ar5008_phy.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "hw-ops.h"
  18. #include "../regd.h"
  19. #include "ar9002_phy.h"
  20. /* All code below is for non single-chip solutions */
  21. /**
  22. * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
  23. * @rfbuf:
  24. * @reg32:
  25. * @numBits:
  26. * @firstBit:
  27. * @column:
  28. *
  29. * Performs analog "swizzling" of parameters into their location.
  30. * Used on external AR2133/AR5133 radios.
  31. */
  32. static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  33. u32 numBits, u32 firstBit,
  34. u32 column)
  35. {
  36. u32 tmp32, mask, arrayEntry, lastBit;
  37. int32_t bitPosition, bitsLeft;
  38. tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  39. arrayEntry = (firstBit - 1) / 8;
  40. bitPosition = (firstBit - 1) % 8;
  41. bitsLeft = numBits;
  42. while (bitsLeft > 0) {
  43. lastBit = (bitPosition + bitsLeft > 8) ?
  44. 8 : bitPosition + bitsLeft;
  45. mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
  46. (column * 8);
  47. rfBuf[arrayEntry] &= ~mask;
  48. rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
  49. (column * 8)) & mask;
  50. bitsLeft -= 8 - bitPosition;
  51. tmp32 = tmp32 >> (8 - bitPosition);
  52. bitPosition = 0;
  53. arrayEntry++;
  54. }
  55. }
  56. /*
  57. * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
  58. * rf_pwd_icsyndiv.
  59. *
  60. * Theoretical Rules:
  61. * if 2 GHz band
  62. * if forceBiasAuto
  63. * if synth_freq < 2412
  64. * bias = 0
  65. * else if 2412 <= synth_freq <= 2422
  66. * bias = 1
  67. * else // synth_freq > 2422
  68. * bias = 2
  69. * else if forceBias > 0
  70. * bias = forceBias & 7
  71. * else
  72. * no change, use value from ini file
  73. * else
  74. * no change, invalid band
  75. *
  76. * 1st Mod:
  77. * 2422 also uses value of 2
  78. * <approved>
  79. *
  80. * 2nd Mod:
  81. * Less than 2412 uses value of 0, 2412 and above uses value of 2
  82. */
  83. static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
  84. {
  85. struct ath_common *common = ath9k_hw_common(ah);
  86. u32 tmp_reg;
  87. int reg_writes = 0;
  88. u32 new_bias = 0;
  89. if (!AR_SREV_5416(ah) || synth_freq >= 3000)
  90. return;
  91. BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
  92. if (synth_freq < 2412)
  93. new_bias = 0;
  94. else if (synth_freq < 2422)
  95. new_bias = 1;
  96. else
  97. new_bias = 2;
  98. /* pre-reverse this field */
  99. tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
  100. ath_print(common, ATH_DBG_CONFIG,
  101. "Force rf_pwd_icsyndiv to %1d on %4d\n",
  102. new_bias, synth_freq);
  103. /* swizzle rf_pwd_icsyndiv */
  104. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
  105. /* write Bank 6 with new params */
  106. REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
  107. }
  108. /**
  109. * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
  110. * @ah: atheros hardware stucture
  111. * @chan:
  112. *
  113. * For the external AR2133/AR5133 radios, takes the MHz channel value and set
  114. * the channel value. Assumes writes enabled to analog bus and bank6 register
  115. * cache in ah->analogBank6Data.
  116. */
  117. static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  118. {
  119. struct ath_common *common = ath9k_hw_common(ah);
  120. u32 channelSel = 0;
  121. u32 bModeSynth = 0;
  122. u32 aModeRefSel = 0;
  123. u32 reg32 = 0;
  124. u16 freq;
  125. struct chan_centers centers;
  126. ath9k_hw_get_channel_centers(ah, chan, &centers);
  127. freq = centers.synth_center;
  128. if (freq < 4800) {
  129. u32 txctl;
  130. if (((freq - 2192) % 5) == 0) {
  131. channelSel = ((freq - 672) * 2 - 3040) / 10;
  132. bModeSynth = 0;
  133. } else if (((freq - 2224) % 5) == 0) {
  134. channelSel = ((freq - 704) * 2 - 3040) / 10;
  135. bModeSynth = 1;
  136. } else {
  137. ath_print(common, ATH_DBG_FATAL,
  138. "Invalid channel %u MHz\n", freq);
  139. return -EINVAL;
  140. }
  141. channelSel = (channelSel << 2) & 0xff;
  142. channelSel = ath9k_hw_reverse_bits(channelSel, 8);
  143. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  144. if (freq == 2484) {
  145. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  146. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  147. } else {
  148. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  149. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  150. }
  151. } else if ((freq % 20) == 0 && freq >= 5120) {
  152. channelSel =
  153. ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
  154. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  155. } else if ((freq % 10) == 0) {
  156. channelSel =
  157. ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
  158. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  159. aModeRefSel = ath9k_hw_reverse_bits(2, 2);
  160. else
  161. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  162. } else if ((freq % 5) == 0) {
  163. channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
  164. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  165. } else {
  166. ath_print(common, ATH_DBG_FATAL,
  167. "Invalid channel %u MHz\n", freq);
  168. return -EINVAL;
  169. }
  170. ar5008_hw_force_bias(ah, freq);
  171. reg32 =
  172. (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
  173. (1 << 5) | 0x1;
  174. REG_WRITE(ah, AR_PHY(0x37), reg32);
  175. ah->curchan = chan;
  176. ah->curchan_rad_index = -1;
  177. return 0;
  178. }
  179. /**
  180. * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
  181. * @ah: atheros hardware structure
  182. * @chan:
  183. *
  184. * For non single-chip solutions. Converts to baseband spur frequency given the
  185. * input channel frequency and compute register settings below.
  186. */
  187. static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
  188. struct ath9k_channel *chan)
  189. {
  190. int bb_spur = AR_NO_SPUR;
  191. int bin, cur_bin;
  192. int spur_freq_sd;
  193. int spur_delta_phase;
  194. int denominator;
  195. int upper, lower, cur_vit_mask;
  196. int tmp, new;
  197. int i;
  198. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  199. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  200. };
  201. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  202. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  203. };
  204. int inc[4] = { 0, 100, 0, 0 };
  205. int8_t mask_m[123];
  206. int8_t mask_p[123];
  207. int8_t mask_amt;
  208. int tmp_mask;
  209. int cur_bb_spur;
  210. bool is2GHz = IS_CHAN_2GHZ(chan);
  211. memset(&mask_m, 0, sizeof(int8_t) * 123);
  212. memset(&mask_p, 0, sizeof(int8_t) * 123);
  213. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  214. cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
  215. if (AR_NO_SPUR == cur_bb_spur)
  216. break;
  217. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  218. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  219. bb_spur = cur_bb_spur;
  220. break;
  221. }
  222. }
  223. if (AR_NO_SPUR == bb_spur)
  224. return;
  225. bin = bb_spur * 32;
  226. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  227. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  228. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  229. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  230. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  231. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  232. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  233. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  234. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  235. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  236. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  237. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  238. spur_delta_phase = ((bb_spur * 524288) / 100) &
  239. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  240. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  241. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  242. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  243. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  244. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  245. REG_WRITE(ah, AR_PHY_TIMING11, new);
  246. cur_bin = -6000;
  247. upper = bin + 100;
  248. lower = bin - 100;
  249. for (i = 0; i < 4; i++) {
  250. int pilot_mask = 0;
  251. int chan_mask = 0;
  252. int bp = 0;
  253. for (bp = 0; bp < 30; bp++) {
  254. if ((cur_bin > lower) && (cur_bin < upper)) {
  255. pilot_mask = pilot_mask | 0x1 << bp;
  256. chan_mask = chan_mask | 0x1 << bp;
  257. }
  258. cur_bin += 100;
  259. }
  260. cur_bin += inc[i];
  261. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  262. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  263. }
  264. cur_vit_mask = 6100;
  265. upper = bin + 120;
  266. lower = bin - 120;
  267. for (i = 0; i < 123; i++) {
  268. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  269. /* workaround for gcc bug #37014 */
  270. volatile int tmp_v = abs(cur_vit_mask - bin);
  271. if (tmp_v < 75)
  272. mask_amt = 1;
  273. else
  274. mask_amt = 0;
  275. if (cur_vit_mask < 0)
  276. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  277. else
  278. mask_p[cur_vit_mask / 100] = mask_amt;
  279. }
  280. cur_vit_mask -= 100;
  281. }
  282. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  283. | (mask_m[48] << 26) | (mask_m[49] << 24)
  284. | (mask_m[50] << 22) | (mask_m[51] << 20)
  285. | (mask_m[52] << 18) | (mask_m[53] << 16)
  286. | (mask_m[54] << 14) | (mask_m[55] << 12)
  287. | (mask_m[56] << 10) | (mask_m[57] << 8)
  288. | (mask_m[58] << 6) | (mask_m[59] << 4)
  289. | (mask_m[60] << 2) | (mask_m[61] << 0);
  290. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  291. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  292. tmp_mask = (mask_m[31] << 28)
  293. | (mask_m[32] << 26) | (mask_m[33] << 24)
  294. | (mask_m[34] << 22) | (mask_m[35] << 20)
  295. | (mask_m[36] << 18) | (mask_m[37] << 16)
  296. | (mask_m[48] << 14) | (mask_m[39] << 12)
  297. | (mask_m[40] << 10) | (mask_m[41] << 8)
  298. | (mask_m[42] << 6) | (mask_m[43] << 4)
  299. | (mask_m[44] << 2) | (mask_m[45] << 0);
  300. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  301. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  302. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  303. | (mask_m[18] << 26) | (mask_m[18] << 24)
  304. | (mask_m[20] << 22) | (mask_m[20] << 20)
  305. | (mask_m[22] << 18) | (mask_m[22] << 16)
  306. | (mask_m[24] << 14) | (mask_m[24] << 12)
  307. | (mask_m[25] << 10) | (mask_m[26] << 8)
  308. | (mask_m[27] << 6) | (mask_m[28] << 4)
  309. | (mask_m[29] << 2) | (mask_m[30] << 0);
  310. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  311. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  312. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  313. | (mask_m[2] << 26) | (mask_m[3] << 24)
  314. | (mask_m[4] << 22) | (mask_m[5] << 20)
  315. | (mask_m[6] << 18) | (mask_m[7] << 16)
  316. | (mask_m[8] << 14) | (mask_m[9] << 12)
  317. | (mask_m[10] << 10) | (mask_m[11] << 8)
  318. | (mask_m[12] << 6) | (mask_m[13] << 4)
  319. | (mask_m[14] << 2) | (mask_m[15] << 0);
  320. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  321. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  322. tmp_mask = (mask_p[15] << 28)
  323. | (mask_p[14] << 26) | (mask_p[13] << 24)
  324. | (mask_p[12] << 22) | (mask_p[11] << 20)
  325. | (mask_p[10] << 18) | (mask_p[9] << 16)
  326. | (mask_p[8] << 14) | (mask_p[7] << 12)
  327. | (mask_p[6] << 10) | (mask_p[5] << 8)
  328. | (mask_p[4] << 6) | (mask_p[3] << 4)
  329. | (mask_p[2] << 2) | (mask_p[1] << 0);
  330. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  331. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  332. tmp_mask = (mask_p[30] << 28)
  333. | (mask_p[29] << 26) | (mask_p[28] << 24)
  334. | (mask_p[27] << 22) | (mask_p[26] << 20)
  335. | (mask_p[25] << 18) | (mask_p[24] << 16)
  336. | (mask_p[23] << 14) | (mask_p[22] << 12)
  337. | (mask_p[21] << 10) | (mask_p[20] << 8)
  338. | (mask_p[19] << 6) | (mask_p[18] << 4)
  339. | (mask_p[17] << 2) | (mask_p[16] << 0);
  340. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  341. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  342. tmp_mask = (mask_p[45] << 28)
  343. | (mask_p[44] << 26) | (mask_p[43] << 24)
  344. | (mask_p[42] << 22) | (mask_p[41] << 20)
  345. | (mask_p[40] << 18) | (mask_p[39] << 16)
  346. | (mask_p[38] << 14) | (mask_p[37] << 12)
  347. | (mask_p[36] << 10) | (mask_p[35] << 8)
  348. | (mask_p[34] << 6) | (mask_p[33] << 4)
  349. | (mask_p[32] << 2) | (mask_p[31] << 0);
  350. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  351. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  352. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  353. | (mask_p[59] << 26) | (mask_p[58] << 24)
  354. | (mask_p[57] << 22) | (mask_p[56] << 20)
  355. | (mask_p[55] << 18) | (mask_p[54] << 16)
  356. | (mask_p[53] << 14) | (mask_p[52] << 12)
  357. | (mask_p[51] << 10) | (mask_p[50] << 8)
  358. | (mask_p[49] << 6) | (mask_p[48] << 4)
  359. | (mask_p[47] << 2) | (mask_p[46] << 0);
  360. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  361. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  362. }
  363. /**
  364. * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
  365. * @ah: atheros hardware structure
  366. *
  367. * Only required for older devices with external AR2133/AR5133 radios.
  368. */
  369. static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
  370. {
  371. #define ATH_ALLOC_BANK(bank, size) do { \
  372. bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
  373. if (!bank) { \
  374. ath_print(common, ATH_DBG_FATAL, \
  375. "Cannot allocate RF banks\n"); \
  376. return -ENOMEM; \
  377. } \
  378. } while (0);
  379. struct ath_common *common = ath9k_hw_common(ah);
  380. BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
  381. ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
  382. ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
  383. ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
  384. ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
  385. ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
  386. ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
  387. ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
  388. ATH_ALLOC_BANK(ah->addac5416_21,
  389. ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
  390. ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
  391. return 0;
  392. #undef ATH_ALLOC_BANK
  393. }
  394. /**
  395. * ar5008_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
  396. * @ah: atheros hardware struture
  397. * For the external AR2133/AR5133 radios banks.
  398. */
  399. static void ar5008_hw_rf_free_ext_banks(struct ath_hw *ah)
  400. {
  401. #define ATH_FREE_BANK(bank) do { \
  402. kfree(bank); \
  403. bank = NULL; \
  404. } while (0);
  405. BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
  406. ATH_FREE_BANK(ah->analogBank0Data);
  407. ATH_FREE_BANK(ah->analogBank1Data);
  408. ATH_FREE_BANK(ah->analogBank2Data);
  409. ATH_FREE_BANK(ah->analogBank3Data);
  410. ATH_FREE_BANK(ah->analogBank6Data);
  411. ATH_FREE_BANK(ah->analogBank6TPCData);
  412. ATH_FREE_BANK(ah->analogBank7Data);
  413. ATH_FREE_BANK(ah->addac5416_21);
  414. ATH_FREE_BANK(ah->bank6Temp);
  415. #undef ATH_FREE_BANK
  416. }
  417. /* *
  418. * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
  419. * @ah: atheros hardware structure
  420. * @chan:
  421. * @modesIndex:
  422. *
  423. * Used for the external AR2133/AR5133 radios.
  424. *
  425. * Reads the EEPROM header info from the device structure and programs
  426. * all rf registers. This routine requires access to the analog
  427. * rf device. This is not required for single-chip devices.
  428. */
  429. static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
  430. struct ath9k_channel *chan,
  431. u16 modesIndex)
  432. {
  433. u32 eepMinorRev;
  434. u32 ob5GHz = 0, db5GHz = 0;
  435. u32 ob2GHz = 0, db2GHz = 0;
  436. int regWrites = 0;
  437. /*
  438. * Software does not need to program bank data
  439. * for single chip devices, that is AR9280 or anything
  440. * after that.
  441. */
  442. if (AR_SREV_9280_10_OR_LATER(ah))
  443. return true;
  444. /* Setup rf parameters */
  445. eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
  446. /* Setup Bank 0 Write */
  447. RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
  448. /* Setup Bank 1 Write */
  449. RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
  450. /* Setup Bank 2 Write */
  451. RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
  452. /* Setup Bank 6 Write */
  453. RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
  454. modesIndex);
  455. {
  456. int i;
  457. for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
  458. ah->analogBank6Data[i] =
  459. INI_RA(&ah->iniBank6TPC, i, modesIndex);
  460. }
  461. }
  462. /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
  463. if (eepMinorRev >= 2) {
  464. if (IS_CHAN_2GHZ(chan)) {
  465. ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
  466. db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
  467. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  468. ob2GHz, 3, 197, 0);
  469. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  470. db2GHz, 3, 194, 0);
  471. } else {
  472. ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
  473. db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
  474. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  475. ob5GHz, 3, 203, 0);
  476. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  477. db5GHz, 3, 200, 0);
  478. }
  479. }
  480. /* Setup Bank 7 Setup */
  481. RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
  482. /* Write Analog registers */
  483. REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
  484. regWrites);
  485. REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
  486. regWrites);
  487. REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
  488. regWrites);
  489. REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
  490. regWrites);
  491. REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
  492. regWrites);
  493. REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
  494. regWrites);
  495. return true;
  496. }
  497. static void ar5008_hw_init_bb(struct ath_hw *ah,
  498. struct ath9k_channel *chan)
  499. {
  500. u32 synthDelay;
  501. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  502. if (IS_CHAN_B(chan))
  503. synthDelay = (4 * synthDelay) / 22;
  504. else
  505. synthDelay /= 10;
  506. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  507. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  508. }
  509. static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
  510. {
  511. int rx_chainmask, tx_chainmask;
  512. rx_chainmask = ah->rxchainmask;
  513. tx_chainmask = ah->txchainmask;
  514. switch (rx_chainmask) {
  515. case 0x5:
  516. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  517. AR_PHY_SWAP_ALT_CHAIN);
  518. case 0x3:
  519. if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
  520. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  521. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  522. break;
  523. }
  524. case 0x1:
  525. case 0x2:
  526. case 0x7:
  527. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  528. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  529. break;
  530. default:
  531. break;
  532. }
  533. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  534. if (tx_chainmask == 0x5) {
  535. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  536. AR_PHY_SWAP_ALT_CHAIN);
  537. }
  538. if (AR_SREV_9100(ah))
  539. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  540. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  541. }
  542. static void ar5008_hw_override_ini(struct ath_hw *ah,
  543. struct ath9k_channel *chan)
  544. {
  545. u32 val;
  546. /*
  547. * Set the RX_ABORT and RX_DIS and clear if off only after
  548. * RXE is set for MAC. This prevents frames with corrupted
  549. * descriptor status.
  550. */
  551. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  552. if (AR_SREV_9280_10_OR_LATER(ah)) {
  553. val = REG_READ(ah, AR_PCU_MISC_MODE2);
  554. if (!AR_SREV_9271(ah))
  555. val &= ~AR_PCU_MISC_MODE2_HWWAR1;
  556. if (AR_SREV_9287_10_OR_LATER(ah))
  557. val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
  558. REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
  559. }
  560. if (!AR_SREV_5416_20_OR_LATER(ah) ||
  561. AR_SREV_9280_10_OR_LATER(ah))
  562. return;
  563. /*
  564. * Disable BB clock gating
  565. * Necessary to avoid issues on AR5416 2.0
  566. */
  567. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  568. /*
  569. * Disable RIFS search on some chips to avoid baseband
  570. * hang issues.
  571. */
  572. if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
  573. val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
  574. val &= ~AR_PHY_RIFS_INIT_DELAY;
  575. REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
  576. }
  577. }
  578. static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
  579. struct ath9k_channel *chan)
  580. {
  581. u32 phymode;
  582. u32 enableDacFifo = 0;
  583. if (AR_SREV_9285_10_OR_LATER(ah))
  584. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  585. AR_PHY_FC_ENABLE_DAC_FIFO);
  586. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  587. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  588. if (IS_CHAN_HT40(chan)) {
  589. phymode |= AR_PHY_FC_DYN2040_EN;
  590. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  591. (chan->chanmode == CHANNEL_G_HT40PLUS))
  592. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  593. }
  594. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  595. ath9k_hw_set11nmac2040(ah);
  596. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  597. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  598. }
  599. static int ar5008_hw_process_ini(struct ath_hw *ah,
  600. struct ath9k_channel *chan)
  601. {
  602. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  603. int i, regWrites = 0;
  604. struct ieee80211_channel *channel = chan->chan;
  605. u32 modesIndex, freqIndex;
  606. switch (chan->chanmode) {
  607. case CHANNEL_A:
  608. case CHANNEL_A_HT20:
  609. modesIndex = 1;
  610. freqIndex = 1;
  611. break;
  612. case CHANNEL_A_HT40PLUS:
  613. case CHANNEL_A_HT40MINUS:
  614. modesIndex = 2;
  615. freqIndex = 1;
  616. break;
  617. case CHANNEL_G:
  618. case CHANNEL_G_HT20:
  619. case CHANNEL_B:
  620. modesIndex = 4;
  621. freqIndex = 2;
  622. break;
  623. case CHANNEL_G_HT40PLUS:
  624. case CHANNEL_G_HT40MINUS:
  625. modesIndex = 3;
  626. freqIndex = 2;
  627. break;
  628. default:
  629. return -EINVAL;
  630. }
  631. if (AR_SREV_9287_12_OR_LATER(ah)) {
  632. /* Enable ASYNC FIFO */
  633. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  634. AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
  635. REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
  636. REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  637. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  638. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  639. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  640. }
  641. /*
  642. * Set correct baseband to analog shift setting to
  643. * access analog chips.
  644. */
  645. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  646. /* Write ADDAC shifts */
  647. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  648. ah->eep_ops->set_addac(ah, chan);
  649. if (AR_SREV_5416_22_OR_LATER(ah)) {
  650. REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
  651. } else {
  652. struct ar5416IniArray temp;
  653. u32 addacSize =
  654. sizeof(u32) * ah->iniAddac.ia_rows *
  655. ah->iniAddac.ia_columns;
  656. /* For AR5416 2.0/2.1 */
  657. memcpy(ah->addac5416_21,
  658. ah->iniAddac.ia_array, addacSize);
  659. /* override CLKDRV value at [row, column] = [31, 1] */
  660. (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
  661. temp.ia_array = ah->addac5416_21;
  662. temp.ia_columns = ah->iniAddac.ia_columns;
  663. temp.ia_rows = ah->iniAddac.ia_rows;
  664. REG_WRITE_ARRAY(&temp, 1, regWrites);
  665. }
  666. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  667. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  668. u32 reg = INI_RA(&ah->iniModes, i, 0);
  669. u32 val = INI_RA(&ah->iniModes, i, modesIndex);
  670. if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
  671. val &= ~AR_AN_TOP2_PWDCLKIND;
  672. REG_WRITE(ah, reg, val);
  673. if (reg >= 0x7800 && reg < 0x78a0
  674. && ah->config.analog_shiftreg) {
  675. udelay(100);
  676. }
  677. DO_DELAY(regWrites);
  678. }
  679. if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
  680. REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
  681. if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
  682. AR_SREV_9287_10_OR_LATER(ah))
  683. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  684. if (AR_SREV_9271_10(ah))
  685. REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
  686. modesIndex, regWrites);
  687. /* Write common array parameters */
  688. for (i = 0; i < ah->iniCommon.ia_rows; i++) {
  689. u32 reg = INI_RA(&ah->iniCommon, i, 0);
  690. u32 val = INI_RA(&ah->iniCommon, i, 1);
  691. REG_WRITE(ah, reg, val);
  692. if (reg >= 0x7800 && reg < 0x78a0
  693. && ah->config.analog_shiftreg) {
  694. udelay(100);
  695. }
  696. DO_DELAY(regWrites);
  697. }
  698. if (AR_SREV_9271(ah)) {
  699. if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
  700. REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
  701. modesIndex, regWrites);
  702. else
  703. REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
  704. modesIndex, regWrites);
  705. }
  706. REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
  707. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  708. REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
  709. regWrites);
  710. }
  711. ar5008_hw_override_ini(ah, chan);
  712. ar5008_hw_set_channel_regs(ah, chan);
  713. ar5008_hw_init_chain_masks(ah);
  714. ath9k_olc_init(ah);
  715. /* Set TX power */
  716. ah->eep_ops->set_txpower(ah, chan,
  717. ath9k_regd_get_ctl(regulatory, chan),
  718. channel->max_antenna_gain * 2,
  719. channel->max_power * 2,
  720. min((u32) MAX_RATE_POWER,
  721. (u32) regulatory->power_limit));
  722. /* Write analog registers */
  723. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  724. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  725. "ar5416SetRfRegs failed\n");
  726. return -EIO;
  727. }
  728. return 0;
  729. }
  730. static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
  731. {
  732. u32 rfMode = 0;
  733. if (chan == NULL)
  734. return;
  735. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  736. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  737. if (!AR_SREV_9280_10_OR_LATER(ah))
  738. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  739. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  740. if ((AR_SREV_9280_20(ah) || AR_SREV_9300_20_OR_LATER(ah))
  741. && IS_CHAN_A_5MHZ_SPACED(chan))
  742. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  743. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  744. }
  745. static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
  746. {
  747. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  748. }
  749. static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
  750. struct ath9k_channel *chan)
  751. {
  752. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  753. u32 clockMhzScaled = 0x64000000;
  754. struct chan_centers centers;
  755. if (IS_CHAN_HALF_RATE(chan))
  756. clockMhzScaled = clockMhzScaled >> 1;
  757. else if (IS_CHAN_QUARTER_RATE(chan))
  758. clockMhzScaled = clockMhzScaled >> 2;
  759. ath9k_hw_get_channel_centers(ah, chan, &centers);
  760. coef_scaled = clockMhzScaled / centers.synth_center;
  761. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  762. &ds_coef_exp);
  763. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  764. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  765. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  766. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  767. coef_scaled = (9 * coef_scaled) / 10;
  768. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  769. &ds_coef_exp);
  770. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  771. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  772. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  773. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  774. }
  775. static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
  776. {
  777. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  778. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  779. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  780. }
  781. static void ar5008_hw_rfbus_done(struct ath_hw *ah)
  782. {
  783. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  784. if (IS_CHAN_B(ah->curchan))
  785. synthDelay = (4 * synthDelay) / 22;
  786. else
  787. synthDelay /= 10;
  788. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  789. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  790. }
  791. static void ar5008_hw_enable_rfkill(struct ath_hw *ah)
  792. {
  793. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  794. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  795. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  796. AR_GPIO_INPUT_MUX2_RFSILENT);
  797. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  798. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  799. }
  800. static void ar5008_restore_chainmask(struct ath_hw *ah)
  801. {
  802. int rx_chainmask = ah->rxchainmask;
  803. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  804. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  805. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  806. }
  807. }
  808. static void ar5008_set_diversity(struct ath_hw *ah, bool value)
  809. {
  810. u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
  811. if (value)
  812. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  813. else
  814. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  815. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  816. }
  817. static u32 ar9100_hw_compute_pll_control(struct ath_hw *ah,
  818. struct ath9k_channel *chan)
  819. {
  820. if (chan && IS_CHAN_5GHZ(chan))
  821. return 0x1450;
  822. return 0x1458;
  823. }
  824. static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
  825. struct ath9k_channel *chan)
  826. {
  827. u32 pll;
  828. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  829. if (chan && IS_CHAN_HALF_RATE(chan))
  830. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  831. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  832. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  833. if (chan && IS_CHAN_5GHZ(chan))
  834. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  835. else
  836. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  837. return pll;
  838. }
  839. static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
  840. struct ath9k_channel *chan)
  841. {
  842. u32 pll;
  843. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  844. if (chan && IS_CHAN_HALF_RATE(chan))
  845. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  846. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  847. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  848. if (chan && IS_CHAN_5GHZ(chan))
  849. pll |= SM(0xa, AR_RTC_PLL_DIV);
  850. else
  851. pll |= SM(0xb, AR_RTC_PLL_DIV);
  852. return pll;
  853. }
  854. static bool ar5008_hw_ani_control(struct ath_hw *ah,
  855. enum ath9k_ani_cmd cmd, int param)
  856. {
  857. struct ar5416AniState *aniState = ah->curani;
  858. struct ath_common *common = ath9k_hw_common(ah);
  859. switch (cmd & ah->ani_function) {
  860. case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
  861. u32 level = param;
  862. if (level >= ARRAY_SIZE(ah->totalSizeDesired)) {
  863. ath_print(common, ATH_DBG_ANI,
  864. "level out of range (%u > %u)\n",
  865. level,
  866. (unsigned)ARRAY_SIZE(ah->totalSizeDesired));
  867. return false;
  868. }
  869. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  870. AR_PHY_DESIRED_SZ_TOT_DES,
  871. ah->totalSizeDesired[level]);
  872. REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
  873. AR_PHY_AGC_CTL1_COARSE_LOW,
  874. ah->coarse_low[level]);
  875. REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
  876. AR_PHY_AGC_CTL1_COARSE_HIGH,
  877. ah->coarse_high[level]);
  878. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  879. AR_PHY_FIND_SIG_FIRPWR,
  880. ah->firpwr[level]);
  881. if (level > aniState->noiseImmunityLevel)
  882. ah->stats.ast_ani_niup++;
  883. else if (level < aniState->noiseImmunityLevel)
  884. ah->stats.ast_ani_nidown++;
  885. aniState->noiseImmunityLevel = level;
  886. break;
  887. }
  888. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  889. const int m1ThreshLow[] = { 127, 50 };
  890. const int m2ThreshLow[] = { 127, 40 };
  891. const int m1Thresh[] = { 127, 0x4d };
  892. const int m2Thresh[] = { 127, 0x40 };
  893. const int m2CountThr[] = { 31, 16 };
  894. const int m2CountThrLow[] = { 63, 48 };
  895. u32 on = param ? 1 : 0;
  896. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  897. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  898. m1ThreshLow[on]);
  899. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  900. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  901. m2ThreshLow[on]);
  902. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  903. AR_PHY_SFCORR_M1_THRESH,
  904. m1Thresh[on]);
  905. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  906. AR_PHY_SFCORR_M2_THRESH,
  907. m2Thresh[on]);
  908. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  909. AR_PHY_SFCORR_M2COUNT_THR,
  910. m2CountThr[on]);
  911. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  912. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  913. m2CountThrLow[on]);
  914. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  915. AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
  916. m1ThreshLow[on]);
  917. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  918. AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
  919. m2ThreshLow[on]);
  920. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  921. AR_PHY_SFCORR_EXT_M1_THRESH,
  922. m1Thresh[on]);
  923. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  924. AR_PHY_SFCORR_EXT_M2_THRESH,
  925. m2Thresh[on]);
  926. if (on)
  927. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  928. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  929. else
  930. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  931. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  932. if (!on != aniState->ofdmWeakSigDetectOff) {
  933. if (on)
  934. ah->stats.ast_ani_ofdmon++;
  935. else
  936. ah->stats.ast_ani_ofdmoff++;
  937. aniState->ofdmWeakSigDetectOff = !on;
  938. }
  939. break;
  940. }
  941. case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
  942. const int weakSigThrCck[] = { 8, 6 };
  943. u32 high = param ? 1 : 0;
  944. REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
  945. AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
  946. weakSigThrCck[high]);
  947. if (high != aniState->cckWeakSigThreshold) {
  948. if (high)
  949. ah->stats.ast_ani_cckhigh++;
  950. else
  951. ah->stats.ast_ani_ccklow++;
  952. aniState->cckWeakSigThreshold = high;
  953. }
  954. break;
  955. }
  956. case ATH9K_ANI_FIRSTEP_LEVEL:{
  957. const int firstep[] = { 0, 4, 8 };
  958. u32 level = param;
  959. if (level >= ARRAY_SIZE(firstep)) {
  960. ath_print(common, ATH_DBG_ANI,
  961. "level out of range (%u > %u)\n",
  962. level,
  963. (unsigned) ARRAY_SIZE(firstep));
  964. return false;
  965. }
  966. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  967. AR_PHY_FIND_SIG_FIRSTEP,
  968. firstep[level]);
  969. if (level > aniState->firstepLevel)
  970. ah->stats.ast_ani_stepup++;
  971. else if (level < aniState->firstepLevel)
  972. ah->stats.ast_ani_stepdown++;
  973. aniState->firstepLevel = level;
  974. break;
  975. }
  976. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  977. const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
  978. u32 level = param;
  979. if (level >= ARRAY_SIZE(cycpwrThr1)) {
  980. ath_print(common, ATH_DBG_ANI,
  981. "level out of range (%u > %u)\n",
  982. level,
  983. (unsigned) ARRAY_SIZE(cycpwrThr1));
  984. return false;
  985. }
  986. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  987. AR_PHY_TIMING5_CYCPWR_THR1,
  988. cycpwrThr1[level]);
  989. if (level > aniState->spurImmunityLevel)
  990. ah->stats.ast_ani_spurup++;
  991. else if (level < aniState->spurImmunityLevel)
  992. ah->stats.ast_ani_spurdown++;
  993. aniState->spurImmunityLevel = level;
  994. break;
  995. }
  996. case ATH9K_ANI_PRESENT:
  997. break;
  998. default:
  999. ath_print(common, ATH_DBG_ANI,
  1000. "invalid cmd %u\n", cmd);
  1001. return false;
  1002. }
  1003. ath_print(common, ATH_DBG_ANI, "ANI parameters:\n");
  1004. ath_print(common, ATH_DBG_ANI,
  1005. "noiseImmunityLevel=%d, spurImmunityLevel=%d, "
  1006. "ofdmWeakSigDetectOff=%d\n",
  1007. aniState->noiseImmunityLevel,
  1008. aniState->spurImmunityLevel,
  1009. !aniState->ofdmWeakSigDetectOff);
  1010. ath_print(common, ATH_DBG_ANI,
  1011. "cckWeakSigThreshold=%d, "
  1012. "firstepLevel=%d, listenTime=%d\n",
  1013. aniState->cckWeakSigThreshold,
  1014. aniState->firstepLevel,
  1015. aniState->listenTime);
  1016. ath_print(common, ATH_DBG_ANI,
  1017. "cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
  1018. aniState->cycleCount,
  1019. aniState->ofdmPhyErrCount,
  1020. aniState->cckPhyErrCount);
  1021. return true;
  1022. }
  1023. static void ar5008_hw_do_getnf(struct ath_hw *ah,
  1024. int16_t nfarray[NUM_NF_READINGS])
  1025. {
  1026. struct ath_common *common = ath9k_hw_common(ah);
  1027. int16_t nf;
  1028. nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
  1029. if (nf & 0x100)
  1030. nf = 0 - ((nf ^ 0x1ff) + 1);
  1031. ath_print(common, ATH_DBG_CALIBRATE,
  1032. "NF calibrated [ctl] [chain 0] is %d\n", nf);
  1033. nfarray[0] = nf;
  1034. nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
  1035. if (nf & 0x100)
  1036. nf = 0 - ((nf ^ 0x1ff) + 1);
  1037. ath_print(common, ATH_DBG_CALIBRATE,
  1038. "NF calibrated [ctl] [chain 1] is %d\n", nf);
  1039. nfarray[1] = nf;
  1040. nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
  1041. if (nf & 0x100)
  1042. nf = 0 - ((nf ^ 0x1ff) + 1);
  1043. ath_print(common, ATH_DBG_CALIBRATE,
  1044. "NF calibrated [ctl] [chain 2] is %d\n", nf);
  1045. nfarray[2] = nf;
  1046. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
  1047. if (nf & 0x100)
  1048. nf = 0 - ((nf ^ 0x1ff) + 1);
  1049. ath_print(common, ATH_DBG_CALIBRATE,
  1050. "NF calibrated [ext] [chain 0] is %d\n", nf);
  1051. nfarray[3] = nf;
  1052. nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
  1053. if (nf & 0x100)
  1054. nf = 0 - ((nf ^ 0x1ff) + 1);
  1055. ath_print(common, ATH_DBG_CALIBRATE,
  1056. "NF calibrated [ext] [chain 1] is %d\n", nf);
  1057. nfarray[4] = nf;
  1058. nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
  1059. if (nf & 0x100)
  1060. nf = 0 - ((nf ^ 0x1ff) + 1);
  1061. ath_print(common, ATH_DBG_CALIBRATE,
  1062. "NF calibrated [ext] [chain 2] is %d\n", nf);
  1063. nfarray[5] = nf;
  1064. }
  1065. static void ar5008_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan)
  1066. {
  1067. struct ath9k_nfcal_hist *h;
  1068. int i, j;
  1069. int32_t val;
  1070. const u32 ar5416_cca_regs[6] = {
  1071. AR_PHY_CCA,
  1072. AR_PHY_CH1_CCA,
  1073. AR_PHY_CH2_CCA,
  1074. AR_PHY_EXT_CCA,
  1075. AR_PHY_CH1_EXT_CCA,
  1076. AR_PHY_CH2_EXT_CCA
  1077. };
  1078. u8 chainmask, rx_chain_status;
  1079. rx_chain_status = REG_READ(ah, AR_PHY_RX_CHAINMASK);
  1080. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1081. chainmask = 0x9;
  1082. else if (AR_SREV_9280(ah) || AR_SREV_9287(ah)) {
  1083. if ((rx_chain_status & 0x2) || (rx_chain_status & 0x4))
  1084. chainmask = 0x1B;
  1085. else
  1086. chainmask = 0x09;
  1087. } else {
  1088. if (rx_chain_status & 0x4)
  1089. chainmask = 0x3F;
  1090. else if (rx_chain_status & 0x2)
  1091. chainmask = 0x1B;
  1092. else
  1093. chainmask = 0x09;
  1094. }
  1095. h = ah->nfCalHist;
  1096. for (i = 0; i < NUM_NF_READINGS; i++) {
  1097. if (chainmask & (1 << i)) {
  1098. val = REG_READ(ah, ar5416_cca_regs[i]);
  1099. val &= 0xFFFFFE00;
  1100. val |= (((u32) (h[i].privNF) << 1) & 0x1ff);
  1101. REG_WRITE(ah, ar5416_cca_regs[i], val);
  1102. }
  1103. }
  1104. REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
  1105. AR_PHY_AGC_CONTROL_ENABLE_NF);
  1106. REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
  1107. AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
  1108. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
  1109. for (j = 0; j < 5; j++) {
  1110. if ((REG_READ(ah, AR_PHY_AGC_CONTROL) &
  1111. AR_PHY_AGC_CONTROL_NF) == 0)
  1112. break;
  1113. udelay(50);
  1114. }
  1115. for (i = 0; i < NUM_NF_READINGS; i++) {
  1116. if (chainmask & (1 << i)) {
  1117. val = REG_READ(ah, ar5416_cca_regs[i]);
  1118. val &= 0xFFFFFE00;
  1119. val |= (((u32) (-50) << 1) & 0x1ff);
  1120. REG_WRITE(ah, ar5416_cca_regs[i], val);
  1121. }
  1122. }
  1123. }
  1124. void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
  1125. {
  1126. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1127. priv_ops->rf_set_freq = ar5008_hw_set_channel;
  1128. priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
  1129. priv_ops->rf_alloc_ext_banks = ar5008_hw_rf_alloc_ext_banks;
  1130. priv_ops->rf_free_ext_banks = ar5008_hw_rf_free_ext_banks;
  1131. priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
  1132. priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
  1133. priv_ops->init_bb = ar5008_hw_init_bb;
  1134. priv_ops->process_ini = ar5008_hw_process_ini;
  1135. priv_ops->set_rfmode = ar5008_hw_set_rfmode;
  1136. priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
  1137. priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
  1138. priv_ops->rfbus_req = ar5008_hw_rfbus_req;
  1139. priv_ops->rfbus_done = ar5008_hw_rfbus_done;
  1140. priv_ops->enable_rfkill = ar5008_hw_enable_rfkill;
  1141. priv_ops->restore_chainmask = ar5008_restore_chainmask;
  1142. priv_ops->set_diversity = ar5008_set_diversity;
  1143. priv_ops->ani_control = ar5008_hw_ani_control;
  1144. priv_ops->do_getnf = ar5008_hw_do_getnf;
  1145. priv_ops->loadnf = ar5008_hw_loadnf;
  1146. if (AR_SREV_9100(ah))
  1147. priv_ops->compute_pll_control = ar9100_hw_compute_pll_control;
  1148. else if (AR_SREV_9160_10_OR_LATER(ah))
  1149. priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
  1150. else
  1151. priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
  1152. }