mm.h 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/sched.h>
  4. #include <linux/errno.h>
  5. #include <linux/capability.h>
  6. #ifdef __KERNEL__
  7. #include <linux/config.h>
  8. #include <linux/gfp.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/prio_tree.h>
  13. #include <linux/fs.h>
  14. #include <linux/mutex.h>
  15. struct mempolicy;
  16. struct anon_vma;
  17. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  18. extern unsigned long max_mapnr;
  19. #endif
  20. extern unsigned long num_physpages;
  21. extern void * high_memory;
  22. extern unsigned long vmalloc_earlyreserve;
  23. extern int page_cluster;
  24. #ifdef CONFIG_SYSCTL
  25. extern int sysctl_legacy_va_layout;
  26. #else
  27. #define sysctl_legacy_va_layout 0
  28. #endif
  29. #include <asm/page.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #include <asm/atomic.h>
  33. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  34. /*
  35. * Linux kernel virtual memory manager primitives.
  36. * The idea being to have a "virtual" mm in the same way
  37. * we have a virtual fs - giving a cleaner interface to the
  38. * mm details, and allowing different kinds of memory mappings
  39. * (from shared memory to executable loading to arbitrary
  40. * mmap() functions).
  41. */
  42. /*
  43. * This struct defines a memory VMM memory area. There is one of these
  44. * per VM-area/task. A VM area is any part of the process virtual memory
  45. * space that has a special rule for the page-fault handlers (ie a shared
  46. * library, the executable area etc).
  47. */
  48. struct vm_area_struct {
  49. struct mm_struct * vm_mm; /* The address space we belong to. */
  50. unsigned long vm_start; /* Our start address within vm_mm. */
  51. unsigned long vm_end; /* The first byte after our end address
  52. within vm_mm. */
  53. /* linked list of VM areas per task, sorted by address */
  54. struct vm_area_struct *vm_next;
  55. pgprot_t vm_page_prot; /* Access permissions of this VMA. */
  56. unsigned long vm_flags; /* Flags, listed below. */
  57. struct rb_node vm_rb;
  58. /*
  59. * For areas with an address space and backing store,
  60. * linkage into the address_space->i_mmap prio tree, or
  61. * linkage to the list of like vmas hanging off its node, or
  62. * linkage of vma in the address_space->i_mmap_nonlinear list.
  63. */
  64. union {
  65. struct {
  66. struct list_head list;
  67. void *parent; /* aligns with prio_tree_node parent */
  68. struct vm_area_struct *head;
  69. } vm_set;
  70. struct raw_prio_tree_node prio_tree_node;
  71. } shared;
  72. /*
  73. * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
  74. * list, after a COW of one of the file pages. A MAP_SHARED vma
  75. * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
  76. * or brk vma (with NULL file) can only be in an anon_vma list.
  77. */
  78. struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
  79. struct anon_vma *anon_vma; /* Serialized by page_table_lock */
  80. /* Function pointers to deal with this struct. */
  81. struct vm_operations_struct * vm_ops;
  82. /* Information about our backing store: */
  83. unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
  84. units, *not* PAGE_CACHE_SIZE */
  85. struct file * vm_file; /* File we map to (can be NULL). */
  86. void * vm_private_data; /* was vm_pte (shared mem) */
  87. unsigned long vm_truncate_count;/* truncate_count or restart_addr */
  88. #ifndef CONFIG_MMU
  89. atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
  90. #endif
  91. #ifdef CONFIG_NUMA
  92. struct mempolicy *vm_policy; /* NUMA policy for the VMA */
  93. #endif
  94. };
  95. /*
  96. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  97. * disabled, then there's a single shared list of VMAs maintained by the
  98. * system, and mm's subscribe to these individually
  99. */
  100. struct vm_list_struct {
  101. struct vm_list_struct *next;
  102. struct vm_area_struct *vma;
  103. };
  104. #ifndef CONFIG_MMU
  105. extern struct rb_root nommu_vma_tree;
  106. extern struct rw_semaphore nommu_vma_sem;
  107. extern unsigned int kobjsize(const void *objp);
  108. #endif
  109. /*
  110. * vm_flags..
  111. */
  112. #define VM_READ 0x00000001 /* currently active flags */
  113. #define VM_WRITE 0x00000002
  114. #define VM_EXEC 0x00000004
  115. #define VM_SHARED 0x00000008
  116. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  117. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  118. #define VM_MAYWRITE 0x00000020
  119. #define VM_MAYEXEC 0x00000040
  120. #define VM_MAYSHARE 0x00000080
  121. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  122. #define VM_GROWSUP 0x00000200
  123. #define VM_SHM 0x00000000 /* Means nothing: delete it later */
  124. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  125. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  126. #define VM_EXECUTABLE 0x00001000
  127. #define VM_LOCKED 0x00002000
  128. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  129. /* Used by sys_madvise() */
  130. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  131. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  132. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  133. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  134. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  135. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  136. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  137. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  138. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  139. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  140. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  141. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  142. #endif
  143. #ifdef CONFIG_STACK_GROWSUP
  144. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  145. #else
  146. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  147. #endif
  148. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  149. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  150. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  151. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  152. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  153. /*
  154. * mapping from the currently active vm_flags protection bits (the
  155. * low four bits) to a page protection mask..
  156. */
  157. extern pgprot_t protection_map[16];
  158. /*
  159. * These are the virtual MM functions - opening of an area, closing and
  160. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  161. * to the functions called when a no-page or a wp-page exception occurs.
  162. */
  163. struct vm_operations_struct {
  164. void (*open)(struct vm_area_struct * area);
  165. void (*close)(struct vm_area_struct * area);
  166. struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
  167. int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
  168. #ifdef CONFIG_NUMA
  169. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  170. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  171. unsigned long addr);
  172. #endif
  173. };
  174. struct mmu_gather;
  175. struct inode;
  176. /*
  177. * Each physical page in the system has a struct page associated with
  178. * it to keep track of whatever it is we are using the page for at the
  179. * moment. Note that we have no way to track which tasks are using
  180. * a page.
  181. */
  182. struct page {
  183. unsigned long flags; /* Atomic flags, some possibly
  184. * updated asynchronously */
  185. atomic_t _count; /* Usage count, see below. */
  186. atomic_t _mapcount; /* Count of ptes mapped in mms,
  187. * to show when page is mapped
  188. * & limit reverse map searches.
  189. */
  190. union {
  191. struct {
  192. unsigned long private; /* Mapping-private opaque data:
  193. * usually used for buffer_heads
  194. * if PagePrivate set; used for
  195. * swp_entry_t if PageSwapCache.
  196. * When page is free, this
  197. * indicates order in the buddy
  198. * system.
  199. */
  200. struct address_space *mapping; /* If low bit clear, points to
  201. * inode address_space, or NULL.
  202. * If page mapped as anonymous
  203. * memory, low bit is set, and
  204. * it points to anon_vma object:
  205. * see PAGE_MAPPING_ANON below.
  206. */
  207. };
  208. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  209. spinlock_t ptl;
  210. #endif
  211. };
  212. pgoff_t index; /* Our offset within mapping. */
  213. struct list_head lru; /* Pageout list, eg. active_list
  214. * protected by zone->lru_lock !
  215. */
  216. /*
  217. * On machines where all RAM is mapped into kernel address space,
  218. * we can simply calculate the virtual address. On machines with
  219. * highmem some memory is mapped into kernel virtual memory
  220. * dynamically, so we need a place to store that address.
  221. * Note that this field could be 16 bits on x86 ... ;)
  222. *
  223. * Architectures with slow multiplication can define
  224. * WANT_PAGE_VIRTUAL in asm/page.h
  225. */
  226. #if defined(WANT_PAGE_VIRTUAL)
  227. void *virtual; /* Kernel virtual address (NULL if
  228. not kmapped, ie. highmem) */
  229. #endif /* WANT_PAGE_VIRTUAL */
  230. };
  231. #define page_private(page) ((page)->private)
  232. #define set_page_private(page, v) ((page)->private = (v))
  233. /*
  234. * FIXME: take this include out, include page-flags.h in
  235. * files which need it (119 of them)
  236. */
  237. #include <linux/page-flags.h>
  238. /*
  239. * Methods to modify the page usage count.
  240. *
  241. * What counts for a page usage:
  242. * - cache mapping (page->mapping)
  243. * - private data (page->private)
  244. * - page mapped in a task's page tables, each mapping
  245. * is counted separately
  246. *
  247. * Also, many kernel routines increase the page count before a critical
  248. * routine so they can be sure the page doesn't go away from under them.
  249. */
  250. /*
  251. * Drop a ref, return true if the logical refcount fell to zero (the page has
  252. * no users)
  253. */
  254. static inline int put_page_testzero(struct page *page)
  255. {
  256. BUG_ON(atomic_read(&page->_count) == 0);
  257. return atomic_dec_and_test(&page->_count);
  258. }
  259. /*
  260. * Try to grab a ref unless the page has a refcount of zero, return false if
  261. * that is the case.
  262. */
  263. static inline int get_page_unless_zero(struct page *page)
  264. {
  265. return atomic_inc_not_zero(&page->_count);
  266. }
  267. extern void FASTCALL(__page_cache_release(struct page *));
  268. static inline int page_count(struct page *page)
  269. {
  270. if (PageCompound(page))
  271. page = (struct page *)page_private(page);
  272. return atomic_read(&page->_count);
  273. }
  274. static inline void get_page(struct page *page)
  275. {
  276. if (unlikely(PageCompound(page)))
  277. page = (struct page *)page_private(page);
  278. atomic_inc(&page->_count);
  279. }
  280. /*
  281. * Setup the page count before being freed into the page allocator for
  282. * the first time (boot or memory hotplug)
  283. */
  284. static inline void init_page_count(struct page *page)
  285. {
  286. atomic_set(&page->_count, 1);
  287. }
  288. void put_page(struct page *page);
  289. void split_page(struct page *page, unsigned int order);
  290. /*
  291. * Multiple processes may "see" the same page. E.g. for untouched
  292. * mappings of /dev/null, all processes see the same page full of
  293. * zeroes, and text pages of executables and shared libraries have
  294. * only one copy in memory, at most, normally.
  295. *
  296. * For the non-reserved pages, page_count(page) denotes a reference count.
  297. * page_count() == 0 means the page is free. page->lru is then used for
  298. * freelist management in the buddy allocator.
  299. * page_count() == 1 means the page is used for exactly one purpose
  300. * (e.g. a private data page of one process).
  301. *
  302. * A page may be used for kmalloc() or anyone else who does a
  303. * __get_free_page(). In this case the page_count() is at least 1, and
  304. * all other fields are unused but should be 0 or NULL. The
  305. * management of this page is the responsibility of the one who uses
  306. * it.
  307. *
  308. * The other pages (we may call them "process pages") are completely
  309. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  310. * The following discussion applies only to them.
  311. *
  312. * A page may belong to an inode's memory mapping. In this case,
  313. * page->mapping is the pointer to the inode, and page->index is the
  314. * file offset of the page, in units of PAGE_CACHE_SIZE.
  315. *
  316. * A page contains an opaque `private' member, which belongs to the
  317. * page's address_space. Usually, this is the address of a circular
  318. * list of the page's disk buffers.
  319. *
  320. * For pages belonging to inodes, the page_count() is the number of
  321. * attaches, plus 1 if `private' contains something, plus one for
  322. * the page cache itself.
  323. *
  324. * Instead of keeping dirty/clean pages in per address-space lists, we instead
  325. * now tag pages as dirty/under writeback in the radix tree.
  326. *
  327. * There is also a per-mapping radix tree mapping index to the page
  328. * in memory if present. The tree is rooted at mapping->root.
  329. *
  330. * All process pages can do I/O:
  331. * - inode pages may need to be read from disk,
  332. * - inode pages which have been modified and are MAP_SHARED may need
  333. * to be written to disk,
  334. * - private pages which have been modified may need to be swapped out
  335. * to swap space and (later) to be read back into memory.
  336. */
  337. /*
  338. * The zone field is never updated after free_area_init_core()
  339. * sets it, so none of the operations on it need to be atomic.
  340. */
  341. /*
  342. * page->flags layout:
  343. *
  344. * There are three possibilities for how page->flags get
  345. * laid out. The first is for the normal case, without
  346. * sparsemem. The second is for sparsemem when there is
  347. * plenty of space for node and section. The last is when
  348. * we have run out of space and have to fall back to an
  349. * alternate (slower) way of determining the node.
  350. *
  351. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  352. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  353. * no space for node: | SECTION | ZONE | ... | FLAGS |
  354. */
  355. #ifdef CONFIG_SPARSEMEM
  356. #define SECTIONS_WIDTH SECTIONS_SHIFT
  357. #else
  358. #define SECTIONS_WIDTH 0
  359. #endif
  360. #define ZONES_WIDTH ZONES_SHIFT
  361. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  362. #define NODES_WIDTH NODES_SHIFT
  363. #else
  364. #define NODES_WIDTH 0
  365. #endif
  366. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  367. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  368. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  369. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  370. /*
  371. * We are going to use the flags for the page to node mapping if its in
  372. * there. This includes the case where there is no node, so it is implicit.
  373. */
  374. #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
  375. #ifndef PFN_SECTION_SHIFT
  376. #define PFN_SECTION_SHIFT 0
  377. #endif
  378. /*
  379. * Define the bit shifts to access each section. For non-existant
  380. * sections we define the shift as 0; that plus a 0 mask ensures
  381. * the compiler will optimise away reference to them.
  382. */
  383. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  384. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  385. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  386. /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
  387. #if FLAGS_HAS_NODE
  388. #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  389. #else
  390. #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  391. #endif
  392. #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
  393. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  394. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  395. #endif
  396. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  397. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  398. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  399. #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
  400. static inline unsigned long page_zonenum(struct page *page)
  401. {
  402. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  403. }
  404. struct zone;
  405. extern struct zone *zone_table[];
  406. static inline struct zone *page_zone(struct page *page)
  407. {
  408. return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
  409. ZONETABLE_MASK];
  410. }
  411. static inline unsigned long page_to_nid(struct page *page)
  412. {
  413. if (FLAGS_HAS_NODE)
  414. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  415. else
  416. return page_zone(page)->zone_pgdat->node_id;
  417. }
  418. static inline unsigned long page_to_section(struct page *page)
  419. {
  420. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  421. }
  422. static inline void set_page_zone(struct page *page, unsigned long zone)
  423. {
  424. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  425. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  426. }
  427. static inline void set_page_node(struct page *page, unsigned long node)
  428. {
  429. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  430. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  431. }
  432. static inline void set_page_section(struct page *page, unsigned long section)
  433. {
  434. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  435. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  436. }
  437. static inline void set_page_links(struct page *page, unsigned long zone,
  438. unsigned long node, unsigned long pfn)
  439. {
  440. set_page_zone(page, zone);
  441. set_page_node(page, node);
  442. set_page_section(page, pfn_to_section_nr(pfn));
  443. }
  444. #ifndef CONFIG_DISCONTIGMEM
  445. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  446. extern struct page *mem_map;
  447. #endif
  448. static __always_inline void *lowmem_page_address(struct page *page)
  449. {
  450. return __va(page_to_pfn(page) << PAGE_SHIFT);
  451. }
  452. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  453. #define HASHED_PAGE_VIRTUAL
  454. #endif
  455. #if defined(WANT_PAGE_VIRTUAL)
  456. #define page_address(page) ((page)->virtual)
  457. #define set_page_address(page, address) \
  458. do { \
  459. (page)->virtual = (address); \
  460. } while(0)
  461. #define page_address_init() do { } while(0)
  462. #endif
  463. #if defined(HASHED_PAGE_VIRTUAL)
  464. void *page_address(struct page *page);
  465. void set_page_address(struct page *page, void *virtual);
  466. void page_address_init(void);
  467. #endif
  468. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  469. #define page_address(page) lowmem_page_address(page)
  470. #define set_page_address(page, address) do { } while(0)
  471. #define page_address_init() do { } while(0)
  472. #endif
  473. /*
  474. * On an anonymous page mapped into a user virtual memory area,
  475. * page->mapping points to its anon_vma, not to a struct address_space;
  476. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  477. *
  478. * Please note that, confusingly, "page_mapping" refers to the inode
  479. * address_space which maps the page from disk; whereas "page_mapped"
  480. * refers to user virtual address space into which the page is mapped.
  481. */
  482. #define PAGE_MAPPING_ANON 1
  483. extern struct address_space swapper_space;
  484. static inline struct address_space *page_mapping(struct page *page)
  485. {
  486. struct address_space *mapping = page->mapping;
  487. if (unlikely(PageSwapCache(page)))
  488. mapping = &swapper_space;
  489. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  490. mapping = NULL;
  491. return mapping;
  492. }
  493. static inline int PageAnon(struct page *page)
  494. {
  495. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  496. }
  497. /*
  498. * Return the pagecache index of the passed page. Regular pagecache pages
  499. * use ->index whereas swapcache pages use ->private
  500. */
  501. static inline pgoff_t page_index(struct page *page)
  502. {
  503. if (unlikely(PageSwapCache(page)))
  504. return page_private(page);
  505. return page->index;
  506. }
  507. /*
  508. * The atomic page->_mapcount, like _count, starts from -1:
  509. * so that transitions both from it and to it can be tracked,
  510. * using atomic_inc_and_test and atomic_add_negative(-1).
  511. */
  512. static inline void reset_page_mapcount(struct page *page)
  513. {
  514. atomic_set(&(page)->_mapcount, -1);
  515. }
  516. static inline int page_mapcount(struct page *page)
  517. {
  518. return atomic_read(&(page)->_mapcount) + 1;
  519. }
  520. /*
  521. * Return true if this page is mapped into pagetables.
  522. */
  523. static inline int page_mapped(struct page *page)
  524. {
  525. return atomic_read(&(page)->_mapcount) >= 0;
  526. }
  527. /*
  528. * Error return values for the *_nopage functions
  529. */
  530. #define NOPAGE_SIGBUS (NULL)
  531. #define NOPAGE_OOM ((struct page *) (-1))
  532. /*
  533. * Different kinds of faults, as returned by handle_mm_fault().
  534. * Used to decide whether a process gets delivered SIGBUS or
  535. * just gets major/minor fault counters bumped up.
  536. */
  537. #define VM_FAULT_OOM 0x00
  538. #define VM_FAULT_SIGBUS 0x01
  539. #define VM_FAULT_MINOR 0x02
  540. #define VM_FAULT_MAJOR 0x03
  541. /*
  542. * Special case for get_user_pages.
  543. * Must be in a distinct bit from the above VM_FAULT_ flags.
  544. */
  545. #define VM_FAULT_WRITE 0x10
  546. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  547. extern void show_free_areas(void);
  548. #ifdef CONFIG_SHMEM
  549. struct page *shmem_nopage(struct vm_area_struct *vma,
  550. unsigned long address, int *type);
  551. int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
  552. struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  553. unsigned long addr);
  554. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  555. #else
  556. #define shmem_nopage filemap_nopage
  557. static inline int shmem_lock(struct file *file, int lock,
  558. struct user_struct *user)
  559. {
  560. return 0;
  561. }
  562. static inline int shmem_set_policy(struct vm_area_struct *vma,
  563. struct mempolicy *new)
  564. {
  565. return 0;
  566. }
  567. static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  568. unsigned long addr)
  569. {
  570. return NULL;
  571. }
  572. #endif
  573. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  574. extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
  575. int shmem_zero_setup(struct vm_area_struct *);
  576. #ifndef CONFIG_MMU
  577. extern unsigned long shmem_get_unmapped_area(struct file *file,
  578. unsigned long addr,
  579. unsigned long len,
  580. unsigned long pgoff,
  581. unsigned long flags);
  582. #endif
  583. static inline int can_do_mlock(void)
  584. {
  585. if (capable(CAP_IPC_LOCK))
  586. return 1;
  587. if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
  588. return 1;
  589. return 0;
  590. }
  591. extern int user_shm_lock(size_t, struct user_struct *);
  592. extern void user_shm_unlock(size_t, struct user_struct *);
  593. /*
  594. * Parameter block passed down to zap_pte_range in exceptional cases.
  595. */
  596. struct zap_details {
  597. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  598. struct address_space *check_mapping; /* Check page->mapping if set */
  599. pgoff_t first_index; /* Lowest page->index to unmap */
  600. pgoff_t last_index; /* Highest page->index to unmap */
  601. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  602. unsigned long truncate_count; /* Compare vm_truncate_count */
  603. };
  604. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  605. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  606. unsigned long size, struct zap_details *);
  607. unsigned long unmap_vmas(struct mmu_gather **tlb,
  608. struct vm_area_struct *start_vma, unsigned long start_addr,
  609. unsigned long end_addr, unsigned long *nr_accounted,
  610. struct zap_details *);
  611. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  612. unsigned long end, unsigned long floor, unsigned long ceiling);
  613. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  614. unsigned long floor, unsigned long ceiling);
  615. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  616. struct vm_area_struct *vma);
  617. int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
  618. unsigned long size, pgprot_t prot);
  619. void unmap_mapping_range(struct address_space *mapping,
  620. loff_t const holebegin, loff_t const holelen, int even_cows);
  621. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  622. loff_t const holebegin, loff_t const holelen)
  623. {
  624. unmap_mapping_range(mapping, holebegin, holelen, 0);
  625. }
  626. extern int vmtruncate(struct inode * inode, loff_t offset);
  627. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  628. extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
  629. extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
  630. #ifdef CONFIG_MMU
  631. extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
  632. unsigned long address, int write_access);
  633. static inline int handle_mm_fault(struct mm_struct *mm,
  634. struct vm_area_struct *vma, unsigned long address,
  635. int write_access)
  636. {
  637. return __handle_mm_fault(mm, vma, address, write_access) &
  638. (~VM_FAULT_WRITE);
  639. }
  640. #else
  641. static inline int handle_mm_fault(struct mm_struct *mm,
  642. struct vm_area_struct *vma, unsigned long address,
  643. int write_access)
  644. {
  645. /* should never happen if there's no MMU */
  646. BUG();
  647. return VM_FAULT_SIGBUS;
  648. }
  649. #endif
  650. extern int make_pages_present(unsigned long addr, unsigned long end);
  651. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  652. void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
  653. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  654. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  655. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  656. int __set_page_dirty_buffers(struct page *page);
  657. int __set_page_dirty_nobuffers(struct page *page);
  658. int redirty_page_for_writepage(struct writeback_control *wbc,
  659. struct page *page);
  660. int FASTCALL(set_page_dirty(struct page *page));
  661. int set_page_dirty_lock(struct page *page);
  662. int clear_page_dirty_for_io(struct page *page);
  663. extern unsigned long do_mremap(unsigned long addr,
  664. unsigned long old_len, unsigned long new_len,
  665. unsigned long flags, unsigned long new_addr);
  666. /*
  667. * Prototype to add a shrinker callback for ageable caches.
  668. *
  669. * These functions are passed a count `nr_to_scan' and a gfpmask. They should
  670. * scan `nr_to_scan' objects, attempting to free them.
  671. *
  672. * The callback must return the number of objects which remain in the cache.
  673. *
  674. * The callback will be passed nr_to_scan == 0 when the VM is querying the
  675. * cache size, so a fastpath for that case is appropriate.
  676. */
  677. typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
  678. /*
  679. * Add an aging callback. The int is the number of 'seeks' it takes
  680. * to recreate one of the objects that these functions age.
  681. */
  682. #define DEFAULT_SEEKS 2
  683. struct shrinker;
  684. extern struct shrinker *set_shrinker(int, shrinker_t);
  685. extern void remove_shrinker(struct shrinker *shrinker);
  686. extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
  687. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  688. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  689. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  690. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  691. /*
  692. * The following ifdef needed to get the 4level-fixup.h header to work.
  693. * Remove it when 4level-fixup.h has been removed.
  694. */
  695. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  696. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  697. {
  698. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  699. NULL: pud_offset(pgd, address);
  700. }
  701. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  702. {
  703. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  704. NULL: pmd_offset(pud, address);
  705. }
  706. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  707. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  708. /*
  709. * We tuck a spinlock to guard each pagetable page into its struct page,
  710. * at page->private, with BUILD_BUG_ON to make sure that this will not
  711. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  712. * When freeing, reset page->mapping so free_pages_check won't complain.
  713. */
  714. #define __pte_lockptr(page) &((page)->ptl)
  715. #define pte_lock_init(_page) do { \
  716. spin_lock_init(__pte_lockptr(_page)); \
  717. } while (0)
  718. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  719. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  720. #else
  721. /*
  722. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  723. */
  724. #define pte_lock_init(page) do {} while (0)
  725. #define pte_lock_deinit(page) do {} while (0)
  726. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  727. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  728. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  729. ({ \
  730. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  731. pte_t *__pte = pte_offset_map(pmd, address); \
  732. *(ptlp) = __ptl; \
  733. spin_lock(__ptl); \
  734. __pte; \
  735. })
  736. #define pte_unmap_unlock(pte, ptl) do { \
  737. spin_unlock(ptl); \
  738. pte_unmap(pte); \
  739. } while (0)
  740. #define pte_alloc_map(mm, pmd, address) \
  741. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  742. NULL: pte_offset_map(pmd, address))
  743. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  744. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  745. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  746. #define pte_alloc_kernel(pmd, address) \
  747. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  748. NULL: pte_offset_kernel(pmd, address))
  749. extern void free_area_init(unsigned long * zones_size);
  750. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  751. unsigned long * zones_size, unsigned long zone_start_pfn,
  752. unsigned long *zholes_size);
  753. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
  754. extern void setup_per_zone_pages_min(void);
  755. extern void mem_init(void);
  756. extern void show_mem(void);
  757. extern void si_meminfo(struct sysinfo * val);
  758. extern void si_meminfo_node(struct sysinfo *val, int nid);
  759. #ifdef CONFIG_NUMA
  760. extern void setup_per_cpu_pageset(void);
  761. #else
  762. static inline void setup_per_cpu_pageset(void) {}
  763. #endif
  764. /* prio_tree.c */
  765. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  766. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  767. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  768. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  769. struct prio_tree_iter *iter);
  770. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  771. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  772. (vma = vma_prio_tree_next(vma, iter)); )
  773. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  774. struct list_head *list)
  775. {
  776. vma->shared.vm_set.parent = NULL;
  777. list_add_tail(&vma->shared.vm_set.list, list);
  778. }
  779. /* mmap.c */
  780. extern int __vm_enough_memory(long pages, int cap_sys_admin);
  781. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  782. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  783. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  784. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  785. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  786. struct mempolicy *);
  787. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  788. extern int split_vma(struct mm_struct *,
  789. struct vm_area_struct *, unsigned long addr, int new_below);
  790. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  791. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  792. struct rb_node **, struct rb_node *);
  793. extern void unlink_file_vma(struct vm_area_struct *);
  794. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  795. unsigned long addr, unsigned long len, pgoff_t pgoff);
  796. extern void exit_mmap(struct mm_struct *);
  797. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  798. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  799. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  800. unsigned long len, unsigned long prot,
  801. unsigned long flag, unsigned long pgoff);
  802. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  803. unsigned long len, unsigned long prot,
  804. unsigned long flag, unsigned long offset)
  805. {
  806. unsigned long ret = -EINVAL;
  807. if ((offset + PAGE_ALIGN(len)) < offset)
  808. goto out;
  809. if (!(offset & ~PAGE_MASK))
  810. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  811. out:
  812. return ret;
  813. }
  814. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  815. extern unsigned long do_brk(unsigned long, unsigned long);
  816. /* filemap.c */
  817. extern unsigned long page_unuse(struct page *);
  818. extern void truncate_inode_pages(struct address_space *, loff_t);
  819. extern void truncate_inode_pages_range(struct address_space *,
  820. loff_t lstart, loff_t lend);
  821. /* generic vm_area_ops exported for stackable file systems */
  822. extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
  823. extern int filemap_populate(struct vm_area_struct *, unsigned long,
  824. unsigned long, pgprot_t, unsigned long, int);
  825. /* mm/page-writeback.c */
  826. int write_one_page(struct page *page, int wait);
  827. /* readahead.c */
  828. #define VM_MAX_READAHEAD 128 /* kbytes */
  829. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  830. #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
  831. * turning readahead off */
  832. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  833. pgoff_t offset, unsigned long nr_to_read);
  834. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  835. pgoff_t offset, unsigned long nr_to_read);
  836. unsigned long page_cache_readahead(struct address_space *mapping,
  837. struct file_ra_state *ra,
  838. struct file *filp,
  839. pgoff_t offset,
  840. unsigned long size);
  841. void handle_ra_miss(struct address_space *mapping,
  842. struct file_ra_state *ra, pgoff_t offset);
  843. unsigned long max_sane_readahead(unsigned long nr);
  844. /* Do stack extension */
  845. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  846. #ifdef CONFIG_IA64
  847. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  848. #endif
  849. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  850. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  851. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  852. struct vm_area_struct **pprev);
  853. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  854. NULL if none. Assume start_addr < end_addr. */
  855. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  856. {
  857. struct vm_area_struct * vma = find_vma(mm,start_addr);
  858. if (vma && end_addr <= vma->vm_start)
  859. vma = NULL;
  860. return vma;
  861. }
  862. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  863. {
  864. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  865. }
  866. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  867. struct page *vmalloc_to_page(void *addr);
  868. unsigned long vmalloc_to_pfn(void *addr);
  869. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  870. unsigned long pfn, unsigned long size, pgprot_t);
  871. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  872. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  873. unsigned int foll_flags);
  874. #define FOLL_WRITE 0x01 /* check pte is writable */
  875. #define FOLL_TOUCH 0x02 /* mark page accessed */
  876. #define FOLL_GET 0x04 /* do get_page on page */
  877. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  878. #ifdef CONFIG_PROC_FS
  879. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  880. #else
  881. static inline void vm_stat_account(struct mm_struct *mm,
  882. unsigned long flags, struct file *file, long pages)
  883. {
  884. }
  885. #endif /* CONFIG_PROC_FS */
  886. #ifndef CONFIG_DEBUG_PAGEALLOC
  887. static inline void
  888. kernel_map_pages(struct page *page, int numpages, int enable)
  889. {
  890. if (!PageHighMem(page) && !enable)
  891. mutex_debug_check_no_locks_freed(page_address(page),
  892. numpages * PAGE_SIZE);
  893. }
  894. #endif
  895. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  896. #ifdef __HAVE_ARCH_GATE_AREA
  897. int in_gate_area_no_task(unsigned long addr);
  898. int in_gate_area(struct task_struct *task, unsigned long addr);
  899. #else
  900. int in_gate_area_no_task(unsigned long addr);
  901. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  902. #endif /* __HAVE_ARCH_GATE_AREA */
  903. /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
  904. #define OOM_DISABLE -17
  905. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  906. void __user *, size_t *, loff_t *);
  907. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  908. unsigned long lru_pages);
  909. void drop_pagecache(void);
  910. void drop_slab(void);
  911. #ifndef CONFIG_MMU
  912. #define randomize_va_space 0
  913. #else
  914. extern int randomize_va_space;
  915. #endif
  916. #endif /* __KERNEL__ */
  917. #endif /* _LINUX_MM_H */