC0_MASKSET);
  559. for (i = 0; i < 32; i++)
  560. au1x_ic0_mask(i + AU1000_INTC0_INT_BASE);
  561. }
  562. spin_unlock_irqrestore(&irq_lock, flags);
  563. return mask;
  564. }
  565. void restore_local_and_enable(int controller, unsigned long mask)
  566. {
  567. int i;
  568. unsigned long flags, new_mask;
  569. spin_lock_irqsave(&irq_lock, flags);
  570. for (i = 0; i < 32; i++)
  571. if (mask & (1 << i)) {
  572. if (controller)
  573. au1x_ic1_unmask(i + AU1000_INTC1_INT_BASE);
  574. else
  575. au1x_ic0_unmask(i + AU1000_INTC0_INT_BASE);
  576. }
  577. if (controller)
  578. new_mask = au_readl(IC1_MASKSET);
  579. else
  580. new_mask = au_readl(IC0_MASKSET);
  581. spin_unlock_irqrestore(&irq_lock, flags);
  582. }