svm.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/highmem.h>
  20. #include <linux/profile.h>
  21. #include <asm/desc.h>
  22. #include "kvm_svm.h"
  23. #include "x86_emulate.h"
  24. MODULE_AUTHOR("Qumranet");
  25. MODULE_LICENSE("GPL");
  26. #define IOPM_ALLOC_ORDER 2
  27. #define MSRPM_ALLOC_ORDER 1
  28. #define DB_VECTOR 1
  29. #define UD_VECTOR 6
  30. #define GP_VECTOR 13
  31. #define DR7_GD_MASK (1 << 13)
  32. #define DR6_BD_MASK (1 << 13)
  33. #define CR4_DE_MASK (1UL << 3)
  34. #define SEG_TYPE_LDT 2
  35. #define SEG_TYPE_BUSY_TSS16 3
  36. #define KVM_EFER_LMA (1 << 10)
  37. #define KVM_EFER_LME (1 << 8)
  38. #define SVM_FEATURE_NPT (1 << 0)
  39. #define SVM_FEATURE_LBRV (1 << 1)
  40. #define SVM_DEATURE_SVML (1 << 2)
  41. unsigned long iopm_base;
  42. unsigned long msrpm_base;
  43. struct kvm_ldttss_desc {
  44. u16 limit0;
  45. u16 base0;
  46. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  47. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  48. u32 base3;
  49. u32 zero1;
  50. } __attribute__((packed));
  51. struct svm_cpu_data {
  52. int cpu;
  53. u64 asid_generation;
  54. u32 max_asid;
  55. u32 next_asid;
  56. struct kvm_ldttss_desc *tss_desc;
  57. struct page *save_area;
  58. };
  59. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  60. static uint32_t svm_features;
  61. struct svm_init_data {
  62. int cpu;
  63. int r;
  64. };
  65. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  66. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  67. #define MSRS_RANGE_SIZE 2048
  68. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  69. #define MAX_INST_SIZE 15
  70. static inline u32 svm_has(u32 feat)
  71. {
  72. return svm_features & feat;
  73. }
  74. static unsigned get_addr_size(struct kvm_vcpu *vcpu)
  75. {
  76. struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
  77. u16 cs_attrib;
  78. if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
  79. return 2;
  80. cs_attrib = sa->cs.attrib;
  81. return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
  82. (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
  83. }
  84. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  85. {
  86. int word_index = __ffs(vcpu->irq_summary);
  87. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  88. int irq = word_index * BITS_PER_LONG + bit_index;
  89. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  90. if (!vcpu->irq_pending[word_index])
  91. clear_bit(word_index, &vcpu->irq_summary);
  92. return irq;
  93. }
  94. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  95. {
  96. set_bit(irq, vcpu->irq_pending);
  97. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  98. }
  99. static inline void clgi(void)
  100. {
  101. asm volatile (SVM_CLGI);
  102. }
  103. static inline void stgi(void)
  104. {
  105. asm volatile (SVM_STGI);
  106. }
  107. static inline void invlpga(unsigned long addr, u32 asid)
  108. {
  109. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  110. }
  111. static inline unsigned long kvm_read_cr2(void)
  112. {
  113. unsigned long cr2;
  114. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  115. return cr2;
  116. }
  117. static inline void kvm_write_cr2(unsigned long val)
  118. {
  119. asm volatile ("mov %0, %%cr2" :: "r" (val));
  120. }
  121. static inline unsigned long read_dr6(void)
  122. {
  123. unsigned long dr6;
  124. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  125. return dr6;
  126. }
  127. static inline void write_dr6(unsigned long val)
  128. {
  129. asm volatile ("mov %0, %%dr6" :: "r" (val));
  130. }
  131. static inline unsigned long read_dr7(void)
  132. {
  133. unsigned long dr7;
  134. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  135. return dr7;
  136. }
  137. static inline void write_dr7(unsigned long val)
  138. {
  139. asm volatile ("mov %0, %%dr7" :: "r" (val));
  140. }
  141. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  142. {
  143. vcpu->svm->asid_generation--;
  144. }
  145. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  146. {
  147. force_new_asid(vcpu);
  148. }
  149. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  150. {
  151. if (!(efer & KVM_EFER_LMA))
  152. efer &= ~KVM_EFER_LME;
  153. vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  154. vcpu->shadow_efer = efer;
  155. }
  156. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  157. {
  158. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  159. SVM_EVTINJ_VALID_ERR |
  160. SVM_EVTINJ_TYPE_EXEPT |
  161. GP_VECTOR;
  162. vcpu->svm->vmcb->control.event_inj_err = error_code;
  163. }
  164. static void inject_ud(struct kvm_vcpu *vcpu)
  165. {
  166. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  167. SVM_EVTINJ_TYPE_EXEPT |
  168. UD_VECTOR;
  169. }
  170. static int is_page_fault(uint32_t info)
  171. {
  172. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  173. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  174. }
  175. static int is_external_interrupt(u32 info)
  176. {
  177. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  178. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  179. }
  180. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  181. {
  182. if (!vcpu->svm->next_rip) {
  183. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  184. return;
  185. }
  186. if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
  187. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  188. __FUNCTION__,
  189. vcpu->svm->vmcb->save.rip,
  190. vcpu->svm->next_rip);
  191. }
  192. vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
  193. vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  194. vcpu->interrupt_window_open = 1;
  195. }
  196. static int has_svm(void)
  197. {
  198. uint32_t eax, ebx, ecx, edx;
  199. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  200. printk(KERN_INFO "has_svm: not amd\n");
  201. return 0;
  202. }
  203. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  204. if (eax < SVM_CPUID_FUNC) {
  205. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  206. return 0;
  207. }
  208. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  209. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  210. printk(KERN_DEBUG "has_svm: svm not available\n");
  211. return 0;
  212. }
  213. return 1;
  214. }
  215. static void svm_hardware_disable(void *garbage)
  216. {
  217. struct svm_cpu_data *svm_data
  218. = per_cpu(svm_data, raw_smp_processor_id());
  219. if (svm_data) {
  220. uint64_t efer;
  221. wrmsrl(MSR_VM_HSAVE_PA, 0);
  222. rdmsrl(MSR_EFER, efer);
  223. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  224. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  225. __free_page(svm_data->save_area);
  226. kfree(svm_data);
  227. }
  228. }
  229. static void svm_hardware_enable(void *garbage)
  230. {
  231. struct svm_cpu_data *svm_data;
  232. uint64_t efer;
  233. #ifdef CONFIG_X86_64
  234. struct desc_ptr gdt_descr;
  235. #else
  236. struct Xgt_desc_struct gdt_descr;
  237. #endif
  238. struct desc_struct *gdt;
  239. int me = raw_smp_processor_id();
  240. if (!has_svm()) {
  241. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  242. return;
  243. }
  244. svm_data = per_cpu(svm_data, me);
  245. if (!svm_data) {
  246. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  247. me);
  248. return;
  249. }
  250. svm_data->asid_generation = 1;
  251. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  252. svm_data->next_asid = svm_data->max_asid + 1;
  253. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  254. asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
  255. gdt = (struct desc_struct *)gdt_descr.address;
  256. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  257. rdmsrl(MSR_EFER, efer);
  258. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  259. wrmsrl(MSR_VM_HSAVE_PA,
  260. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  261. }
  262. static int svm_cpu_init(int cpu)
  263. {
  264. struct svm_cpu_data *svm_data;
  265. int r;
  266. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  267. if (!svm_data)
  268. return -ENOMEM;
  269. svm_data->cpu = cpu;
  270. svm_data->save_area = alloc_page(GFP_KERNEL);
  271. r = -ENOMEM;
  272. if (!svm_data->save_area)
  273. goto err_1;
  274. per_cpu(svm_data, cpu) = svm_data;
  275. return 0;
  276. err_1:
  277. kfree(svm_data);
  278. return r;
  279. }
  280. static int set_msr_interception(u32 *msrpm, unsigned msr,
  281. int read, int write)
  282. {
  283. int i;
  284. for (i = 0; i < NUM_MSR_MAPS; i++) {
  285. if (msr >= msrpm_ranges[i] &&
  286. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  287. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  288. msrpm_ranges[i]) * 2;
  289. u32 *base = msrpm + (msr_offset / 32);
  290. u32 msr_shift = msr_offset % 32;
  291. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  292. *base = (*base & ~(0x3 << msr_shift)) |
  293. (mask << msr_shift);
  294. return 1;
  295. }
  296. }
  297. printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
  298. return 0;
  299. }
  300. static __init int svm_hardware_setup(void)
  301. {
  302. int cpu;
  303. struct page *iopm_pages;
  304. struct page *msrpm_pages;
  305. void *msrpm_va;
  306. int r;
  307. kvm_emulator_want_group7_invlpg();
  308. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  309. if (!iopm_pages)
  310. return -ENOMEM;
  311. memset(page_address(iopm_pages), 0xff,
  312. PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  313. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  314. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  315. r = -ENOMEM;
  316. if (!msrpm_pages)
  317. goto err_1;
  318. msrpm_va = page_address(msrpm_pages);
  319. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  320. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  321. #ifdef CONFIG_X86_64
  322. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  323. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  324. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  325. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  326. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  327. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  328. #endif
  329. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  330. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  331. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  332. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  333. for_each_online_cpu(cpu) {
  334. r = svm_cpu_init(cpu);
  335. if (r)
  336. goto err_2;
  337. }
  338. return 0;
  339. err_2:
  340. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  341. msrpm_base = 0;
  342. err_1:
  343. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  344. iopm_base = 0;
  345. return r;
  346. }
  347. static __exit void svm_hardware_unsetup(void)
  348. {
  349. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  350. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  351. iopm_base = msrpm_base = 0;
  352. }
  353. static void init_seg(struct vmcb_seg *seg)
  354. {
  355. seg->selector = 0;
  356. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  357. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  358. seg->limit = 0xffff;
  359. seg->base = 0;
  360. }
  361. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  362. {
  363. seg->selector = 0;
  364. seg->attrib = SVM_SELECTOR_P_MASK | type;
  365. seg->limit = 0xffff;
  366. seg->base = 0;
  367. }
  368. static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
  369. {
  370. return 0;
  371. }
  372. static void init_vmcb(struct vmcb *vmcb)
  373. {
  374. struct vmcb_control_area *control = &vmcb->control;
  375. struct vmcb_save_area *save = &vmcb->save;
  376. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  377. INTERCEPT_CR3_MASK |
  378. INTERCEPT_CR4_MASK;
  379. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  380. INTERCEPT_CR3_MASK |
  381. INTERCEPT_CR4_MASK;
  382. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  383. INTERCEPT_DR1_MASK |
  384. INTERCEPT_DR2_MASK |
  385. INTERCEPT_DR3_MASK;
  386. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  387. INTERCEPT_DR1_MASK |
  388. INTERCEPT_DR2_MASK |
  389. INTERCEPT_DR3_MASK |
  390. INTERCEPT_DR5_MASK |
  391. INTERCEPT_DR7_MASK;
  392. control->intercept_exceptions = 1 << PF_VECTOR;
  393. control->intercept = (1ULL << INTERCEPT_INTR) |
  394. (1ULL << INTERCEPT_NMI) |
  395. (1ULL << INTERCEPT_SMI) |
  396. /*
  397. * selective cr0 intercept bug?
  398. * 0: 0f 22 d8 mov %eax,%cr3
  399. * 3: 0f 20 c0 mov %cr0,%eax
  400. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  401. * b: 0f 22 c0 mov %eax,%cr0
  402. * set cr3 ->interception
  403. * get cr0 ->interception
  404. * set cr0 -> no interception
  405. */
  406. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  407. (1ULL << INTERCEPT_CPUID) |
  408. (1ULL << INTERCEPT_HLT) |
  409. (1ULL << INTERCEPT_INVLPGA) |
  410. (1ULL << INTERCEPT_IOIO_PROT) |
  411. (1ULL << INTERCEPT_MSR_PROT) |
  412. (1ULL << INTERCEPT_TASK_SWITCH) |
  413. (1ULL << INTERCEPT_SHUTDOWN) |
  414. (1ULL << INTERCEPT_VMRUN) |
  415. (1ULL << INTERCEPT_VMMCALL) |
  416. (1ULL << INTERCEPT_VMLOAD) |
  417. (1ULL << INTERCEPT_VMSAVE) |
  418. (1ULL << INTERCEPT_STGI) |
  419. (1ULL << INTERCEPT_CLGI) |
  420. (1ULL << INTERCEPT_SKINIT) |
  421. (1ULL << INTERCEPT_MONITOR) |
  422. (1ULL << INTERCEPT_MWAIT);
  423. control->iopm_base_pa = iopm_base;
  424. control->msrpm_base_pa = msrpm_base;
  425. control->tsc_offset = 0;
  426. control->int_ctl = V_INTR_MASKING_MASK;
  427. if (svm_has(SVM_FEATURE_LBRV))
  428. control->lbr_ctl = 1ULL;
  429. init_seg(&save->es);
  430. init_seg(&save->ss);
  431. init_seg(&save->ds);
  432. init_seg(&save->fs);
  433. init_seg(&save->gs);
  434. save->cs.selector = 0xf000;
  435. /* Executable/Readable Code Segment */
  436. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  437. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  438. save->cs.limit = 0xffff;
  439. /*
  440. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  441. * be consistent with it.
  442. *
  443. * Replace when we have real mode working for vmx.
  444. */
  445. save->cs.base = 0xf0000;
  446. save->gdtr.limit = 0xffff;
  447. save->idtr.limit = 0xffff;
  448. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  449. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  450. save->efer = MSR_EFER_SVME_MASK;
  451. save->dr6 = 0xffff0ff0;
  452. save->dr7 = 0x400;
  453. save->rflags = 2;
  454. save->rip = 0x0000fff0;
  455. /*
  456. * cr0 val on cpu init should be 0x60000010, we enable cpu
  457. * cache by default. the orderly way is to enable cache in bios.
  458. */
  459. save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
  460. save->cr4 = CR4_PAE_MASK;
  461. /* rdx = ?? */
  462. }
  463. static int svm_create_vcpu(struct kvm_vcpu *vcpu)
  464. {
  465. struct page *page;
  466. int r;
  467. r = -ENOMEM;
  468. vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
  469. if (!vcpu->svm)
  470. goto out1;
  471. page = alloc_page(GFP_KERNEL);
  472. if (!page)
  473. goto out2;
  474. vcpu->svm->vmcb = page_address(page);
  475. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  476. vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  477. vcpu->svm->asid_generation = 0;
  478. memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
  479. init_vmcb(vcpu->svm->vmcb);
  480. fx_init(vcpu);
  481. vcpu->fpu_active = 1;
  482. vcpu->apic_base = 0xfee00000 |
  483. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  484. MSR_IA32_APICBASE_ENABLE;
  485. return 0;
  486. out2:
  487. kfree(vcpu->svm);
  488. out1:
  489. return r;
  490. }
  491. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  492. {
  493. if (!vcpu->svm)
  494. return;
  495. if (vcpu->svm->vmcb)
  496. __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
  497. kfree(vcpu->svm);
  498. }
  499. static void svm_vcpu_load(struct kvm_vcpu *vcpu)
  500. {
  501. int cpu;
  502. cpu = get_cpu();
  503. if (unlikely(cpu != vcpu->cpu)) {
  504. u64 tsc_this, delta;
  505. /*
  506. * Make sure that the guest sees a monotonically
  507. * increasing TSC.
  508. */
  509. rdtscll(tsc_this);
  510. delta = vcpu->host_tsc - tsc_this;
  511. vcpu->svm->vmcb->control.tsc_offset += delta;
  512. vcpu->cpu = cpu;
  513. }
  514. }
  515. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  516. {
  517. rdtscll(vcpu->host_tsc);
  518. put_cpu();
  519. }
  520. static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
  521. {
  522. }
  523. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  524. {
  525. vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
  526. vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
  527. vcpu->rip = vcpu->svm->vmcb->save.rip;
  528. }
  529. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  530. {
  531. vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  532. vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  533. vcpu->svm->vmcb->save.rip = vcpu->rip;
  534. }
  535. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  536. {
  537. return vcpu->svm->vmcb->save.rflags;
  538. }
  539. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  540. {
  541. vcpu->svm->vmcb->save.rflags = rflags;
  542. }
  543. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  544. {
  545. struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
  546. switch (seg) {
  547. case VCPU_SREG_CS: return &save->cs;
  548. case VCPU_SREG_DS: return &save->ds;
  549. case VCPU_SREG_ES: return &save->es;
  550. case VCPU_SREG_FS: return &save->fs;
  551. case VCPU_SREG_GS: return &save->gs;
  552. case VCPU_SREG_SS: return &save->ss;
  553. case VCPU_SREG_TR: return &save->tr;
  554. case VCPU_SREG_LDTR: return &save->ldtr;
  555. }
  556. BUG();
  557. return NULL;
  558. }
  559. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  560. {
  561. struct vmcb_seg *s = svm_seg(vcpu, seg);
  562. return s->base;
  563. }
  564. static void svm_get_segment(struct kvm_vcpu *vcpu,
  565. struct kvm_segment *var, int seg)
  566. {
  567. struct vmcb_seg *s = svm_seg(vcpu, seg);
  568. var->base = s->base;
  569. var->limit = s->limit;
  570. var->selector = s->selector;
  571. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  572. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  573. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  574. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  575. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  576. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  577. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  578. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  579. var->unusable = !var->present;
  580. }
  581. static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  582. {
  583. struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
  584. *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  585. *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  586. }
  587. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  588. {
  589. dt->limit = vcpu->svm->vmcb->save.idtr.limit;
  590. dt->base = vcpu->svm->vmcb->save.idtr.base;
  591. }
  592. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  593. {
  594. vcpu->svm->vmcb->save.idtr.limit = dt->limit;
  595. vcpu->svm->vmcb->save.idtr.base = dt->base ;
  596. }
  597. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  598. {
  599. dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
  600. dt->base = vcpu->svm->vmcb->save.gdtr.base;
  601. }
  602. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  603. {
  604. vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
  605. vcpu->svm->vmcb->save.gdtr.base = dt->base ;
  606. }
  607. static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  608. {
  609. }
  610. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  611. {
  612. #ifdef CONFIG_X86_64
  613. if (vcpu->shadow_efer & KVM_EFER_LME) {
  614. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  615. vcpu->shadow_efer |= KVM_EFER_LMA;
  616. vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  617. }
  618. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
  619. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  620. vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  621. }
  622. }
  623. #endif
  624. if ((vcpu->cr0 & CR0_TS_MASK) && !(cr0 & CR0_TS_MASK)) {
  625. vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  626. vcpu->fpu_active = 1;
  627. }
  628. vcpu->cr0 = cr0;
  629. cr0 |= CR0_PG_MASK | CR0_WP_MASK;
  630. cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
  631. vcpu->svm->vmcb->save.cr0 = cr0;
  632. }
  633. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  634. {
  635. vcpu->cr4 = cr4;
  636. vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
  637. }
  638. static void svm_set_segment(struct kvm_vcpu *vcpu,
  639. struct kvm_segment *var, int seg)
  640. {
  641. struct vmcb_seg *s = svm_seg(vcpu, seg);
  642. s->base = var->base;
  643. s->limit = var->limit;
  644. s->selector = var->selector;
  645. if (var->unusable)
  646. s->attrib = 0;
  647. else {
  648. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  649. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  650. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  651. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  652. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  653. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  654. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  655. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  656. }
  657. if (seg == VCPU_SREG_CS)
  658. vcpu->svm->vmcb->save.cpl
  659. = (vcpu->svm->vmcb->save.cs.attrib
  660. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  661. }
  662. /* FIXME:
  663. vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  664. vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  665. */
  666. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  667. {
  668. return -EOPNOTSUPP;
  669. }
  670. static void load_host_msrs(struct kvm_vcpu *vcpu)
  671. {
  672. int i;
  673. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  674. wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  675. }
  676. static void save_host_msrs(struct kvm_vcpu *vcpu)
  677. {
  678. int i;
  679. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  680. rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  681. }
  682. static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
  683. {
  684. if (svm_data->next_asid > svm_data->max_asid) {
  685. ++svm_data->asid_generation;
  686. svm_data->next_asid = 1;
  687. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  688. }
  689. vcpu->cpu = svm_data->cpu;
  690. vcpu->svm->asid_generation = svm_data->asid_generation;
  691. vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
  692. }
  693. static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  694. {
  695. invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
  696. }
  697. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  698. {
  699. return vcpu->svm->db_regs[dr];
  700. }
  701. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  702. int *exception)
  703. {
  704. *exception = 0;
  705. if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
  706. vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  707. vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
  708. *exception = DB_VECTOR;
  709. return;
  710. }
  711. switch (dr) {
  712. case 0 ... 3:
  713. vcpu->svm->db_regs[dr] = value;
  714. return;
  715. case 4 ... 5:
  716. if (vcpu->cr4 & CR4_DE_MASK) {
  717. *exception = UD_VECTOR;
  718. return;
  719. }
  720. case 7: {
  721. if (value & ~((1ULL << 32) - 1)) {
  722. *exception = GP_VECTOR;
  723. return;
  724. }
  725. vcpu->svm->vmcb->save.dr7 = value;
  726. return;
  727. }
  728. default:
  729. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  730. __FUNCTION__, dr);
  731. *exception = UD_VECTOR;
  732. return;
  733. }
  734. }
  735. static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  736. {
  737. u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  738. u64 fault_address;
  739. u32 error_code;
  740. enum emulation_result er;
  741. int r;
  742. if (is_external_interrupt(exit_int_info))
  743. push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  744. spin_lock(&vcpu->kvm->lock);
  745. fault_address = vcpu->svm->vmcb->control.exit_info_2;
  746. error_code = vcpu->svm->vmcb->control.exit_info_1;
  747. r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
  748. if (r < 0) {
  749. spin_unlock(&vcpu->kvm->lock);
  750. return r;
  751. }
  752. if (!r) {
  753. spin_unlock(&vcpu->kvm->lock);
  754. return 1;
  755. }
  756. er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
  757. spin_unlock(&vcpu->kvm->lock);
  758. switch (er) {
  759. case EMULATE_DONE:
  760. return 1;
  761. case EMULATE_DO_MMIO:
  762. ++vcpu->stat.mmio_exits;
  763. kvm_run->exit_reason = KVM_EXIT_MMIO;
  764. return 0;
  765. case EMULATE_FAIL:
  766. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  767. break;
  768. default:
  769. BUG();
  770. }
  771. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  772. return 0;
  773. }
  774. static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  775. {
  776. vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  777. if (!(vcpu->cr0 & CR0_TS_MASK))
  778. vcpu->svm->vmcb->save.cr0 &= ~CR0_TS_MASK;
  779. vcpu->fpu_active = 1;
  780. return 1;
  781. }
  782. static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  783. {
  784. /*
  785. * VMCB is undefined after a SHUTDOWN intercept
  786. * so reinitialize it.
  787. */
  788. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  789. init_vmcb(vcpu->svm->vmcb);
  790. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  791. return 0;
  792. }
  793. static int io_get_override(struct kvm_vcpu *vcpu,
  794. struct vmcb_seg **seg,
  795. int *addr_override)
  796. {
  797. u8 inst[MAX_INST_SIZE];
  798. unsigned ins_length;
  799. gva_t rip;
  800. int i;
  801. rip = vcpu->svm->vmcb->save.rip;
  802. ins_length = vcpu->svm->next_rip - rip;
  803. rip += vcpu->svm->vmcb->save.cs.base;
  804. if (ins_length > MAX_INST_SIZE)
  805. printk(KERN_DEBUG
  806. "%s: inst length err, cs base 0x%llx rip 0x%llx "
  807. "next rip 0x%llx ins_length %u\n",
  808. __FUNCTION__,
  809. vcpu->svm->vmcb->save.cs.base,
  810. vcpu->svm->vmcb->save.rip,
  811. vcpu->svm->vmcb->control.exit_info_2,
  812. ins_length);
  813. if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
  814. /* #PF */
  815. return 0;
  816. *addr_override = 0;
  817. *seg = NULL;
  818. for (i = 0; i < ins_length; i++)
  819. switch (inst[i]) {
  820. case 0xf0:
  821. case 0xf2:
  822. case 0xf3:
  823. case 0x66:
  824. continue;
  825. case 0x67:
  826. *addr_override = 1;
  827. continue;
  828. case 0x2e:
  829. *seg = &vcpu->svm->vmcb->save.cs;
  830. continue;
  831. case 0x36:
  832. *seg = &vcpu->svm->vmcb->save.ss;
  833. continue;
  834. case 0x3e:
  835. *seg = &vcpu->svm->vmcb->save.ds;
  836. continue;
  837. case 0x26:
  838. *seg = &vcpu->svm->vmcb->save.es;
  839. continue;
  840. case 0x64:
  841. *seg = &vcpu->svm->vmcb->save.fs;
  842. continue;
  843. case 0x65:
  844. *seg = &vcpu->svm->vmcb->save.gs;
  845. continue;
  846. default:
  847. return 1;
  848. }
  849. printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
  850. return 0;
  851. }
  852. static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
  853. {
  854. unsigned long addr_mask;
  855. unsigned long *reg;
  856. struct vmcb_seg *seg;
  857. int addr_override;
  858. struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
  859. u16 cs_attrib = save_area->cs.attrib;
  860. unsigned addr_size = get_addr_size(vcpu);
  861. if (!io_get_override(vcpu, &seg, &addr_override))
  862. return 0;
  863. if (addr_override)
  864. addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
  865. if (ins) {
  866. reg = &vcpu->regs[VCPU_REGS_RDI];
  867. seg = &vcpu->svm->vmcb->save.es;
  868. } else {
  869. reg = &vcpu->regs[VCPU_REGS_RSI];
  870. seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
  871. }
  872. addr_mask = ~0ULL >> (64 - (addr_size * 8));
  873. if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
  874. !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
  875. *address = (*reg & addr_mask);
  876. return addr_mask;
  877. }
  878. if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
  879. svm_inject_gp(vcpu, 0);
  880. return 0;
  881. }
  882. *address = (*reg & addr_mask) + seg->base;
  883. return addr_mask;
  884. }
  885. static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  886. {
  887. u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
  888. int size, down, in, string, rep;
  889. unsigned port;
  890. unsigned long count;
  891. gva_t address = 0;
  892. ++vcpu->stat.io_exits;
  893. vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
  894. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  895. port = io_info >> 16;
  896. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  897. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  898. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  899. count = 1;
  900. down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  901. if (string) {
  902. unsigned addr_mask;
  903. addr_mask = io_adress(vcpu, in, &address);
  904. if (!addr_mask) {
  905. printk(KERN_DEBUG "%s: get io address failed\n",
  906. __FUNCTION__);
  907. return 1;
  908. }
  909. if (rep)
  910. count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
  911. }
  912. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  913. address, rep, port);
  914. }
  915. static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  916. {
  917. return 1;
  918. }
  919. static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  920. {
  921. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
  922. skip_emulated_instruction(vcpu);
  923. if (vcpu->irq_summary)
  924. return 1;
  925. kvm_run->exit_reason = KVM_EXIT_HLT;
  926. ++vcpu->stat.halt_exits;
  927. return 0;
  928. }
  929. static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  930. {
  931. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
  932. skip_emulated_instruction(vcpu);
  933. return kvm_hypercall(vcpu, kvm_run);
  934. }
  935. static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  936. {
  937. inject_ud(vcpu);
  938. return 1;
  939. }
  940. static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  941. {
  942. printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
  943. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  944. return 0;
  945. }
  946. static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  947. {
  948. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  949. kvm_emulate_cpuid(vcpu);
  950. return 1;
  951. }
  952. static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  953. {
  954. if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
  955. printk(KERN_ERR "%s: failed\n", __FUNCTION__);
  956. return 1;
  957. }
  958. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  959. {
  960. switch (ecx) {
  961. case MSR_IA32_TIME_STAMP_COUNTER: {
  962. u64 tsc;
  963. rdtscll(tsc);
  964. *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
  965. break;
  966. }
  967. case MSR_K6_STAR:
  968. *data = vcpu->svm->vmcb->save.star;
  969. break;
  970. #ifdef CONFIG_X86_64
  971. case MSR_LSTAR:
  972. *data = vcpu->svm->vmcb->save.lstar;
  973. break;
  974. case MSR_CSTAR:
  975. *data = vcpu->svm->vmcb->save.cstar;
  976. break;
  977. case MSR_KERNEL_GS_BASE:
  978. *data = vcpu->svm->vmcb->save.kernel_gs_base;
  979. break;
  980. case MSR_SYSCALL_MASK:
  981. *data = vcpu->svm->vmcb->save.sfmask;
  982. break;
  983. #endif
  984. case MSR_IA32_SYSENTER_CS:
  985. *data = vcpu->svm->vmcb->save.sysenter_cs;
  986. break;
  987. case MSR_IA32_SYSENTER_EIP:
  988. *data = vcpu->svm->vmcb->save.sysenter_eip;
  989. break;
  990. case MSR_IA32_SYSENTER_ESP:
  991. *data = vcpu->svm->vmcb->save.sysenter_esp;
  992. break;
  993. default:
  994. return kvm_get_msr_common(vcpu, ecx, data);
  995. }
  996. return 0;
  997. }
  998. static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  999. {
  1000. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1001. u64 data;
  1002. if (svm_get_msr(vcpu, ecx, &data))
  1003. svm_inject_gp(vcpu, 0);
  1004. else {
  1005. vcpu->svm->vmcb->save.rax = data & 0xffffffff;
  1006. vcpu->regs[VCPU_REGS_RDX] = data >> 32;
  1007. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  1008. skip_emulated_instruction(vcpu);
  1009. }
  1010. return 1;
  1011. }
  1012. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1013. {
  1014. switch (ecx) {
  1015. case MSR_IA32_TIME_STAMP_COUNTER: {
  1016. u64 tsc;
  1017. rdtscll(tsc);
  1018. vcpu->svm->vmcb->control.tsc_offset = data - tsc;
  1019. break;
  1020. }
  1021. case MSR_K6_STAR:
  1022. vcpu->svm->vmcb->save.star = data;
  1023. break;
  1024. #ifdef CONFIG_X86_64
  1025. case MSR_LSTAR:
  1026. vcpu->svm->vmcb->save.lstar = data;
  1027. break;
  1028. case MSR_CSTAR:
  1029. vcpu->svm->vmcb->save.cstar = data;
  1030. break;
  1031. case MSR_KERNEL_GS_BASE:
  1032. vcpu->svm->vmcb->save.kernel_gs_base = data;
  1033. break;
  1034. case MSR_SYSCALL_MASK:
  1035. vcpu->svm->vmcb->save.sfmask = data;
  1036. break;
  1037. #endif
  1038. case MSR_IA32_SYSENTER_CS:
  1039. vcpu->svm->vmcb->save.sysenter_cs = data;
  1040. break;
  1041. case MSR_IA32_SYSENTER_EIP:
  1042. vcpu->svm->vmcb->save.sysenter_eip = data;
  1043. break;
  1044. case MSR_IA32_SYSENTER_ESP:
  1045. vcpu->svm->vmcb->save.sysenter_esp = data;
  1046. break;
  1047. default:
  1048. return kvm_set_msr_common(vcpu, ecx, data);
  1049. }
  1050. return 0;
  1051. }
  1052. static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1053. {
  1054. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1055. u64 data = (vcpu->svm->vmcb->save.rax & -1u)
  1056. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1057. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  1058. if (svm_set_msr(vcpu, ecx, data))
  1059. svm_inject_gp(vcpu, 0);
  1060. else
  1061. skip_emulated_instruction(vcpu);
  1062. return 1;
  1063. }
  1064. static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1065. {
  1066. if (vcpu->svm->vmcb->control.exit_info_1)
  1067. return wrmsr_interception(vcpu, kvm_run);
  1068. else
  1069. return rdmsr_interception(vcpu, kvm_run);
  1070. }
  1071. static int interrupt_window_interception(struct kvm_vcpu *vcpu,
  1072. struct kvm_run *kvm_run)
  1073. {
  1074. /*
  1075. * If the user space waits to inject interrupts, exit as soon as
  1076. * possible
  1077. */
  1078. if (kvm_run->request_interrupt_window &&
  1079. !vcpu->irq_summary) {
  1080. ++vcpu->stat.irq_window_exits;
  1081. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1082. return 0;
  1083. }
  1084. return 1;
  1085. }
  1086. static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
  1087. struct kvm_run *kvm_run) = {
  1088. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1089. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1090. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1091. /* for now: */
  1092. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1093. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1094. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1095. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1096. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1097. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1098. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1099. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1100. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1101. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1102. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1103. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1104. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1105. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1106. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1107. [SVM_EXIT_INTR] = nop_on_interception,
  1108. [SVM_EXIT_NMI] = nop_on_interception,
  1109. [SVM_EXIT_SMI] = nop_on_interception,
  1110. [SVM_EXIT_INIT] = nop_on_interception,
  1111. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1112. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1113. [SVM_EXIT_CPUID] = cpuid_interception,
  1114. [SVM_EXIT_HLT] = halt_interception,
  1115. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1116. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1117. [SVM_EXIT_IOIO] = io_interception,
  1118. [SVM_EXIT_MSR] = msr_interception,
  1119. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1120. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1121. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1122. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1123. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1124. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1125. [SVM_EXIT_STGI] = invalid_op_interception,
  1126. [SVM_EXIT_CLGI] = invalid_op_interception,
  1127. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1128. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1129. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1130. };
  1131. static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1132. {
  1133. u32 exit_code = vcpu->svm->vmcb->control.exit_code;
  1134. if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
  1135. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1136. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1137. "exit_code 0x%x\n",
  1138. __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
  1139. exit_code);
  1140. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1141. || svm_exit_handlers[exit_code] == 0) {
  1142. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1143. kvm_run->hw.hardware_exit_reason = exit_code;
  1144. return 0;
  1145. }
  1146. return svm_exit_handlers[exit_code](vcpu, kvm_run);
  1147. }
  1148. static void reload_tss(struct kvm_vcpu *vcpu)
  1149. {
  1150. int cpu = raw_smp_processor_id();
  1151. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1152. svm_data->tss_desc->type = 9; //available 32/64-bit TSS
  1153. load_TR_desc();
  1154. }
  1155. static void pre_svm_run(struct kvm_vcpu *vcpu)
  1156. {
  1157. int cpu = raw_smp_processor_id();
  1158. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1159. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1160. if (vcpu->cpu != cpu ||
  1161. vcpu->svm->asid_generation != svm_data->asid_generation)
  1162. new_asid(vcpu, svm_data);
  1163. }
  1164. static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1165. {
  1166. struct vmcb_control_area *control;
  1167. control = &vcpu->svm->vmcb->control;
  1168. control->int_vector = pop_irq(vcpu);
  1169. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1170. control->int_ctl |= V_IRQ_MASK |
  1171. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1172. }
  1173. static void kvm_reput_irq(struct kvm_vcpu *vcpu)
  1174. {
  1175. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1176. if (control->int_ctl & V_IRQ_MASK) {
  1177. control->int_ctl &= ~V_IRQ_MASK;
  1178. push_irq(vcpu, control->int_vector);
  1179. }
  1180. vcpu->interrupt_window_open =
  1181. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1182. }
  1183. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1184. struct kvm_run *kvm_run)
  1185. {
  1186. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1187. vcpu->interrupt_window_open =
  1188. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1189. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1190. if (vcpu->interrupt_window_open && vcpu->irq_summary)
  1191. /*
  1192. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1193. */
  1194. kvm_do_inject_irq(vcpu);
  1195. /*
  1196. * Interrupts blocked. Wait for unblock.
  1197. */
  1198. if (!vcpu->interrupt_window_open &&
  1199. (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
  1200. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1201. } else
  1202. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1203. }
  1204. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1205. struct kvm_run *kvm_run)
  1206. {
  1207. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1208. vcpu->irq_summary == 0);
  1209. kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
  1210. kvm_run->cr8 = vcpu->cr8;
  1211. kvm_run->apic_base = vcpu->apic_base;
  1212. }
  1213. /*
  1214. * Check if userspace requested an interrupt window, and that the
  1215. * interrupt window is open.
  1216. *
  1217. * No need to exit to userspace if we already have an interrupt queued.
  1218. */
  1219. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1220. struct kvm_run *kvm_run)
  1221. {
  1222. return (!vcpu->irq_summary &&
  1223. kvm_run->request_interrupt_window &&
  1224. vcpu->interrupt_window_open &&
  1225. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1226. }
  1227. static void save_db_regs(unsigned long *db_regs)
  1228. {
  1229. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1230. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1231. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1232. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1233. }
  1234. static void load_db_regs(unsigned long *db_regs)
  1235. {
  1236. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1237. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1238. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1239. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1240. }
  1241. static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1242. {
  1243. u16 fs_selector;
  1244. u16 gs_selector;
  1245. u16 ldt_selector;
  1246. int r;
  1247. again:
  1248. if (!vcpu->mmio_read_completed)
  1249. do_interrupt_requests(vcpu, kvm_run);
  1250. clgi();
  1251. pre_svm_run(vcpu);
  1252. save_host_msrs(vcpu);
  1253. fs_selector = read_fs();
  1254. gs_selector = read_gs();
  1255. ldt_selector = read_ldt();
  1256. vcpu->svm->host_cr2 = kvm_read_cr2();
  1257. vcpu->svm->host_dr6 = read_dr6();
  1258. vcpu->svm->host_dr7 = read_dr7();
  1259. vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
  1260. if (vcpu->svm->vmcb->save.dr7 & 0xff) {
  1261. write_dr7(0);
  1262. save_db_regs(vcpu->svm->host_db_regs);
  1263. load_db_regs(vcpu->svm->db_regs);
  1264. }
  1265. if (vcpu->fpu_active) {
  1266. fx_save(vcpu->host_fx_image);
  1267. fx_restore(vcpu->guest_fx_image);
  1268. }
  1269. asm volatile (
  1270. #ifdef CONFIG_X86_64
  1271. "push %%rbx; push %%rcx; push %%rdx;"
  1272. "push %%rsi; push %%rdi; push %%rbp;"
  1273. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1274. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1275. #else
  1276. "push %%ebx; push %%ecx; push %%edx;"
  1277. "push %%esi; push %%edi; push %%ebp;"
  1278. #endif
  1279. #ifdef CONFIG_X86_64
  1280. "mov %c[rbx](%[vcpu]), %%rbx \n\t"
  1281. "mov %c[rcx](%[vcpu]), %%rcx \n\t"
  1282. "mov %c[rdx](%[vcpu]), %%rdx \n\t"
  1283. "mov %c[rsi](%[vcpu]), %%rsi \n\t"
  1284. "mov %c[rdi](%[vcpu]), %%rdi \n\t"
  1285. "mov %c[rbp](%[vcpu]), %%rbp \n\t"
  1286. "mov %c[r8](%[vcpu]), %%r8 \n\t"
  1287. "mov %c[r9](%[vcpu]), %%r9 \n\t"
  1288. "mov %c[r10](%[vcpu]), %%r10 \n\t"
  1289. "mov %c[r11](%[vcpu]), %%r11 \n\t"
  1290. "mov %c[r12](%[vcpu]), %%r12 \n\t"
  1291. "mov %c[r13](%[vcpu]), %%r13 \n\t"
  1292. "mov %c[r14](%[vcpu]), %%r14 \n\t"
  1293. "mov %c[r15](%[vcpu]), %%r15 \n\t"
  1294. #else
  1295. "mov %c[rbx](%[vcpu]), %%ebx \n\t"
  1296. "mov %c[rcx](%[vcpu]), %%ecx \n\t"
  1297. "mov %c[rdx](%[vcpu]), %%edx \n\t"
  1298. "mov %c[rsi](%[vcpu]), %%esi \n\t"
  1299. "mov %c[rdi](%[vcpu]), %%edi \n\t"
  1300. "mov %c[rbp](%[vcpu]), %%ebp \n\t"
  1301. #endif
  1302. #ifdef CONFIG_X86_64
  1303. /* Enter guest mode */
  1304. "push %%rax \n\t"
  1305. "mov %c[svm](%[vcpu]), %%rax \n\t"
  1306. "mov %c[vmcb](%%rax), %%rax \n\t"
  1307. SVM_VMLOAD "\n\t"
  1308. SVM_VMRUN "\n\t"
  1309. SVM_VMSAVE "\n\t"
  1310. "pop %%rax \n\t"
  1311. #else
  1312. /* Enter guest mode */
  1313. "push %%eax \n\t"
  1314. "mov %c[svm](%[vcpu]), %%eax \n\t"
  1315. "mov %c[vmcb](%%eax), %%eax \n\t"
  1316. SVM_VMLOAD "\n\t"
  1317. SVM_VMRUN "\n\t"
  1318. SVM_VMSAVE "\n\t"
  1319. "pop %%eax \n\t"
  1320. #endif
  1321. /* Save guest registers, load host registers */
  1322. #ifdef CONFIG_X86_64
  1323. "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
  1324. "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
  1325. "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
  1326. "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
  1327. "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
  1328. "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
  1329. "mov %%r8, %c[r8](%[vcpu]) \n\t"
  1330. "mov %%r9, %c[r9](%[vcpu]) \n\t"
  1331. "mov %%r10, %c[r10](%[vcpu]) \n\t"
  1332. "mov %%r11, %c[r11](%[vcpu]) \n\t"
  1333. "mov %%r12, %c[r12](%[vcpu]) \n\t"
  1334. "mov %%r13, %c[r13](%[vcpu]) \n\t"
  1335. "mov %%r14, %c[r14](%[vcpu]) \n\t"
  1336. "mov %%r15, %c[r15](%[vcpu]) \n\t"
  1337. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1338. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1339. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1340. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1341. #else
  1342. "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
  1343. "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
  1344. "mov %%edx, %c[rdx](%[vcpu]) \n\t"
  1345. "mov %%esi, %c[rsi](%[vcpu]) \n\t"
  1346. "mov %%edi, %c[rdi](%[vcpu]) \n\t"
  1347. "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
  1348. "pop %%ebp; pop %%edi; pop %%esi;"
  1349. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1350. #endif
  1351. :
  1352. : [vcpu]"a"(vcpu),
  1353. [svm]"i"(offsetof(struct kvm_vcpu, svm)),
  1354. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1355. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1356. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1357. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1358. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1359. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1360. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
  1361. #ifdef CONFIG_X86_64
  1362. ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1363. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1364. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1365. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1366. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1367. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1368. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1369. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
  1370. #endif
  1371. : "cc", "memory" );
  1372. if (vcpu->fpu_active) {
  1373. fx_save(vcpu->guest_fx_image);
  1374. fx_restore(vcpu->host_fx_image);
  1375. }
  1376. if ((vcpu->svm->vmcb->save.dr7 & 0xff))
  1377. load_db_regs(vcpu->svm->host_db_regs);
  1378. vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
  1379. write_dr6(vcpu->svm->host_dr6);
  1380. write_dr7(vcpu->svm->host_dr7);
  1381. kvm_write_cr2(vcpu->svm->host_cr2);
  1382. load_fs(fs_selector);
  1383. load_gs(gs_selector);
  1384. load_ldt(ldt_selector);
  1385. load_host_msrs(vcpu);
  1386. reload_tss(vcpu);
  1387. /*
  1388. * Profile KVM exit RIPs:
  1389. */
  1390. if (unlikely(prof_on == KVM_PROFILING))
  1391. profile_hit(KVM_PROFILING,
  1392. (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
  1393. stgi();
  1394. kvm_reput_irq(vcpu);
  1395. vcpu->svm->next_rip = 0;
  1396. if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1397. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1398. kvm_run->fail_entry.hardware_entry_failure_reason
  1399. = vcpu->svm->vmcb->control.exit_code;
  1400. post_kvm_run_save(vcpu, kvm_run);
  1401. return 0;
  1402. }
  1403. r = handle_exit(vcpu, kvm_run);
  1404. if (r > 0) {
  1405. if (signal_pending(current)) {
  1406. ++vcpu->stat.signal_exits;
  1407. post_kvm_run_save(vcpu, kvm_run);
  1408. kvm_run->exit_reason = KVM_EXIT_INTR;
  1409. return -EINTR;
  1410. }
  1411. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1412. ++vcpu->stat.request_irq_exits;
  1413. post_kvm_run_save(vcpu, kvm_run);
  1414. kvm_run->exit_reason = KVM_EXIT_INTR;
  1415. return -EINTR;
  1416. }
  1417. kvm_resched(vcpu);
  1418. goto again;
  1419. }
  1420. post_kvm_run_save(vcpu, kvm_run);
  1421. return r;
  1422. }
  1423. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1424. {
  1425. force_new_asid(vcpu);
  1426. }
  1427. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1428. {
  1429. vcpu->svm->vmcb->save.cr3 = root;
  1430. force_new_asid(vcpu);
  1431. if (vcpu->fpu_active) {
  1432. vcpu->svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1433. vcpu->svm->vmcb->save.cr0 |= CR0_TS_MASK;
  1434. vcpu->fpu_active = 0;
  1435. }
  1436. }
  1437. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1438. unsigned long addr,
  1439. uint32_t err_code)
  1440. {
  1441. uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  1442. ++vcpu->stat.pf_guest;
  1443. if (is_page_fault(exit_int_info)) {
  1444. vcpu->svm->vmcb->control.event_inj_err = 0;
  1445. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1446. SVM_EVTINJ_VALID_ERR |
  1447. SVM_EVTINJ_TYPE_EXEPT |
  1448. DF_VECTOR;
  1449. return;
  1450. }
  1451. vcpu->cr2 = addr;
  1452. vcpu->svm->vmcb->save.cr2 = addr;
  1453. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1454. SVM_EVTINJ_VALID_ERR |
  1455. SVM_EVTINJ_TYPE_EXEPT |
  1456. PF_VECTOR;
  1457. vcpu->svm->vmcb->control.event_inj_err = err_code;
  1458. }
  1459. static int is_disabled(void)
  1460. {
  1461. return 0;
  1462. }
  1463. static void
  1464. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1465. {
  1466. /*
  1467. * Patch in the VMMCALL instruction:
  1468. */
  1469. hypercall[0] = 0x0f;
  1470. hypercall[1] = 0x01;
  1471. hypercall[2] = 0xd9;
  1472. hypercall[3] = 0xc3;
  1473. }
  1474. static struct kvm_arch_ops svm_arch_ops = {
  1475. .cpu_has_kvm_support = has_svm,
  1476. .disabled_by_bios = is_disabled,
  1477. .hardware_setup = svm_hardware_setup,
  1478. .hardware_unsetup = svm_hardware_unsetup,
  1479. .hardware_enable = svm_hardware_enable,
  1480. .hardware_disable = svm_hardware_disable,
  1481. .vcpu_create = svm_create_vcpu,
  1482. .vcpu_free = svm_free_vcpu,
  1483. .vcpu_load = svm_vcpu_load,
  1484. .vcpu_put = svm_vcpu_put,
  1485. .vcpu_decache = svm_vcpu_decache,
  1486. .set_guest_debug = svm_guest_debug,
  1487. .get_msr = svm_get_msr,
  1488. .set_msr = svm_set_msr,
  1489. .get_segment_base = svm_get_segment_base,
  1490. .get_segment = svm_get_segment,
  1491. .set_segment = svm_set_segment,
  1492. .get_cs_db_l_bits = svm_get_cs_db_l_bits,
  1493. .decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
  1494. .set_cr0 = svm_set_cr0,
  1495. .set_cr3 = svm_set_cr3,
  1496. .set_cr4 = svm_set_cr4,
  1497. .set_efer = svm_set_efer,
  1498. .get_idt = svm_get_idt,
  1499. .set_idt = svm_set_idt,
  1500. .get_gdt = svm_get_gdt,
  1501. .set_gdt = svm_set_gdt,
  1502. .get_dr = svm_get_dr,
  1503. .set_dr = svm_set_dr,
  1504. .cache_regs = svm_cache_regs,
  1505. .decache_regs = svm_decache_regs,
  1506. .get_rflags = svm_get_rflags,
  1507. .set_rflags = svm_set_rflags,
  1508. .invlpg = svm_invlpg,
  1509. .tlb_flush = svm_flush_tlb,
  1510. .inject_page_fault = svm_inject_page_fault,
  1511. .inject_gp = svm_inject_gp,
  1512. .run = svm_vcpu_run,
  1513. .skip_emulated_instruction = skip_emulated_instruction,
  1514. .vcpu_setup = svm_vcpu_setup,
  1515. .patch_hypercall = svm_patch_hypercall,
  1516. };
  1517. static int __init svm_init(void)
  1518. {
  1519. return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
  1520. }
  1521. static void __exit svm_exit(void)
  1522. {
  1523. kvm_exit_arch();
  1524. }
  1525. module_init(svm_init)
  1526. module_exit(svm_exit)