indirect.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625
  1. /*
  2. * linux/fs/ext4/indirect.c
  3. *
  4. * from
  5. *
  6. * linux/fs/ext4/inode.c
  7. *
  8. * Copyright (C) 1992, 1993, 1994, 1995
  9. * Remy Card (card@masi.ibp.fr)
  10. * Laboratoire MASI - Institut Blaise Pascal
  11. * Universite Pierre et Marie Curie (Paris VI)
  12. *
  13. * from
  14. *
  15. * linux/fs/minix/inode.c
  16. *
  17. * Copyright (C) 1991, 1992 Linus Torvalds
  18. *
  19. * Goal-directed block allocation by Stephen Tweedie
  20. * (sct@redhat.com), 1993, 1998
  21. */
  22. #include "ext4_jbd2.h"
  23. #include "truncate.h"
  24. #include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */
  25. #include <trace/events/ext4.h>
  26. typedef struct {
  27. __le32 *p;
  28. __le32 key;
  29. struct buffer_head *bh;
  30. } Indirect;
  31. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  32. {
  33. p->key = *(p->p = v);
  34. p->bh = bh;
  35. }
  36. /**
  37. * ext4_block_to_path - parse the block number into array of offsets
  38. * @inode: inode in question (we are only interested in its superblock)
  39. * @i_block: block number to be parsed
  40. * @offsets: array to store the offsets in
  41. * @boundary: set this non-zero if the referred-to block is likely to be
  42. * followed (on disk) by an indirect block.
  43. *
  44. * To store the locations of file's data ext4 uses a data structure common
  45. * for UNIX filesystems - tree of pointers anchored in the inode, with
  46. * data blocks at leaves and indirect blocks in intermediate nodes.
  47. * This function translates the block number into path in that tree -
  48. * return value is the path length and @offsets[n] is the offset of
  49. * pointer to (n+1)th node in the nth one. If @block is out of range
  50. * (negative or too large) warning is printed and zero returned.
  51. *
  52. * Note: function doesn't find node addresses, so no IO is needed. All
  53. * we need to know is the capacity of indirect blocks (taken from the
  54. * inode->i_sb).
  55. */
  56. /*
  57. * Portability note: the last comparison (check that we fit into triple
  58. * indirect block) is spelled differently, because otherwise on an
  59. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  60. * if our filesystem had 8Kb blocks. We might use long long, but that would
  61. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  62. * i_block would have to be negative in the very beginning, so we would not
  63. * get there at all.
  64. */
  65. static int ext4_block_to_path(struct inode *inode,
  66. ext4_lblk_t i_block,
  67. ext4_lblk_t offsets[4], int *boundary)
  68. {
  69. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  70. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  71. const long direct_blocks = EXT4_NDIR_BLOCKS,
  72. indirect_blocks = ptrs,
  73. double_blocks = (1 << (ptrs_bits * 2));
  74. int n = 0;
  75. int final = 0;
  76. if (i_block < direct_blocks) {
  77. offsets[n++] = i_block;
  78. final = direct_blocks;
  79. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  80. offsets[n++] = EXT4_IND_BLOCK;
  81. offsets[n++] = i_block;
  82. final = ptrs;
  83. } else if ((i_block -= indirect_blocks) < double_blocks) {
  84. offsets[n++] = EXT4_DIND_BLOCK;
  85. offsets[n++] = i_block >> ptrs_bits;
  86. offsets[n++] = i_block & (ptrs - 1);
  87. final = ptrs;
  88. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  89. offsets[n++] = EXT4_TIND_BLOCK;
  90. offsets[n++] = i_block >> (ptrs_bits * 2);
  91. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  92. offsets[n++] = i_block & (ptrs - 1);
  93. final = ptrs;
  94. } else {
  95. ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
  96. i_block + direct_blocks +
  97. indirect_blocks + double_blocks, inode->i_ino);
  98. }
  99. if (boundary)
  100. *boundary = final - 1 - (i_block & (ptrs - 1));
  101. return n;
  102. }
  103. /**
  104. * ext4_get_branch - read the chain of indirect blocks leading to data
  105. * @inode: inode in question
  106. * @depth: depth of the chain (1 - direct pointer, etc.)
  107. * @offsets: offsets of pointers in inode/indirect blocks
  108. * @chain: place to store the result
  109. * @err: here we store the error value
  110. *
  111. * Function fills the array of triples <key, p, bh> and returns %NULL
  112. * if everything went OK or the pointer to the last filled triple
  113. * (incomplete one) otherwise. Upon the return chain[i].key contains
  114. * the number of (i+1)-th block in the chain (as it is stored in memory,
  115. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  116. * number (it points into struct inode for i==0 and into the bh->b_data
  117. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  118. * block for i>0 and NULL for i==0. In other words, it holds the block
  119. * numbers of the chain, addresses they were taken from (and where we can
  120. * verify that chain did not change) and buffer_heads hosting these
  121. * numbers.
  122. *
  123. * Function stops when it stumbles upon zero pointer (absent block)
  124. * (pointer to last triple returned, *@err == 0)
  125. * or when it gets an IO error reading an indirect block
  126. * (ditto, *@err == -EIO)
  127. * or when it reads all @depth-1 indirect blocks successfully and finds
  128. * the whole chain, all way to the data (returns %NULL, *err == 0).
  129. *
  130. * Need to be called with
  131. * down_read(&EXT4_I(inode)->i_data_sem)
  132. */
  133. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  134. ext4_lblk_t *offsets,
  135. Indirect chain[4], int *err)
  136. {
  137. struct super_block *sb = inode->i_sb;
  138. Indirect *p = chain;
  139. struct buffer_head *bh;
  140. int ret = -EIO;
  141. *err = 0;
  142. /* i_data is not going away, no lock needed */
  143. add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
  144. if (!p->key)
  145. goto no_block;
  146. while (--depth) {
  147. bh = sb_getblk(sb, le32_to_cpu(p->key));
  148. if (unlikely(!bh)) {
  149. ret = -ENOMEM;
  150. goto failure;
  151. }
  152. if (!bh_uptodate_or_lock(bh)) {
  153. if (bh_submit_read(bh) < 0) {
  154. put_bh(bh);
  155. goto failure;
  156. }
  157. /* validate block references */
  158. if (ext4_check_indirect_blockref(inode, bh)) {
  159. put_bh(bh);
  160. goto failure;
  161. }
  162. }
  163. add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
  164. /* Reader: end */
  165. if (!p->key)
  166. goto no_block;
  167. }
  168. return NULL;
  169. failure:
  170. *err = ret;
  171. no_block:
  172. return p;
  173. }
  174. /**
  175. * ext4_find_near - find a place for allocation with sufficient locality
  176. * @inode: owner
  177. * @ind: descriptor of indirect block.
  178. *
  179. * This function returns the preferred place for block allocation.
  180. * It is used when heuristic for sequential allocation fails.
  181. * Rules are:
  182. * + if there is a block to the left of our position - allocate near it.
  183. * + if pointer will live in indirect block - allocate near that block.
  184. * + if pointer will live in inode - allocate in the same
  185. * cylinder group.
  186. *
  187. * In the latter case we colour the starting block by the callers PID to
  188. * prevent it from clashing with concurrent allocations for a different inode
  189. * in the same block group. The PID is used here so that functionally related
  190. * files will be close-by on-disk.
  191. *
  192. * Caller must make sure that @ind is valid and will stay that way.
  193. */
  194. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  195. {
  196. struct ext4_inode_info *ei = EXT4_I(inode);
  197. __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
  198. __le32 *p;
  199. /* Try to find previous block */
  200. for (p = ind->p - 1; p >= start; p--) {
  201. if (*p)
  202. return le32_to_cpu(*p);
  203. }
  204. /* No such thing, so let's try location of indirect block */
  205. if (ind->bh)
  206. return ind->bh->b_blocknr;
  207. /*
  208. * It is going to be referred to from the inode itself? OK, just put it
  209. * into the same cylinder group then.
  210. */
  211. return ext4_inode_to_goal_block(inode);
  212. }
  213. /**
  214. * ext4_find_goal - find a preferred place for allocation.
  215. * @inode: owner
  216. * @block: block we want
  217. * @partial: pointer to the last triple within a chain
  218. *
  219. * Normally this function find the preferred place for block allocation,
  220. * returns it.
  221. * Because this is only used for non-extent files, we limit the block nr
  222. * to 32 bits.
  223. */
  224. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  225. Indirect *partial)
  226. {
  227. ext4_fsblk_t goal;
  228. /*
  229. * XXX need to get goal block from mballoc's data structures
  230. */
  231. goal = ext4_find_near(inode, partial);
  232. goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
  233. return goal;
  234. }
  235. /**
  236. * ext4_blks_to_allocate - Look up the block map and count the number
  237. * of direct blocks need to be allocated for the given branch.
  238. *
  239. * @branch: chain of indirect blocks
  240. * @k: number of blocks need for indirect blocks
  241. * @blks: number of data blocks to be mapped.
  242. * @blocks_to_boundary: the offset in the indirect block
  243. *
  244. * return the total number of blocks to be allocate, including the
  245. * direct and indirect blocks.
  246. */
  247. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
  248. int blocks_to_boundary)
  249. {
  250. unsigned int count = 0;
  251. /*
  252. * Simple case, [t,d]Indirect block(s) has not allocated yet
  253. * then it's clear blocks on that path have not allocated
  254. */
  255. if (k > 0) {
  256. /* right now we don't handle cross boundary allocation */
  257. if (blks < blocks_to_boundary + 1)
  258. count += blks;
  259. else
  260. count += blocks_to_boundary + 1;
  261. return count;
  262. }
  263. count++;
  264. while (count < blks && count <= blocks_to_boundary &&
  265. le32_to_cpu(*(branch[0].p + count)) == 0) {
  266. count++;
  267. }
  268. return count;
  269. }
  270. /**
  271. * ext4_alloc_branch - allocate and set up a chain of blocks.
  272. * @handle: handle for this transaction
  273. * @inode: owner
  274. * @indirect_blks: number of allocated indirect blocks
  275. * @blks: number of allocated direct blocks
  276. * @goal: preferred place for allocation
  277. * @offsets: offsets (in the blocks) to store the pointers to next.
  278. * @branch: place to store the chain in.
  279. *
  280. * This function allocates blocks, zeroes out all but the last one,
  281. * links them into chain and (if we are synchronous) writes them to disk.
  282. * In other words, it prepares a branch that can be spliced onto the
  283. * inode. It stores the information about that chain in the branch[], in
  284. * the same format as ext4_get_branch() would do. We are calling it after
  285. * we had read the existing part of chain and partial points to the last
  286. * triple of that (one with zero ->key). Upon the exit we have the same
  287. * picture as after the successful ext4_get_block(), except that in one
  288. * place chain is disconnected - *branch->p is still zero (we did not
  289. * set the last link), but branch->key contains the number that should
  290. * be placed into *branch->p to fill that gap.
  291. *
  292. * If allocation fails we free all blocks we've allocated (and forget
  293. * their buffer_heads) and return the error value the from failed
  294. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  295. * as described above and return 0.
  296. */
  297. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  298. ext4_lblk_t iblock, int indirect_blks,
  299. int *blks, ext4_fsblk_t goal,
  300. ext4_lblk_t *offsets, Indirect *branch)
  301. {
  302. struct ext4_allocation_request ar;
  303. struct buffer_head * bh;
  304. ext4_fsblk_t b, new_blocks[4];
  305. __le32 *p;
  306. int i, j, err, len = 1;
  307. /*
  308. * Set up for the direct block allocation
  309. */
  310. memset(&ar, 0, sizeof(ar));
  311. ar.inode = inode;
  312. ar.len = *blks;
  313. ar.logical = iblock;
  314. if (S_ISREG(inode->i_mode))
  315. ar.flags = EXT4_MB_HINT_DATA;
  316. for (i = 0; i <= indirect_blks; i++) {
  317. if (i == indirect_blks) {
  318. ar.goal = goal;
  319. new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
  320. } else
  321. goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
  322. goal, 0, NULL, &err);
  323. if (err) {
  324. i--;
  325. goto failed;
  326. }
  327. branch[i].key = cpu_to_le32(new_blocks[i]);
  328. if (i == 0)
  329. continue;
  330. bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
  331. if (unlikely(!bh)) {
  332. err = -ENOMEM;
  333. goto failed;
  334. }
  335. lock_buffer(bh);
  336. BUFFER_TRACE(bh, "call get_create_access");
  337. err = ext4_journal_get_create_access(handle, bh);
  338. if (err) {
  339. unlock_buffer(bh);
  340. goto failed;
  341. }
  342. memset(bh->b_data, 0, bh->b_size);
  343. p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
  344. b = new_blocks[i];
  345. if (i == indirect_blks)
  346. len = ar.len;
  347. for (j = 0; j < len; j++)
  348. *p++ = cpu_to_le32(b++);
  349. BUFFER_TRACE(bh, "marking uptodate");
  350. set_buffer_uptodate(bh);
  351. unlock_buffer(bh);
  352. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  353. err = ext4_handle_dirty_metadata(handle, inode, bh);
  354. if (err)
  355. goto failed;
  356. }
  357. *blks = ar.len;
  358. return 0;
  359. failed:
  360. for (; i >= 0; i--) {
  361. if (i != indirect_blks && branch[i].bh)
  362. ext4_forget(handle, 1, inode, branch[i].bh,
  363. branch[i].bh->b_blocknr);
  364. ext4_free_blocks(handle, inode, NULL, new_blocks[i],
  365. (i == indirect_blks) ? ar.len : 1, 0);
  366. }
  367. return err;
  368. }
  369. /**
  370. * ext4_splice_branch - splice the allocated branch onto inode.
  371. * @handle: handle for this transaction
  372. * @inode: owner
  373. * @block: (logical) number of block we are adding
  374. * @chain: chain of indirect blocks (with a missing link - see
  375. * ext4_alloc_branch)
  376. * @where: location of missing link
  377. * @num: number of indirect blocks we are adding
  378. * @blks: number of direct blocks we are adding
  379. *
  380. * This function fills the missing link and does all housekeeping needed in
  381. * inode (->i_blocks, etc.). In case of success we end up with the full
  382. * chain to new block and return 0.
  383. */
  384. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  385. ext4_lblk_t block, Indirect *where, int num,
  386. int blks)
  387. {
  388. int i;
  389. int err = 0;
  390. ext4_fsblk_t current_block;
  391. /*
  392. * If we're splicing into a [td]indirect block (as opposed to the
  393. * inode) then we need to get write access to the [td]indirect block
  394. * before the splice.
  395. */
  396. if (where->bh) {
  397. BUFFER_TRACE(where->bh, "get_write_access");
  398. err = ext4_journal_get_write_access(handle, where->bh);
  399. if (err)
  400. goto err_out;
  401. }
  402. /* That's it */
  403. *where->p = where->key;
  404. /*
  405. * Update the host buffer_head or inode to point to more just allocated
  406. * direct blocks blocks
  407. */
  408. if (num == 0 && blks > 1) {
  409. current_block = le32_to_cpu(where->key) + 1;
  410. for (i = 1; i < blks; i++)
  411. *(where->p + i) = cpu_to_le32(current_block++);
  412. }
  413. /* We are done with atomic stuff, now do the rest of housekeeping */
  414. /* had we spliced it onto indirect block? */
  415. if (where->bh) {
  416. /*
  417. * If we spliced it onto an indirect block, we haven't
  418. * altered the inode. Note however that if it is being spliced
  419. * onto an indirect block at the very end of the file (the
  420. * file is growing) then we *will* alter the inode to reflect
  421. * the new i_size. But that is not done here - it is done in
  422. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  423. */
  424. jbd_debug(5, "splicing indirect only\n");
  425. BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
  426. err = ext4_handle_dirty_metadata(handle, inode, where->bh);
  427. if (err)
  428. goto err_out;
  429. } else {
  430. /*
  431. * OK, we spliced it into the inode itself on a direct block.
  432. */
  433. ext4_mark_inode_dirty(handle, inode);
  434. jbd_debug(5, "splicing direct\n");
  435. }
  436. return err;
  437. err_out:
  438. for (i = 1; i <= num; i++) {
  439. /*
  440. * branch[i].bh is newly allocated, so there is no
  441. * need to revoke the block, which is why we don't
  442. * need to set EXT4_FREE_BLOCKS_METADATA.
  443. */
  444. ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
  445. EXT4_FREE_BLOCKS_FORGET);
  446. }
  447. ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
  448. blks, 0);
  449. return err;
  450. }
  451. /*
  452. * The ext4_ind_map_blocks() function handles non-extents inodes
  453. * (i.e., using the traditional indirect/double-indirect i_blocks
  454. * scheme) for ext4_map_blocks().
  455. *
  456. * Allocation strategy is simple: if we have to allocate something, we will
  457. * have to go the whole way to leaf. So let's do it before attaching anything
  458. * to tree, set linkage between the newborn blocks, write them if sync is
  459. * required, recheck the path, free and repeat if check fails, otherwise
  460. * set the last missing link (that will protect us from any truncate-generated
  461. * removals - all blocks on the path are immune now) and possibly force the
  462. * write on the parent block.
  463. * That has a nice additional property: no special recovery from the failed
  464. * allocations is needed - we simply release blocks and do not touch anything
  465. * reachable from inode.
  466. *
  467. * `handle' can be NULL if create == 0.
  468. *
  469. * return > 0, # of blocks mapped or allocated.
  470. * return = 0, if plain lookup failed.
  471. * return < 0, error case.
  472. *
  473. * The ext4_ind_get_blocks() function should be called with
  474. * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
  475. * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
  476. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
  477. * blocks.
  478. */
  479. int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
  480. struct ext4_map_blocks *map,
  481. int flags)
  482. {
  483. int err = -EIO;
  484. ext4_lblk_t offsets[4];
  485. Indirect chain[4];
  486. Indirect *partial;
  487. ext4_fsblk_t goal;
  488. int indirect_blks;
  489. int blocks_to_boundary = 0;
  490. int depth;
  491. int count = 0;
  492. ext4_fsblk_t first_block = 0;
  493. trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
  494. J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
  495. J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
  496. depth = ext4_block_to_path(inode, map->m_lblk, offsets,
  497. &blocks_to_boundary);
  498. if (depth == 0)
  499. goto out;
  500. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  501. /* Simplest case - block found, no allocation needed */
  502. if (!partial) {
  503. first_block = le32_to_cpu(chain[depth - 1].key);
  504. count++;
  505. /*map more blocks*/
  506. while (count < map->m_len && count <= blocks_to_boundary) {
  507. ext4_fsblk_t blk;
  508. blk = le32_to_cpu(*(chain[depth-1].p + count));
  509. if (blk == first_block + count)
  510. count++;
  511. else
  512. break;
  513. }
  514. goto got_it;
  515. }
  516. /* Next simple case - plain lookup or failed read of indirect block */
  517. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
  518. goto cleanup;
  519. /*
  520. * Okay, we need to do block allocation.
  521. */
  522. if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  523. EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
  524. EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
  525. "non-extent mapped inodes with bigalloc");
  526. return -ENOSPC;
  527. }
  528. goal = ext4_find_goal(inode, map->m_lblk, partial);
  529. /* the number of blocks need to allocate for [d,t]indirect blocks */
  530. indirect_blks = (chain + depth) - partial - 1;
  531. /*
  532. * Next look up the indirect map to count the totoal number of
  533. * direct blocks to allocate for this branch.
  534. */
  535. count = ext4_blks_to_allocate(partial, indirect_blks,
  536. map->m_len, blocks_to_boundary);
  537. /*
  538. * Block out ext4_truncate while we alter the tree
  539. */
  540. err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
  541. &count, goal,
  542. offsets + (partial - chain), partial);
  543. /*
  544. * The ext4_splice_branch call will free and forget any buffers
  545. * on the new chain if there is a failure, but that risks using
  546. * up transaction credits, especially for bitmaps where the
  547. * credits cannot be returned. Can we handle this somehow? We
  548. * may need to return -EAGAIN upwards in the worst case. --sct
  549. */
  550. if (!err)
  551. err = ext4_splice_branch(handle, inode, map->m_lblk,
  552. partial, indirect_blks, count);
  553. if (err)
  554. goto cleanup;
  555. map->m_flags |= EXT4_MAP_NEW;
  556. ext4_update_inode_fsync_trans(handle, inode, 1);
  557. got_it:
  558. map->m_flags |= EXT4_MAP_MAPPED;
  559. map->m_pblk = le32_to_cpu(chain[depth-1].key);
  560. map->m_len = count;
  561. if (count > blocks_to_boundary)
  562. map->m_flags |= EXT4_MAP_BOUNDARY;
  563. err = count;
  564. /* Clean up and exit */
  565. partial = chain + depth - 1; /* the whole chain */
  566. cleanup:
  567. while (partial > chain) {
  568. BUFFER_TRACE(partial->bh, "call brelse");
  569. brelse(partial->bh);
  570. partial--;
  571. }
  572. out:
  573. trace_ext4_ind_map_blocks_exit(inode, map, err);
  574. return err;
  575. }
  576. /*
  577. * O_DIRECT for ext3 (or indirect map) based files
  578. *
  579. * If the O_DIRECT write will extend the file then add this inode to the
  580. * orphan list. So recovery will truncate it back to the original size
  581. * if the machine crashes during the write.
  582. *
  583. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  584. * crashes then stale disk data _may_ be exposed inside the file. But current
  585. * VFS code falls back into buffered path in that case so we are safe.
  586. */
  587. ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
  588. const struct iovec *iov, loff_t offset,
  589. unsigned long nr_segs)
  590. {
  591. struct file *file = iocb->ki_filp;
  592. struct inode *inode = file->f_mapping->host;
  593. struct ext4_inode_info *ei = EXT4_I(inode);
  594. handle_t *handle;
  595. ssize_t ret;
  596. int orphan = 0;
  597. size_t count = iov_length(iov, nr_segs);
  598. int retries = 0;
  599. if (rw == WRITE) {
  600. loff_t final_size = offset + count;
  601. if (final_size > inode->i_size) {
  602. /* Credits for sb + inode write */
  603. handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
  604. if (IS_ERR(handle)) {
  605. ret = PTR_ERR(handle);
  606. goto out;
  607. }
  608. ret = ext4_orphan_add(handle, inode);
  609. if (ret) {
  610. ext4_journal_stop(handle);
  611. goto out;
  612. }
  613. orphan = 1;
  614. ei->i_disksize = inode->i_size;
  615. ext4_journal_stop(handle);
  616. }
  617. }
  618. retry:
  619. if (rw == READ && ext4_should_dioread_nolock(inode)) {
  620. if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
  621. mutex_lock(&inode->i_mutex);
  622. ext4_flush_unwritten_io(inode);
  623. mutex_unlock(&inode->i_mutex);
  624. }
  625. /*
  626. * Nolock dioread optimization may be dynamically disabled
  627. * via ext4_inode_block_unlocked_dio(). Check inode's state
  628. * while holding extra i_dio_count ref.
  629. */
  630. atomic_inc(&inode->i_dio_count);
  631. smp_mb();
  632. if (unlikely(ext4_test_inode_state(inode,
  633. EXT4_STATE_DIOREAD_LOCK))) {
  634. inode_dio_done(inode);
  635. goto locked;
  636. }
  637. ret = __blockdev_direct_IO(rw, iocb, inode,
  638. inode->i_sb->s_bdev, iov,
  639. offset, nr_segs,
  640. ext4_get_block, NULL, NULL, 0);
  641. inode_dio_done(inode);
  642. } else {
  643. locked:
  644. ret = blockdev_direct_IO(rw, iocb, inode, iov,
  645. offset, nr_segs, ext4_get_block);
  646. if (unlikely((rw & WRITE) && ret < 0)) {
  647. loff_t isize = i_size_read(inode);
  648. loff_t end = offset + iov_length(iov, nr_segs);
  649. if (end > isize)
  650. ext4_truncate_failed_write(inode);
  651. }
  652. }
  653. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  654. goto retry;
  655. if (orphan) {
  656. int err;
  657. /* Credits for sb + inode write */
  658. handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
  659. if (IS_ERR(handle)) {
  660. /* This is really bad luck. We've written the data
  661. * but cannot extend i_size. Bail out and pretend
  662. * the write failed... */
  663. ret = PTR_ERR(handle);
  664. if (inode->i_nlink)
  665. ext4_orphan_del(NULL, inode);
  666. goto out;
  667. }
  668. if (inode->i_nlink)
  669. ext4_orphan_del(handle, inode);
  670. if (ret > 0) {
  671. loff_t end = offset + ret;
  672. if (end > inode->i_size) {
  673. ei->i_disksize = end;
  674. i_size_write(inode, end);
  675. /*
  676. * We're going to return a positive `ret'
  677. * here due to non-zero-length I/O, so there's
  678. * no way of reporting error returns from
  679. * ext4_mark_inode_dirty() to userspace. So
  680. * ignore it.
  681. */
  682. ext4_mark_inode_dirty(handle, inode);
  683. }
  684. }
  685. err = ext4_journal_stop(handle);
  686. if (ret == 0)
  687. ret = err;
  688. }
  689. out:
  690. return ret;
  691. }
  692. /*
  693. * Calculate the number of metadata blocks need to reserve
  694. * to allocate a new block at @lblocks for non extent file based file
  695. */
  696. int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
  697. {
  698. struct ext4_inode_info *ei = EXT4_I(inode);
  699. sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
  700. int blk_bits;
  701. if (lblock < EXT4_NDIR_BLOCKS)
  702. return 0;
  703. lblock -= EXT4_NDIR_BLOCKS;
  704. if (ei->i_da_metadata_calc_len &&
  705. (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
  706. ei->i_da_metadata_calc_len++;
  707. return 0;
  708. }
  709. ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
  710. ei->i_da_metadata_calc_len = 1;
  711. blk_bits = order_base_2(lblock);
  712. return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
  713. }
  714. int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  715. {
  716. int indirects;
  717. /* if nrblocks are contiguous */
  718. if (chunk) {
  719. /*
  720. * With N contiguous data blocks, we need at most
  721. * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
  722. * 2 dindirect blocks, and 1 tindirect block
  723. */
  724. return DIV_ROUND_UP(nrblocks,
  725. EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
  726. }
  727. /*
  728. * if nrblocks are not contiguous, worse case, each block touch
  729. * a indirect block, and each indirect block touch a double indirect
  730. * block, plus a triple indirect block
  731. */
  732. indirects = nrblocks * 2 + 1;
  733. return indirects;
  734. }
  735. /*
  736. * Truncate transactions can be complex and absolutely huge. So we need to
  737. * be able to restart the transaction at a conventient checkpoint to make
  738. * sure we don't overflow the journal.
  739. *
  740. * start_transaction gets us a new handle for a truncate transaction,
  741. * and extend_transaction tries to extend the existing one a bit. If
  742. * extend fails, we need to propagate the failure up and restart the
  743. * transaction in the top-level truncate loop. --sct
  744. */
  745. static handle_t *start_transaction(struct inode *inode)
  746. {
  747. handle_t *result;
  748. result = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
  749. ext4_blocks_for_truncate(inode));
  750. if (!IS_ERR(result))
  751. return result;
  752. ext4_std_error(inode->i_sb, PTR_ERR(result));
  753. return result;
  754. }
  755. /*
  756. * Try to extend this transaction for the purposes of truncation.
  757. *
  758. * Returns 0 if we managed to create more room. If we can't create more
  759. * room, and the transaction must be restarted we return 1.
  760. */
  761. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  762. {
  763. if (!ext4_handle_valid(handle))
  764. return 0;
  765. if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
  766. return 0;
  767. if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
  768. return 0;
  769. return 1;
  770. }
  771. /*
  772. * Probably it should be a library function... search for first non-zero word
  773. * or memcmp with zero_page, whatever is better for particular architecture.
  774. * Linus?
  775. */
  776. static inline int all_zeroes(__le32 *p, __le32 *q)
  777. {
  778. while (p < q)
  779. if (*p++)
  780. return 0;
  781. return 1;
  782. }
  783. /**
  784. * ext4_find_shared - find the indirect blocks for partial truncation.
  785. * @inode: inode in question
  786. * @depth: depth of the affected branch
  787. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  788. * @chain: place to store the pointers to partial indirect blocks
  789. * @top: place to the (detached) top of branch
  790. *
  791. * This is a helper function used by ext4_truncate().
  792. *
  793. * When we do truncate() we may have to clean the ends of several
  794. * indirect blocks but leave the blocks themselves alive. Block is
  795. * partially truncated if some data below the new i_size is referred
  796. * from it (and it is on the path to the first completely truncated
  797. * data block, indeed). We have to free the top of that path along
  798. * with everything to the right of the path. Since no allocation
  799. * past the truncation point is possible until ext4_truncate()
  800. * finishes, we may safely do the latter, but top of branch may
  801. * require special attention - pageout below the truncation point
  802. * might try to populate it.
  803. *
  804. * We atomically detach the top of branch from the tree, store the
  805. * block number of its root in *@top, pointers to buffer_heads of
  806. * partially truncated blocks - in @chain[].bh and pointers to
  807. * their last elements that should not be removed - in
  808. * @chain[].p. Return value is the pointer to last filled element
  809. * of @chain.
  810. *
  811. * The work left to caller to do the actual freeing of subtrees:
  812. * a) free the subtree starting from *@top
  813. * b) free the subtrees whose roots are stored in
  814. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  815. * c) free the subtrees growing from the inode past the @chain[0].
  816. * (no partially truncated stuff there). */
  817. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  818. ext4_lblk_t offsets[4], Indirect chain[4],
  819. __le32 *top)
  820. {
  821. Indirect *partial, *p;
  822. int k, err;
  823. *top = 0;
  824. /* Make k index the deepest non-null offset + 1 */
  825. for (k = depth; k > 1 && !offsets[k-1]; k--)
  826. ;
  827. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  828. /* Writer: pointers */
  829. if (!partial)
  830. partial = chain + k-1;
  831. /*
  832. * If the branch acquired continuation since we've looked at it -
  833. * fine, it should all survive and (new) top doesn't belong to us.
  834. */
  835. if (!partial->key && *partial->p)
  836. /* Writer: end */
  837. goto no_top;
  838. for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
  839. ;
  840. /*
  841. * OK, we've found the last block that must survive. The rest of our
  842. * branch should be detached before unlocking. However, if that rest
  843. * of branch is all ours and does not grow immediately from the inode
  844. * it's easier to cheat and just decrement partial->p.
  845. */
  846. if (p == chain + k - 1 && p > chain) {
  847. p->p--;
  848. } else {
  849. *top = *p->p;
  850. /* Nope, don't do this in ext4. Must leave the tree intact */
  851. #if 0
  852. *p->p = 0;
  853. #endif
  854. }
  855. /* Writer: end */
  856. while (partial > p) {
  857. brelse(partial->bh);
  858. partial--;
  859. }
  860. no_top:
  861. return partial;
  862. }
  863. /*
  864. * Zero a number of block pointers in either an inode or an indirect block.
  865. * If we restart the transaction we must again get write access to the
  866. * indirect block for further modification.
  867. *
  868. * We release `count' blocks on disk, but (last - first) may be greater
  869. * than `count' because there can be holes in there.
  870. *
  871. * Return 0 on success, 1 on invalid block range
  872. * and < 0 on fatal error.
  873. */
  874. static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
  875. struct buffer_head *bh,
  876. ext4_fsblk_t block_to_free,
  877. unsigned long count, __le32 *first,
  878. __le32 *last)
  879. {
  880. __le32 *p;
  881. int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
  882. int err;
  883. if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
  884. flags |= EXT4_FREE_BLOCKS_METADATA;
  885. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
  886. count)) {
  887. EXT4_ERROR_INODE(inode, "attempt to clear invalid "
  888. "blocks %llu len %lu",
  889. (unsigned long long) block_to_free, count);
  890. return 1;
  891. }
  892. if (try_to_extend_transaction(handle, inode)) {
  893. if (bh) {
  894. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  895. err = ext4_handle_dirty_metadata(handle, inode, bh);
  896. if (unlikely(err))
  897. goto out_err;
  898. }
  899. err = ext4_mark_inode_dirty(handle, inode);
  900. if (unlikely(err))
  901. goto out_err;
  902. err = ext4_truncate_restart_trans(handle, inode,
  903. ext4_blocks_for_truncate(inode));
  904. if (unlikely(err))
  905. goto out_err;
  906. if (bh) {
  907. BUFFER_TRACE(bh, "retaking write access");
  908. err = ext4_journal_get_write_access(handle, bh);
  909. if (unlikely(err))
  910. goto out_err;
  911. }
  912. }
  913. for (p = first; p < last; p++)
  914. *p = 0;
  915. ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
  916. return 0;
  917. out_err:
  918. ext4_std_error(inode->i_sb, err);
  919. return err;
  920. }
  921. /**
  922. * ext4_free_data - free a list of data blocks
  923. * @handle: handle for this transaction
  924. * @inode: inode we are dealing with
  925. * @this_bh: indirect buffer_head which contains *@first and *@last
  926. * @first: array of block numbers
  927. * @last: points immediately past the end of array
  928. *
  929. * We are freeing all blocks referred from that array (numbers are stored as
  930. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  931. *
  932. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  933. * blocks are contiguous then releasing them at one time will only affect one
  934. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  935. * actually use a lot of journal space.
  936. *
  937. * @this_bh will be %NULL if @first and @last point into the inode's direct
  938. * block pointers.
  939. */
  940. static void ext4_free_data(handle_t *handle, struct inode *inode,
  941. struct buffer_head *this_bh,
  942. __le32 *first, __le32 *last)
  943. {
  944. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  945. unsigned long count = 0; /* Number of blocks in the run */
  946. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  947. corresponding to
  948. block_to_free */
  949. ext4_fsblk_t nr; /* Current block # */
  950. __le32 *p; /* Pointer into inode/ind
  951. for current block */
  952. int err = 0;
  953. if (this_bh) { /* For indirect block */
  954. BUFFER_TRACE(this_bh, "get_write_access");
  955. err = ext4_journal_get_write_access(handle, this_bh);
  956. /* Important: if we can't update the indirect pointers
  957. * to the blocks, we can't free them. */
  958. if (err)
  959. return;
  960. }
  961. for (p = first; p < last; p++) {
  962. nr = le32_to_cpu(*p);
  963. if (nr) {
  964. /* accumulate blocks to free if they're contiguous */
  965. if (count == 0) {
  966. block_to_free = nr;
  967. block_to_free_p = p;
  968. count = 1;
  969. } else if (nr == block_to_free + count) {
  970. count++;
  971. } else {
  972. err = ext4_clear_blocks(handle, inode, this_bh,
  973. block_to_free, count,
  974. block_to_free_p, p);
  975. if (err)
  976. break;
  977. block_to_free = nr;
  978. block_to_free_p = p;
  979. count = 1;
  980. }
  981. }
  982. }
  983. if (!err && count > 0)
  984. err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  985. count, block_to_free_p, p);
  986. if (err < 0)
  987. /* fatal error */
  988. return;
  989. if (this_bh) {
  990. BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
  991. /*
  992. * The buffer head should have an attached journal head at this
  993. * point. However, if the data is corrupted and an indirect
  994. * block pointed to itself, it would have been detached when
  995. * the block was cleared. Check for this instead of OOPSing.
  996. */
  997. if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
  998. ext4_handle_dirty_metadata(handle, inode, this_bh);
  999. else
  1000. EXT4_ERROR_INODE(inode,
  1001. "circular indirect block detected at "
  1002. "block %llu",
  1003. (unsigned long long) this_bh->b_blocknr);
  1004. }
  1005. }
  1006. /**
  1007. * ext4_free_branches - free an array of branches
  1008. * @handle: JBD handle for this transaction
  1009. * @inode: inode we are dealing with
  1010. * @parent_bh: the buffer_head which contains *@first and *@last
  1011. * @first: array of block numbers
  1012. * @last: pointer immediately past the end of array
  1013. * @depth: depth of the branches to free
  1014. *
  1015. * We are freeing all blocks referred from these branches (numbers are
  1016. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1017. * appropriately.
  1018. */
  1019. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1020. struct buffer_head *parent_bh,
  1021. __le32 *first, __le32 *last, int depth)
  1022. {
  1023. ext4_fsblk_t nr;
  1024. __le32 *p;
  1025. if (ext4_handle_is_aborted(handle))
  1026. return;
  1027. if (depth--) {
  1028. struct buffer_head *bh;
  1029. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1030. p = last;
  1031. while (--p >= first) {
  1032. nr = le32_to_cpu(*p);
  1033. if (!nr)
  1034. continue; /* A hole */
  1035. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
  1036. nr, 1)) {
  1037. EXT4_ERROR_INODE(inode,
  1038. "invalid indirect mapped "
  1039. "block %lu (level %d)",
  1040. (unsigned long) nr, depth);
  1041. break;
  1042. }
  1043. /* Go read the buffer for the next level down */
  1044. bh = sb_bread(inode->i_sb, nr);
  1045. /*
  1046. * A read failure? Report error and clear slot
  1047. * (should be rare).
  1048. */
  1049. if (!bh) {
  1050. EXT4_ERROR_INODE_BLOCK(inode, nr,
  1051. "Read failure");
  1052. continue;
  1053. }
  1054. /* This zaps the entire block. Bottom up. */
  1055. BUFFER_TRACE(bh, "free child branches");
  1056. ext4_free_branches(handle, inode, bh,
  1057. (__le32 *) bh->b_data,
  1058. (__le32 *) bh->b_data + addr_per_block,
  1059. depth);
  1060. brelse(bh);
  1061. /*
  1062. * Everything below this this pointer has been
  1063. * released. Now let this top-of-subtree go.
  1064. *
  1065. * We want the freeing of this indirect block to be
  1066. * atomic in the journal with the updating of the
  1067. * bitmap block which owns it. So make some room in
  1068. * the journal.
  1069. *
  1070. * We zero the parent pointer *after* freeing its
  1071. * pointee in the bitmaps, so if extend_transaction()
  1072. * for some reason fails to put the bitmap changes and
  1073. * the release into the same transaction, recovery
  1074. * will merely complain about releasing a free block,
  1075. * rather than leaking blocks.
  1076. */
  1077. if (ext4_handle_is_aborted(handle))
  1078. return;
  1079. if (try_to_extend_transaction(handle, inode)) {
  1080. ext4_mark_inode_dirty(handle, inode);
  1081. ext4_truncate_restart_trans(handle, inode,
  1082. ext4_blocks_for_truncate(inode));
  1083. }
  1084. /*
  1085. * The forget flag here is critical because if
  1086. * we are journaling (and not doing data
  1087. * journaling), we have to make sure a revoke
  1088. * record is written to prevent the journal
  1089. * replay from overwriting the (former)
  1090. * indirect block if it gets reallocated as a
  1091. * data block. This must happen in the same
  1092. * transaction where the data blocks are
  1093. * actually freed.
  1094. */
  1095. ext4_free_blocks(handle, inode, NULL, nr, 1,
  1096. EXT4_FREE_BLOCKS_METADATA|
  1097. EXT4_FREE_BLOCKS_FORGET);
  1098. if (parent_bh) {
  1099. /*
  1100. * The block which we have just freed is
  1101. * pointed to by an indirect block: journal it
  1102. */
  1103. BUFFER_TRACE(parent_bh, "get_write_access");
  1104. if (!ext4_journal_get_write_access(handle,
  1105. parent_bh)){
  1106. *p = 0;
  1107. BUFFER_TRACE(parent_bh,
  1108. "call ext4_handle_dirty_metadata");
  1109. ext4_handle_dirty_metadata(handle,
  1110. inode,
  1111. parent_bh);
  1112. }
  1113. }
  1114. }
  1115. } else {
  1116. /* We have reached the bottom of the tree. */
  1117. BUFFER_TRACE(parent_bh, "free data blocks");
  1118. ext4_free_data(handle, inode, parent_bh, first, last);
  1119. }
  1120. }
  1121. void ext4_ind_truncate(struct inode *inode)
  1122. {
  1123. handle_t *handle;
  1124. struct ext4_inode_info *ei = EXT4_I(inode);
  1125. __le32 *i_data = ei->i_data;
  1126. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1127. struct address_space *mapping = inode->i_mapping;
  1128. ext4_lblk_t offsets[4];
  1129. Indirect chain[4];
  1130. Indirect *partial;
  1131. __le32 nr = 0;
  1132. int n = 0;
  1133. ext4_lblk_t last_block, max_block;
  1134. loff_t page_len;
  1135. unsigned blocksize = inode->i_sb->s_blocksize;
  1136. int err;
  1137. handle = start_transaction(inode);
  1138. if (IS_ERR(handle))
  1139. return; /* AKPM: return what? */
  1140. last_block = (inode->i_size + blocksize-1)
  1141. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  1142. max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
  1143. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  1144. if (inode->i_size % PAGE_CACHE_SIZE != 0) {
  1145. page_len = PAGE_CACHE_SIZE -
  1146. (inode->i_size & (PAGE_CACHE_SIZE - 1));
  1147. err = ext4_discard_partial_page_buffers(handle,
  1148. mapping, inode->i_size, page_len, 0);
  1149. if (err)
  1150. goto out_stop;
  1151. }
  1152. if (last_block != max_block) {
  1153. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  1154. if (n == 0)
  1155. goto out_stop; /* error */
  1156. }
  1157. /*
  1158. * OK. This truncate is going to happen. We add the inode to the
  1159. * orphan list, so that if this truncate spans multiple transactions,
  1160. * and we crash, we will resume the truncate when the filesystem
  1161. * recovers. It also marks the inode dirty, to catch the new size.
  1162. *
  1163. * Implication: the file must always be in a sane, consistent
  1164. * truncatable state while each transaction commits.
  1165. */
  1166. if (ext4_orphan_add(handle, inode))
  1167. goto out_stop;
  1168. /*
  1169. * From here we block out all ext4_get_block() callers who want to
  1170. * modify the block allocation tree.
  1171. */
  1172. down_write(&ei->i_data_sem);
  1173. ext4_discard_preallocations(inode);
  1174. ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
  1175. /*
  1176. * The orphan list entry will now protect us from any crash which
  1177. * occurs before the truncate completes, so it is now safe to propagate
  1178. * the new, shorter inode size (held for now in i_size) into the
  1179. * on-disk inode. We do this via i_disksize, which is the value which
  1180. * ext4 *really* writes onto the disk inode.
  1181. */
  1182. ei->i_disksize = inode->i_size;
  1183. if (last_block == max_block) {
  1184. /*
  1185. * It is unnecessary to free any data blocks if last_block is
  1186. * equal to the indirect block limit.
  1187. */
  1188. goto out_unlock;
  1189. } else if (n == 1) { /* direct blocks */
  1190. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  1191. i_data + EXT4_NDIR_BLOCKS);
  1192. goto do_indirects;
  1193. }
  1194. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  1195. /* Kill the top of shared branch (not detached) */
  1196. if (nr) {
  1197. if (partial == chain) {
  1198. /* Shared branch grows from the inode */
  1199. ext4_free_branches(handle, inode, NULL,
  1200. &nr, &nr+1, (chain+n-1) - partial);
  1201. *partial->p = 0;
  1202. /*
  1203. * We mark the inode dirty prior to restart,
  1204. * and prior to stop. No need for it here.
  1205. */
  1206. } else {
  1207. /* Shared branch grows from an indirect block */
  1208. BUFFER_TRACE(partial->bh, "get_write_access");
  1209. ext4_free_branches(handle, inode, partial->bh,
  1210. partial->p,
  1211. partial->p+1, (chain+n-1) - partial);
  1212. }
  1213. }
  1214. /* Clear the ends of indirect blocks on the shared branch */
  1215. while (partial > chain) {
  1216. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  1217. (__le32*)partial->bh->b_data+addr_per_block,
  1218. (chain+n-1) - partial);
  1219. BUFFER_TRACE(partial->bh, "call brelse");
  1220. brelse(partial->bh);
  1221. partial--;
  1222. }
  1223. do_indirects:
  1224. /* Kill the remaining (whole) subtrees */
  1225. switch (offsets[0]) {
  1226. default:
  1227. nr = i_data[EXT4_IND_BLOCK];
  1228. if (nr) {
  1229. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  1230. i_data[EXT4_IND_BLOCK] = 0;
  1231. }
  1232. case EXT4_IND_BLOCK:
  1233. nr = i_data[EXT4_DIND_BLOCK];
  1234. if (nr) {
  1235. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  1236. i_data[EXT4_DIND_BLOCK] = 0;
  1237. }
  1238. case EXT4_DIND_BLOCK:
  1239. nr = i_data[EXT4_TIND_BLOCK];
  1240. if (nr) {
  1241. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  1242. i_data[EXT4_TIND_BLOCK] = 0;
  1243. }
  1244. case EXT4_TIND_BLOCK:
  1245. ;
  1246. }
  1247. out_unlock:
  1248. up_write(&ei->i_data_sem);
  1249. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  1250. ext4_mark_inode_dirty(handle, inode);
  1251. /*
  1252. * In a multi-transaction truncate, we only make the final transaction
  1253. * synchronous
  1254. */
  1255. if (IS_SYNC(inode))
  1256. ext4_handle_sync(handle);
  1257. out_stop:
  1258. /*
  1259. * If this was a simple ftruncate(), and the file will remain alive
  1260. * then we need to clear up the orphan record which we created above.
  1261. * However, if this was a real unlink then we were called by
  1262. * ext4_delete_inode(), and we allow that function to clean up the
  1263. * orphan info for us.
  1264. */
  1265. if (inode->i_nlink)
  1266. ext4_orphan_del(handle, inode);
  1267. ext4_journal_stop(handle);
  1268. trace_ext4_truncate_exit(inode);
  1269. }
  1270. static int free_hole_blocks(handle_t *handle, struct inode *inode,
  1271. struct buffer_head *parent_bh, __le32 *i_data,
  1272. int level, ext4_lblk_t first,
  1273. ext4_lblk_t count, int max)
  1274. {
  1275. struct buffer_head *bh = NULL;
  1276. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1277. int ret = 0;
  1278. int i, inc;
  1279. ext4_lblk_t offset;
  1280. __le32 blk;
  1281. inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
  1282. for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
  1283. if (offset >= count + first)
  1284. break;
  1285. if (*i_data == 0 || (offset + inc) <= first)
  1286. continue;
  1287. blk = *i_data;
  1288. if (level > 0) {
  1289. ext4_lblk_t first2;
  1290. bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
  1291. if (!bh) {
  1292. EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
  1293. "Read failure");
  1294. return -EIO;
  1295. }
  1296. first2 = (first > offset) ? first - offset : 0;
  1297. ret = free_hole_blocks(handle, inode, bh,
  1298. (__le32 *)bh->b_data, level - 1,
  1299. first2, count - offset,
  1300. inode->i_sb->s_blocksize >> 2);
  1301. if (ret) {
  1302. brelse(bh);
  1303. goto err;
  1304. }
  1305. }
  1306. if (level == 0 ||
  1307. (bh && all_zeroes((__le32 *)bh->b_data,
  1308. (__le32 *)bh->b_data + addr_per_block))) {
  1309. ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
  1310. *i_data = 0;
  1311. }
  1312. brelse(bh);
  1313. bh = NULL;
  1314. }
  1315. err:
  1316. return ret;
  1317. }
  1318. static int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
  1319. ext4_lblk_t first, ext4_lblk_t stop)
  1320. {
  1321. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1322. int level, ret = 0;
  1323. int num = EXT4_NDIR_BLOCKS;
  1324. ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
  1325. __le32 *i_data = EXT4_I(inode)->i_data;
  1326. count = stop - first;
  1327. for (level = 0; level < 4; level++, max *= addr_per_block) {
  1328. if (first < max) {
  1329. ret = free_hole_blocks(handle, inode, NULL, i_data,
  1330. level, first, count, num);
  1331. if (ret)
  1332. goto err;
  1333. if (count > max - first)
  1334. count -= max - first;
  1335. else
  1336. break;
  1337. first = 0;
  1338. } else {
  1339. first -= max;
  1340. }
  1341. i_data += num;
  1342. if (level == 0) {
  1343. num = 1;
  1344. max = 1;
  1345. }
  1346. }
  1347. err:
  1348. return ret;
  1349. }
  1350. int ext4_ind_punch_hole(struct file *file, loff_t offset, loff_t length)
  1351. {
  1352. struct inode *inode = file_inode(file);
  1353. struct super_block *sb = inode->i_sb;
  1354. ext4_lblk_t first_block, stop_block;
  1355. struct address_space *mapping = inode->i_mapping;
  1356. handle_t *handle = NULL;
  1357. loff_t first_page, last_page, page_len;
  1358. loff_t first_page_offset, last_page_offset;
  1359. int err = 0;
  1360. /*
  1361. * Write out all dirty pages to avoid race conditions
  1362. * Then release them.
  1363. */
  1364. if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  1365. err = filemap_write_and_wait_range(mapping,
  1366. offset, offset + length - 1);
  1367. if (err)
  1368. return err;
  1369. }
  1370. mutex_lock(&inode->i_mutex);
  1371. /* It's not possible punch hole on append only file */
  1372. if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
  1373. err = -EPERM;
  1374. goto out_mutex;
  1375. }
  1376. if (IS_SWAPFILE(inode)) {
  1377. err = -ETXTBSY;
  1378. goto out_mutex;
  1379. }
  1380. /* No need to punch hole beyond i_size */
  1381. if (offset >= inode->i_size)
  1382. goto out_mutex;
  1383. /*
  1384. * If the hole extents beyond i_size, set the hole
  1385. * to end after the page that contains i_size
  1386. */
  1387. if (offset + length > inode->i_size) {
  1388. length = inode->i_size +
  1389. PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
  1390. offset;
  1391. }
  1392. first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1393. last_page = (offset + length) >> PAGE_CACHE_SHIFT;
  1394. first_page_offset = first_page << PAGE_CACHE_SHIFT;
  1395. last_page_offset = last_page << PAGE_CACHE_SHIFT;
  1396. /* Now release the pages */
  1397. if (last_page_offset > first_page_offset) {
  1398. truncate_pagecache_range(inode, first_page_offset,
  1399. last_page_offset - 1);
  1400. }
  1401. /* Wait all existing dio works, newcomers will block on i_mutex */
  1402. inode_dio_wait(inode);
  1403. handle = start_transaction(inode);
  1404. if (IS_ERR(handle))
  1405. goto out_mutex;
  1406. /*
  1407. * Now we need to zero out the non-page-aligned data in the
  1408. * pages at the start and tail of the hole, and unmap the buffer
  1409. * heads for the block aligned regions of the page that were
  1410. * completely zerod.
  1411. */
  1412. if (first_page > last_page) {
  1413. /*
  1414. * If the file space being truncated is contained within a page
  1415. * just zero out and unmap the middle of that page
  1416. */
  1417. err = ext4_discard_partial_page_buffers(handle,
  1418. mapping, offset, length, 0);
  1419. if (err)
  1420. goto out;
  1421. } else {
  1422. /*
  1423. * Zero out and unmap the paritial page that contains
  1424. * the start of the hole
  1425. */
  1426. page_len = first_page_offset - offset;
  1427. if (page_len > 0) {
  1428. err = ext4_discard_partial_page_buffers(handle, mapping,
  1429. offset, page_len, 0);
  1430. if (err)
  1431. goto out;
  1432. }
  1433. /*
  1434. * Zero out and unmap the partial page that contains
  1435. * the end of the hole
  1436. */
  1437. page_len = offset + length - last_page_offset;
  1438. if (page_len > 0) {
  1439. err = ext4_discard_partial_page_buffers(handle, mapping,
  1440. last_page_offset, page_len, 0);
  1441. if (err)
  1442. goto out;
  1443. }
  1444. }
  1445. /*
  1446. * If i_size contained in the last page, we need to
  1447. * unmap and zero the paritial page after i_size
  1448. */
  1449. if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
  1450. inode->i_size % PAGE_CACHE_SIZE != 0) {
  1451. page_len = PAGE_CACHE_SIZE -
  1452. (inode->i_size & (PAGE_CACHE_SIZE - 1));
  1453. if (page_len > 0) {
  1454. err = ext4_discard_partial_page_buffers(handle,
  1455. mapping, inode->i_size, page_len, 0);
  1456. if (err)
  1457. goto out;
  1458. }
  1459. }
  1460. first_block = (offset + sb->s_blocksize - 1) >>
  1461. EXT4_BLOCK_SIZE_BITS(sb);
  1462. stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
  1463. if (first_block >= stop_block)
  1464. goto out;
  1465. down_write(&EXT4_I(inode)->i_data_sem);
  1466. ext4_discard_preallocations(inode);
  1467. err = ext4_es_remove_extent(inode, first_block,
  1468. stop_block - first_block);
  1469. err = ext4_free_hole_blocks(handle, inode, first_block, stop_block);
  1470. ext4_discard_preallocations(inode);
  1471. if (IS_SYNC(inode))
  1472. ext4_handle_sync(handle);
  1473. up_write(&EXT4_I(inode)->i_data_sem);
  1474. out:
  1475. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  1476. ext4_mark_inode_dirty(handle, inode);
  1477. ext4_journal_stop(handle);
  1478. out_mutex:
  1479. mutex_unlock(&inode->i_mutex);
  1480. return err;
  1481. }