swiotlb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/export.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. int swiotlb_force;
  47. /*
  48. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  49. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  50. * API.
  51. */
  52. static phys_addr_t io_tlb_start, io_tlb_end;
  53. /*
  54. * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  55. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  56. */
  57. static unsigned long io_tlb_nslabs;
  58. /*
  59. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  60. */
  61. static unsigned long io_tlb_overflow = 32*1024;
  62. static phys_addr_t io_tlb_overflow_buffer;
  63. /*
  64. * This is a free list describing the number of free entries available from
  65. * each index
  66. */
  67. static unsigned int *io_tlb_list;
  68. static unsigned int io_tlb_index;
  69. /*
  70. * We need to save away the original address corresponding to a mapped entry
  71. * for the sync operations.
  72. */
  73. static phys_addr_t *io_tlb_orig_addr;
  74. /*
  75. * Protect the above data structures in the map and unmap calls
  76. */
  77. static DEFINE_SPINLOCK(io_tlb_lock);
  78. static int late_alloc;
  79. static int __init
  80. setup_io_tlb_npages(char *str)
  81. {
  82. if (isdigit(*str)) {
  83. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  84. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  85. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  86. }
  87. if (*str == ',')
  88. ++str;
  89. if (!strcmp(str, "force"))
  90. swiotlb_force = 1;
  91. return 0;
  92. }
  93. early_param("swiotlb", setup_io_tlb_npages);
  94. /* make io_tlb_overflow tunable too? */
  95. unsigned long swiotlb_nr_tbl(void)
  96. {
  97. return io_tlb_nslabs;
  98. }
  99. EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
  100. /* default to 64MB */
  101. #define IO_TLB_DEFAULT_SIZE (64UL<<20)
  102. unsigned long swiotlb_size_or_default(void)
  103. {
  104. unsigned long size;
  105. size = io_tlb_nslabs << IO_TLB_SHIFT;
  106. return size ? size : (IO_TLB_DEFAULT_SIZE);
  107. }
  108. /* Note that this doesn't work with highmem page */
  109. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  110. volatile void *address)
  111. {
  112. return phys_to_dma(hwdev, virt_to_phys(address));
  113. }
  114. static bool no_iotlb_memory;
  115. void swiotlb_print_info(void)
  116. {
  117. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  118. unsigned char *vstart, *vend;
  119. if (no_iotlb_memory) {
  120. pr_warn("software IO TLB: No low mem\n");
  121. return;
  122. }
  123. vstart = phys_to_virt(io_tlb_start);
  124. vend = phys_to_virt(io_tlb_end);
  125. printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
  126. (unsigned long long)io_tlb_start,
  127. (unsigned long long)io_tlb_end,
  128. bytes >> 20, vstart, vend - 1);
  129. }
  130. int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
  131. {
  132. void *v_overflow_buffer;
  133. unsigned long i, bytes;
  134. bytes = nslabs << IO_TLB_SHIFT;
  135. io_tlb_nslabs = nslabs;
  136. io_tlb_start = __pa(tlb);
  137. io_tlb_end = io_tlb_start + bytes;
  138. /*
  139. * Get the overflow emergency buffer
  140. */
  141. v_overflow_buffer = alloc_bootmem_low_pages_nopanic(
  142. PAGE_ALIGN(io_tlb_overflow));
  143. if (!v_overflow_buffer)
  144. return -ENOMEM;
  145. io_tlb_overflow_buffer = __pa(v_overflow_buffer);
  146. /*
  147. * Allocate and initialize the free list array. This array is used
  148. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  149. * between io_tlb_start and io_tlb_end.
  150. */
  151. io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  152. for (i = 0; i < io_tlb_nslabs; i++)
  153. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  154. io_tlb_index = 0;
  155. io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  156. if (verbose)
  157. swiotlb_print_info();
  158. return 0;
  159. }
  160. /*
  161. * Statically reserve bounce buffer space and initialize bounce buffer data
  162. * structures for the software IO TLB used to implement the DMA API.
  163. */
  164. void __init
  165. swiotlb_init(int verbose)
  166. {
  167. size_t default_size = IO_TLB_DEFAULT_SIZE;
  168. unsigned char *vstart;
  169. unsigned long bytes;
  170. if (!io_tlb_nslabs) {
  171. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  172. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  173. }
  174. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  175. /* Get IO TLB memory from the low pages */
  176. vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes));
  177. if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
  178. return;
  179. if (io_tlb_start)
  180. free_bootmem(io_tlb_start,
  181. PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
  182. pr_warn("Cannot allocate SWIOTLB buffer");
  183. no_iotlb_memory = true;
  184. }
  185. /*
  186. * Systems with larger DMA zones (those that don't support ISA) can
  187. * initialize the swiotlb later using the slab allocator if needed.
  188. * This should be just like above, but with some error catching.
  189. */
  190. int
  191. swiotlb_late_init_with_default_size(size_t default_size)
  192. {
  193. unsigned long bytes, req_nslabs = io_tlb_nslabs;
  194. unsigned char *vstart = NULL;
  195. unsigned int order;
  196. int rc = 0;
  197. if (!io_tlb_nslabs) {
  198. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  199. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  200. }
  201. /*
  202. * Get IO TLB memory from the low pages
  203. */
  204. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  205. io_tlb_nslabs = SLABS_PER_PAGE << order;
  206. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  207. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  208. vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  209. order);
  210. if (vstart)
  211. break;
  212. order--;
  213. }
  214. if (!vstart) {
  215. io_tlb_nslabs = req_nslabs;
  216. return -ENOMEM;
  217. }
  218. if (order != get_order(bytes)) {
  219. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  220. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  221. io_tlb_nslabs = SLABS_PER_PAGE << order;
  222. }
  223. rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
  224. if (rc)
  225. free_pages((unsigned long)vstart, order);
  226. return rc;
  227. }
  228. int
  229. swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
  230. {
  231. unsigned long i, bytes;
  232. unsigned char *v_overflow_buffer;
  233. bytes = nslabs << IO_TLB_SHIFT;
  234. io_tlb_nslabs = nslabs;
  235. io_tlb_start = virt_to_phys(tlb);
  236. io_tlb_end = io_tlb_start + bytes;
  237. memset(tlb, 0, bytes);
  238. /*
  239. * Get the overflow emergency buffer
  240. */
  241. v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  242. get_order(io_tlb_overflow));
  243. if (!v_overflow_buffer)
  244. goto cleanup2;
  245. io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
  246. /*
  247. * Allocate and initialize the free list array. This array is used
  248. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  249. * between io_tlb_start and io_tlb_end.
  250. */
  251. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  252. get_order(io_tlb_nslabs * sizeof(int)));
  253. if (!io_tlb_list)
  254. goto cleanup3;
  255. for (i = 0; i < io_tlb_nslabs; i++)
  256. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  257. io_tlb_index = 0;
  258. io_tlb_orig_addr = (phys_addr_t *)
  259. __get_free_pages(GFP_KERNEL,
  260. get_order(io_tlb_nslabs *
  261. sizeof(phys_addr_t)));
  262. if (!io_tlb_orig_addr)
  263. goto cleanup4;
  264. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  265. swiotlb_print_info();
  266. late_alloc = 1;
  267. return 0;
  268. cleanup4:
  269. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  270. sizeof(int)));
  271. io_tlb_list = NULL;
  272. cleanup3:
  273. free_pages((unsigned long)v_overflow_buffer,
  274. get_order(io_tlb_overflow));
  275. io_tlb_overflow_buffer = 0;
  276. cleanup2:
  277. io_tlb_end = 0;
  278. io_tlb_start = 0;
  279. io_tlb_nslabs = 0;
  280. return -ENOMEM;
  281. }
  282. void __init swiotlb_free(void)
  283. {
  284. if (!io_tlb_orig_addr)
  285. return;
  286. if (late_alloc) {
  287. free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
  288. get_order(io_tlb_overflow));
  289. free_pages((unsigned long)io_tlb_orig_addr,
  290. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  291. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  292. sizeof(int)));
  293. free_pages((unsigned long)phys_to_virt(io_tlb_start),
  294. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  295. } else {
  296. free_bootmem_late(io_tlb_overflow_buffer,
  297. PAGE_ALIGN(io_tlb_overflow));
  298. free_bootmem_late(__pa(io_tlb_orig_addr),
  299. PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  300. free_bootmem_late(__pa(io_tlb_list),
  301. PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  302. free_bootmem_late(io_tlb_start,
  303. PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
  304. }
  305. io_tlb_nslabs = 0;
  306. }
  307. static int is_swiotlb_buffer(phys_addr_t paddr)
  308. {
  309. return paddr >= io_tlb_start && paddr < io_tlb_end;
  310. }
  311. /*
  312. * Bounce: copy the swiotlb buffer back to the original dma location
  313. */
  314. static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
  315. size_t size, enum dma_data_direction dir)
  316. {
  317. unsigned long pfn = PFN_DOWN(orig_addr);
  318. unsigned char *vaddr = phys_to_virt(tlb_addr);
  319. if (PageHighMem(pfn_to_page(pfn))) {
  320. /* The buffer does not have a mapping. Map it in and copy */
  321. unsigned int offset = orig_addr & ~PAGE_MASK;
  322. char *buffer;
  323. unsigned int sz = 0;
  324. unsigned long flags;
  325. while (size) {
  326. sz = min_t(size_t, PAGE_SIZE - offset, size);
  327. local_irq_save(flags);
  328. buffer = kmap_atomic(pfn_to_page(pfn));
  329. if (dir == DMA_TO_DEVICE)
  330. memcpy(vaddr, buffer + offset, sz);
  331. else
  332. memcpy(buffer + offset, vaddr, sz);
  333. kunmap_atomic(buffer);
  334. local_irq_restore(flags);
  335. size -= sz;
  336. pfn++;
  337. vaddr += sz;
  338. offset = 0;
  339. }
  340. } else if (dir == DMA_TO_DEVICE) {
  341. memcpy(vaddr, phys_to_virt(orig_addr), size);
  342. } else {
  343. memcpy(phys_to_virt(orig_addr), vaddr, size);
  344. }
  345. }
  346. phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
  347. dma_addr_t tbl_dma_addr,
  348. phys_addr_t orig_addr, size_t size,
  349. enum dma_data_direction dir)
  350. {
  351. unsigned long flags;
  352. phys_addr_t tlb_addr;
  353. unsigned int nslots, stride, index, wrap;
  354. int i;
  355. unsigned long mask;
  356. unsigned long offset_slots;
  357. unsigned long max_slots;
  358. if (no_iotlb_memory)
  359. panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
  360. mask = dma_get_seg_boundary(hwdev);
  361. tbl_dma_addr &= mask;
  362. offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  363. /*
  364. * Carefully handle integer overflow which can occur when mask == ~0UL.
  365. */
  366. max_slots = mask + 1
  367. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  368. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  369. /*
  370. * For mappings greater than a page, we limit the stride (and
  371. * hence alignment) to a page size.
  372. */
  373. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  374. if (size > PAGE_SIZE)
  375. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  376. else
  377. stride = 1;
  378. BUG_ON(!nslots);
  379. /*
  380. * Find suitable number of IO TLB entries size that will fit this
  381. * request and allocate a buffer from that IO TLB pool.
  382. */
  383. spin_lock_irqsave(&io_tlb_lock, flags);
  384. index = ALIGN(io_tlb_index, stride);
  385. if (index >= io_tlb_nslabs)
  386. index = 0;
  387. wrap = index;
  388. do {
  389. while (iommu_is_span_boundary(index, nslots, offset_slots,
  390. max_slots)) {
  391. index += stride;
  392. if (index >= io_tlb_nslabs)
  393. index = 0;
  394. if (index == wrap)
  395. goto not_found;
  396. }
  397. /*
  398. * If we find a slot that indicates we have 'nslots' number of
  399. * contiguous buffers, we allocate the buffers from that slot
  400. * and mark the entries as '0' indicating unavailable.
  401. */
  402. if (io_tlb_list[index] >= nslots) {
  403. int count = 0;
  404. for (i = index; i < (int) (index + nslots); i++)
  405. io_tlb_list[i] = 0;
  406. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  407. io_tlb_list[i] = ++count;
  408. tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  409. /*
  410. * Update the indices to avoid searching in the next
  411. * round.
  412. */
  413. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  414. ? (index + nslots) : 0);
  415. goto found;
  416. }
  417. index += stride;
  418. if (index >= io_tlb_nslabs)
  419. index = 0;
  420. } while (index != wrap);
  421. not_found:
  422. spin_unlock_irqrestore(&io_tlb_lock, flags);
  423. dev_warn(hwdev, "swiotlb buffer is full\n");
  424. return SWIOTLB_MAP_ERROR;
  425. found:
  426. spin_unlock_irqrestore(&io_tlb_lock, flags);
  427. /*
  428. * Save away the mapping from the original address to the DMA address.
  429. * This is needed when we sync the memory. Then we sync the buffer if
  430. * needed.
  431. */
  432. for (i = 0; i < nslots; i++)
  433. io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
  434. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  435. swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
  436. return tlb_addr;
  437. }
  438. EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
  439. /*
  440. * Allocates bounce buffer and returns its kernel virtual address.
  441. */
  442. phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
  443. enum dma_data_direction dir)
  444. {
  445. dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
  446. return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
  447. }
  448. /*
  449. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  450. */
  451. void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
  452. size_t size, enum dma_data_direction dir)
  453. {
  454. unsigned long flags;
  455. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  456. int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
  457. phys_addr_t orig_addr = io_tlb_orig_addr[index];
  458. /*
  459. * First, sync the memory before unmapping the entry
  460. */
  461. if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  462. swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
  463. /*
  464. * Return the buffer to the free list by setting the corresponding
  465. * entries to indicate the number of contiguous entries available.
  466. * While returning the entries to the free list, we merge the entries
  467. * with slots below and above the pool being returned.
  468. */
  469. spin_lock_irqsave(&io_tlb_lock, flags);
  470. {
  471. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  472. io_tlb_list[index + nslots] : 0);
  473. /*
  474. * Step 1: return the slots to the free list, merging the
  475. * slots with superceeding slots
  476. */
  477. for (i = index + nslots - 1; i >= index; i--)
  478. io_tlb_list[i] = ++count;
  479. /*
  480. * Step 2: merge the returned slots with the preceding slots,
  481. * if available (non zero)
  482. */
  483. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  484. io_tlb_list[i] = ++count;
  485. }
  486. spin_unlock_irqrestore(&io_tlb_lock, flags);
  487. }
  488. EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
  489. void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
  490. size_t size, enum dma_data_direction dir,
  491. enum dma_sync_target target)
  492. {
  493. int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
  494. phys_addr_t orig_addr = io_tlb_orig_addr[index];
  495. orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
  496. switch (target) {
  497. case SYNC_FOR_CPU:
  498. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  499. swiotlb_bounce(orig_addr, tlb_addr,
  500. size, DMA_FROM_DEVICE);
  501. else
  502. BUG_ON(dir != DMA_TO_DEVICE);
  503. break;
  504. case SYNC_FOR_DEVICE:
  505. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  506. swiotlb_bounce(orig_addr, tlb_addr,
  507. size, DMA_TO_DEVICE);
  508. else
  509. BUG_ON(dir != DMA_FROM_DEVICE);
  510. break;
  511. default:
  512. BUG();
  513. }
  514. }
  515. EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
  516. void *
  517. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  518. dma_addr_t *dma_handle, gfp_t flags)
  519. {
  520. dma_addr_t dev_addr;
  521. void *ret;
  522. int order = get_order(size);
  523. u64 dma_mask = DMA_BIT_MASK(32);
  524. if (hwdev && hwdev->coherent_dma_mask)
  525. dma_mask = hwdev->coherent_dma_mask;
  526. ret = (void *)__get_free_pages(flags, order);
  527. if (ret) {
  528. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  529. if (dev_addr + size - 1 > dma_mask) {
  530. /*
  531. * The allocated memory isn't reachable by the device.
  532. */
  533. free_pages((unsigned long) ret, order);
  534. ret = NULL;
  535. }
  536. }
  537. if (!ret) {
  538. /*
  539. * We are either out of memory or the device can't DMA to
  540. * GFP_DMA memory; fall back on map_single(), which
  541. * will grab memory from the lowest available address range.
  542. */
  543. phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  544. if (paddr == SWIOTLB_MAP_ERROR)
  545. return NULL;
  546. ret = phys_to_virt(paddr);
  547. dev_addr = phys_to_dma(hwdev, paddr);
  548. /* Confirm address can be DMA'd by device */
  549. if (dev_addr + size - 1 > dma_mask) {
  550. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  551. (unsigned long long)dma_mask,
  552. (unsigned long long)dev_addr);
  553. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  554. swiotlb_tbl_unmap_single(hwdev, paddr,
  555. size, DMA_TO_DEVICE);
  556. return NULL;
  557. }
  558. }
  559. *dma_handle = dev_addr;
  560. memset(ret, 0, size);
  561. return ret;
  562. }
  563. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  564. void
  565. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  566. dma_addr_t dev_addr)
  567. {
  568. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  569. WARN_ON(irqs_disabled());
  570. if (!is_swiotlb_buffer(paddr))
  571. free_pages((unsigned long)vaddr, get_order(size));
  572. else
  573. /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
  574. swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
  575. }
  576. EXPORT_SYMBOL(swiotlb_free_coherent);
  577. static void
  578. swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
  579. int do_panic)
  580. {
  581. /*
  582. * Ran out of IOMMU space for this operation. This is very bad.
  583. * Unfortunately the drivers cannot handle this operation properly.
  584. * unless they check for dma_mapping_error (most don't)
  585. * When the mapping is small enough return a static buffer to limit
  586. * the damage, or panic when the transfer is too big.
  587. */
  588. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  589. "device %s\n", size, dev ? dev_name(dev) : "?");
  590. if (size <= io_tlb_overflow || !do_panic)
  591. return;
  592. if (dir == DMA_BIDIRECTIONAL)
  593. panic("DMA: Random memory could be DMA accessed\n");
  594. if (dir == DMA_FROM_DEVICE)
  595. panic("DMA: Random memory could be DMA written\n");
  596. if (dir == DMA_TO_DEVICE)
  597. panic("DMA: Random memory could be DMA read\n");
  598. }
  599. /*
  600. * Map a single buffer of the indicated size for DMA in streaming mode. The
  601. * physical address to use is returned.
  602. *
  603. * Once the device is given the dma address, the device owns this memory until
  604. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  605. */
  606. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  607. unsigned long offset, size_t size,
  608. enum dma_data_direction dir,
  609. struct dma_attrs *attrs)
  610. {
  611. phys_addr_t map, phys = page_to_phys(page) + offset;
  612. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  613. BUG_ON(dir == DMA_NONE);
  614. /*
  615. * If the address happens to be in the device's DMA window,
  616. * we can safely return the device addr and not worry about bounce
  617. * buffering it.
  618. */
  619. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  620. return dev_addr;
  621. /* Oh well, have to allocate and map a bounce buffer. */
  622. map = map_single(dev, phys, size, dir);
  623. if (map == SWIOTLB_MAP_ERROR) {
  624. swiotlb_full(dev, size, dir, 1);
  625. return phys_to_dma(dev, io_tlb_overflow_buffer);
  626. }
  627. dev_addr = phys_to_dma(dev, map);
  628. /* Ensure that the address returned is DMA'ble */
  629. if (!dma_capable(dev, dev_addr, size)) {
  630. swiotlb_tbl_unmap_single(dev, map, size, dir);
  631. return phys_to_dma(dev, io_tlb_overflow_buffer);
  632. }
  633. return dev_addr;
  634. }
  635. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  636. /*
  637. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  638. * match what was provided for in a previous swiotlb_map_page call. All
  639. * other usages are undefined.
  640. *
  641. * After this call, reads by the cpu to the buffer are guaranteed to see
  642. * whatever the device wrote there.
  643. */
  644. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  645. size_t size, enum dma_data_direction dir)
  646. {
  647. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  648. BUG_ON(dir == DMA_NONE);
  649. if (is_swiotlb_buffer(paddr)) {
  650. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  651. return;
  652. }
  653. if (dir != DMA_FROM_DEVICE)
  654. return;
  655. /*
  656. * phys_to_virt doesn't work with hihgmem page but we could
  657. * call dma_mark_clean() with hihgmem page here. However, we
  658. * are fine since dma_mark_clean() is null on POWERPC. We can
  659. * make dma_mark_clean() take a physical address if necessary.
  660. */
  661. dma_mark_clean(phys_to_virt(paddr), size);
  662. }
  663. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  664. size_t size, enum dma_data_direction dir,
  665. struct dma_attrs *attrs)
  666. {
  667. unmap_single(hwdev, dev_addr, size, dir);
  668. }
  669. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  670. /*
  671. * Make physical memory consistent for a single streaming mode DMA translation
  672. * after a transfer.
  673. *
  674. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  675. * using the cpu, yet do not wish to teardown the dma mapping, you must
  676. * call this function before doing so. At the next point you give the dma
  677. * address back to the card, you must first perform a
  678. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  679. */
  680. static void
  681. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  682. size_t size, enum dma_data_direction dir,
  683. enum dma_sync_target target)
  684. {
  685. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  686. BUG_ON(dir == DMA_NONE);
  687. if (is_swiotlb_buffer(paddr)) {
  688. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  689. return;
  690. }
  691. if (dir != DMA_FROM_DEVICE)
  692. return;
  693. dma_mark_clean(phys_to_virt(paddr), size);
  694. }
  695. void
  696. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  697. size_t size, enum dma_data_direction dir)
  698. {
  699. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  700. }
  701. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  702. void
  703. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  704. size_t size, enum dma_data_direction dir)
  705. {
  706. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  707. }
  708. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  709. /*
  710. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  711. * This is the scatter-gather version of the above swiotlb_map_page
  712. * interface. Here the scatter gather list elements are each tagged with the
  713. * appropriate dma address and length. They are obtained via
  714. * sg_dma_{address,length}(SG).
  715. *
  716. * NOTE: An implementation may be able to use a smaller number of
  717. * DMA address/length pairs than there are SG table elements.
  718. * (for example via virtual mapping capabilities)
  719. * The routine returns the number of addr/length pairs actually
  720. * used, at most nents.
  721. *
  722. * Device ownership issues as mentioned above for swiotlb_map_page are the
  723. * same here.
  724. */
  725. int
  726. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  727. enum dma_data_direction dir, struct dma_attrs *attrs)
  728. {
  729. struct scatterlist *sg;
  730. int i;
  731. BUG_ON(dir == DMA_NONE);
  732. for_each_sg(sgl, sg, nelems, i) {
  733. phys_addr_t paddr = sg_phys(sg);
  734. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  735. if (swiotlb_force ||
  736. !dma_capable(hwdev, dev_addr, sg->length)) {
  737. phys_addr_t map = map_single(hwdev, sg_phys(sg),
  738. sg->length, dir);
  739. if (map == SWIOTLB_MAP_ERROR) {
  740. /* Don't panic here, we expect map_sg users
  741. to do proper error handling. */
  742. swiotlb_full(hwdev, sg->length, dir, 0);
  743. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  744. attrs);
  745. sg_dma_len(sgl) = 0;
  746. return 0;
  747. }
  748. sg->dma_address = phys_to_dma(hwdev, map);
  749. } else
  750. sg->dma_address = dev_addr;
  751. sg_dma_len(sg) = sg->length;
  752. }
  753. return nelems;
  754. }
  755. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  756. int
  757. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  758. enum dma_data_direction dir)
  759. {
  760. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  761. }
  762. EXPORT_SYMBOL(swiotlb_map_sg);
  763. /*
  764. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  765. * concerning calls here are the same as for swiotlb_unmap_page() above.
  766. */
  767. void
  768. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  769. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  770. {
  771. struct scatterlist *sg;
  772. int i;
  773. BUG_ON(dir == DMA_NONE);
  774. for_each_sg(sgl, sg, nelems, i)
  775. unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
  776. }
  777. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  778. void
  779. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  780. enum dma_data_direction dir)
  781. {
  782. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  783. }
  784. EXPORT_SYMBOL(swiotlb_unmap_sg);
  785. /*
  786. * Make physical memory consistent for a set of streaming mode DMA translations
  787. * after a transfer.
  788. *
  789. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  790. * and usage.
  791. */
  792. static void
  793. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  794. int nelems, enum dma_data_direction dir,
  795. enum dma_sync_target target)
  796. {
  797. struct scatterlist *sg;
  798. int i;
  799. for_each_sg(sgl, sg, nelems, i)
  800. swiotlb_sync_single(hwdev, sg->dma_address,
  801. sg_dma_len(sg), dir, target);
  802. }
  803. void
  804. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  805. int nelems, enum dma_data_direction dir)
  806. {
  807. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  808. }
  809. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  810. void
  811. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  812. int nelems, enum dma_data_direction dir)
  813. {
  814. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  815. }
  816. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  817. int
  818. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  819. {
  820. return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
  821. }
  822. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  823. /*
  824. * Return whether the given device DMA address mask can be supported
  825. * properly. For example, if your device can only drive the low 24-bits
  826. * during bus mastering, then you would pass 0x00ffffff as the mask to
  827. * this function.
  828. */
  829. int
  830. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  831. {
  832. return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
  833. }
  834. EXPORT_SYMBOL(swiotlb_dma_supported);