hugetlb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <asm/page.h>
  17. #include <asm/pgtable.h>
  18. #include <linux/hugetlb.h>
  19. #include "internal.h"
  20. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  21. static unsigned long nr_huge_pages, free_huge_pages;
  22. unsigned long max_huge_pages;
  23. static struct list_head hugepage_freelists[MAX_NUMNODES];
  24. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  25. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  26. /*
  27. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  28. */
  29. static DEFINE_SPINLOCK(hugetlb_lock);
  30. static void enqueue_huge_page(struct page *page)
  31. {
  32. int nid = page_to_nid(page);
  33. list_add(&page->lru, &hugepage_freelists[nid]);
  34. free_huge_pages++;
  35. free_huge_pages_node[nid]++;
  36. }
  37. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  38. unsigned long address)
  39. {
  40. int nid = numa_node_id();
  41. struct page *page = NULL;
  42. struct zonelist *zonelist = huge_zonelist(vma, address);
  43. struct zone **z;
  44. for (z = zonelist->zones; *z; z++) {
  45. nid = (*z)->zone_pgdat->node_id;
  46. if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
  47. !list_empty(&hugepage_freelists[nid]))
  48. break;
  49. }
  50. if (*z) {
  51. page = list_entry(hugepage_freelists[nid].next,
  52. struct page, lru);
  53. list_del(&page->lru);
  54. free_huge_pages--;
  55. free_huge_pages_node[nid]--;
  56. }
  57. return page;
  58. }
  59. static int alloc_fresh_huge_page(void)
  60. {
  61. static int nid = 0;
  62. struct page *page;
  63. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  64. HUGETLB_PAGE_ORDER);
  65. nid = (nid + 1) % num_online_nodes();
  66. if (page) {
  67. page[1].lru.next = (void *)free_huge_page; /* dtor */
  68. spin_lock(&hugetlb_lock);
  69. nr_huge_pages++;
  70. nr_huge_pages_node[page_to_nid(page)]++;
  71. spin_unlock(&hugetlb_lock);
  72. put_page(page); /* free it into the hugepage allocator */
  73. return 1;
  74. }
  75. return 0;
  76. }
  77. void free_huge_page(struct page *page)
  78. {
  79. BUG_ON(page_count(page));
  80. INIT_LIST_HEAD(&page->lru);
  81. spin_lock(&hugetlb_lock);
  82. enqueue_huge_page(page);
  83. spin_unlock(&hugetlb_lock);
  84. }
  85. struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
  86. {
  87. struct page *page;
  88. int i;
  89. spin_lock(&hugetlb_lock);
  90. page = dequeue_huge_page(vma, addr);
  91. if (!page) {
  92. spin_unlock(&hugetlb_lock);
  93. return NULL;
  94. }
  95. spin_unlock(&hugetlb_lock);
  96. set_page_refcounted(page);
  97. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
  98. clear_user_highpage(&page[i], addr);
  99. return page;
  100. }
  101. static int __init hugetlb_init(void)
  102. {
  103. unsigned long i;
  104. if (HPAGE_SHIFT == 0)
  105. return 0;
  106. for (i = 0; i < MAX_NUMNODES; ++i)
  107. INIT_LIST_HEAD(&hugepage_freelists[i]);
  108. for (i = 0; i < max_huge_pages; ++i) {
  109. if (!alloc_fresh_huge_page())
  110. break;
  111. }
  112. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  113. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  114. return 0;
  115. }
  116. module_init(hugetlb_init);
  117. static int __init hugetlb_setup(char *s)
  118. {
  119. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  120. max_huge_pages = 0;
  121. return 1;
  122. }
  123. __setup("hugepages=", hugetlb_setup);
  124. #ifdef CONFIG_SYSCTL
  125. static void update_and_free_page(struct page *page)
  126. {
  127. int i;
  128. nr_huge_pages--;
  129. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  130. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  131. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  132. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  133. 1 << PG_private | 1<< PG_writeback);
  134. }
  135. page[1].lru.next = NULL;
  136. set_page_refcounted(page);
  137. __free_pages(page, HUGETLB_PAGE_ORDER);
  138. }
  139. #ifdef CONFIG_HIGHMEM
  140. static void try_to_free_low(unsigned long count)
  141. {
  142. int i, nid;
  143. for (i = 0; i < MAX_NUMNODES; ++i) {
  144. struct page *page, *next;
  145. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  146. if (PageHighMem(page))
  147. continue;
  148. list_del(&page->lru);
  149. update_and_free_page(page);
  150. nid = page_zone(page)->zone_pgdat->node_id;
  151. free_huge_pages--;
  152. free_huge_pages_node[nid]--;
  153. if (count >= nr_huge_pages)
  154. return;
  155. }
  156. }
  157. }
  158. #else
  159. static inline void try_to_free_low(unsigned long count)
  160. {
  161. }
  162. #endif
  163. static unsigned long set_max_huge_pages(unsigned long count)
  164. {
  165. while (count > nr_huge_pages) {
  166. if (!alloc_fresh_huge_page())
  167. return nr_huge_pages;
  168. }
  169. if (count >= nr_huge_pages)
  170. return nr_huge_pages;
  171. spin_lock(&hugetlb_lock);
  172. try_to_free_low(count);
  173. while (count < nr_huge_pages) {
  174. struct page *page = dequeue_huge_page(NULL, 0);
  175. if (!page)
  176. break;
  177. update_and_free_page(page);
  178. }
  179. spin_unlock(&hugetlb_lock);
  180. return nr_huge_pages;
  181. }
  182. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  183. struct file *file, void __user *buffer,
  184. size_t *length, loff_t *ppos)
  185. {
  186. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  187. max_huge_pages = set_max_huge_pages(max_huge_pages);
  188. return 0;
  189. }
  190. #endif /* CONFIG_SYSCTL */
  191. int hugetlb_report_meminfo(char *buf)
  192. {
  193. return sprintf(buf,
  194. "HugePages_Total: %5lu\n"
  195. "HugePages_Free: %5lu\n"
  196. "Hugepagesize: %5lu kB\n",
  197. nr_huge_pages,
  198. free_huge_pages,
  199. HPAGE_SIZE/1024);
  200. }
  201. int hugetlb_report_node_meminfo(int nid, char *buf)
  202. {
  203. return sprintf(buf,
  204. "Node %d HugePages_Total: %5u\n"
  205. "Node %d HugePages_Free: %5u\n",
  206. nid, nr_huge_pages_node[nid],
  207. nid, free_huge_pages_node[nid]);
  208. }
  209. int is_hugepage_mem_enough(size_t size)
  210. {
  211. return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
  212. }
  213. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  214. unsigned long hugetlb_total_pages(void)
  215. {
  216. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  217. }
  218. /*
  219. * We cannot handle pagefaults against hugetlb pages at all. They cause
  220. * handle_mm_fault() to try to instantiate regular-sized pages in the
  221. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  222. * this far.
  223. */
  224. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  225. unsigned long address, int *unused)
  226. {
  227. BUG();
  228. return NULL;
  229. }
  230. struct vm_operations_struct hugetlb_vm_ops = {
  231. .nopage = hugetlb_nopage,
  232. };
  233. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  234. int writable)
  235. {
  236. pte_t entry;
  237. if (writable) {
  238. entry =
  239. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  240. } else {
  241. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  242. }
  243. entry = pte_mkyoung(entry);
  244. entry = pte_mkhuge(entry);
  245. return entry;
  246. }
  247. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  248. unsigned long address, pte_t *ptep)
  249. {
  250. pte_t entry;
  251. entry = pte_mkwrite(pte_mkdirty(*ptep));
  252. ptep_set_access_flags(vma, address, ptep, entry, 1);
  253. update_mmu_cache(vma, address, entry);
  254. lazy_mmu_prot_update(entry);
  255. }
  256. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  257. struct vm_area_struct *vma)
  258. {
  259. pte_t *src_pte, *dst_pte, entry;
  260. struct page *ptepage;
  261. unsigned long addr;
  262. int cow;
  263. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  264. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  265. src_pte = huge_pte_offset(src, addr);
  266. if (!src_pte)
  267. continue;
  268. dst_pte = huge_pte_alloc(dst, addr);
  269. if (!dst_pte)
  270. goto nomem;
  271. spin_lock(&dst->page_table_lock);
  272. spin_lock(&src->page_table_lock);
  273. if (!pte_none(*src_pte)) {
  274. if (cow)
  275. ptep_set_wrprotect(src, addr, src_pte);
  276. entry = *src_pte;
  277. ptepage = pte_page(entry);
  278. get_page(ptepage);
  279. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  280. set_huge_pte_at(dst, addr, dst_pte, entry);
  281. }
  282. spin_unlock(&src->page_table_lock);
  283. spin_unlock(&dst->page_table_lock);
  284. }
  285. return 0;
  286. nomem:
  287. return -ENOMEM;
  288. }
  289. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  290. unsigned long end)
  291. {
  292. struct mm_struct *mm = vma->vm_mm;
  293. unsigned long address;
  294. pte_t *ptep;
  295. pte_t pte;
  296. struct page *page;
  297. WARN_ON(!is_vm_hugetlb_page(vma));
  298. BUG_ON(start & ~HPAGE_MASK);
  299. BUG_ON(end & ~HPAGE_MASK);
  300. spin_lock(&mm->page_table_lock);
  301. /* Update high watermark before we lower rss */
  302. update_hiwater_rss(mm);
  303. for (address = start; address < end; address += HPAGE_SIZE) {
  304. ptep = huge_pte_offset(mm, address);
  305. if (!ptep)
  306. continue;
  307. pte = huge_ptep_get_and_clear(mm, address, ptep);
  308. if (pte_none(pte))
  309. continue;
  310. page = pte_page(pte);
  311. put_page(page);
  312. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  313. }
  314. spin_unlock(&mm->page_table_lock);
  315. flush_tlb_range(vma, start, end);
  316. }
  317. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  318. unsigned long address, pte_t *ptep, pte_t pte)
  319. {
  320. struct page *old_page, *new_page;
  321. int i, avoidcopy;
  322. old_page = pte_page(pte);
  323. /* If no-one else is actually using this page, avoid the copy
  324. * and just make the page writable */
  325. avoidcopy = (page_count(old_page) == 1);
  326. if (avoidcopy) {
  327. set_huge_ptep_writable(vma, address, ptep);
  328. return VM_FAULT_MINOR;
  329. }
  330. page_cache_get(old_page);
  331. new_page = alloc_huge_page(vma, address);
  332. if (!new_page) {
  333. page_cache_release(old_page);
  334. return VM_FAULT_OOM;
  335. }
  336. spin_unlock(&mm->page_table_lock);
  337. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
  338. copy_user_highpage(new_page + i, old_page + i,
  339. address + i*PAGE_SIZE);
  340. spin_lock(&mm->page_table_lock);
  341. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  342. if (likely(pte_same(*ptep, pte))) {
  343. /* Break COW */
  344. set_huge_pte_at(mm, address, ptep,
  345. make_huge_pte(vma, new_page, 1));
  346. /* Make the old page be freed below */
  347. new_page = old_page;
  348. }
  349. page_cache_release(new_page);
  350. page_cache_release(old_page);
  351. return VM_FAULT_MINOR;
  352. }
  353. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  354. unsigned long address, pte_t *ptep, int write_access)
  355. {
  356. int ret = VM_FAULT_SIGBUS;
  357. unsigned long idx;
  358. unsigned long size;
  359. struct page *page;
  360. struct address_space *mapping;
  361. pte_t new_pte;
  362. mapping = vma->vm_file->f_mapping;
  363. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  364. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  365. /*
  366. * Use page lock to guard against racing truncation
  367. * before we get page_table_lock.
  368. */
  369. retry:
  370. page = find_lock_page(mapping, idx);
  371. if (!page) {
  372. if (hugetlb_get_quota(mapping))
  373. goto out;
  374. page = alloc_huge_page(vma, address);
  375. if (!page) {
  376. hugetlb_put_quota(mapping);
  377. ret = VM_FAULT_OOM;
  378. goto out;
  379. }
  380. if (vma->vm_flags & VM_SHARED) {
  381. int err;
  382. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  383. if (err) {
  384. put_page(page);
  385. hugetlb_put_quota(mapping);
  386. if (err == -EEXIST)
  387. goto retry;
  388. goto out;
  389. }
  390. } else
  391. lock_page(page);
  392. }
  393. spin_lock(&mm->page_table_lock);
  394. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  395. if (idx >= size)
  396. goto backout;
  397. ret = VM_FAULT_MINOR;
  398. if (!pte_none(*ptep))
  399. goto backout;
  400. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  401. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  402. && (vma->vm_flags & VM_SHARED)));
  403. set_huge_pte_at(mm, address, ptep, new_pte);
  404. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  405. /* Optimization, do the COW without a second fault */
  406. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  407. }
  408. spin_unlock(&mm->page_table_lock);
  409. unlock_page(page);
  410. out:
  411. return ret;
  412. backout:
  413. spin_unlock(&mm->page_table_lock);
  414. hugetlb_put_quota(mapping);
  415. unlock_page(page);
  416. put_page(page);
  417. goto out;
  418. }
  419. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  420. unsigned long address, int write_access)
  421. {
  422. pte_t *ptep;
  423. pte_t entry;
  424. int ret;
  425. ptep = huge_pte_alloc(mm, address);
  426. if (!ptep)
  427. return VM_FAULT_OOM;
  428. entry = *ptep;
  429. if (pte_none(entry))
  430. return hugetlb_no_page(mm, vma, address, ptep, write_access);
  431. ret = VM_FAULT_MINOR;
  432. spin_lock(&mm->page_table_lock);
  433. /* Check for a racing update before calling hugetlb_cow */
  434. if (likely(pte_same(entry, *ptep)))
  435. if (write_access && !pte_write(entry))
  436. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  437. spin_unlock(&mm->page_table_lock);
  438. return ret;
  439. }
  440. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  441. struct page **pages, struct vm_area_struct **vmas,
  442. unsigned long *position, int *length, int i)
  443. {
  444. unsigned long vpfn, vaddr = *position;
  445. int remainder = *length;
  446. vpfn = vaddr/PAGE_SIZE;
  447. spin_lock(&mm->page_table_lock);
  448. while (vaddr < vma->vm_end && remainder) {
  449. pte_t *pte;
  450. struct page *page;
  451. /*
  452. * Some archs (sparc64, sh*) have multiple pte_ts to
  453. * each hugepage. We have to make * sure we get the
  454. * first, for the page indexing below to work.
  455. */
  456. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  457. if (!pte || pte_none(*pte)) {
  458. int ret;
  459. spin_unlock(&mm->page_table_lock);
  460. ret = hugetlb_fault(mm, vma, vaddr, 0);
  461. spin_lock(&mm->page_table_lock);
  462. if (ret == VM_FAULT_MINOR)
  463. continue;
  464. remainder = 0;
  465. if (!i)
  466. i = -EFAULT;
  467. break;
  468. }
  469. if (pages) {
  470. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  471. get_page(page);
  472. pages[i] = page;
  473. }
  474. if (vmas)
  475. vmas[i] = vma;
  476. vaddr += PAGE_SIZE;
  477. ++vpfn;
  478. --remainder;
  479. ++i;
  480. }
  481. spin_unlock(&mm->page_table_lock);
  482. *length = remainder;
  483. *position = vaddr;
  484. return i;
  485. }